JP2008209953A - Display device and manufacturing method therefor - Google Patents

Display device and manufacturing method therefor Download PDF

Info

Publication number
JP2008209953A
JP2008209953A JP2008140101A JP2008140101A JP2008209953A JP 2008209953 A JP2008209953 A JP 2008209953A JP 2008140101 A JP2008140101 A JP 2008140101A JP 2008140101 A JP2008140101 A JP 2008140101A JP 2008209953 A JP2008209953 A JP 2008209953A
Authority
JP
Japan
Prior art keywords
display device
electrode
color
particles
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008140101A
Other languages
Japanese (ja)
Other versions
JP5308719B2 (en
JP2008209953A5 (en
Inventor
Isao Ota
太田勲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008140101A priority Critical patent/JP5308719B2/en
Publication of JP2008209953A publication Critical patent/JP2008209953A/en
Publication of JP2008209953A5 publication Critical patent/JP2008209953A5/ja
Application granted granted Critical
Publication of JP5308719B2 publication Critical patent/JP5308719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein a liquid crystal display uses polarizing plate to cause optical loss of 50% and that the transverse-field particle moving type display device of the prior art is defective in the response speed, drive voltage, brightness, a contrast and so on. <P>SOLUTION: In the display device having a cell constituted by sandwiching a dispersion system having fine particles dispersed between substrates, at least one of which is transparent, so that an optical transmittivity or an optical reflectivity normal to the substrates of the cell is varied by moving the fine particles with an electric field, monochromatic and color displays of a high transmittivity, high contrast and low-voltage drive can be made as a thin type, light in weight and high speed, by setting the electrode pitch (p), between a drive electrode and a common electrode for applying an electric field, to 5 μ to 100 μ, by setting the cell thickness (d) to 0.2 to 1.5 times as large as p, and by setting the electrode area percentage of the drive electrode to 20% or lower. The display device can be applied to various aspects, such as a superhigh light modulation element, display for a portable devices, electronic papers, large-size monitors, super large-size TVs or super large public displays. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

少なくとも1方は透明な基板間に、帯電した微粒子が透明な液体またはガス媒体中に分散された分散系が挟まれてセルを構成しており、該セル中の微粒子分散状態を該基板に垂直方向のセルの光学的遮蔽状態とし、該基板間に設けられた、細線からなる駆動電極と共通電極間に電圧を印加して該微粒子を該基板に水平方向に移動させて該細線状駆動電極に堆積させて、分散状態の微粒子量を変調させることによって該セルの光学的遮蔽状態を変調する横電界粒子移動型表示装置において、該駆動電極と共通電極は共に櫛型、渦型ないしこれらと類似の細線からなり、該微粒子量は微粒子分散状態において該セルの光学的透過率が10%以下になるように調整されており、該駆動電極と共通電極の電極間ピッチPが5〜100μm、該駆動電極の面積率が20%以下、セルギャップdをピッチpの0.2〜1.5倍に設定したことを特徴とした表示装置であって、高精細小型パネルをライトバルブとした拡大投射表示、小型からメートルサイズの直視型表示装置、薄型フレキシブルな白黒およびフルカラー電子ペーパ表示、基本セルないし基本パネルを2次元状に多数配列した数10メートルを超える超大型表示装置まで広範囲の表示サイズに適用でき、また反射専用、透過専用あるいは反射、透過両用に適用可能な表示装置とその製造法に関するものである。
At least one of them forms a cell by sandwiching a dispersion system in which charged fine particles are dispersed in a transparent liquid or gas medium between transparent substrates, and the dispersed state of the fine particles in the cell is perpendicular to the substrate. The cell is optically shielded in the direction, and a voltage is applied between the drive electrode and the common electrode, which are provided between the substrates, and the fine wires are moved to the substrate in the horizontal direction so as to move the fine wires to the substrate. In the lateral electric field particle movement type display device which modulates the optical shielding state of the cell by modulating the amount of dispersed fine particles, the drive electrode and the common electrode are both comb-shaped, vortex-shaped or It consists of similar fine wires, and the amount of fine particles is adjusted so that the optical transmittance of the cell is 10% or less in a fine particle dispersed state, and the pitch P between the drive electrode and the common electrode is 5 to 100 μm, The drive electrode A display device characterized in that the area ratio is 20% or less and the cell gap d is set to 0.2 to 1.5 times the pitch p. Can be applied to a wide range of display sizes, from direct-to-meter display devices to metric sizes, thin flexible black-and-white and full-color electronic paper displays, and super-large display devices over a few tens of meters in which many basic cells or basic panels are arranged in two dimensions. The present invention also relates to a display device applicable to reflection only, transmission only, or both reflection and transmission, and a manufacturing method thereof.

従来の薄型表示装置の代表は液晶表示装置であり、モノクロはじめ赤(R)、緑(G)、青(B)の3色カラーフィルタを設けてそれに対応した液晶層を、透過率を変化させるシャッターとして動作させ、R,G,B光の加色法によってフルカラーを実現している。背後に白色バックライトが設けられたものは透過型カラー液晶装置であり、液晶TV、パソコンモニター、携帯電話の表示装置など広く利用されている。しかるに液晶表示装置の重大なる難点の1つは偏光板を用いることによる50%を超える光ロスである。 A typical thin display device is a liquid crystal display device, which is provided with a three-color filter of monochrome, red (R), green (G), and blue (B), and changes the transmittance of the corresponding liquid crystal layer. It is operated as a shutter, and a full color is realized by a color adding method of R, G, B light. A transmissive color liquid crystal device provided with a white backlight behind is widely used for liquid crystal TVs, personal computer monitors, mobile phone display devices, and the like. However, one of the serious difficulties of the liquid crystal display device is an optical loss exceeding 50% due to the use of the polarizing plate.

液晶以外の表示装置として透明液体ないしガス体に分散された微粒子を表示面に対して水平方向に移動集積させることによって光線透過性ないしは光線反射性を変化させる横電界方式粒子移動表示法が提案されている(特許文献1〜13)。その構成は図1および図2に示す通り、透明カウンター電極3を設けた透明基板1と、コレクト電極4を設けた基板2との間に微粒子分散系が挟まれており、電極3と電極4間に電圧を印加して粒子をカウンター電極3上に堆積させるか、面積の小さいコレクト電極4上に集積させるかによってセルの光透過率を変えることを特徴としている。すなわち微粒子が黒色光吸収性の場合(A),(C)では暗状態、(B)、(D)では明状態になる。 As a display device other than liquid crystal, a horizontal electric field type particle movement display method has been proposed, in which fine particles dispersed in a transparent liquid or gas body are moved and accumulated in the horizontal direction with respect to the display surface to change the light transmittance or light reflectivity. (Patent Documents 1 to 13). As shown in FIGS. 1 and 2, a fine particle dispersion system is sandwiched between a transparent substrate 1 provided with a transparent counter electrode 3 and a substrate 2 provided with a collect electrode 4. It is characterized in that the light transmittance of the cell is changed depending on whether particles are deposited on the counter electrode 3 by applying a voltage between them or accumulated on the collect electrode 4 having a small area. That is, when the fine particles are black light-absorbing, they are in a dark state in (A) and (C) and in a bright state in (B) and (D).

他の構成は図2に示されている。ここでは透明コレクト電極4および透明カウンター電極3が同一面上に設けられており、粒子を透明カウンター電極3上に堆積させるかないしは粒子分散状態で暗状態、透明コレクト電極4上に堆積させた時明状態となる。 Another configuration is shown in FIG. Here, the transparent collect electrode 4 and the transparent counter electrode 3 are provided on the same surface, and the particles are deposited on the transparent counter electrode 3 in the dark state or in the particle dispersed state. It becomes timed state.

図1および図2の如き電極構成及び表示モードでは駆動電圧の上昇、応答速度の低下を来たすという重大な問題を抱えていた。すなわち図1(A)、図2(A)から明らかな通り、両端のコレクト電極4の中間辺り(すなわちセル中央部)にある粒子は電界が弱い上に、明暗時にこれらの粒子をコレクト電極上ないしカウンター電極中央部までもたらすには長い距離を移動させる必要があり、明、暗の切替時間(応答速度)が極端に悪化する問題があった。また不均一電界中で面積の大きいベタ透明カウンター電極上に粒子を均一に堆積させることが困難であるため、コントラストに優れた表示を実現することが難かしかった。さらに画素に大きな透明カウンター電極を設けているため反射型で使用する場合、光線は透明電極を2回通過するからたとえ透過率が90%であっても(0.9=0.81)20%以上の光線ロスを発生する。3層積層した場合には0.9より反射明度は53%以下に低下するという難点があった。従来の表示装置では高コントラスト、高透過率を実現する条件が提示されていなかった。図1(C)の如き電極構成及び表示モードでは確かに画素面内で電界強度を均一化した点で優れている。また暗状態を必ずしも粒子をカウンター電極に集積した状態ではなく、粒子がほぼ均一に分散した状態を用いていることも応答性改善に繋がる。しかしながら大面積のベタ透明画素電極を設けている点で図1(A),図2(A)と同様の光ロスは避けられないことと分散粒子量、コレクト電極幅、電極ピッチ、セル厚等について実用面からの検討がなされておらず、高コントラスト、高透過率、低電圧駆動、高速応答を実現する条件も提示されていなかったために実用性に乏しいものであった。

特開昭49−24695公報 特開平03−91722公報 USP5,745,094 特開平9−211499 特開2001−201770 特開2004−20818 特表2005−500572 特開2002−333643 特開2003−248244 特開2005−3964 特開2004−258615 特開2004−252277 特開2002−122890
The electrode configuration and the display mode as shown in FIGS. 1 and 2 have serious problems in that the drive voltage increases and the response speed decreases. That is, as is clear from FIG. 1A and FIG. 2A, the particles near the middle of the collect electrodes 4 at both ends (that is, in the center of the cell) have a weak electric field. In order to bring it to the central part of the counter electrode, it is necessary to move a long distance, and there is a problem that the switching time (response speed) between light and dark is extremely deteriorated. In addition, since it is difficult to deposit particles uniformly on a solid transparent counter electrode having a large area in a non-uniform electric field, it has been difficult to realize a display with excellent contrast. Further, since a large transparent counter electrode is provided on the pixel, when the reflection type is used, the light beam passes through the transparent electrode twice, so even if the transmittance is 90% (0.9 2 = 0.81) 20 % Of light loss is generated. When the three-layer laminated had disadvantage that the reflection brightness than 0.9 6 drops below 53%. In conventional display devices, conditions for realizing high contrast and high transmittance have not been presented. The electrode configuration and display mode as shown in FIG. 1C are excellent in that the electric field strength is surely made uniform in the pixel plane. In addition, the use of a state in which particles are not uniformly accumulated on the counter electrode but a state in which particles are dispersed substantially uniformly is also used for improving the responsiveness. However, the same optical loss as in FIGS. 1A and 2A is unavoidable in that a large-area solid transparent pixel electrode is provided, and the amount of dispersed particles, collect electrode width, electrode pitch, cell thickness, etc. No practical examination has been made, and conditions for realizing high contrast, high transmittance, low voltage drive, and high-speed response have not been presented.

JP 49-24695 A Japanese Patent Laid-Open No. 03-91722 USP 5,745,094 JP 9-2111499 A JP2001-201770 JP2004-20818 Special Table 2005-500572 JP-A-2002-333643 JP2003-248244 JP2005-3964 JP2004-258615A JP 2004-252277 A JP 2002-122890 A

表示装置では応答速度は早いことが望ましい。実用的な応答速度を実現するには電気泳動による粒子移動の場合、通常0.2〜2V/μm程度の電界強度が必要である。表示装置の画素は用途によって種々のサイズが存在する。拡大投射に用いるライトバルブでは小型、高精細が要求されるから画素サイズは10μm以下の場合もある。一方屋内外に設置される公衆ディスプレイではセンチメートルオーダの画素になる場合もある。本願では粒子ディスプレイをあらゆるサイズの画素に適用し、尚且つ実用的な駆動電圧で透過率、コントラスト、応答速度等ディスプレイとしての重要な特性を最適化することによって実用性を向上させたものである。 It is desirable for the display device to have a high response speed. In order to realize a practical response speed, in the case of particle movement by electrophoresis, an electric field strength of about 0.2 to 2 V / μm is usually required. There are various sizes of pixels of a display device depending on applications. Since the light valve used for enlarged projection requires small size and high definition, the pixel size may be 10 μm or less. On the other hand, in a public display installed indoors or outdoors, there are cases where the pixels are in the order of centimeters. In this application, the particle display is applied to pixels of all sizes, and the practical characteristics are improved by optimizing important characteristics as a display such as transmittance, contrast, and response speed with a practical driving voltage. .

上記課題を解決するために、本発明では従来同様横電界を用いるものであるが、透過率、コントラスト、応答速度など表示性能を向上させると共に、駆動電圧を低減させるセル構成と表示モードを提案するものである。     In order to solve the above problems, the present invention uses a horizontal electric field as in the prior art, but proposes a cell configuration and a display mode that improve display performance such as transmittance, contrast, response speed, and reduce drive voltage. Is.

本発明の基本セルの構成は図3(A)に示す通り、ガラス、プラスチックなど少なくとも一方は透明な2枚の基板1,2間に設けられた隔壁20によりセル8が構成され、該セル内には透明媒体に微粒子5が分散された分散系7が充填されており、下基板には図4に示すような細線からなる一対の電極6−1、6−2がセルの全面に設けられてセル8が構成されている。
図3(A)のようにセル8中にカーボンブラックなどの黒色光吸収性の微粒子5が均一に分散された状態では透明基板2から入射した光は、微粒子5の隠ぺい力が十分ならば黒色となる。
As shown in FIG. 3A, the basic cell of the present invention has a cell 8 constituted by a partition wall 20 provided between two substrates 1 and 2 that are transparent at least one of glass, plastic and the like. Is filled with a dispersion system 7 in which fine particles 5 are dispersed in a transparent medium, and a pair of electrodes 6-1 and 6-2 made of fine wires as shown in FIG. The cell 8 is configured.
As shown in FIG. 3A, when black light-absorbing fine particles 5 such as carbon black are uniformly dispersed in the cell 8, the light incident from the transparent substrate 2 is black if the hiding power of the fine particles 5 is sufficient. It becomes.

図3(B)のように電極6−1と6−2間にDC電圧を印加すれば、微粒子5が正に帯電している場合クーロン力により負極の電極6−1上に集積する。この場合粒子が集積した線状電極6−1以外の領域は光を遮るものがなく透明となる。ここで6−1、6−2間に逆極性の適切なDC電圧パルスないしAC電圧を印加すれば6−1上の微粒子は電極を離れてセル8中に拡散分布し、セル8は再び不透明となる。このようにセル8内の分散状態の粒子量(したがって6−1へ集積させる粒子量)を変えることによってセルの透過率を連続的に変化でき集積状態の粒子も、分散状態の粒子も電圧を切って後もその状態を維持するため表示はメモリ性を有する。分散系7はガス又は透明な液体中に正または負に帯電した微粒子が分散されたものから成り、液体の場合は粒子の移動は電気泳動と呼ばれる。電極6−1、6−2の形状は図4に示すように、櫛型、渦型、これらと類似形状など種々の形が用いられるがいずれも細線から構成されていることが共通している。全体形状は短形、円形、六角形など任意である。 When a DC voltage is applied between the electrodes 6-1 and 6-2 as shown in FIG. 3B, when the fine particles 5 are positively charged, they are accumulated on the negative electrode 6-1 by Coulomb force. In this case, the region other than the linear electrode 6-1 where the particles are accumulated is transparent without any light blocking. Here, if an appropriate DC voltage pulse or AC voltage having a reverse polarity is applied between 6-1 and 6-2, the fine particles on 6-1 leave the electrode and diffuse in the cell 8, and the cell 8 becomes opaque again. It becomes. Thus, by changing the amount of dispersed particles in the cell 8 (and hence the amount of particles accumulated in the 6-1), the transmittance of the cell can be continuously changed. The display has a memory property in order to maintain the state after being cut. The dispersion system 7 is formed by dispersing positively or negatively charged fine particles in a gas or a transparent liquid. In the case of a liquid, the movement of the particles is called electrophoresis. As shown in FIG. 4, the electrodes 6-1 and 6-2 may have various shapes such as a comb shape, a vortex shape, and similar shapes. . The overall shape is arbitrary such as a short shape, a circular shape, and a hexagonal shape.

本発明では粒子を集積する電極6−1を駆動電極、他方の電極6−2を共通電極と呼ぶ。細線状の駆動電極がセル全面に存在する故に共通電極6−2との間の強いエッジ電界で粒子は集積、分散を繰り返すことが出来、セルの周辺のみに電極を設けた図1の場合に較べて特に画素が大きくなった場合応答速度が顕著に向上する。また粒子を移動させる電界強度は6−1と6−2の電極間距離、駆動電圧で決まるからセルサイズに拘わらず低電圧でも十分な電界を作用させることが可能になり、低電圧駆動で高速応答を実現できることになる。
細線状の駆動電極はアルミ、クロム、金、タンタルなどの金属を蒸着やスパッタで設けてフォト処理でパタン化した薄膜や、導電性塗料を印刷、インクジェット描画などで設けた導電性厚膜などで構成できる。一対の電極は上基板1に設けられていてもかまわない。
In the present invention, the electrode 6-1 for accumulating particles is called a drive electrode, and the other electrode 6-2 is called a common electrode. In the case of FIG. 1 in which the thin line-like driving electrode is present on the entire surface of the cell, the particles can be repeatedly accumulated and dispersed by a strong edge electric field between the common electrode 6-2 and the electrode is provided only around the cell. In particular, the response speed is remarkably improved when the pixel size is increased. In addition, since the electric field strength for moving the particles is determined by the distance between the electrodes 6-1 and 6-2 and the driving voltage, a sufficient electric field can be applied even at a low voltage regardless of the cell size. A response can be realized.
The thin line drive electrode is a thin film that is patterned by vapor deposition or sputtering of a metal such as aluminum, chromium, gold, or tantalum, or a thick conductive film that is printed by conductive paint or inkjet drawing. Can be configured. The pair of electrodes may be provided on the upper substrate 1.

微粒子を駆動電極に集積した時共通電極表面や両電極間隙、あるいは上下基板内面に固着して残存することはセルの明状態の光透過性を阻害するゆえに好ましくない。従ってセルのこの部分には微粒子の固着を妨げるようフッ素化合物などの低表面張力物質のコーティングあるいは粒子の帯電と同極性に帯電するような表面処理がなされていることが望ましい。また分散媒が液体の場合は微粒子と液体の比重は出来るだけ近接していることが粒子の沈降や浮上を生じさせにくいことから望ましい。 When the fine particles are accumulated on the drive electrode, it is not preferable that the fine particles remain firmly attached to the surface of the common electrode, the gap between the electrodes, or the inner surfaces of the upper and lower substrates because the light transmittance of the light state of the cell is inhibited. Therefore, it is desirable that this portion of the cell is coated with a low surface tension substance such as a fluorine compound or surface treatment so as to be charged with the same polarity as the charged particles so as to prevent the fine particles from sticking. Further, when the dispersion medium is a liquid, it is desirable that the specific gravity of the fine particles and the liquid be as close as possible because it is difficult for the particles to settle or float.

本発明で分散状態とはブラウン運動により比重差に拘わらず液体中に安定に微粒子が均一分散したコロイド状態は勿論、基板1,2内面のいずれかないし両面に一部ないし殆どの粒子がゆるく付着した状態、粒子が互いにゆるく凝集し、両電極間に3次元網目構造を形成している状態も含むものである。また微粒子は1種類である必要はなく、光学的特性を最適化するため各種のものが混在していてもよい。微粒子5は通常光吸収性のものが使用されるが、二酸化チタンのように白色等反射性のものを用いることも可能であり、この場合セル8の微粒子分散状態では入射光が微粒子で散乱反射されその程度に応じて透過光は減衰する。反射で見る場合は粒子分散状態で粒子の色、基板2ないし透明基板2の下部が粒子と異なる色(たとえば黒色)であれば粒子集積状態での反射色はほぼ黒色となる。 In the present invention, the dispersed state is not only a colloidal state in which fine particles are stably and uniformly dispersed in the liquid regardless of the specific gravity due to Brownian motion, but also some or most of the particles are loosely attached to either the inner surface of the substrate 1 or 2. This includes a state in which the particles are loosely aggregated to form a three-dimensional network structure between the electrodes. The fine particles need not be of one type, and various types of fine particles may be mixed in order to optimize the optical characteristics. The fine particles 5 are usually light-absorbing, but it is also possible to use a white or other reflective material such as titanium dioxide. In this case, the incident light is scattered and reflected by the fine particles dispersed in the cell 8. Depending on the degree, the transmitted light attenuates. When viewed by reflection, if the color of the particles is in a dispersed state and the lower part of the substrate 2 or the transparent substrate 2 is a color different from the particles (for example, black), the reflected color in the particle accumulation state is almost black.

本願の如き受動型表示装置では表示性能を決するものは、透過率(反射率)、コントラスト、色純度、応答速度、解像度、視野角などであり、装置としては駆動電圧、消費電力も重要な要素となる。図3の如き表示装置で透過コントラストは粒子分散状態(暗)の透過率と粒子集積状態(明)の透過率で決定される。特に十分な暗状態を作り出すことがコントラスト向上には必須用件となる。コントラスト1000:1、100:1、10:1以上を実現するにはセルの粒子分散状態での透過率は各々0.1%(光学濃度3以上)、1%(光学濃度2以上)、10%未満(光学濃度1以上)である必要がある。本願のセル構成では分散系の粒子濃度を増せば分散状態の透過率を上記値にすることは極めて容易である。しかし粒子濃度を増すと一般に粒子の移動速度が遅くなる、明状態の透過率が悪化しやすいなどの障害が発生するから不必要に粒子濃度を上げるのは得策ではない。 In the passive display device as in the present application, what determines the display performance is transmittance (reflectance), contrast, color purity, response speed, resolution, viewing angle, etc., and driving voltage and power consumption are also important factors for the device. It becomes. In the display device as shown in FIG. 3, the transmission contrast is determined by the transmittance in the particle dispersion state (dark) and the transmittance in the particle accumulation state (bright). In particular, creating a sufficiently dark state is an essential requirement for improving contrast. In order to achieve a contrast of 1000: 1, 100: 1, 10: 1 or more, the transmittance in the particle dispersion state of the cell is 0.1% (optical density 3 or higher), 1% (optical density 2 or higher), 10 % (Optical density of 1 or more). In the cell configuration of the present application, it is very easy to set the transmittance in the dispersed state to the above value by increasing the particle concentration of the dispersed system. However, increasing the particle concentration generally causes problems such as slowing of the moving speed of the particles and easy deterioration of the light transmittance, so it is not a good idea to increase the particle concentration unnecessarily.

図5を用いて本表示装置での粒子集積時の明状態の透過率について述べる。十分ないんぺい性が得られる濃度に微粒子を分散させた分散系中の粒子をすべて上基板に集積したと想定しこの時の粒子層の厚みをd、画素の面積をSとする(A)。1画素の表示面から見た駆動電極の総面積をΔsとし、分散粒子をすべてΔsに集積した明状態では、駆動電極上の粒子層の厚みhはd*S/Δsとなる(B)。明状態はS−Δsを最大化すなわちΔsを最小化することで実現される。Δs/Sを駆動電極の面積率と定義する。面積率を10%、20%とすればほぼ90%、80%の透過率を実現できることになる。しかしながらこの時のΔs上の粒子層の厚みhは各々dの10倍、5倍になる。すなわち極小の面積の駆動電極に出来るだけ厚く粒子を積み上げれば高透過率と高コントラストを実現できることになり、dが小すなわち隠ぺい力の高い粒子を用いるほど薄い粒子層で上記高パフォーマンスが実現できることが期待できる。隠ぺい力は粒子そのものの特性は勿論、粒径が深く関与し、隠ぺい力が高くなる粒径を選ぶべきである。 With reference to FIG. 5, the transmittance in the bright state at the time of particle accumulation in this display device will be described. Assuming that all particles in a dispersion system in which fine particles are dispersed at a concentration at which sufficient penetration is obtained are accumulated on the upper substrate, the thickness of the particle layer at this time is d, and the area of the pixel is S (A). In a bright state where the total area of the drive electrode viewed from the display surface of one pixel is Δs and all the dispersed particles are accumulated in Δs, the thickness h of the particle layer on the drive electrode is d * S / Δs (B). The bright state is realized by maximizing S-Δs, that is, minimizing Δs. Δs / S is defined as the area ratio of the drive electrode. If the area ratio is 10% and 20%, a transmittance of about 90% and 80% can be realized. However, the thickness h of the particle layer on Δs at this time is 10 times and 5 times of d, respectively. In other words, high transmittance and high contrast can be achieved by stacking particles as thick as possible on a drive electrode with a minimum area, and the above high performance can be realized with a thin particle layer as d is small, that is, particles with high hiding power are used. Can be expected. The concealing force should be selected so that the particle size is deeply related and the concealing force becomes high, as well as the characteristics of the particles themselves.

極小の面積率は図4の如き細線状の電極を利用して実現でき、駆動電極幅は製造の容易さ、、電極の信頼性および集積粒子層の安定性を考慮して可能な限り最小幅で形成すべきである。線幅30μm以下、望ましくは10μm以下、ライトバルブ等では数μm以下で用いるのが望ましい。たとえば100μm幅の画素に5μm幅の駆動電極を4本設けても面積率20%であり、電極をより細線化することによって面積率を10%以下にすることは可能である。
粒子濃度を下げれば粒子の移動速度は速くなり、分散系を厚くすれば低粒子濃度(g/cm3)でも隠ぺい性ないし着色力を高めることができる。しかしながら電極から遠のくほど粒子に作用する電界が弱まり、かつ電極に集積するには粒子は長い距離を移動する必要があり応答が遅くなる。
経験上セルギャップは電極ピッチpの0.2〜1.5倍程度(20〜150%)に選ぶと電界の波及性が確保され従ってオン(明)、オフ(暗)時の応答性が確保できる。
The minimum area ratio can be realized by using a thin wire electrode as shown in FIG. 4, and the drive electrode width is as small as possible in consideration of ease of manufacture, electrode reliability, and stability of the integrated particle layer. Should be formed with. It is desirable to use a line width of 30 μm or less, desirably 10 μm or less, and for light valves or the like, several μm or less. For example, even if four 5 μm wide drive electrodes are provided in a 100 μm wide pixel, the area ratio is 20%, and the area ratio can be reduced to 10% or less by making the electrodes thinner.
If the particle concentration is lowered, the moving speed of the particles is increased, and if the dispersion is thickened, the hiding property or coloring power can be increased even at a low particle concentration (g / cm 3 ). However, the farther away from the electrode, the weaker the electric field acting on the particles, and in order to accumulate on the electrodes, the particles need to travel a long distance, resulting in a slower response.
Based on experience, if the cell gap is selected to be about 0.2 to 1.5 times (20 to 150%) the electrode pitch p, the ripple of the electric field is secured, and thus the response at the time of on (bright) and off (dark) is secured. it can.

電気泳動での粒子移動で実用的な応答性実現には先述の通り0.2〜2V/μm程度の電界強度が必要であり、画素サイズに係らずこの電界強度は確保したい。図4(A)に示す電極ピッチpを5〜100μm程度に選び、セルギャップdを電極ピッチpの0.2〜1.5倍(1μm〜150μm)にすれば、対向電極間電圧1V〜200Vで上記電界強度0.2〜2V/μmがほぼ確保できる。直視型ディスプレイに限れば電極ピッチは20〜50μm程度、セルギャップ10〜75μm、印加電圧4〜100Vが実用的である。公衆表示の超大型ディスプレイで画素が数mm〜数cmのものでも電極ピッチを上記20〜50μm程度で構成すれば十分低電圧で駆動できることになる。 As described above, an electric field strength of about 0.2 to 2 V / μm is necessary to realize a practical response by moving particles by electrophoresis, and it is desired to secure this electric field strength regardless of the pixel size. When the electrode pitch p shown in FIG. 4A is selected to be about 5 to 100 μm and the cell gap d is 0.2 to 1.5 times (1 μm to 150 μm) of the electrode pitch p, the voltage between the counter electrodes is 1 V to 200 V. Thus, the electric field strength of 0.2 to 2 V / μm can be almost secured. If it is limited to a direct-view display, an electrode pitch of about 20 to 50 μm, a cell gap of 10 to 75 μm, and an applied voltage of 4 to 100 V are practical. Even if it is a very large display for public display and has pixels of several mm to several centimeters, it can be driven with a sufficiently low voltage if the electrode pitch is made about 20 to 50 μm.

一方ライトバルブのような小型高精細パネルで画素サイズが10μm程度では電極をセル両端に設けた電極ピッチ約10μmで用いるか、セル両端ないし隔壁の下部または隔壁側面に設けた駆動(共通)電極間に共通(駆動)電極1本を入れて、ピッチ約5μmで用いればよい。
以上、電極ピッチ、セル厚は駆動電圧、応答速度に深く係り、それぞれの実用的な値を示した。
On the other hand, if the pixel size is about 10 μm in a small high-definition panel such as a light valve, it is used at an electrode pitch of about 10 μm with electrodes provided at both ends of the cell, or between drive (common) electrodes provided at both ends of the cell, at the bottom of the partition, or on the side of the partition One common (driving) electrode may be put in and used at a pitch of about 5 μm.
As described above, the electrode pitch and the cell thickness are deeply related to the driving voltage and the response speed, and show practical values of each.

ちなみに特許文献2では400μm幅の電極が1000μmの間隙で配置される実例が記載されているから面積率=Δs/S=400/1400=28.5%となり、100μmセルギャップに100〜300Vを印加して55%の透過率と110のコントラストが報告されている。セルギャップの電極ピッチに対する割合は100/1400=7.1%で極めて小さく帯状電極間中央部の電界は極度に弱くなってしまう。最大電界強度1〜3v/μmであるが、これはあくまでも対向している電極間の電界であって帯状電極間中央部では粒子に作用する電界は図1(A)と同様極めて低下せざるを得ず応答速度の低下をきたし電界均一化がなされているとは言い難く実用上問題があった。 Incidentally, since Patent Document 2 describes an example in which electrodes having a width of 400 μm are arranged with a gap of 1000 μm, the area ratio = Δs / S = 400/1400 = 28.5%, and 100 to 300 V is applied to a 100 μm cell gap. 55% transmittance and 110 contrast have been reported. The ratio of the cell gap to the electrode pitch is 100/1400 = 7.1%, which is extremely small, and the electric field at the central portion between the strip electrodes is extremely weak. Although the maximum electric field strength is 1 to 3 v / μm, this is only an electric field between the electrodes facing each other, and the electric field acting on the particles in the central portion between the strip electrodes must be extremely reduced as in FIG. It was difficult to say that the response speed was lowered and the electric field was made uniform.

以上述べた通り、駆動電圧、応答速度の低減は電極ピッチとそれに対応したセル厚の設定により、透過率、コントラストの向上はΔsの低減、分散粒子の選定、分散粒子量の最適化によって実現できると言える。 As described above, the drive voltage and response speed can be reduced by setting the electrode pitch and the corresponding cell thickness, and the transmittance and contrast can be improved by reducing Δs, selecting dispersed particles, and optimizing the amount of dispersed particles. It can be said.

本発明で用いる電極構成は図3、図4に示したものの他、種々の形式が利用可能である。
図6−1(A)には図4の一方の電極を対向基板上に設けた場合を示す。分散系が多少厚くなっても図3の場合より全体として粒子に強い電界を印加できる。
図6−1(A)のようにそれぞれを異なる基板上に電極を設ける場合、図7に示すように駆動、共通各線状電極はストライプ、格子、渦など閉じられた電極構成でもよい。
In addition to the electrode configurations used in the present invention shown in FIGS. 3 and 4, various types can be used.
FIG. 6A shows a case where one electrode of FIG. 4 is provided over the counter substrate. Even if the dispersion system is somewhat thicker, a stronger electric field can be applied to the particles as a whole than in the case of FIG.
When electrodes are provided on different substrates as shown in FIG. 6A, the driving and common linear electrodes may have closed electrode structures such as stripes, lattices, and vortices as shown in FIG.

駆動電極と共通電極が同一パタンで互いに重なり合う位置にある図6−1(A)と互いに少しずらす場合(図6−1(B))がある。図6−1(B)の場合は共通電極は透明にすべきであり、各電極間の中央部にある粒子にはより強い電界を作用できる利点があるが粒子に正、負両極性のものを用いた場合透過率が低下する欠点が発生するから粒子は同極性のものを選ぶべきである。 There is a case where the drive electrode and the common electrode are in the same pattern in a position where they overlap each other and FIG. 6-1 (A) is slightly shifted (FIG. 6-1 (B)). In the case of FIG. 6-1 (B), the common electrode should be transparent, and there is an advantage that a stronger electric field can act on the particles in the center between the electrodes, but the particles have both positive and negative polarities. When using, particles with the same polarity should be selected because of the disadvantage that the transmittance decreases.

図6−1(C)は両基板にそれぞれ図4の如き共通電極と駆動電極対を有するもので尚且つ駆動電極と共通電極が重なり合うように配置したもので、図6−1(B)と同様微粒子を再分散させる時に電界による基板間の流体の流れが微粒子分散に寄与する。 FIG. 6-1 (C) has a common electrode and a drive electrode pair as shown in FIG. 4 on both substrates, and is arranged so that the drive electrode and the common electrode overlap each other. Similarly, when the fine particles are redispersed, the fluid flow between the substrates due to the electric field contributes to the fine particle dispersion.

図6−2(D)は駆動電極どうしを重ね合わすよう配置したもので表示面から見て同一領域に粒子を多層に積層できるから、透過率向上に寄与する。 FIG. 6-2 (D) is an arrangement in which the drive electrodes are overlapped with each other. Since particles can be laminated in the same region as viewed from the display surface, it contributes to an improvement in transmittance.

図6−3(E)は共通電極が駆動電極とは別基板にあり、かつ透明ベタ電極の場合を示す。駆動電極は図7のようにストライプ、格子、渦など閉じられたものかあるいは図4のような閉じられない電極構成が自由に選択できる。この場合も線状駆動電極間にある粒子に電界を作用させやすいが、粒子は単極性でなければ開口率で不利になる。透過での暗状態は粒子分散状態やベタ電極への粒子堆積状態で実現できる。共通電極が透明であるとはいえ幾分光を吸収するから先述した通りセルを積層して使用する場合光ロスが大きくなる不利益が発生する。本発明で共通電極がベタ電極の場合や駆動電極と共通電極が異なる基板に設けられている構成では、駆動電極と共通電極の電極間ピッチPとは駆動電極と共通電極の最短距離を意味する。 FIG. 6-3 (E) shows a case where the common electrode is on a separate substrate from the drive electrode and is a transparent solid electrode. The drive electrode can be freely selected from a closed electrode, such as a stripe, a lattice, and a vortex as shown in FIG. 7, or a non-closed electrode configuration as shown in FIG. In this case as well, an electric field is easily applied to the particles between the linear drive electrodes, but if the particles are not unipolar, the aperture ratio is disadvantageous. A dark state in transmission can be realized by a particle dispersion state or a particle deposition state on a solid electrode. Even though the common electrode is transparent, it absorbs a certain amount of spectrum, so that when the cells are stacked and used as described above, there is a disadvantage that the optical loss increases. In the present invention, when the common electrode is a solid electrode or the drive electrode and the common electrode are provided on different substrates, the pitch P between the drive electrode and the common electrode means the shortest distance between the drive electrode and the common electrode. .

図6−3(F)は図6−3(E)の透明ベタ共通電極の対向側に図4の如き駆動、共通電極対を設けた構成である。粒子分散状態を高速化するのに有用な構成であるが、共通電極は透明なものを用いるべきである。 FIG. 6-3 (F) is a configuration in which a drive and common electrode pair as shown in FIG. 4 is provided on the opposite side of the transparent solid common electrode of FIG. 6-3 (E). Although this configuration is useful for speeding up the particle dispersion state, the common electrode should be transparent.

図6−3(G)は図4ないし図7の如き細線状共通電極6−2と絶縁層23を隔てて同じく細線状駆動電極6−1がピッチをずらせて設けられている。両電極を片側基板側のみに形成できることや両電極の形状自由度が高まる利点がある。共通電極6−2には透明なものを用いるべきであり、応答速度の低下を来たさないよう分散系厚は薄く構成すべきである。 In FIG. 6-3 (G), the fine line-like drive electrodes 6-1 are similarly provided at a different pitch with the fine line-like common electrode 6-2 and the insulating layer 23 as shown in FIGS. There are advantages that both electrodes can be formed only on one side of the substrate and that the degree of freedom of shape of both electrodes is increased. The common electrode 6-2 should be transparent, and the dispersion thickness should be thin so as not to reduce the response speed.

図6−3(H)は図6−3(G)の共通電極6−2をベタ透明電極に置き換えたものである。両電極を片側基板側のみに形成できる利点がある。透過で用いる時は暗状態は粒子分散状態かないしは駆動電極部以外の絶縁層23上に粒子を均一に堆積させることによっても実現できる。 FIG. 6-3 (H) is obtained by replacing the common electrode 6-2 of FIG. 6-3 (G) with a solid transparent electrode. There is an advantage that both electrodes can be formed only on one side of the substrate. When used in transmission, the dark state can be realized by not only the particle dispersion state but also by uniformly depositing particles on the insulating layer 23 other than the drive electrode portion.

以上、図6−1〜図6−3の各電極構成で駆動電極、共通電極の各々がたとえ異なる基板にあっても互いに電気的に結合してセルは駆動電極、共通電極の2端子素子として動作させるよう構成されている。 As described above, in each of the electrode configurations of FIGS. 6-1 to 6-3, the drive electrode and the common electrode are electrically coupled to each other even if they are on different substrates, so that the cell is a two-terminal element of the drive electrode and the common electrode. It is configured to work.

図6−1〜図6−3ではすべて粒子は単一極性として説明したが、電極構成によっては両極性粒子の方が有利な場合がある。 In FIGS. 6-1 to 6-3, all the particles are described as having a single polarity. However, depending on the electrode configuration, bipolar particles may be more advantageous.

先にも述べた通り、不透明な分散粒子を表示面から見て最小の断面積で集積できれば透過率を最大化できる。決められた粒子量の集積断面積を小さくするということは粒子を出来るだけ厚く積み上げることであり、以下にその対策を示す。 As described above, if opaque dispersed particles can be accumulated with a minimum cross-sectional area when viewed from the display surface, the transmittance can be maximized. Reducing the integrated cross-sectional area of the determined amount of particles means that the particles are stacked as thick as possible, and the countermeasures are shown below.

図8(A)は駆動電極上での粒子の集積断面積が長軸が基板に垂直なほぼ楕円形状に積み上った例であり、(1)粒子の電気抵抗が小さい場合集積粒子層により局所電界は強められるから粒子層は図のように厚く集積し易い。 FIG. 8A shows an example in which the accumulated cross-sectional area of particles on the drive electrode is accumulated in an almost elliptical shape with the long axis perpendicular to the substrate. (1) When the electric resistance of the particles is small, Since the local electric field is strengthened, the particle layer is thick and easy to accumulate as shown in the figure.

(2)共通電極と駆動電極間の電界が出来るだけ狭い範囲に収束している場合も集積粒子層を厚くするのに有効であり、片方ないし両方の電極幅を狭くすること、また図6−1(A)のように共通電極も駆動電極パタンとほぼ同型にして互いのパタンがほぼ重なるように配置することで駆動電極上の電界を収束できる。 (2) Even when the electric field between the common electrode and the drive electrode is converged in a narrow range as much as possible, it is effective for increasing the thickness of the integrated particle layer, and reducing the width of one or both electrodes, The electric field on the drive electrode can be converged by arranging the common electrode so as to be substantially the same type as the drive electrode pattern as shown in FIG.

(3)図8(B)に示すように電極部に細い窪みを設けておき粒子を強制的に窪みに誘い込めば集積断面積を小さくできる。窪みはたとえば共通電極ないしは駆動電極面に一様にフォトレジストなどを塗布し、フォトエッチングで電極上部を穴あけして形成できる。 (3) As shown in FIG. 8B, the integrated cross-sectional area can be reduced by providing a thin dent in the electrode portion and forcibly attracting particles into the dent. The depression can be formed by, for example, uniformly applying a photoresist or the like to the common electrode or the drive electrode surface and punching the upper portion of the electrode by photoetching.

(4)図8(C)に示すように駆動電極に微小突起を設けて局所電界を集中させる。 (4) As shown in FIG. 8C, the driving electrode is provided with minute protrusions to concentrate the local electric field.

(5)図8(D)に示すように分散系に正、負両極性の粒子を混在させておけば駆動電極、共通電極の両方に粒子を集積できることになり、両電極が互いに重なる位置関係にあれば実質的に集積粒子層の厚みを単一極性の場合の2倍にすることに相当し、高透過率が実現できる。 (5) If positive and negative polar particles are mixed in the dispersion system as shown in FIG. 8D, the particles can be accumulated on both the drive electrode and the common electrode, and the two electrodes overlap each other. In this case, the thickness of the integrated particle layer is substantially doubled as compared with the case of a single polarity, and a high transmittance can be realized.

図6−1(A)、(C)のような電極構成の時、両極性分散系が有効である。このような電極構成の場合は両電極共不透明電極でよく電極材料の選択自由度が増す。 When the electrode configuration is as shown in FIGS. 6-1 (A) and (C), the bipolar dispersion system is effective. In the case of such an electrode configuration, both electrodes may be opaque electrodes, and the degree of freedom in selecting an electrode material is increased.

分散媒がガス体の場合、帯電系列が正、負になりやすい粒子を混在させておくとまさつ帯電などで常に粒子の正、負電荷量を安定して保持できることから、単粒子系よりより安定性の高い分散系が実現できることも好都合である。 When the dispersion medium is a gas body, the positive and negative charge amounts of the particles can always be stably maintained by charging the particles that are likely to be positive or negative in the charge series. It is also advantageous that a highly stable dispersion can be realized.

両極性粒子系では再度セルを暗状態にするにはお互いの電極上の粒子が電極を離れきる程度までの適切なパルス幅の逆電圧が選ばれるべきである。適切な周波数のAC電圧を印加しても粒子を分散状態にすることができる。 In the bipolar particle system, in order to make the cell dark again, a reverse voltage having an appropriate pulse width to such an extent that the particles on each electrode can leave the electrode should be selected. Even when an AC voltage having an appropriate frequency is applied, the particles can be dispersed.

上に述べた開口率向上策を活用して駆動電極の面積率を20%以下、好ましくは10%以下にすることが望ましい。特許文献2では両電極に透明なものを使用しているが、本願では細い駆動電極上に粒子をできるだけ積み上げることを目指しているから細くする限り駆動電極は不透明でよい。 It is desirable to make the area ratio of the drive electrode 20% or less, preferably 10% or less by utilizing the above-described measures for improving the aperture ratio. In Patent Document 2, transparent electrodes are used for both electrodes. However, in this application, the drive electrode may be opaque as long as it is thinned because it aims to stack particles as much as possible on the thin drive electrodes.

図3で粒子を隔壁20によってセル内部に閉じ込めるのは微粒子が隣のセルに移動するのを妨げ各画素内の粒子濃度を一定に維持するためである。隔壁で微粒子を閉じ込める代りに、微粒子分散系をカプセル内に閉じ込めてもよい。 In FIG. 3, the particles are confined inside the cell by the partition wall 20 in order to prevent the fine particles from moving to the adjacent cell and to maintain the particle concentration in each pixel constant. Instead of confining the fine particles with the partition walls, the fine particle dispersion may be confined in the capsule.

図9(A)では微粒子分散系を内臓したカプセル粒子10を配列した断面図を示す。各カプセルの下部にたとえば細線からなる面状の櫛型駆動電極、共通電極が設けられている場合は1個のカプセルを1画素とでき、横n個のカプセルにまたがって1対の電極が設けられている場合はたとえば正方画素ではn×n個のカプセルで1画素を形成する。図9(B)は球形カプセル粒子10を基板間に加えた圧力でほぼ直方体になるように変形させた例であり、カプセル粒子の直径より小さいスペーサでギャップを形成している。このような変形を加えることによって隔壁と同様な直方体の形で用いることができ、開口率向上と隔壁を形成する工程を除くことができる。本願ではカプセルを単粒子層で描いているが、カプセル粒子は表示原理から明らかな通り必ずしも単層である必要はない。ただしカプセル中心が基板垂直方向に一直線に並ぶ等軸構造が望ましい。 FIG. 9A shows a cross-sectional view in which capsule particles 10 containing a fine particle dispersion system are arranged. For example, in the case where a planar comb drive electrode made of fine wires and a common electrode are provided at the bottom of each capsule, one capsule can be made into one pixel, and a pair of electrodes are provided across n capsules in the horizontal direction. For example, in the case of a square pixel, one pixel is formed by n × n capsules. FIG. 9B shows an example in which the spherical capsule particle 10 is deformed so as to become a substantially rectangular parallelepiped by the pressure applied between the substrates, and a gap is formed by a spacer smaller than the diameter of the capsule particle. By applying such deformation, it can be used in the form of a rectangular parallelepiped similar to the partition, and the step of improving the aperture ratio and forming the partition can be eliminated. In the present application, the capsule is drawn with a single particle layer, but the capsule particle does not necessarily have to be a single layer as is apparent from the display principle. However, an equiaxed structure in which the capsule centers are aligned in the direction perpendicular to the substrate is desirable.

基板にフィルムを用いたフレキシブルシートディスプレイの場合は特に、両基板は隔壁の上下両面と各々接着していることが好ましい。カプセル粒子を用いた場合はバインダー樹脂が上下基板の接着に寄与する。微粒子をカプセルに閉じ込めることによる他の利点は、液状ないし流動性粉体としての微粒子分散系を固体化でき表示素子面への塗布、上下基板の貼り合わせ等における取り扱いの容易さである。カプセル粒子を用いる場合も電極パタン及び電極構成は図3、図4,図6−1〜図6−3,図7の種々の構成が選択できる。 Particularly in the case of a flexible sheet display using a film as a substrate, it is preferable that both substrates are respectively bonded to the upper and lower surfaces of the partition wall. When capsule particles are used, the binder resin contributes to the adhesion between the upper and lower substrates. Another advantage of confining the fine particles in the capsule is that the fine particle dispersion system as a liquid or fluid powder can be solidified and easy to handle in application to the display element surface, bonding of the upper and lower substrates, and the like. In the case of using capsule particles, the electrode pattern and electrode configuration can be selected from various configurations shown in FIGS. 3, 4, 6-1 to 6-3, and 7.

本発明でセルとは、隔壁ないしカプセルで粒子を閉じ込めた領域を言う。一対の電極は1つのセルに設けられる場合もあれば、多数のセルに対して1組設けられる場合もある。画素とは一対の電極を有する領域を言うから1個のセルの場合もあれば多数のセルから成る場合もある。 In the present invention, a cell refers to a region in which particles are confined by a partition or a capsule. The pair of electrodes may be provided in one cell or may be provided in one set for many cells. A pixel is a region having a pair of electrodes, and may be a single cell or a number of cells.

図10(A)は光線ロスを防止したフルカラー表示素子の断面を示し透過でも使えるよう背面に光源13からなるバックライトユニット17を設けたもので、図3の如きセルを3層積み重ねた積層セル24で構成されている。ただし3層の微粒子5は各々C(シアン),M(マゼンタ),Y(イエロー)色のものが用いられる。Y,M粒子が適度に分散状態にあり、C粒子が電極集積状態にあれば、その部分はR(赤)、C,M粒子が適度に分散状態でY粒子が電極集積状態では同じく減法混色によりB(青)、Y,C粒子が分散状態ではG(緑)となる。勿論C粒子、M粒子、Y粒子のみ分散状態では夫々C,M,Y色となる。C,M,Yパネルに加えて、より完全に光を遮断するために白-黒に変調できる第4のセルが追加され4層構成をとる場合もある。またセルの積層順序は任意に選択可能である。白色光源オフの状態では白色拡散板により反射カラーパネルとして使用できる。マルチカラー表示では色の異なる分散系の2層構成でもかまわない。 FIG. 10A shows a cross section of a full-color display element that prevents light loss and is provided with a backlight unit 17 comprising a light source 13 on the back so that it can be used for transmission. A stacked cell in which three cells as shown in FIG. 3 are stacked. 24. However, the three layers of fine particles 5 are C (cyan), M (magenta), and Y (yellow). If Y and M particles are in a moderately dispersed state and C particles are in an electrode-integrated state, that portion is R (red), and if C and M particles are in a moderately dispersed state and Y particles are in an electrode-integrated state, the same subtractive color mixture Thus, B (blue), Y, and C particles become G (green) in a dispersed state. Of course, only C particles, M particles, and Y particles have C, M, and Y colors in a dispersed state, respectively. In addition to the C, M, and Y panels, a fourth cell that can be modulated into white-black in order to block light more completely may be added to form a four-layer configuration. Further, the cell stacking order can be arbitrarily selected. When the white light source is off, the white diffuser can be used as a reflective color panel. In multi-color display, a two-layer structure of dispersed systems having different colors may be used.

良好なコントラスト、色純度のカラー表示を実現するには、C,M,Y各パネルで十分なコントラストが実現される必要がある。C,M,Y粒子はそれぞれR,G,B光を吸収する粒子である。先述した通り本願で用いるC,M,YパネルはそれぞれR,G,B光の吸収帯において透過率が20%以下、望ましくは10%以下になるように各パネルの粒子濃度を設定することが望ましい。 In order to realize color display with good contrast and color purity, it is necessary to realize sufficient contrast in each of the C, M, and Y panels. C, M, and Y particles absorb R, G, and B light, respectively. As described above, the C, M, and Y panels used in the present application can set the particle concentration of each panel so that the transmittance in the R, G, and B light absorption bands is 20% or less, preferably 10% or less. desirable.

本発明のカラーパネルは図10に示す通り、特許文献7と同様少なくともC,M、Yに変化する粒子層を3層積層するものであるが、透明電極を用いない構成が可能であるため、低コストで明るく、高信頼性のパネルが製造できる。すなわち特許文献7のセル構成では1色当り少なくとも1層の透明電極が用いられているから反射で見る場合、入射光は6回透明電極を通過しなければならず、透明電極の透過率が仮に90%でも0.9=0.53で47%の光エネルギーをロスしてしまうことになり明るい白色は再現できない。また画素が大きくなると駆動に高電圧を要する難点も有していたが本願では画素の大小に係わらず低電圧で駆動できる特徴が発揮できる。 As shown in FIG. 10, the color panel of the present invention is formed by laminating at least three particle layers that change to C, M, and Y as in Patent Document 7, but a configuration without using a transparent electrode is possible. A low-cost, bright and highly reliable panel can be manufactured. That is, in the cell configuration of Patent Document 7, at least one transparent electrode is used for each color, so that when viewed by reflection, incident light must pass through the transparent electrode six times, and the transmittance of the transparent electrode is temporarily bright white will be resulting in loss of 47% of the light energy at 0.9 6 = 0.53 even 90% can not be reproduced. In addition, when a pixel becomes large, there is a problem that a high voltage is required for driving. However, in the present application, a feature that can be driven with a low voltage regardless of the size of the pixel can be exhibited.

図10(B)は図10(A)の如き積層セル24の背面に電極ピンを設け、各色の駆動電極および光源に信号を印加できるように構成した電極ピン25付きフルカラー素子を示す。各色にフィルム基板を用い、LEDやELのような薄型光源でバックライトユニットを構成すれば数mm厚のフルカラー素子とすることも可能である。各素子をカラー指示器として用いてもよいが、このような基本セルをX−Yマトリクス状に多数並べることによって光源非点時は反射型、点灯時は発光型となる反射、発光両用のフルカラー超大型表示システムを構成することができる。 FIG. 10B shows a full color element with electrode pins 25 provided with electrode pins on the back surface of the stacked cell 24 as shown in FIG. 10A so that signals can be applied to the drive electrodes and light sources of the respective colors. A full color element having a thickness of several mm can be obtained by using a film substrate for each color and forming a backlight unit with a thin light source such as an LED or EL. Each element may be used as a color indicator, but by arranging a large number of such basic cells in an XY matrix, it is a reflective type when the light source is astigmatized and a light emitting type when it is lit. An ultra-large display system can be configured.

単一画素素子は勿論多画素のパネルを用いた多画素ピン付きパネルが可能であることは言うまでもない。各素子を曲面状に配置することによって曲面表示も可能である。各画素の端子がピンを通じて外部に取り出せるから、スタチック駆動、マルチプレクス駆動、アクティブマトリクス駆動など駆動方式の自由度は高まる。 Needless to say, a multi-pixel panel using a multi-pixel panel as well as a single pixel element is possible. Curved surface display is also possible by arranging each element in a curved surface. Since the terminal of each pixel can be taken out through a pin, the degree of freedom of driving methods such as static driving, multiplex driving, and active matrix driving is increased.

図10(A)の3層積層型表示装置では画素サイズにくらべて間に入る基板の厚さが厚い場合、反射で見た時視角が制約される。図10(A)において断面図は1画素を示すとした場合、基板垂線からの角度θを越えた方向から見ると反射光線は3層すべてを通過していないから正しい色を見ることが出来ない。画素サイズをSとすれば1色分のセル厚q(上基板、分散系、下基板、接着層の合計)はq=S/(3×tanθ)となる。一般にn層積層ではq=S/(n×tan(θ))となる。θ=60度(tan(θ)=1.73)ではq=S/5.19より、画素サイズが0.1mm、1mmの場合q≒、19.2μm、190μm、θ=80度(tan(θ)=5.65)の時q≒5.9μm、59μmとなる。すなわち積層型反射表示装置は間に入る基板を極力薄くしないと視野角に優れた表示を実現することが困難になる。この点透明基板としてフィルムは薄さゆえに有利である。 In the three-layer stacked display device shown in FIG. 10A, when the thickness of the intervening substrate is thicker than the pixel size, the viewing angle is limited when viewed by reflection. In FIG. 10A, when the cross-sectional view shows one pixel, the reflected light does not pass through all three layers when viewed from the direction beyond the angle θ from the substrate normal, and thus the correct color cannot be seen. . If the pixel size is S, the cell thickness q for one color (the total of the upper substrate, dispersion system, lower substrate, and adhesive layer) is q = S / (3 × tan θ). In general, q = S / (n × tan (θ)) for an n-layer stack. At θ = 60 degrees (tan (θ) = 1.73), q = S / 5.19, and when the pixel size is 0.1 mm, 1 mm, q≈, 19.2 μm, 190 μm, θ = 80 degrees (tan (θ ) = 5.65), q≈5.9 μm and 59 μm. That is, in the multilayer reflective display device, it is difficult to realize a display with an excellent viewing angle unless an intervening substrate is made as thin as possible. This point transparent substrate is advantageous because it is thin.

図11はC,M,Yのカプセル粒子を積層したカラーパネルの断面図を示す。電極を設けた基板にカプセルを敷き詰めたものを接着剤を介して各色順次積層すればよいから基板枚数を減らし易く、視角特性の点で有利なセルが構成できる。 FIG. 11 is a cross-sectional view of a color panel in which C, M, and Y capsule particles are laminated. Since what is necessary is just to laminate | stack each color sequentially through the adhesive agent what laid the capsule on the board | substrate which provided the electrode, it is easy to reduce the number of board | substrates, and can comprise a cell advantageous at the point of viewing angle characteristic.

多数の画素から構成される表示装置の駆動法には(1)スタチック(2)単純マトリクス (3)2端子アクティブマトリクス(4)3端子アクティブマトリクス などがある。 There are (1) static (2) simple matrix (3) two-terminal active matrix (4) three-terminal active matrix and the like as driving methods for a display device composed of a large number of pixels.

図12は単純マトリクス構成のパネルを製造する工程を示す。ガラス、プラスチックなどの基板2にアルミ、クロム、金などの電極薄膜を蒸着やスパッタで設けて後フォトエッチプロセスで図12(A)に示すように列電極Ciおよびこれに連なった駆動電極6−1を形成する。次に少なくとも列電極の所定箇所に絶縁層23を形成して後、共通電極6−2、行電極Riを形成する(B)。こうして得られた電極付き基板と他の絶縁性基板との間に隔壁かカプセル化によって分散系を所定位置に閉じ込め表示パネルが構成される。列電極Ciに信号を、線状共通電極Riに走査信号を加えて線順次で表示が果たされる。パネル構成が単純であるから低コストで製造できるメリットがあるが、各画素には閾値特性が要求されるため通常、表示容量の大きい用途には使えない。 FIG. 12 shows a process for manufacturing a panel having a simple matrix structure. An electrode thin film made of aluminum, chromium, gold or the like is provided on the substrate 2 such as glass or plastic by vapor deposition or sputtering, and then a column electrode Ci and a driving electrode 6-connected to the column electrode Ci as shown in FIG. 1 is formed. Next, the insulating layer 23 is formed at least at a predetermined position of the column electrode, and then the common electrode 6-2 and the row electrode Ri are formed (B). A display panel is formed by confining the dispersion system at a predetermined position by partitioning or encapsulating between the substrate with electrodes thus obtained and another insulating substrate. A signal is applied to the column electrode Ci, and a scanning signal is applied to the linear common electrode Ri, so that display is performed in a line sequential manner. Although the panel configuration is simple, there is an advantage that it can be manufactured at a low cost. However, since each pixel is required to have a threshold characteristic, it cannot normally be used for applications with a large display capacity.

表示容量を拡大するにはアクティブマトリクス(以下AMと略称する)構成を採用する必要がある。図13は陽極酸化膜が金属電極間に挟まれたいわゆるMIM(Metal Insulator Metal)素子からなる2端子AMアレーの製造工程を示す。アルミ、タンタルなどの金属薄膜で平行線状列電極Ciを形成して後、列電極Ciを陽極酸化して表面に酸化膜を形成する(A)。ついで金属膜を蒸着ないしスパッタによって設け、たとえば櫛型駆動電極6−1を形成する(B)。駆動電極と列電極が交差する領域に2端子素子21が形成される。次に列電極の、少なくとも後に行電極と交差する箇所に絶縁層23を形成して後、共通電極6−2、走査電極Riを形成(C)することによって2端子AMアレーが形成される。こうして得られた電極付き基板と他の絶縁性基板との間に隔壁かカプセル化によって所定位置に分散系を閉じ込め表示パネルが構成される。MIMの代りに、電極6−1とCiの交点部に酸化亜鉛のような半導体を樹脂に分散した非直線抵抗素子を挟み込んでも2端子AMアレーを形成できる。 In order to increase the display capacity, it is necessary to adopt an active matrix (hereinafter abbreviated as AM) configuration. FIG. 13 shows a manufacturing process of a two-terminal AM array composed of a so-called MIM (Metal Insulator Metal) element in which an anodized film is sandwiched between metal electrodes. After forming parallel line column electrodes Ci with a metal thin film such as aluminum or tantalum, the column electrodes Ci are anodized to form an oxide film on the surface (A). Next, a metal film is provided by vapor deposition or sputtering to form, for example, a comb drive electrode 6-1 (B). A two-terminal element 21 is formed in a region where the drive electrode and the column electrode intersect. Next, the insulating layer 23 is formed at least at a position where the column electrode intersects the row electrode later, and then the common electrode 6-2 and the scanning electrode Ri are formed (C) to form a two-terminal AM array. A display panel is formed by confining the dispersion system at a predetermined position by partitioning or encapsulating between the substrate with electrodes thus obtained and another insulating substrate. Instead of MIM, a two-terminal AM array can also be formed by sandwiching a non-linear resistance element in which a semiconductor such as zinc oxide is dispersed in a resin at the intersection of electrodes 6-1 and Ci.

図14はTFT(Thin film Transistor)3端子素子から成るAMアレーの2画素分の電極構成を正面図で示す。信号線Ciとは絶縁層で分離された駆動電極6−1はドレイン(D)電極に接続されており、ソース(S)電極は列電極Ciの1部からなり、S,D間には半導体、ゲート絶縁膜が積層されている。列電極部に層間絶縁膜を設けてのち行電極Ri(ゲート電極)を設けて3端子AMアレーが形成される。共通電極6−2は列電極、行電極と絶縁層で隔てられて、列電極ないし行電極同様パネル全体に張り巡らされており、全画素共通の1端子としてパネル外に取り出されている。こうして得られたTFTからなるAMアレー基板のCi,Ri部に隔壁を設けるか画素中央部にカプセル粒子を設置し、透明絶縁性基板との間に分散系を閉じ込めて表示パネルが構成される。図14ではTFTはスタッガー型で示したが、逆スタッガー型TFTも勿論可能である。 FIG. 14 is a front view showing an electrode configuration for two pixels of an AM array composed of TFT (Thin film Transistor) three-terminal elements. The drive electrode 6-1 separated from the signal line Ci by an insulating layer is connected to a drain (D) electrode, and the source (S) electrode is a part of the column electrode Ci, and a semiconductor between S and D is a semiconductor. The gate insulating film is laminated. A three-terminal AM array is formed by providing an interlayer insulating film in the column electrode portion and then providing a row electrode Ri (gate electrode). The common electrode 6-2 is separated from the column electrode and the row electrode by an insulating layer, and extends across the entire panel like the column electrode or the row electrode, and is taken out of the panel as one terminal common to all pixels. A partition panel is provided in the Ci and Ri portions of the AM array substrate made of TFTs thus obtained, or capsule particles are placed in the center of the pixel, and a dispersion system is confined between the transparent insulating substrate to constitute a display panel. In FIG. 14, the TFT is shown as a staggered type, but an inverted staggered type TFT is of course possible.

図14のアレー構成は現在液晶モニター、液晶TVなどで用いられているIPS(In-Plane-Switching)モードのTFTパネルのアレー構成と殆ど類似している(但し、図4(A)の櫛型電極構成)。図13や図14のアクティブマトリクスパネルでは画素のドレインに印加された電圧を保持するためドレイン(駆動電極)と共通電極間に並列容量を付加することが望ましが、共通電極とドレイン電極間の絶縁層は並列容量として利用できる。
図12〜図14のマトリクスパネルでは電極はすべて片側基板に設けたもので説明したが、図6−1〜図6−3の種々の電極構成を採用してもよいことは言うまでもない。
The array configuration of FIG. 14 is almost similar to the array configuration of an IPS (In-Plane-Switching) mode TFT panel currently used in liquid crystal monitors, liquid crystal TVs, etc. (however, the comb shape of FIG. 4A). Electrode configuration). In the active matrix panels of FIGS. 13 and 14, it is desirable to add a parallel capacitor between the drain (drive electrode) and the common electrode in order to hold the voltage applied to the drain of the pixel. The insulating layer can be used as a parallel capacitor.
In the matrix panels of FIGS. 12 to 14, it has been described that all the electrodes are provided on one side of the substrate, but it is needless to say that various electrode configurations of FIGS. 6-1 to 6-3 may be adopted.

図15は更に視角特性に優れた3層積層パネルを示す。ここでは1画素を3×3個の単層カプセル粒子10から成るとして図示している。カプセル粒子径が20μmであればスペーサは約60μmの高さを必要とする。あらかじめ基板にカプセル粒子の直径に相当する凹みを設けておけばスペーサは約50μmでよい。図15では1層目、2層目、3層目のカプセル粒子に電界を作用させるためのTFTなどのスイッチ素子はすべて下基板2に形成された3色用X−Yアクティブマトリクスアレー13dで構成されているとして図示してある。 FIG. 15 shows a three-layer laminated panel having further excellent viewing angle characteristics. Here, one pixel is illustrated as being composed of 3 × 3 single-layer capsule particles 10. If the capsule particle diameter is 20 μm, the spacer needs to have a height of about 60 μm. If a depression corresponding to the diameter of the capsule particles is provided in advance in the substrate, the spacer may be about 50 μm. In FIG. 15, switch elements such as TFTs for applying an electric field to the first layer, second layer, and third layer capsule particles are all constituted by a three-color XY active matrix array 13d formed on the lower substrate 2. It is illustrated as being.

図15のような構成のアクティブマトリクスパネルを製造する方法として大きくは4つの方法が可能である。すなわち(1)C,M,Yカプセル粒子駆動用AMアレーはすべて基板2に形成(開口率向上のため隔壁ないしスペーサの下に設けられていることが望ましい)されており、各色用ドレイン電極とこれに対向する共通電極は隔壁ないしスペーサの内部か表面を通して形成し、アレー基板と隔壁ないしスペーサが形成された後にカプセル粒子を1層ずつ積み上げる。(2)C,M,Yカプセル粒子駆動用TFTはすべて基板2に形成されている点で(1)と同様であるが、各色用ドレイン電極、共通電極などの形成及び下部に形成されている対応する色用ドレイン電極との配線は色カプセルを敷き詰めた後に追加してゆく。(3)1色目のアレーが形成された基板に1色目のカプセル粒子を敷き詰めて、表面を平坦化して後2色目のTFTアレーを形成するというように、アレーとカプセル粒子層を順次形成してゆく。(4)あらかじめTFTアレーと色粒子で構成された単色アクティブマトリクスが形成された転写用基板から、接着層を設けた最終基板側に順次転写して3層を積層する。以上いずれの方法に於ても導体の積み上げには導体ペーストのインクジェット描画法やアディティブ法として広く用いられている電解ないし無電解メッキ法などが利用できる。 There are roughly four methods for manufacturing an active matrix panel configured as shown in FIG. That is, (1) the AM array for driving C, M, Y capsule particles is all formed on the substrate 2 (preferably provided under the partition or spacer for improving the aperture ratio), and the drain electrode for each color The common electrode opposite to this is formed inside or through the partition walls or spacers, and the capsule particles are stacked one layer after the array substrate and the partition walls or spacers are formed. (2) The C, M, and Y capsule particle driving TFTs are all the same as (1) in that they are formed on the substrate 2, but the drain electrodes for each color, common electrodes, etc. are formed and formed below. Wiring to the corresponding color drain electrode is added after the color capsule is spread. (3) The array and the capsule particle layer are sequentially formed so that the first color capsule particles are spread on the substrate on which the first color array is formed, the surface is flattened, and then the second color TFT array is formed. go. (4) From the transfer substrate on which a single-color active matrix composed of a TFT array and color particles is formed in advance, the three layers are laminated by sequentially transferring to the final substrate side provided with the adhesive layer. In any of the above methods, the conductor can be piled up by an electrolysis or electroless plating method widely used as an ink-jet drawing method or an additive method of a conductor paste.

以上述べたようなたとえば縦M画素、横N画素からなる基本パネルを縦m枚、横n枚並べることによってM×m×N×n画素からなる大型表示システムを構成することが可能である。それぞれパネル間の隙間を出来る限り狭くするよう各パネルの電極は薄いFPCなどを用いてパネル面と垂直方向にパネル背面に引き出し、背面基板ないしバックライトの背後に設けた駆動回路と接続して駆動するように構成される。このような基本パネルを用いて、数10mサイズの反射、透過両用の低電力、高精細フルカラー大型公衆表示システムを構成することが可能になる。 As described above, for example, a large display system composed of M × m × N × n pixels can be configured by arranging basic panels composed of M vertical pixels and N horizontal pixels and arranging m vertical and n horizontal panels. In order to make the gap between the panels as narrow as possible, the electrodes of each panel are pulled out to the back of the panel in a direction perpendicular to the panel surface using a thin FPC, etc., and connected to the driving circuit provided on the back substrate or backlight. Configured to do. Using such a basic panel, it becomes possible to construct a low-power, high-definition full-color large-sized public display system having a size of several tens of meters for both reflection and transmission.

図16はプロジェクターなどに用いる、シリコン基板を用いたAM反射型ライトバルブを示す。シリコン基板15上に形成されたFET素子からなるAMアレー上に絶縁膜23、画素部反射膜14、絶縁膜23、電極6−1、6−2を設け、各電極は絶縁膜23に設けた孔を介して対応するAM基板上のドレイン端子、共通端子と接続されており、透明基板1との間に分散系7が挟まれてライトバルブが構成される。たとえば1インチサイズでフルHD(1920×1440画素)のライトバルブを構成する場合、画素ピッチはほぼ11μm程度になる。隔壁高さは低いほど製造が容易であるから駆動電極ピッチ及びセル厚を数ミクロンとすれば、10V以下で駆動できるライトバルブが構成可能である。隔壁を絶縁性黒色にするか反射性隔壁の場合は上基板と隔壁の間に黒色膜を形成することが望ましい。 FIG. 16 shows an AM reflection type light valve using a silicon substrate for use in a projector or the like. An insulating film 23, a pixel portion reflection film 14, an insulating film 23, and electrodes 6-1 and 6-2 are provided on an AM array made of FET elements formed on a silicon substrate 15, and each electrode is provided on the insulating film 23. It is connected to the drain terminal and the common terminal on the corresponding AM substrate through a hole, and a light distribution system 7 is sandwiched between the transparent substrate 1 to constitute a light valve. For example, when a light valve of 1 inch size and full HD (1920 × 1440 pixels) is configured, the pixel pitch is about 11 μm. A light valve that can be driven at 10 V or less can be constructed if the drive electrode pitch and the cell thickness are set to a few microns because the partition wall height is easier to manufacture. In the case where the partition is made of insulating black or a reflective partition, it is desirable to form a black film between the upper substrate and the partition.

図16の反射型ライトバルブの構成はLCOS(liquid-crystal-on-silicon)と称する液晶ライトバルブでの液晶を微粒子分散系に置き換えることによって構成される。LCOSでは画素は上側透明電極、液晶層、下側反射電極構成となるが、本願での電極構成は図4、図6−1〜図6−3、図7に示す種々の構成が可能であるが、反射率を上げるため反射板14は必須である。LCOSと同様、超高圧水銀ランプなどの白色光源をダイクロイックミラーやプリズムでR,G,B光に分離し各色光を図16のライトバルブに照射して得たR,G,B色光像をレンズを用いてスクリーン上に拡大投射、合成してフルカラー像を得ることが出来る。光源にLEDや半導体レーザを用いれば小型プロジェクターを構成できる。フロントプロジェクターは勿論、途中で光路を折り曲げてリアプロジェクターも可能である。画素ピッチはモノクロの1/3になるが前面にカラーフィルタを設けることによって単板カラーライトバルブを構成することも可能であり、図15の如き3層積層パネルを構成すれば光利用率の高い単板式カラーライトバルブが構成可能である。分散系は隔壁型、カプセル型いずれを用いてもよい。反射型は光線が分散系層を2度通過するから分散系の粒子濃度が透過型の1/2でよく高速応答が可能である。 The reflection type light valve of FIG. 16 is configured by replacing the liquid crystal in a liquid crystal light valve called LCOS (liquid-crystal-on-silicon) with a fine particle dispersion system. In the LCOS, the pixel has an upper transparent electrode, a liquid crystal layer, and a lower reflective electrode configuration. The electrode configuration in the present application can have various configurations shown in FIGS. 4, 6-1 to 6-3, and 7. However, the reflector 14 is indispensable for increasing the reflectance. Similar to LCOS, a white light source such as an ultra-high pressure mercury lamp is separated into R, G, B light by a dichroic mirror or prism, and R, G, B color light images obtained by irradiating each color light to the light valve in FIG. A full color image can be obtained by magnifying and synthesizing the image on a screen. If an LED or a semiconductor laser is used as the light source, a small projector can be configured. In addition to the front projector, a rear projector is possible by bending the optical path along the way. Although the pixel pitch is 1/3 of monochrome, it is possible to construct a single-plate color light valve by providing a color filter on the front surface, and if a three-layer laminated panel as shown in FIG. A single-plate color light bulb can be configured. As the dispersion system, either a partition wall type or a capsule type may be used. In the reflection type, the light beam passes through the dispersion layer twice, so that the particle concentration of the dispersion system is ½ that of the transmission type, and a high-speed response is possible.

上記シリコン基板の代りに、石英などの耐熱性ガラスにポリシリコンなどでAMアレーを構成したAM基板を用いれば、単板式あるいは3板式高精細透過型ライトバルブを構成することが可能である。 If an AM substrate in which an AM array is formed of polysilicon or the like on a heat-resistant glass such as quartz is used instead of the silicon substrate, a single-plate or three-plate high-definition transmission type light valve can be configured.

現在の液晶カラーパネルの液晶を本発明の光変調素子で置き換えることによって容易にフルカラーパネルを構成できる。
図17に本発明の透過型フルカラーパネルの断面図を示す。現在の液晶カラーパネルのライトバルブとしての液晶を、白黒に透過率を変調できる微粒子を分散した分散系7に置き替えることによって構成できる。すなわちX−Yマトリクス構成のAMアレー13cが形成された透明ガラス基板2とストライプ状あるいはドット状にR,G,Bカラーフィルタ13a、ブラックマトリクス13bが設けられた透明基板1との間に分散系7が挟まれて構成されている。各画素となる駆動電極6−1、共通電極6−2はAMアレー13cの各ドレイン電極、共通電極と接続されている。各画素の電極は図4、図6−1〜図6−3、図7のいずれの構成を用いてもよい。
A full color panel can be easily constructed by replacing the liquid crystal of the current liquid crystal color panel with the light modulation element of the present invention.
FIG. 17 shows a cross-sectional view of the transmission type full color panel of the present invention. The liquid crystal as the light valve of the current liquid crystal color panel can be replaced by a dispersion system 7 in which fine particles capable of modulating the transmittance in black and white are dispersed. That is, a dispersion system is formed between the transparent glass substrate 2 on which the AM array 13c having the XY matrix configuration is formed and the transparent substrate 1 on which the R, G, B color filters 13a and the black matrix 13b are provided in stripes or dots. 7 is sandwiched. The drive electrode 6-1 and the common electrode 6-2 serving as each pixel are connected to the drain electrode and the common electrode of the AM array 13c. Any of the configurations shown in FIGS. 4, 6-1 to 6-3, and 7 may be used for the electrodes of each pixel.

図17では隣り合う画素にR,G,Bカラーフィルタを設ける構成について述べたが、カラーフィルタを用いる代りに各セルの分散媒をR,G,Bに着色してもよい。但し各色セルをストライプ状ないしドット状に色分けして設ける必要がある。 Although the configuration in which the R, G, and B color filters are provided in adjacent pixels has been described in FIG. 17, the dispersion medium of each cell may be colored in R, G, and B instead of using the color filters. However, it is necessary to provide each color cell in a stripe shape or a dot shape.

R,G,B併置カラーフィルタないしR、G,B着色液を用いているため光変調素子への白色入射光の2/3をロスする欠点があるが、現状確立しているTFTアレーの量産プロセスと設備がほぼそのまま利用できる利点があり、小型から100インチを超える大型までサイズを問わず製造可能である。液晶カラーパネルの場合と違って、視角拡大フィルム、偏光板、配向膜、配向処理プロセスなどは不要であり、プロセスの簡易化、部材の低減化に加えて、偏光板が不要であることからより明るく、広視角の表示を実現することができる。 The use of R, G, B juxtaposed color filters or R, G, B coloring liquids has the disadvantage of losing 2/3 of the white incident light to the light modulation element, but mass production of currently established TFT arrays There is an advantage that the process and equipment can be used almost as they are, and it can be manufactured regardless of size from a small size to a large size exceeding 100 inches. Unlike liquid crystal color panels, viewing angle widening films, polarizing plates, alignment films, alignment processing processes, etc. are unnecessary, and in addition to simplifying the process and reducing the number of components, polarizing plates are unnecessary. Bright display with a wide viewing angle can be realized.

電子値札やメッセージ表示などでは必ずしもフルカラー表示でなくてもよい用途もある。図18では1層の分散系でカラーフィルタを用いることなくマルチカラー表示を行う例について述べる。透明分散媒中に色と移動速度の異なる微粒子が混合分散された分散系を用いればよい。すなわち電極6−1,6−2間にDC電圧を印加(第一パルス)して粒子を一方の電極に堆積(同極性粒子の場合)(図18(A))させれば、セルは透明(反射で見る場合反射板が白色なら白色)に見える。ここで適切な幅ないし波高値の逆極性DCパルス(第二パルス)を印加すれば、移動速度の速い粒子(第一粒子:赤色とする)がまず電極を離れ分散状態になるからここでパルスを止めればセルは移動速度の速い粒子の分散状態である赤色に見える(図12(B))。第二パルスより幅ないし波高値の大なる逆極性パルスの場合では第一粒子は対向電極6−2に集積してしまい、分散系には速度の遅い第二粒子(黒色とする)のみ分散していることになり、セルはほぼ黒色に見える(図12(C))。電極間に適切なAC電圧を印加すれば第一、第二粒子が共に分散状態になるからこれらの混合色である赤黒色が提示される。すなわち単層パネルで4色の色が選択できることになる。色の異なる微粒子が異極性でも移動速度が異なっていれば利用可能である。 There are uses for electronic price tags, message displays, and the like that do not necessarily require full color display. FIG. 18 describes an example in which multi-color display is performed without using a color filter in a single-layer dispersion system. A dispersion system in which fine particles having different colors and moving speeds are mixed and dispersed in a transparent dispersion medium may be used. That is, if a DC voltage is applied between the electrodes 6-1 and 6-2 (first pulse) and particles are deposited on one electrode (in the case of particles of the same polarity) (FIG. 18A), the cell is transparent. (If the reflector is white when viewed in reflection, it looks white). If a reverse polarity DC pulse (second pulse) with an appropriate width or peak value is applied here, particles with a fast moving speed (first particle: red) first leave the electrode and become dispersed. If is stopped, the cell looks red, which is a dispersed state of particles having a high moving speed (FIG. 12B). In the case of a reverse polarity pulse having a width or peak value larger than that of the second pulse, the first particles are accumulated on the counter electrode 6-2, and only the second particles having a slow speed (black) are dispersed in the dispersion system. Thus, the cell appears almost black (FIG. 12C). If an appropriate AC voltage is applied between the electrodes, the first and second particles are both dispersed, and a red-black color, which is a mixture of these, is presented. That is, four colors can be selected on the single-layer panel. Even if fine particles having different colors have different polarities, they can be used as long as their moving speeds are different.

図18では粒子の移動速度の違いを利用して多色表示する例について述べたが、電極に堆積した粒子を逆極性電圧の印加で電極から脱着させるのに粒子ならびに電極の性質により閾値電圧が存在する場合がある。異なる色の微粒子のこの閾値性の違いは有効に利用可能である。第一、第二粒子の閾値を各々V1、V2(V1>V2)とし、V1>V>V2の電圧Vでは第二粒子のみ分散させることが出来、V>V1の電圧Vでは主として第一粒子のみの分散状態を生じさせることが出来るからである。またV>V1のAC電圧で混合分散色を得ることができ、泳動速度の違いと併せて閾値性の違いも粒子の選択的分散に有効に活用でき、簡単な構成のパネルでマルチカラー表示が可能となる。 FIG. 18 describes an example in which multicolor display is performed using the difference in the moving speed of particles. However, in order to desorb particles deposited on an electrode from the electrode by applying a reverse polarity voltage, the threshold voltage depends on the properties of the particles and the electrodes. May exist. This threshold property difference between different color microparticles can be used effectively. The threshold values of the first and second particles are V1 and V2 (V1> V2), respectively. When the voltage V is V1> V> V2, only the second particles can be dispersed. When the voltage V is V> V1, the first particles are mainly used. This is because only a dispersed state can be produced. In addition, a mixed dispersion color can be obtained with an AC voltage of V> V1, and a difference in threshold value as well as a difference in migration speed can be effectively utilized for selective dispersion of particles, and a multi-color display can be achieved with a simple configuration panel. It becomes possible.

薄いフィルム基板を用いて図6−1(A)、(B)、(C),図6−2(D)など両面に電極を有するパネルや図10、図11、図15などの積層パネルを形成する場合、温度や張力によるフィルムの伸縮や曲がりのため両基板や各パネルの位置合わせが困難化する。両フィルム基板をあらかじめガラスなどの剛体基板に単個取りあるいは多数個取りを想定したサイズで貼り付けておき、電極、スイッチ素子、隔壁などの形成プロセスを実施して後、他方の基板に設けられたフィルム基板との間に表示媒体の挟み込み、封止を行なってフィルムパネルを形成し、しかる後剛体基板からパネルをはがす方法をとれば、フィルムの薄さ、伸縮性から生じる電極の上下位置合わせなどのプロセスの困難性は軽減する。 A panel having electrodes on both sides such as FIGS. 6-1 (A), (B), (C), and FIG. 6-2 (D) using a thin film substrate, and a laminated panel such as FIGS. When forming, alignment of both substrates and each panel becomes difficult due to expansion and contraction and bending of the film due to temperature and tension. Both film substrates are pre-attached to a rigid substrate such as glass in a size that assumes single-piece or multi-piece, and after the formation process of electrodes, switch elements, partition walls, etc. is performed, the film substrate is provided on the other substrate. If a method is adopted in which a display panel is sandwiched between the film substrate and sealed to form a film panel, and then the panel is peeled off from the rigid substrate, the vertical alignment of the electrodes resulting from the thinness and elasticity of the film is taken. The difficulty of such processes is reduced.

本願のフレキシブルパネルの製造に有効に活用できる転写法をたとえば積層型カラーパネルの製造に適用する場合について述べる。ガラスなどの耐熱性剛体基板にあらかじめアモルファスシリコン等の無機皮膜、ポリイミド、シリコン樹脂などの有機皮膜からなる剥離層を設け、その上に数ミクロン厚の有機ないし無機の基板材を設け、この上に電極やAM、必要に応じてスペーサを形成し、カプセル粒子を所定位置に敷き詰め、必要ならバインダーをUVないし熱で硬化する。ついでこの上に、使用する電極構成によっては電極を設けたフィルムなどの薄い基板の電極面とカプセル粒子層を接着剤を介して貼り合わせて一旦剛体基板上に表示パネルを完成させる。ついで最終パネルとなる基板を被転写基板とし接着剤を介して剛体基板上に形成済みの表示パネルを転写する。同様の方法で2色目、3色目を転写することによって図11のような構成の積層型フルカラーパネルを形成できる。カプセル粒子を敷き詰めた段階で被転写基板に転写、積層してゆけば図15のような構成の積層パネルが可能であり、実質粒子層のみからなる積層が構成可能である。
上下にのみ保護シートを設けても電子ペーパ等柔軟性が望まれる用途に好適なフルカラー表示パネルが実現できる。
The case where the transfer method that can be effectively used for the production of the flexible panel of the present application is applied to the production of a laminated color panel, for example, is described. A release layer consisting of an inorganic film such as amorphous silicon or an organic film such as polyimide or silicon resin is provided in advance on a heat-resistant rigid substrate such as glass, and an organic or inorganic substrate material having a thickness of several microns is provided thereon. Electrodes, AM, and spacers as needed are formed, and capsule particles are spread in place, and the binder is cured with UV or heat if necessary. Then, depending on the electrode configuration to be used, an electrode surface of a thin substrate such as a film provided with an electrode and a capsule particle layer are bonded together with an adhesive to complete a display panel on a rigid substrate. Next, the substrate which is the final panel is used as a transfer substrate, and the display panel already formed on the rigid substrate is transferred via an adhesive. By transferring the second color and the third color by the same method, it is possible to form a stacked type full color panel having a configuration as shown in FIG. If the capsule particles are spread and laminated on the substrate to be transferred at the stage where the capsule particles are spread, a laminated panel having a configuration as shown in FIG. 15 can be obtained, and a laminate consisting only of a substantial particle layer can be constituted.
Even if protective sheets are provided only on the top and bottom, a full-color display panel suitable for applications where flexibility such as electronic paper is desired can be realized.

単色パネルでは被転写基板を用いることなく剥離してパネルを完成させてもよい。カプセル粒子系のみならず隔壁型パネルも当然可能であり、AMアレーのみの転写、分散系まで充填してからの転写、パネルまで形成してからの剥離等、剥離、転写法は可とう性フィルム基板を用いる本発明のパネル形成に極めて有効に活用できる。10μm厚程度のフィルムを用い、各色セル厚30μmのフルカラーパネルを構成して各セル間の接着剤厚を考慮しても図10の構成のパネルでも0.2mm以下の厚みに収まり、正に紙のようなフレキシブルディスプレイが実現できる。 In the case of a single color panel, the panel may be completed by peeling without using a transfer substrate. Of course, not only capsule particle type but also partition type panel is possible. Transfer of AM array only, transfer after filling to dispersion system, peeling after forming to panel, peeling, transfer method is flexible film It can be used very effectively for the panel formation of the present invention using a substrate. Using a film with a thickness of about 10 μm and forming a full color panel with each color cell thickness of 30 μm, considering the adhesive thickness between each cell, the panel with the configuration of FIG. Such a flexible display can be realized.

パネル自体がフレキシブルであっても駆動回路、バッテリなどを搭載すると表示パネルのペーパライク性が損なわれてしまいがちである。本発明の表示パネルはメモリ性があるから一旦表示を更新すればドライバを切り離しても表示は維持される。従ってパネル電極端子部あるいは信号供給回路部を露出しておき、表示を更新する時のみ信号供給源に接続する、パネル/信号源分離方式を取ることもでき、ドライバを実装していない分低コストでパネルのフレキシブル性を確保できる。 Even if the panel itself is flexible, if a drive circuit, a battery, or the like is mounted, the paper-like property of the display panel tends to be impaired. Since the display panel of the present invention has a memory property, once the display is updated, the display is maintained even if the driver is disconnected. Therefore, it is possible to adopt a panel / signal source separation method in which the panel electrode terminal portion or the signal supply circuit portion is exposed and connected to the signal supply source only when the display is updated, and the cost is low because no driver is mounted. This ensures the flexibility of the panel.

現行のアモルファスシリコン(a-Si)AMの形成には400℃程度の高温プロセスを必要としているためフィルム上に直接s-SiAMを形成することが出来ない。しかるに耐熱性剛体基板上ですべての高温プロセスを遂行しておき、耐熱性に劣り、温度変化で伸縮の激しい有機フィルム上に常温近くで剥離、転写できることは位置合わせが困難なフィルム処理には極めて有効な手法と言える。剥離転写は被転写基板側の接着力が剥離層側の接着力に勝る時に実現できる。剥離層側の接着力を弱めるためにパルスレーザ光などを照射して、剥離層と剛体基板の熱膨張性の違いを利用したり、光照射で剥離層にガスを発生させて接着力を弱める方法などが利用される。 Since the formation of the current amorphous silicon (a-Si) AM requires a high temperature process of about 400 ° C., the s-SiAM cannot be formed directly on the film. However, all high-temperature processes are performed on a heat-resistant rigid substrate, and it is inferior in heat resistance and can be peeled and transferred near normal temperature onto an organic film that stretches rapidly due to temperature changes. This is an effective method. Release transfer can be realized when the adhesive force on the transfer substrate side exceeds the adhesive force on the release layer side. In order to weaken the adhesive strength on the release layer side, irradiate pulse laser light etc. to use the difference in thermal expansion between the release layer and the rigid substrate, or generate gas in the release layer by light irradiation to weaken the adhesive strength. Methods are used.

セルを多数積層する表示装置において注意すべきは、界面反射である。屈折率が異なる界面では必ず界面反射が生じる。図10、図11の3層積層型表示セルでは、モノクロ素子1層辺り多数の層(基板、分散媒、接着層)から成るから各層は出来るだけ透明性が高いのは勿論、屈折率のできるだけ等しい材料で構成し、不要な界面反射を軽減することが重要である。 In a display device in which a large number of cells are stacked, attention should be paid to interface reflection. Interface reflection always occurs at interfaces having different refractive indexes. In the three-layer stacked display cell of FIGS. 10 and 11, each layer is composed of a large number of layers (substrate, dispersion medium, adhesive layer) per monochrome element, so that each layer is as highly transparent as possible and has a refractive index as high as possible. It is important to construct with equal materials to reduce unwanted interface reflections.

本発明で使用する光変調素子の透明基板としてプラスチックフィルムを使用するとロールツーロールで連続量産できる特徴が発揮できる。
図19はロールツーロールでパネルを製造する例を示す。あらかじめAMアレーや電極パタン、スペーサなどが形成されたロール状フィルムが上ロールから供給されカプセル粒子の形態などで分散系が塗布される。一方、電極取り出しのためのパンチング孔が空けられ印刷またはインクジェット描画などでUVシール樹脂などのシール剤が設けられた下フィルム基板との間に気泡が残らないように両基板を正確に位置合わせして貼合、固着される。パンチングなどで切断して1色用フィルムパネルを一括複数枚連続生産することが可能である。低温プロセスが可能な有機TFTなどのAM形成プロセスはロールツーロールプロセスには相性がよく、勿論本願のロールツーロールパネル形成に有効に適応可能である。電極パタンやAM形成など前工程もロールツーロールで形成できれば正に理想的なロールツーロール量産工法になり得る。
When a plastic film is used as the transparent substrate of the light modulation element used in the present invention, the feature of continuous mass production by roll-to-roll can be exhibited.
FIG. 19 shows an example of manufacturing a panel by roll-to-roll. A roll film in which an AM array, an electrode pattern, a spacer and the like are formed in advance is supplied from an upper roll, and a dispersion system is applied in the form of capsule particles. On the other hand, the two substrates are accurately aligned so that no air bubbles remain between the lower film substrate provided with a sealant such as UV seal resin for punching holes for electrode extraction and printing or inkjet drawing. Pasted and fixed. It is possible to produce a plurality of single-color film panels continuously by cutting with punching or the like. An AM forming process such as an organic TFT capable of a low temperature process is compatible with a roll-to-roll process, and of course can be effectively applied to the roll-to-roll panel formation of the present application. If the previous process such as electrode pattern and AM formation can be formed by roll-to-roll, it can be an ideal roll-to-roll mass production method.

ロールツーロール工法は1枚の連続フィルムでも実施でき、片側電極構成では特に容易である。ロールから供給されたフィルムに電極やAMアレーを形成して後、カプセル粒子層を所定箇所に印刷等で設けて後、透明保護層を塗布すればよい。 The roll-to-roll method can be carried out even with a single continuous film, and is particularly easy with a one-sided electrode configuration. After forming an electrode or an AM array on a film supplied from a roll, a capsule particle layer is provided by printing or the like at a predetermined location, and then a transparent protective layer is applied.

特に本願では図3のように片側基板にしか電極を必要としないパネル構成では製造の自由度が高い。下側フィルムにフォトレジストなどで隔壁を形成しておいてもよいが、UV硬化樹脂を塗布して仮硬化した膜などをエンボス加工などで隔壁とセルを形成後本硬化して分散系を充填し、電極やAM付き上フィルムで封止することによって隔壁型フィルムパネルを製造することも可能となる。 In particular, in the present application, the degree of freedom in manufacturing is high in a panel configuration that requires electrodes only on one side substrate as shown in FIG. The lower film may be formed with a photoresist or the like on the lower film, but a film and the like that have been pre-cured by applying a UV curable resin are emulsified to form the partition and cells and then fully cured to fill the dispersion. And a partition type | mold film panel can also be manufactured by sealing with an electrode or an upper film with AM.

フィルム材料としてはビニル系のポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、フッ素樹脂系など、またポリエステル系のポリカーボネート、ポリエチレンテレフタレートなど、ポリアミド系のナイロン、耐熱性エンジニアリングプラスチックとしてのポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミドなど種々のものが利用できる。 Film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyamide polycarbonate, polyethylene terephthalate, polyamide nylon, heat-resistant engineering plastic, polyimide, poly Various materials such as sulfone, polyether sulfone, polyphenylene sulfide, polyether ketone, and polyetherimide can be used.

ポリマーフィルムは一般にガラス等にくらべてガスを透過しやすい。フィルムを使用した表示装置でフィルムが外気に曝されて水分などが分散系に入り込み特性を劣化させる場合が生じる。従ってフィルムパネルの信頼性を向上するためにはフィルム表面にガスバリア層を設けるのが有効である。ガスバリア層としては酸化ケイ素、窒化ケイ素などの薄膜、およびこれらの膜とビニルアルコール含有重合体などの有機膜との積層膜が有効なことが知られている。 In general, a polymer film is more permeable to gas than glass. In a display device using a film, the film may be exposed to the outside air and moisture may enter the dispersion system to deteriorate the characteristics. Therefore, in order to improve the reliability of the film panel, it is effective to provide a gas barrier layer on the film surface. As the gas barrier layer, it is known that thin films such as silicon oxide and silicon nitride, and laminated films of these films and organic films such as vinyl alcohol-containing polymers are known.

本発明の光変調素子では隔壁部分ないしカプセル粒子間の隙間は光線透過率は変化しないから、光線透過方向のこの部分の幅は出来るだけ狭いことが望ましい。逆にこの部分が透明性であると光り抜けを生じ光変調素子の光線遮断力を低下させ純黒が得られなくなるからこの部分を黒色光吸収性にするか光反射性にすることが望ましい。1000:1以上の透過率変調を達成するには隔壁部を含む微粒子分散状態でのセルの光透過率を0.1%未満に押さえ込む必要があるが、隔壁部やカプセルのすき間からの光り抜けを必要ならブラックマトリクス(BM)層を設けて防止した上でセルないしカプセルに含有される微粒子の濃度を選定することによって達成可能である。 In the light modulation element of the present invention, since the light transmittance does not change in the gap between the partition walls or the capsule particles, it is desirable that the width of this portion in the light transmission direction is as narrow as possible. On the contrary, if this part is transparent, light is lost and the light blocking power of the light modulation element is reduced, so that pure black cannot be obtained. Therefore, it is desirable to make this part black light absorbing or light reflecting. In order to achieve a transmittance modulation of 1000: 1 or more, it is necessary to suppress the light transmittance of the cell in a fine particle dispersion state including the partition wall to less than 0.1%. If necessary, it can be achieved by providing a black matrix (BM) layer and preventing the concentration of the fine particles contained in the cells or capsules.

本発明に使用する材料について述べる。
微粒子としては先に述べた通りできるだけ隠ぺい力ないし着色力の高いものが望ましい。白黒用にはカーボンブラック、ピグメントブラック、黒鉛などまたはこれらが樹脂に埋め込まれたいわゆるトナーが使用できる。C,M,Y微粒子としては印刷インキ、カラー複写機用トナー、インクジェット用インキなどに用いられているアゾ系、フタロシアニン系、ニトロ系、ニトロソ系など各種有機顔料や酸化鉄、カドミウムエロー、カドミウムレッドなどの無機顔料など多様なものを用いることが出来る。Y色微粒子としてはハンザイエロー、ベンジジンイエロー、キノリンイエローなど、M色微粒子としてはピグメントレッド、ローダミンB、ローズベンガル、ジメチルキナクリドンなど、C色微粒子としてはアニリンブルー、フタロシアニンブルー、ピグメントブルーKなど、黒色微粒子としてはC,M,Y微粒子を混合して用いてもよい。
The material used for this invention is described.
As described above, it is desirable that the fine particles have as high a hiding power or coloring power as possible. For black and white, carbon black, pigment black, graphite or the like, or a so-called toner in which these are embedded in a resin can be used. C, M, Y fine particles include various organic pigments such as azo, phthalocyanine, nitro, nitroso, etc. used in printing ink, color copier toner, ink jet ink, iron oxide, cadmium yellow, and cadmium red. Various things such as inorganic pigments can be used. Y color fine particles such as Hansa Yellow, Benzidine Yellow, and Quinoline Yellow, M Color Fine Particles such as Pigment Red, Rhodamine B, Rose Bengal, and Dimethylquinacridone, and C Color Fine Particles such as aniline blue, phthalocyanine blue, and Pigment Blue K are black. As the fine particles, C, M, and Y fine particles may be mixed and used.

微粒子は単体ばかりではなく帯電性や色調を最適化するため染料、顔料およびいくつかの色材を樹脂や液体と共に内包したカプセル微粒子を使用してもよい。粒子の形状は球形はじめ針状、棒状、鱗片状など異方形状のものは本願のように線状電極を用いる場合適したものと言える。何故なら分散状態では粒子はあらゆる方向を向いており、光線吸収能、光散乱能が高く、電極に集積した状態では針状や棒状粒子は電極に平行に配列しやすく、鱗片状では互いに重なり易いから、共に吸収ないし散乱断面積が減じコントラストが高まり易いからである。微粒子のサイズは5nm〜5μm程度が望ましい。微粒子は原子や分子レベルでの表面コートで表面変性したり、分散剤、界面活性剤等を用いて荷電性付与および良分散性がはかられ、電界で集積させた粒子層も逆電界で速やかに再分散されるように調整されている必要がある。 The fine particles are not limited to simple substances but may be capsule fine particles containing dyes, pigments and some color materials together with resins and liquids in order to optimize chargeability and color tone. Particles having an anisotropic shape such as a spherical shape, a needle shape, a rod shape, and a scale shape can be said to be suitable when a linear electrode is used as in the present application. This is because particles are oriented in all directions in a dispersed state, and have a high light absorption ability and light scattering ability. Needle-like and rod-like particles are likely to be arranged in parallel to the electrode when they are accumulated on the electrode, and easily overlap each other in the shape of a scale. This is because both the absorption or scattering cross section is reduced and the contrast is easily increased. The size of the fine particles is desirably about 5 nm to 5 μm. Fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be charged and have good dispersibility using a dispersant, surfactant, etc. Must be adjusted to be redistributed.

隔壁型パネルでは図6−3(G)、(H)を除き電極6−1、6−2は共に分散系に露出しているとして説明したが、粒子堆積の均一性向上、付着力制御、閾値性制御などの目的で導電性、半導電性あるいは絶縁性の皮膜で被覆する場合もある。 In the partition-type panel, except that FIGS. 6-3 (G) and (H), the electrodes 6-1 and 6-2 are both exposed to the dispersion system. However, the uniformity of particle deposition, adhesion control, In some cases, the film is coated with a conductive, semiconductive or insulating film for the purpose of controlling the threshold.

本発明で使用するマイクロカプセルの製法は公知の種々の方法が適用できる。すなわち、(1)化学的方法として代表的な界面重合法やin-site 重合法(界面反応法) (2)物理化学的方法として代表的な液中乾燥法、コアセルベーション法、融解分散冷却法 (3)機械的方法として代表的な噴霧乾燥法、乾式混合、オリフィス法などである。マイクロカプセルの膜材としてはゼラチン、アラビアゴム、メラミン樹脂、尿素樹脂、ホルマリン樹脂、ウレタン樹脂、ポリウレア樹脂、アミノ酸樹脂、メラミンホルムアルデヒド樹脂など多様な高分子材料が使用可能である。内部がガス体のマイクロカプセルは一般にマイクロバルーンと称される。 Various known methods can be applied to the method for producing the microcapsules used in the present invention. (1) Typical interfacial polymerization method and in-site polymerization method (interface reaction method) as chemical methods (2) Typical submerged drying method, coacervation method, melt dispersion cooling as physicochemical methods Method (3) Typical mechanical methods include spray drying, dry mixing, and orifice. Various membrane materials such as gelatin, gum arabic, melamine resin, urea resin, formalin resin, urethane resin, polyurea resin, amino acid resin, and melamine formaldehyde resin can be used as the microcapsule film material. A microcapsule having a gas body is generally referred to as a microballoon.

微粒子を内蔵したマイクロバルーンの製法としては、(1)微粒子にたとえば紫外光照射で窒素ガス等を発生するジアゾ成分などを導入ないし表面に吸着させておき、微粒子群を高分子樹脂で覆って後、紫外光を照射して内部にガスを発生させて微粒子内蔵中空カプセルを形成する (2)粒子群を気泡と共にカプセル化する (3)ドライアイスなど常温近辺で気体状態の物質を低温で液体化あるいは微粉末固体化して微粒子と共に低温下でカプセル化する などの方法が利用できる。 Microballoons with built-in microparticles can be manufactured by: (1) introducing a diazo component that generates nitrogen gas or the like into the microparticles by irradiation with ultraviolet light or adsorbing the microparticles on the surface, and then covering the microparticles with a polymer resin. , Irradiate ultraviolet light to generate gas inside to form microcapsules with built-in microparticles (2) Encapsulate particles together with bubbles (3) Liquefaction of dry substances such as dry ice at low temperatures Alternatively, a method of solidifying fine powder and encapsulating with fine particles at low temperature can be used.

分散系7が空気や窒素などのガス体中に流動性の高い微粒子が分散された分散系では粒子移動に抵抗が少ないから高速応答の表示パネルが可能になる。微粒子表面に微小な凹凸形状を形成すると更に流動性が高くなること、またシランカップリング剤やシリコンオイルでの粒子の表面処理が帯電性制御、流動性向上に有効なことが知られている。 If the dispersion system 7 is a dispersion system in which fine particles having high fluidity are dispersed in a gas body such as air or nitrogen, a display panel with high-speed response is possible because the resistance to particle movement is small. It is known that the formation of minute irregularities on the surface of the fine particles further increases the fluidity, and that the surface treatment of the particles with a silane coupling agent or silicon oil is effective for controlling the chargeability and improving the fluidity.

屋外用では強力な光に曝されることになるから、使用する材料(透明基板、接着剤、微粒子、分散媒、カプセル材料、バインダー樹脂、隔壁材料、電極、AMなど)には特に耐光性、耐熱性に優れたものを用いる必要がある。パネル表面はアクリル板などで補強したり紫外線吸収剤を内蔵したものないしは表面にコートして用いるべきである。見易さ改善には反射防止膜も有用である。 Because it is exposed to strong light for outdoor use, the materials used (transparent substrates, adhesives, fine particles, dispersion media, capsule materials, binder resins, partition walls, electrodes, AM, etc.) are particularly light-resistant, It is necessary to use one having excellent heat resistance. The panel surface should be reinforced with an acrylic plate or with a built-in UV absorber or coated on the surface. An antireflection film is also useful for improving visibility.

媒体が液体の場合シリコン系、石油系やハロゲン化炭化水素など多種類の高絶縁性溶媒が利用できる。 When the medium is liquid, various types of highly insulating solvents such as silicon-based, petroleum-based and halogenated hydrocarbons can be used.

非直線素子材料としては先述の通りTa,Alなどの薄膜を陽極酸化して他方の金属で挟み込んだMIMや、カルコゲナイト系化合物、酸化亜鉛などの半導体が利用でき、TFT材料としてはa−Si、a-InGaZnO、ポリシリコンなどの無機半導体またペンタセン、ポリフルオレン、ポリフェキシルチオフェンなどの低分子や高分子の有機半導体が用いられる。 As the non-linear element material, as described above, a semiconductor such as MIM, a chalcogenite compound, zinc oxide, etc., in which a thin film of Ta, Al or the like is anodized and sandwiched with the other metal can be used, and a-Si, Inorganic semiconductors such as a-InGaZnO and polysilicon, and low molecular and high molecular organic semiconductors such as pentacene, polyfluorene, and polyhexylthiophene are used.

本発明は次のような効果を奏する。
帯電した微粒子を電界で移動させて、光透過性を変化させる表示装置であって、電極構成、セル中の微粒子量、電極ピッチ、セル厚、駆動電極面積率に検討を加えたことによって低電圧で高コントラスト、高透過率を達成し、拡大投射用高精細小型ライトバルブ、小型からメートルサイズの直視型表示装置、薄型フレキシブルな白黒およびフルカラー電子ペーパ、数10メートルを超える超大型表示装置まで広範囲の表示サイズに適用可能となり、反射専用、透過専用あるいは反射、透過両用に適用可能な表示装置が実現した。

The present invention has the following effects.
A display device that changes the light transmissivity by moving charged fine particles with an electric field. Low voltage by examining the electrode configuration, the amount of fine particles in the cell, the electrode pitch, the cell thickness, and the drive electrode area ratio Achieves high contrast and high transmittance with a wide range of high-definition small light valves for enlarged projection, small to meter-size direct-view display devices, thin flexible black-and-white and full-color electronic paper, and super-large display devices over tens of meters Therefore, a display device that can be applied only to reflection, transmission only, or both reflection and transmission has been realized.

は従来の横電界粒子移動型表示装置の原理を示す横断面図Is a cross-sectional view showing the principle of a conventional horizontal electric field particle movement type display device は従来の横電界粒子移動型表示装置の原理を示す他の横断面図Is another cross-sectional view showing the principle of a conventional horizontal electric field particle movement type display device は本発明の横電界粒子移動型表示装置の原理を示す横断面図FIG. 2 is a cross-sectional view showing the principle of the horizontal electric field particle movement type display device of the present invention は本発明の表示装置に用いる電極の正面図These are front views of electrodes used in the display device of the present invention. は本発明の表示装置の明状態の透過性を説明する図FIG. 4 is a diagram for explaining the transparency of the bright state of the display device of the present invention; は本発明の表示装置の他の電極構成を示す横断面図These are cross-sectional views showing other electrode configurations of the display device of the present invention. は本発明の表示装置の他の電極構成を示す横断面図These are cross-sectional views showing other electrode configurations of the display device of the present invention. は本発明の表示装置の他の電極構成を示す横断面図These are cross-sectional views showing other electrode configurations of the display device of the present invention. は本発明の表示装置に用いる他の電極の正面図These are front views of other electrodes used in the display device of the present invention. は本発明の表示装置の明状態の透過性を向上するための電極部の横断面図FIG. 3 is a cross-sectional view of an electrode part for improving the transparency in the bright state of the display device of the present invention. は本発明の表示装置の他の構成を示す横断面図FIG. 3 is a cross-sectional view showing another configuration of the display device of the present invention. (A)は本発明の積層型カラーパネルの断面図、(B)は本発明のピン付きカラーパネルの斜視図(A) is sectional drawing of the laminated color panel of this invention, (B) is a perspective view of the color panel with a pin of this invention. 本発明のC,M,Yカプセル粒子を積層したカラーパネルの断面図Sectional view of a color panel in which C, M, Y capsule particles of the present invention are laminated 本発明の単純マトリクスパネルの製造工程と電極構成の正面図Front view of manufacturing process and electrode configuration of simple matrix panel of the present invention 発明の2端子AMアレー製造工程と電極構成の正面図Front view of 2-terminal AM array manufacturing process and electrode configuration of the invention 本発明の3端子AMパネルの画素部の電極構成の正面図The front view of the electrode structure of the pixel part of 3 terminal AM panel of this invention 本発明のC,M,Yカプセル粒子を積層した他のカラーパネルの断面図Sectional view of another color panel in which C, M, Y capsule particles of the present invention are laminated 本発明のシリコン集積回路を下基板に用いた反射型ライトバルブの断面図Sectional view of a reflective light valve using the silicon integrated circuit of the present invention as a lower substrate 本発明のカラーフィルタ付きカラーパネルの断面図Sectional view of color panel with color filter of the present invention 本発明の単層マルチカラーパネルの動作原理を示す断面図Sectional drawing which shows the operation principle of the single layer multi-color panel of this invention 本発明のパネルをロールツーロールで製造する工程図の1例An example of a process diagram for producing a panel of the present invention by roll-to-roll

符号の説明Explanation of symbols

1 透明上基板
2 下基板
3 カウンター電極
4 コレクト電極
5 微粒子
6−1 駆動電極
6−2 共通電極
7 分散系
8 セル
9 スペーサ
10 カプセル粒子
11 接着剤
12 白色拡散板
13 光源
13a カラーフィルタ
13b ブラックマトリクス
13c X−Yアクティブマトリクスアレー
13d 3色用X−Yアクティブマトリクスアレー
14 反射板
15 シリコン基板
16 バインダー
17 バックライトユニット
18 C1,C2,C3,……… 列電極端子
19 R1,R2,R3,……… 行電極端子
20 隔壁
21 2端子素子
22 TFT素子
23 絶縁膜
24 積層セル
25 電極ピン
DESCRIPTION OF SYMBOLS 1 Transparent upper board | substrate 2 Lower board | substrate 3 Counter electrode 4 Collect electrode 5 Fine particle 6-1 Drive electrode 6-2 Common electrode 7 Dispersion system 8 Cell 9 Spacer
DESCRIPTION OF SYMBOLS 10 Capsule particle | grain 11 Adhesive agent 12 White diffuser plate 13 Light source 13a Color filter 13b Black matrix 13c XY active matrix array 13d XY active matrix array for 3 colors 14 Reflector 15 Silicon substrate 16 Binder 17 Backlight unit 18 C1, C2, C3, ... Column electrode terminals 19 R1, R2, R3, ... Row electrode terminals 20 Bulkheads 21 Two-terminal elements 22 TFT elements 23 Insulating film 24 Multilayer cells 25 Electrode pins

Claims (17)

少なくとも1方は透明な基板間に、帯電した光隠ぺい性微粒子が透明な液体またはガス媒体中に分散された分散系が挟まれてセルを構成しており、該セル中の微粒子分散状態を該基板に垂直方向のセルの光学的遮蔽状態とし、該基板間に設けられた、細線からなる駆動電極と共通電極間に電圧を印加して該微粒子を該基板に水平方向に移動させて該細線状駆動電極に堆積させて、分散状態の微粒子量を変調させることによって該セルの光学的遮蔽状態を変調する横電界粒子移動型表示装置において、該微粒子は異なる面に設けられた駆動電極同士、ないし駆動電極と共通電極上に表示面から見て重なるように堆積させるべく構成されており、該駆動電極と共通電極の電極間ピッチPが5〜100μm、該駆動電極の面積率が20%以下、セルギャップdをピッチpの0.2〜1.5倍に設定したことを特徴とした表示装置 At least one of them forms a cell by sandwiching a dispersion system in which charged light-hiding fine particles are dispersed in a transparent liquid or gas medium between transparent substrates. The cells are optically shielded in a direction perpendicular to the substrate, and a voltage is applied between the drive electrode and the common electrode formed between the substrates, and the fine wires are moved horizontally to the substrate. In the lateral electric field particle movement type display device that modulates the optical shielding state of the cell by modulating the amount of dispersed fine particles, the fine particles are arranged on different surfaces, Alternatively, it is configured to be deposited on the driving electrode and the common electrode so as to overlap with each other when viewed from the display surface. ,cell Display device, wherein the set to 0.2 to 1.5 times the pitch p of the cap d 請求項1において該セル中の微粒子量は微粒子分散状態において該セルの光学的透過率が10%以下になるように調整されていることを特徴とした表示装置 2. The display device according to claim 1, wherein the amount of fine particles in the cell is adjusted so that the optical transmittance of the cell is 10% or less in a fine particle dispersed state. 請求項1の表示装置において駆動電極面積率が10%以下であることを特徴とした表示装置 2. The display device according to claim 1, wherein the drive electrode area ratio is 10% or less. 請求項1〜3のいずれか1項に記載の表示装置において該セルは基板間に設けられた隔壁によって形成されているかまたは分散系を内蔵したカプセル粒子によって形成されていることを特徴とした表示装置 The display device according to any one of claims 1 to 3, wherein the cell is formed by a partition provided between the substrates, or is formed by capsule particles having a built-in dispersion system. apparatus 請求項1〜請求項4のいずれか1項に記載の表示装置において該微粒子は単一極性に荷電したものであることを特徴とした表示装置 The display device according to claim 1, wherein the fine particles are charged with a single polarity. 請求項1〜請求項4のいずれか1項に記載の表示装置において該微粒子は正、負に荷電したものが混在していることを特徴とした表示装置 5. The display device according to claim 1, wherein the fine particles are a mixture of positively and negatively charged particles. 請求項1〜6のいずれか1項に記載の表示装置において該分散系は(1)色と移動速度が異なる混合粒子系ないしは(2)色が異なりかつ電極からの脱着閾値特性も異なる粒子が混在した混合粒子系からなることを特徴とした表示装置 The display device according to any one of claims 1 to 6, wherein the dispersion system includes (1) a mixed particle system having a different moving speed from a color or (2) particles having different colors and different desorption threshold characteristics from electrodes. Display device comprising mixed mixed particle system 請求項1〜6のいずれか1項に記載の表示装置において異なる色の微粒子が分散された分散系が積層されていることを特徴とした表示装置 7. A display device according to claim 1, wherein a dispersion system in which fine particles of different colors are dispersed is laminated. 請求項8において、微粒子がそれぞれ赤色を吸収するシアン色透過性、緑色を吸収するマゼンタ色透過性、青色を吸収するイエロー色透過性であり少なくともこれら3層が積層されていることを特徴としたフルカラー表示装置 9. The method according to claim 8, wherein the fine particles each have a cyan color transmission property that absorbs red, a magenta color transmission property that absorbs green color, and a yellow color transmission property that absorbs blue color, and at least these three layers are laminated. Full color display device 請求項8〜9のいずれか1項に記載の表示装置において、異なる色の分散系がn層積層されている時、基板垂線からの角度をθ、画素サイズをSとした時、必要な視野角θを得るために、基板および分散系からなる1色当りのセルの厚みqが、q≦S/tan(θ)/nを満たすように構成されていることを特徴としたカラー表示装置 10. The display device according to claim 8, wherein when n layers of different color dispersion systems are stacked, θ is an angle from a substrate normal, and S is a pixel size. In order to obtain the angle θ, the color display device is characterized in that the thickness q of the cell per color comprising the substrate and the dispersion system satisfies q ≦ S / tan (θ) / n 請求項1〜6のいずれか1項に記載の表示装置は隣り合う画素にそれぞれR,G,Bのカラーフィルタが設けられていることを特徴としたカラー表示装置 7. A color display device according to claim 1, wherein R, G, and B color filters are provided in adjacent pixels, respectively. 請求項1〜11のいずれか1項に記載の表示装置において、該電極が単純マトリクス駆動、スタチック駆動ないしアクティブマトリクス駆動されるように構成されたことを特徴とした表示装置 12. The display device according to claim 1, wherein the electrode is configured to be driven by simple matrix driving, static driving or active matrix driving. 請求項1〜12のいずれか1項に記載の表示装置において表示装置は背面に光源を設けていることを特徴とした表示装置 The display device according to claim 1, wherein the display device includes a light source on a back surface. 請求項1〜13のいずれか1項に記載の表示装置は単一セルないし多数のセルからなるパネルをX,Y方向に多数集合させて構成されていることを特徴とした表示装置 14. A display device according to claim 1, wherein the display device comprises a plurality of panels each composed of a single cell or a large number of cells in the X and Y directions. 請求項1〜14のいずれか1項に記載の表示装置は曲面形状になるように構成されていることを特徴とした表示装置。 The display device according to claim 1, wherein the display device is configured to have a curved surface shape. 請求項1〜15のいずれか1項に記載の表示装置は剛体基板に設けられた剥離層上に分散系層形成までのプロセスまたはパネル形成までのプロセスを実施してのち剥離することを特徴とした表示装置とその製造法 The display device according to any one of claims 1 to 15, wherein the display device is peeled after performing a process up to formation of a dispersion layer or a process up to panel formation on a release layer provided on a rigid substrate. Display device and manufacturing method thereof 請求項1〜15のいずれか1項に記載の表示装置はロールフィルムを用いたロールツーロールで製造されることを特徴とした表示装置とその製造法
The display device according to any one of claims 1 to 15, wherein the display device is manufactured by roll-to-roll using a roll film and a manufacturing method thereof.
JP2008140101A 2006-07-24 2008-05-28 Display device and manufacturing method thereof Expired - Fee Related JP5308719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140101A JP5308719B2 (en) 2006-07-24 2008-05-28 Display device and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006200250 2006-07-24
JP2006200250 2006-07-24
JP2006208927 2006-07-31
JP2006208927 2006-07-31
JP2008140101A JP5308719B2 (en) 2006-07-24 2008-05-28 Display device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007506602A Division JPWO2008012934A1 (en) 2006-07-24 2007-01-30 Display device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2008209953A true JP2008209953A (en) 2008-09-11
JP2008209953A5 JP2008209953A5 (en) 2010-02-25
JP5308719B2 JP5308719B2 (en) 2013-10-09

Family

ID=38981250

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007506602A Pending JPWO2008012934A1 (en) 2006-07-24 2007-01-30 Display device and manufacturing method thereof
JP2008140101A Expired - Fee Related JP5308719B2 (en) 2006-07-24 2008-05-28 Display device and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007506602A Pending JPWO2008012934A1 (en) 2006-07-24 2007-01-30 Display device and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JPWO2008012934A1 (en)
WO (1) WO2008012934A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027326A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Suspended particle device and driving method thereof
JP2012133361A (en) * 2010-12-17 2012-07-12 Samsung Electronics Co Ltd Electrophoretic display device
EP2555049A2 (en) 2011-08-01 2013-02-06 Hitachi Chemical Co., Ltd. Suspended particle device, light control device using the same, and method for driving the same
KR20130021219A (en) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 Electrophoretic display device
EP2626740A1 (en) 2012-02-07 2013-08-14 Hitachi Chemical Company, Ltd. Suspended particle device, light control device using the same, and driving method
EP2648038A1 (en) 2012-04-03 2013-10-09 Hitachi Chemical Company, Ltd. Light control device
KR20140062258A (en) * 2012-11-14 2014-05-23 엘지디스플레이 주식회사 Transparent organic light emitting diodes
KR101936682B1 (en) * 2011-08-24 2019-01-10 엘지디스플레이 주식회사 Electrophoretic display device and driving method the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972097B1 (en) * 2007-11-26 2010-07-22 삼성코닝정밀소재 주식회사 Multifunction optical film for display apparatus using electrophoresis
KR20100138891A (en) * 2008-02-26 2010-12-31 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Electrophoretic display device
JP2011237770A (en) * 2010-04-12 2011-11-24 Seiko Epson Corp Electrophoresis display device, driving method of the same and electronic equipment
TWI484275B (en) * 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
JP5906321B2 (en) * 2012-10-17 2016-04-20 シャープ株式会社 Optical device and display device having the same
KR102070571B1 (en) * 2016-09-09 2020-01-29 주식회사 엘지화학 A Device having changeable transparency
NL2022504B1 (en) 2019-02-04 2020-08-19 Elstar Dynamics Patents B V Improved optical modulator
US11099451B1 (en) 2020-07-31 2021-08-24 Elstar Dynamics Patents B.V. Light modulator, substrate comprising electrodes and smart glazing
US11099453B1 (en) 2020-08-03 2021-08-24 Elstar Dynamics Patents B.V. Light modulator, light modulator method and smart glazing
WO2023117191A1 (en) * 2021-12-24 2023-06-29 Elstar Dynamics Patents B.V. Substrate comprising electrodes and light modulator with reduced diffraction

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641222Y2 (en) * 1989-10-06 1994-10-26 トヨタ自動車株式会社 Electrophoretic display element
JPH08507154A (en) * 1993-01-11 1996-07-30 コピイテル,インコーポレイテッド Electrophoretic display panel with interdigitated cathode and anode
JP2000089261A (en) * 1998-09-11 2000-03-31 Brother Ind Ltd Charged particle, display device and display medium
JP2000298292A (en) * 1999-04-13 2000-10-24 Sony Corp Display device
JP2001117123A (en) * 1999-10-22 2001-04-27 Canon Inc Display device and method of producing the same
JP2002311461A (en) * 2001-04-17 2002-10-23 Sharp Corp Display element
JP2002333643A (en) * 2001-05-11 2002-11-22 Konica Corp Electrophoresis type color display device
JP2003172951A (en) * 2001-12-07 2003-06-20 Bridgestone Corp Display panel for household electric appliance
JP2004519727A (en) * 2001-03-14 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic display device
JP2004520621A (en) * 2001-04-25 2004-07-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic color display device
JP2005500572A (en) * 2001-08-20 2005-01-06 シピックス・イメージング・インコーポレーテッド Transflective electrophoretic display device
JP2005265921A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Display device and manufacturing method therefor
JP2006017751A (en) * 2004-06-30 2006-01-19 Toshiba Corp Electrophoresis display device and its manufacturing method
WO2006021900A1 (en) * 2004-08-23 2006-03-02 Koninklijke Philips Electronics N.V. Active matrix devices
JP2006162969A (en) * 2004-12-07 2006-06-22 Canon Inc Particle transfer type display element and particle transfer type display apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222236B2 (en) * 1972-05-04 1977-06-16
JPH0823644B2 (en) * 1989-09-04 1996-03-06 トヨタ自動車株式会社 Driving method for electrophoretic display device
JPH0533403U (en) * 1991-10-08 1993-04-30 トヨタ自動車株式会社 Functional color variable vehicle lighting
CA2321131C (en) * 1998-04-10 2008-04-08 E Ink Corporation Full color reflective display with multichromatic sub-pixels
JP3625421B2 (en) * 1999-11-08 2005-03-02 キヤノン株式会社 Electrophoretic display device
JP2002350903A (en) * 2001-05-24 2002-12-04 Konica Corp Electrophoresis type display device and its manufacturing method
JP2004177950A (en) * 2002-11-13 2004-06-24 Canon Inc Electrophoresis display apparatus
JP4176452B2 (en) * 2002-11-14 2008-11-05 株式会社日立製作所 Electrophoretic display device
JP2004198861A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Image display device
TW594358B (en) * 2003-05-13 2004-06-21 Ind Tech Res Inst Method for manufacturing electrophoretic display
JP4287310B2 (en) * 2004-03-10 2009-07-01 株式会社東芝 Driving method of electrophoretic display element
US20060077126A1 (en) * 2004-09-27 2006-04-13 Manish Kothari Apparatus and method for arranging devices into an interconnected array
JP2006113399A (en) * 2004-10-15 2006-04-27 Canon Inc Method for driving electrophoretic display apparatus
JP2006162737A (en) * 2004-12-03 2006-06-22 Bridgestone Corp Manufacturing method for panel for information display, panel for information display, and information display device using same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641222Y2 (en) * 1989-10-06 1994-10-26 トヨタ自動車株式会社 Electrophoretic display element
JPH08507154A (en) * 1993-01-11 1996-07-30 コピイテル,インコーポレイテッド Electrophoretic display panel with interdigitated cathode and anode
JP2000089261A (en) * 1998-09-11 2000-03-31 Brother Ind Ltd Charged particle, display device and display medium
JP2000298292A (en) * 1999-04-13 2000-10-24 Sony Corp Display device
JP2001117123A (en) * 1999-10-22 2001-04-27 Canon Inc Display device and method of producing the same
JP2004519727A (en) * 2001-03-14 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic display device
JP2002311461A (en) * 2001-04-17 2002-10-23 Sharp Corp Display element
JP2004520621A (en) * 2001-04-25 2004-07-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic color display device
JP2002333643A (en) * 2001-05-11 2002-11-22 Konica Corp Electrophoresis type color display device
JP2005500572A (en) * 2001-08-20 2005-01-06 シピックス・イメージング・インコーポレーテッド Transflective electrophoretic display device
JP2003172951A (en) * 2001-12-07 2003-06-20 Bridgestone Corp Display panel for household electric appliance
JP2005265921A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Display device and manufacturing method therefor
JP2006017751A (en) * 2004-06-30 2006-01-19 Toshiba Corp Electrophoresis display device and its manufacturing method
WO2006021900A1 (en) * 2004-08-23 2006-03-02 Koninklijke Philips Electronics N.V. Active matrix devices
JP2008511036A (en) * 2004-08-23 2008-04-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Active matrix type device
JP2006162969A (en) * 2004-12-07 2006-06-22 Canon Inc Particle transfer type display element and particle transfer type display apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027326A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Suspended particle device and driving method thereof
JP2012133361A (en) * 2010-12-17 2012-07-12 Samsung Electronics Co Ltd Electrophoretic display device
EP2555049A2 (en) 2011-08-01 2013-02-06 Hitachi Chemical Co., Ltd. Suspended particle device, light control device using the same, and method for driving the same
KR20130021219A (en) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 Electrophoretic display device
KR101882734B1 (en) * 2011-08-22 2018-08-27 삼성디스플레이 주식회사 Electrophoretic display device
KR101936682B1 (en) * 2011-08-24 2019-01-10 엘지디스플레이 주식회사 Electrophoretic display device and driving method the same
EP2626740A1 (en) 2012-02-07 2013-08-14 Hitachi Chemical Company, Ltd. Suspended particle device, light control device using the same, and driving method
US8995046B2 (en) 2012-02-07 2015-03-31 Hitachi Chemical Company, Ltd. Suspended particle device, light control device using the same, and driving method
EP2648038A1 (en) 2012-04-03 2013-10-09 Hitachi Chemical Company, Ltd. Light control device
JP2013213953A (en) * 2012-04-03 2013-10-17 Hitachi Chemical Co Ltd Dimmer device
KR20140062258A (en) * 2012-11-14 2014-05-23 엘지디스플레이 주식회사 Transparent organic light emitting diodes
KR101994816B1 (en) * 2012-11-14 2019-07-01 엘지디스플레이 주식회사 Transparent organic light emitting diodes

Also Published As

Publication number Publication date
WO2008012934A1 (en) 2008-01-31
JP5308719B2 (en) 2013-10-09
JPWO2008012934A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5308719B2 (en) Display device and manufacturing method thereof
US7839564B2 (en) Components and methods for use in electro-optic displays
TWI251710B (en) Electrophoretic dispersion, electrophoresis display device, method for manufacturing electrophoresis display device, and electronic appliance
EP2073057B1 (en) Display with colour filter
US8077374B2 (en) Display devices using electrochromism and polymer dispersed liquid crystal and methods of driving the same
WO2011058725A1 (en) Display device and method of manufacture thereof
US20110304652A1 (en) Electronic display
US20070268446A1 (en) Liquid crystal device and method for forming the same
JP5464264B2 (en) Electrophoretic display device and electronic apparatus
JP2007298894A (en) Display device, its manufacturing method and display system
TW200809359A (en) Method for manufacturing electro-optical device and electro-optical device
JP2007139913A (en) Image display device
EP2711770B1 (en) Electro-optic displays
JP4917913B2 (en) Electrophoretic display device, electrophoretic display device manufacturing method, and electronic apparatus
JP2009069366A (en) Display device and method of manufacturing the same
JP5572282B2 (en) Display device and manufacturing method thereof
US20090168140A1 (en) Display device
US20090032402A1 (en) Electrophoresis device comprising hole-containing structure and method for fabricating the same
US8270065B2 (en) Colored electrophoretic display
JP2008015161A (en) Display device
JP2008020828A (en) Large-sized display device
US20080212163A1 (en) Image Display Element, Image Display Sheet, Image Display and Image Displaying Method
JP2003121887A (en) Electrophoresis display device
JP2007304449A (en) Optical modulation element
KR101241307B1 (en) Electrophoretic display device and method of fabricating the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees