JP2008209254A - Anemometer and wind direction/wind speed monitoring device - Google Patents

Anemometer and wind direction/wind speed monitoring device Download PDF

Info

Publication number
JP2008209254A
JP2008209254A JP2007046504A JP2007046504A JP2008209254A JP 2008209254 A JP2008209254 A JP 2008209254A JP 2007046504 A JP2007046504 A JP 2007046504A JP 2007046504 A JP2007046504 A JP 2007046504A JP 2008209254 A JP2008209254 A JP 2008209254A
Authority
JP
Japan
Prior art keywords
light
optical
wind
optical fiber
wind direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007046504A
Other languages
Japanese (ja)
Other versions
JP5058628B2 (en
Inventor
Hitoshi Maehara
均 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2007046504A priority Critical patent/JP5058628B2/en
Publication of JP2008209254A publication Critical patent/JP2008209254A/en
Application granted granted Critical
Publication of JP5058628B2 publication Critical patent/JP5058628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure detection accuracy of an anemometer even when a distance between the anemometer and an observation station is long, and to reduce an influence of a thunder or a noise during communication between the anemometer and the observation station. <P>SOLUTION: This anemometer has a base; and a wind direction element supported by the base, having a propeller mounted thereon and rotated according to the strength of a received wind, and rotated to the base in accordance with the wind direction. The anemometer detects respectively rotational speed of the propeller and a relative angle between the wind direction element and the base in order to measure the wind speed and the wind direction. For example, a rotary disk for the wind speed rotated following rotation of the propeller is provided inside the base. Hereby, an optical loss of a measuring system can be reduced. Resultantly, an optical element is provided in the observation station installed outside the anemometer. Hereby, wiring for communication between the anemometer and the observation station can be realized by an optical fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風の強さおよび風の向きを測定する風向風速計および風向風速監視装置に関する。   The present invention relates to a wind direction anemometer and a wind direction wind speed monitoring device for measuring wind strength and wind direction.

風向風速計は、風の強さに応じて回転するプロペラが取り付けられ、風の向きに合わせて回転する風向体と、風向体を支持する基台とを有している。そして、風向風速計は、風速および風向を測定するために、プロペラの回転速度および風向体と基台との相対角度をそれぞれ検出する。
この種の風向風速計では、1本の光ファイバの周囲を複数の光ファイバで囲んだ光ファイバ束を、風向体に取り付ける上部と基台に取り付ける下部とに分断する構成が提案されている(例えば、特許文献1)。この風向風速計は、1本の光ファイバの中心を軸として風向体を回転させることにより、この光ファイバの上部と下部とを常に対向させ、下部(基台側)から上部(風向体側)に光信号を継続して伝達する。そして、周囲の複数の光ファイバは、風向体の回転に伴い、上部の光ファイバと下部の光ファイバで送受の相手をそれぞれ変化させながら、上部(風向体側)から下部(基台側)に風速信号(光信号)を継続して伝達する。
A wind direction anemometer is attached with a propeller that rotates according to the strength of the wind, and has a wind direction body that rotates according to the direction of the wind, and a base that supports the wind direction body. The wind direction anemometer detects the rotational speed of the propeller and the relative angle between the wind direction body and the base in order to measure the wind speed and the wind direction.
In this type of anemometer, a configuration is proposed in which an optical fiber bundle in which a single optical fiber is surrounded by a plurality of optical fibers is divided into an upper part attached to the wind direction body and a lower part attached to the base ( For example, Patent Document 1). This wind direction anemometer always rotates the wind direction body around the center of one optical fiber so that the upper and lower portions of the optical fiber face each other, from the lower side (base side) to the upper side (wind direction body side). The optical signal is continuously transmitted. The surrounding optical fibers are moved from the upper part (wind direction body side) to the lower part (base side) while changing the transmission / reception partner between the upper optical fiber and the lower optical fiber as the wind direction body rotates. A signal (optical signal) is continuously transmitted.

また、風向体の回転軸体の外周を囲む環状の発光部(複数の発光素子を配置)と、風向体の回転軸体の端面に対向する位置に配置された受光部とを基台内部に設け、風向体の回転軸体内部に光ファイバ対を通した風向風速計が提案されている(例えば、特許文献2)。この風向風速計は、光ファイバ対の一方を環状の発光部に対向させ、他方を風向体の回転軸上に配置し、受光部に対向させることにより、風向体が回転した場合でも、風速信号を、風向体内部から基台内部まで継続して伝達する。
登録実用新案第2515512号公報 実公平07−004580号公報
Further, an annular light emitting portion (a plurality of light emitting elements are arranged) surrounding the outer periphery of the rotating shaft body of the wind direction body and a light receiving portion arranged at a position facing the end surface of the rotating shaft body of the wind direction body are provided inside the base. A wind direction anemometer has been proposed in which an optical fiber pair is passed through a rotating shaft body of the wind direction body (for example, Patent Document 2). This wind direction anemometer is arranged so that one of the pair of optical fibers faces the annular light emitting part, and the other is arranged on the rotation axis of the wind direction body and faces the light receiving part, so that the wind speed signal can be obtained even when the wind direction body rotates. Is continuously transmitted from the inside of the wind direction body to the inside of the base.
Registered Utility Model No. 2515512 No. 07-004580

特許文献1の風向風速計では、風速測定用の円板により光ファイバが分断される他に、風向体と基台との間で光信号を伝送するために、光ファイバを上部(風向体側)と下部(基台側)とに分断しているため、測定系での光損失が大きくなる。また、可動部(回転部)である風向体に設けられる光ファイバ(上部)に、基台に設けられる光ファイバ(下部)を対向させるため、風向風速計の設置時の組立誤差、あるいは、個体差により、プロペラの回転速度の検出精度が低下する場合がある。このため、風速値の検出精度を確保するために、発光部および受光部を風向風速計の内部に設け、光損失を最小限に抑える必要がある。   In the wind direction anemometer of Patent Document 1, in addition to the optical fiber being divided by a disk for wind speed measurement, the optical fiber is placed above (wind direction body side) to transmit an optical signal between the wind direction body and the base. And the lower part (base side), the light loss in the measurement system increases. In addition, because the optical fiber (lower part) provided on the base is opposed to the optical fiber (upper part) provided on the wind direction body that is the movable part (rotating part), the assembly error during installation of the anemometer or the individual Due to the difference, the detection accuracy of the rotation speed of the propeller may be lowered. For this reason, in order to ensure the detection accuracy of the wind speed value, it is necessary to provide a light emitting part and a light receiving part inside the anemometer to minimize light loss.

特許文献2の風向風速計では、風向体の回転軸体内部に光ファイバ対を通しているため、風向体と基台との間で光信号を伝送するときに、測定系での光損失が生じる。このため、風速値の検出精度を確保するために、発光部および受光部を風向風速計の内部に設け、光損失を最小限に抑える必要がある。さらに、特許文献2の風向風速計では、風向体の回転軸体の外周を囲む環状の発光部(複数の発光素子を配置)が必要であり、発光部を風向風速計の内部に設ける必要がある。   In the wind direction anemometer of patent document 2, since an optical fiber pair is passed through the rotating shaft body of the wind direction body, optical loss occurs in the measurement system when an optical signal is transmitted between the wind direction body and the base. For this reason, in order to ensure the detection accuracy of the wind speed value, it is necessary to provide a light emitting part and a light receiving part inside the anemometer to minimize light loss. Furthermore, in the wind direction anemometer of patent document 2, the cyclic | annular light emission part (a several light emitting element is arrange | positioned) surrounding the outer periphery of the rotating shaft body of a wind direction body is required, and it is necessary to provide a light emission part inside an anemometer. is there.

発光部および受光部を風向風速計の内部に設けた場合、観測局から風向風速計内部に電源の供給が必要になる。このため、風向風速計と観測局との距離が遠くなると、観測局と風向風速計間の電圧降下により、発光部および受光部で使用している光素子の性能が低下し、風速値および風向の検出精度が低下する。また、風向風速計と観測局との通信は、風向風速計の内部の発光部および受光部を介して電気信号で行うため、雷やノイズの影響を受けやすい。さらに、検出精度は、発光部および受光部で使用している光素子の経年変化による光源劣化等により低下する。この際、光素子が風向風速計内にあるため、光素子の取り替え作業を、風向風速計毎に実施しなくてはならず、メンテナンス性が悪い。   When the light emitting unit and the light receiving unit are provided inside the anemometer, it is necessary to supply power from the observation station to the anemometer. For this reason, when the distance between the wind direction anemometer and the observation station increases, the voltage drop between the observation station and the wind direction anemometer deteriorates the performance of the light elements used in the light emitting unit and the light receiving unit, and the wind speed value and direction. The accuracy of detection decreases. Further, since the communication between the anemometer and the observation station is performed by an electrical signal through the light emitting unit and the light receiving unit inside the anemometer, it is easily affected by lightning and noise. Furthermore, the detection accuracy decreases due to deterioration of the light source due to aging of optical elements used in the light emitting unit and the light receiving unit. At this time, since the optical element is in the anemometer, the replacement operation of the optical element must be performed for each anemometer, and the maintainability is poor.

本発明の目的は、風向風速計と観測局との距離が遠い場合でも風向風速計の検出精度を確保すること、および、風向風速計と観測局との通信時の雷やノイズの影響を低減することである。   The purpose of the present invention is to ensure the detection accuracy of the anemometer and the observation station even when the anemometer and the observation station are far away, and to reduce the influence of lightning and noise during communication between the anemometer and the observation station It is to be.

風向風速計は、基台と、基台に支持され、受ける風の強さに応じて回転するプロペラが取り付けられ、風の向きに合わせて基台に対して回転する風向体とを有している。そして、風向風速計は、風速および風向を測定するために、プロペラの回転速度および風向体と基台との相対角度をそれぞれ検出する。
例えば、風向風速計は、プロペラに接続された回転軸と、プロペラの回転軸に設けられた第1傘歯車と、第1傘歯車に噛み合わせられた第2傘歯車が設けられた垂直回転軸とを有している。そして、風向体には、プロペラに接続された回転軸に対して垂直方向に延在し、基台に回転自在に支持される筒状の垂直回転部材が設けられている。垂直回転軸は、垂直回転部材に挿入され、垂直回転部材に回転自在に支持される。そして、垂直回転軸の基台側には、垂直回転軸の中心から同心円上に形成された複数の風速用穴を有する風速用回転円板が設けられている。また、垂直回転部材には、プロペラ側と反対側に、相対角度毎に異なる組合せを有し、放射方向に沿って形成された複数の風向用穴を有する風向用回転円板が設けられている。
The anemometer has a base, a propeller that is supported by the base and that rotates according to the strength of the wind received, and has a wind direction body that rotates relative to the base in accordance with the direction of the wind. Yes. The wind direction anemometer detects the rotational speed of the propeller and the relative angle between the wind direction body and the base in order to measure the wind speed and the wind direction.
For example, an anemometer includes a rotating shaft connected to a propeller, a first bevel gear provided on the rotating shaft of the propeller, and a vertical rotating shaft provided with a second bevel gear meshed with the first bevel gear. And have. The wind direction body is provided with a cylindrical vertical rotation member that extends in a direction perpendicular to the rotation axis connected to the propeller and is rotatably supported by the base. The vertical rotation shaft is inserted into the vertical rotation member and is rotatably supported by the vertical rotation member. A wind speed rotating disk having a plurality of wind speed holes formed concentrically from the center of the vertical rotating shaft is provided on the base side of the vertical rotating shaft. Further, the vertical rotating member is provided with a wind direction rotating disk having a plurality of wind direction holes formed in the radial direction on the opposite side to the propeller side, each having a different combination for each relative angle. .

発光素子に接続させる第1発光用光ファイバおよび受光素子に接続させる第1受光用光ファイバは、風速用回転円板を挟み、風速用穴を介して互いに対向する位置に配置されている。また、発光素子に接続させる複数の第2発光用光ファイバおよび受光素子に接続させる複数の第2受光用光ファイバは、風向用回転円板を挟み、風向用穴を介して互いに対向する位置に配置されている。   The first light-emitting optical fiber to be connected to the light-emitting element and the first light-receiving optical fiber to be connected to the light-receiving element are arranged at positions facing each other through the wind speed hole with the wind speed rotating disk interposed therebetween. The plurality of second light-emitting optical fibers to be connected to the light-emitting element and the plurality of second light-receiving optical fibers to be connected to the light-receiving element are located at positions facing each other through the wind direction hole with the wind direction rotating disk interposed therebetween. Has been placed.

本発明では、風向風速計と観測局との距離が遠い場合でも風向風速計の検出精度を確保すること、および、風向風速計と観測局との通信時の雷やノイズの影響を低減することができる。   In the present invention, even if the anemometer and the observation station are far away, the detection accuracy of the anemometer and the observation station is ensured, and the influence of lightning and noise during communication between the anemometer and the observation station is reduced. Can do.

以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の第1の実施形態の断面図を示している。図中の光ファイバ60、62、64、66に添えられた矢印は、光信号S1、S2、S3、S4、S5が進む方向を示している。風向風速計10は、基台20と、受ける風の強さに応じて回転するプロペラ30が取り付けられた風向体40とを有している。風向体40は、基台20に支持され、例えば、風向体40に設けられた尾翼により、風の向きに合わせて基台20に対して回転する。風向風速計10は、風速および風向を測定するために、プロペラ30の回転速度および風向体40と基台20との相対角度をそれぞれ検出する。そして、風向風速計10は、検出したプロペラ30の回転速度および風向体40と基台20との相対角度を示す光信号S1−S5を、遠方に設置された観測局(図示せず)や中継局(図示せず)等に送信する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional view of a first embodiment of the present invention. The arrows attached to the optical fibers 60, 62, 64, and 66 in the figure indicate the directions in which the optical signals S1, S2, S3, S4, and S5 travel. The wind direction anemometer 10 has a base 20 and a wind direction body 40 to which a propeller 30 that rotates according to the strength of the wind received is attached. The wind direction body 40 is supported by the base 20 and is rotated with respect to the base 20 according to the direction of the wind by, for example, a tail provided on the wind direction body 40. The wind direction anemometer 10 detects the rotational speed of the propeller 30 and the relative angle between the wind direction body 40 and the base 20 in order to measure the wind speed and the wind direction. The wind direction anemometer 10 then transmits an optical signal S1-S5 indicating the detected rotational speed of the propeller 30 and the relative angle between the wind direction body 40 and the base 20 to an observation station (not shown) or a relay installed remotely. Transmit to a station (not shown).

風向風速計10は、プロペラ30に接続された回転軸32と、風向体40に設けられた筒状の垂直回転部材42と、垂直回転部材42に挿入された垂直回転軸50と、第1発光用光ファイバ60および第1受光用光ファイバ62と、複数の第2発光用光ファイバ64および複数の第2受光用光ファイバ66とを有している。
プロペラ30に接続された回転軸32は、軸受け70により、風向体40に回転自在に支持されている。これにより、プロペラ30は、受ける風の強さに応じて回転し、回転軸32を回転させる。回転軸32のプロペラ30側と反対側には、回転軸32の回転を垂直回転軸50に伝えるために、第1傘歯車34が設けられている。
The wind direction anemometer 10 includes a rotation shaft 32 connected to the propeller 30, a cylindrical vertical rotation member 42 provided on the wind direction body 40, a vertical rotation shaft 50 inserted into the vertical rotation member 42, and a first light emission. Optical fibers 60 and first light receiving optical fibers 62, a plurality of second light emitting optical fibers 64 and a plurality of second light receiving optical fibers 66.
A rotating shaft 32 connected to the propeller 30 is rotatably supported by the wind direction body 40 by a bearing 70. Thereby, the propeller 30 rotates according to the strength of the wind received, and rotates the rotating shaft 32. A first bevel gear 34 is provided on the side opposite to the propeller 30 side of the rotation shaft 32 in order to transmit the rotation of the rotation shaft 32 to the vertical rotation shaft 50.

垂直回転部材42は、風向体40に設けられ、回転軸32に対して垂直方向に基台20内まで延在し、軸受け72により、基台20に回転自在に支持されている。これにより、風向体40は、受ける風の向きに応じて回転し、垂直回転部材42を回転させる。
垂直回転部材42に挿入された垂直回転軸50には、第1傘歯車34に噛み合わせられた第2傘歯車52が設けられている。これにより、回転軸32の回転が垂直回転軸50に伝わる。また、垂直回転軸50の基台20側には、垂直回転軸50の中心から同心円上に形成された複数の風速用穴54を有する風速用回転円板52が設けられている。なお、風速用回転円板52および風速用穴54の詳細は、後述する図2で説明する。垂直回転軸50は、軸受け74により、垂直回転部材42に回転自在に支持されている。これにより、風速用回転円板52は、プロペラ30が受ける風の強さに応じて、プロペラ30、回転軸32、第1傘歯車34、第2傘歯車52および垂直回転軸50を介して回転する。
The vertical rotation member 42 is provided on the wind direction body 40, extends into the base 20 in a direction perpendicular to the rotation shaft 32, and is rotatably supported on the base 20 by a bearing 72. Thereby, the wind direction body 40 rotates according to the direction of the received wind, and rotates the vertical rotation member 42.
The vertical rotating shaft 50 inserted into the vertical rotating member 42 is provided with a second bevel gear 52 meshed with the first bevel gear 34. Thereby, the rotation of the rotating shaft 32 is transmitted to the vertical rotating shaft 50. A wind speed rotating disk 52 having a plurality of wind speed holes 54 formed concentrically from the center of the vertical rotating shaft 50 is provided on the base 20 side of the vertical rotating shaft 50. Details of the wind speed rotating disk 52 and the wind speed hole 54 will be described later with reference to FIG. The vertical rotation shaft 50 is rotatably supported by the vertical rotation member 42 by a bearing 74. Thus, the wind speed rotating disc 52 rotates via the propeller 30, the rotating shaft 32, the first bevel gear 34, the second bevel gear 52, and the vertical rotating shaft 50 according to the strength of the wind received by the propeller 30. To do.

これにより、風向風速計10は、基台20内でプロペラ30の回転速度を検出できるため、風向体40と基台20との間で光信号S5を伝送する必要がない。したがって、光ファイバを風向体40側と基台20側とに分ける必要がない。この結果、測定系での光損失を小さくでき、光ファイバ(第1発光用光ファイバ60、第1受光用光ファイバ62)を長くすることができる。   Thereby, since the wind direction anemometer 10 can detect the rotational speed of the propeller 30 in the base 20, it is not necessary to transmit the optical signal S5 between the wind direction body 40 and the base 20. Therefore, it is not necessary to divide the optical fiber into the wind direction body 40 side and the base 20 side. As a result, the optical loss in the measurement system can be reduced, and the optical fibers (the first light emitting optical fiber 60 and the first light receiving optical fiber 62) can be lengthened.

垂直回転部材42のプロペラ30側と反対側には、風向体40と基台20との相対角度毎に異なる組合せを有し、放射方向に形成された複数の風向用穴46を有する風向用回転円板44が設けられている。なお、風向用回転円板44および風向用穴46の詳細は、後述する図3で説明する。
第1発光用光ファイバ60は、風向風速計10の外部(例えば、遠方の観測局)に設置された発光素子EOが発した光信号S5を、風向風速計10まで伝送する。また、第1受光用光ファイバ62は、風向風速計10内で受けた光信号S5を、風向風速計10の外部(例えば、遠方の観測局)に設置された受光素子OEに伝送する。なお、第1発光用光ファイバ60および第1受光用光ファイバ62は、風速用回転円板52を挟み、風速用穴54を介して互いに対向する位置に配置される。すなわち、風向風速計10の外部に設置された発光素子EOが送信した光信号S5は、第1発光用光ファイバ60を経由して基台20の内部に伝送され、風速用穴54および第1受光用光ファイバ62を経由して基台20の外部に伝送され、風向風速計10の外部に設置された受光素子OEに受信される。
On the opposite side of the vertical rotating member 42 to the propeller 30 side, there are different combinations for each relative angle between the wind direction body 40 and the base 20, and there are a plurality of wind direction holes 46 formed in the radial direction. A disc 44 is provided. Details of the wind direction rotating disk 44 and the wind direction hole 46 will be described later with reference to FIG.
The first light emitting optical fiber 60 transmits an optical signal S5 emitted from the light emitting element EO installed outside the anemometer 10 (for example, a remote observation station) to the anemometer 10. The first light receiving optical fiber 62 transmits the optical signal S5 received in the anemometer 10 to a light receiving element OE installed outside the anemometer 10 (for example, a distant observation station). The first light-emitting optical fiber 60 and the first light-receiving optical fiber 62 are arranged at positions facing each other through the wind speed hole 54 with the wind speed rotating disk 52 interposed therebetween. That is, the optical signal S5 transmitted by the light emitting element EO installed outside the anemometer 10 is transmitted to the inside of the base 20 via the first light emitting optical fiber 60, and the wind speed hole 54 and the first speed signal are transmitted. The light is transmitted to the outside of the base 20 through the light receiving optical fiber 62 and received by the light receiving element OE installed outside the anemometer 10.

風速用回転円板52は、上述したようにプロペラ30が受ける風の強さに応じて回転する。この結果、風向風速計10は、風速用回転円板52の回転に伴う風速用穴54の回転により、光信号S5を透過および遮断し、第1受光用光ファイバ62が受ける光信号S5のパターンあるいはレベルを変化させる。したがって、受光素子OEが受信する光信号S5のパターンあるいはレベルは、風速用回転円板52の回転速度、すなわち、風速により変化する。例えば、受光素子OEが設置された観測局では、この光信号S5のパターンあるいはレベルから風速値を算出する。   The wind speed rotating disc 52 rotates according to the wind strength received by the propeller 30 as described above. As a result, the anemometer 10 transmits and blocks the optical signal S5 by the rotation of the wind speed hole 54 accompanying the rotation of the wind speed rotating disk 52, and the pattern of the optical signal S5 received by the first light receiving optical fiber 62. Or change the level. Therefore, the pattern or level of the optical signal S5 received by the light receiving element OE varies depending on the rotational speed of the wind speed rotating disk 52, that is, the wind speed. For example, the observation station where the light receiving element OE is installed calculates the wind speed value from the pattern or level of the optical signal S5.

第2発光用光ファイバ64および第2受光用光ファイバ66も、第1発光用光ファイバ60および第1受光用光ファイバ62と同様に、風向風速計10の外部(例えば、遠方の観測局)に設置された発光素子EOおよび受光素子OEと光信号S1−S4を送受信する。なお、第2発光用光ファイバ64および第2受光用光ファイバ66は、風向用回転円板44を挟み、風向用穴46を介して互いに対向する位置に配置される。風向用回転円板44は、風向体40が受ける風の向き応じて、風向体40、垂直回転部材42を介して回転する。この結果、風向風速計10は、風向用回転円板44の回転に伴う風向用穴46の回転により、光信号S1−S4を透過および遮断し、複数の第2受光用光ファイバ66が受ける光信号S1−S4の組合せを変化させる。したがって、複数の受光素子OEが受信する光信号S1−S4の組合せは、風向用回転円板52の回転、すなわち、風向により変化する。例えば、受光素子OEが設置された観測局では、この光信号S1−S4の組合せから風向を算出する。   Similarly to the first light-emitting optical fiber 60 and the first light-receiving optical fiber 62, the second light-emitting optical fiber 64 and the second light-receiving optical fiber 66 are also external to the anemometer 10 (for example, a distant observation station). The optical signals S1-S4 are transmitted / received to / from the light-emitting element EO and the light-receiving element OE installed in. The second light-emitting optical fiber 64 and the second light-receiving optical fiber 66 are disposed at positions facing each other through the wind direction hole 46 with the wind direction rotating disk 44 interposed therebetween. The wind direction rotating disk 44 rotates via the wind direction body 40 and the vertical rotation member 42 according to the direction of the wind received by the wind direction body 40. As a result, the wind direction anemometer 10 transmits and blocks the optical signals S1 to S4 by the rotation of the wind direction hole 46 accompanying the rotation of the wind direction rotating disk 44, and the light received by the plurality of second light receiving optical fibers 66. The combination of the signals S1-S4 is changed. Accordingly, the combination of the optical signals S1 to S4 received by the plurality of light receiving elements OE varies depending on the rotation of the wind direction rotating disk 52, that is, the wind direction. For example, the observation station in which the light receiving element OE is installed calculates the wind direction from the combination of the optical signals S1-S4.

風向風速計10は、風向風速計10の外部(例えば、遠方の観測局)に設置された発光素子EOおよび受光素子OEとの通信を光ファイバ60−64を用いた光信号S1−S5の送受信で実現できるため、通信時の雷やノイズの影響を低減させることができる。また、風向風速計10は、内部に発光素子EOおよび受光素子OEを有していないため、電源を必要としない。換言すれば、電源電圧降下による光素子(発光素子EO、受光素子OE)の性能の低下を防止するために、風向風速計10と観測局との距離を近くする必要がない。このため、風向風速計10と観測局との距離が遠い場合でも風向風速計10の検出精度を確保できる。なお、光ファイバ60−64は、光ファイバの仕様で定められた曲げ半径(光ファイバの曲がりによる放射損失が許容される範囲の最少曲げ半径)より大きな曲率半径で設置される。   The anemometer 10 transmits and receives optical signals S1-S5 using optical fibers 60-64 for communication with the light emitting element EO and the light receiving element OE installed outside the anemometer 10 (for example, a distant observation station). Therefore, the influence of lightning and noise during communication can be reduced. Moreover, since the anemometer 10 does not have the light emitting element EO and the light receiving element OE inside, it does not require a power supply. In other words, it is not necessary to reduce the distance between the anemometer 10 and the observation station in order to prevent the performance of the optical elements (light emitting element EO, light receiving element OE) from being lowered due to a power supply voltage drop. For this reason, even when the distance between the anemometer 10 and the observation station is long, the detection accuracy of the anemometer 10 can be ensured. The optical fibers 60-64 are installed with a radius of curvature larger than the bending radius (the minimum bending radius within a range in which radiation loss due to the bending of the optical fiber is allowed) determined by the specifications of the optical fiber.

図2は、図1に示した風向風速計10の風速用回転円板52の外形の一例を示している。図2は、図1に示した基台20の底面(風向体40と反対側の面)から見た風速用回転円板52を示している。風速用回転円板52は、垂直回転軸50を中心とする同心円上(図の破線)に所定の角度(例えば、15度)を置いて形成された複数の風速用穴54(図の網掛け部分)を有している。   FIG. 2 shows an example of the outer shape of the wind speed rotating disk 52 of the anemometer 10 shown in FIG. FIG. 2 shows a wind speed rotating disc 52 as seen from the bottom surface (surface opposite to the wind direction body 40) of the base 20 shown in FIG. The wind speed rotating disk 52 is formed of a plurality of wind speed holes 54 (shaded in the figure) formed at a predetermined angle (for example, 15 degrees) on a concentric circle (broken line in the figure) with the vertical rotation axis 50 as the center. Part).

図1に示した第1発光用光ファイバ60および第1受光用光ファイバ62は、風速用回転円板52を挟み、破線で示した同心円上で互いに対向する位置に配置される。そして、第1発光用光ファイバ60および第1受光用光ファイバ62は、風速用回転円板52の回転に伴い回転する風速用穴54を介して光信号の送受信を実施する。例えば、第1受光用光ファイバ62が、風速用穴54を通過しているときに受ける光信号を1つのパルスとすると、第1受光用光ファイバ62が受ける単位時間当たりの光信号のパルス数は、風速用回転円板52の回転に伴い変化する。この結果、例えば、図示していない観測局は、第1受光用光ファイバ62が受ける光信号のパルス成分を解析し、単位時間当たりのパルス数を検出することにより、風速値を算出できる。あるいは、観測局は、第1受光用光ファイバ62が受ける光信号のパルス成分を解析し、光信号のパルス幅(光レベルに相当)を検出することにより、風速値を算出できる。   The first light-emitting optical fiber 60 and the first light-receiving optical fiber 62 shown in FIG. 1 are arranged at positions facing each other on concentric circles indicated by broken lines with the wind speed rotating disc 52 interposed therebetween. The first light-emitting optical fiber 60 and the first light-receiving optical fiber 62 transmit and receive optical signals through the wind speed hole 54 that rotates as the wind speed rotating disk 52 rotates. For example, if the optical signal received when the first light receiving optical fiber 62 passes through the wind speed hole 54 is one pulse, the number of pulses of the optical signal per unit time received by the first light receiving optical fiber 62 Changes as the wind speed rotating disk 52 rotates. As a result, for example, an observation station (not shown) can calculate the wind speed value by analyzing the pulse component of the optical signal received by the first light receiving optical fiber 62 and detecting the number of pulses per unit time. Alternatively, the observation station can calculate the wind speed value by analyzing the pulse component of the optical signal received by the first light receiving optical fiber 62 and detecting the pulse width (corresponding to the optical level) of the optical signal.

図3は、図1に示した風向風速計10の風向用回転円板44の外形の一例を示している。図3は、図1に示した基台20の底面(風向体40と反対側の面)から見た風向用回転円板44を示している。図中の太い破線REF1(以後、基台方向REF1とも称する)は、図1に示した基台20の基準となる向き(例えば、北の方角)を示している。また、図中の垂直回転部材42内の矢印の図形REF2(以後、風向体方向REF2とも称する)は、上述した図1に示した風向体40の向き(例えば、プロペラ30が取り付けられた方の向き)を示している。なお、図形REF2は、説明のために設けたものであり、実際には存在しない。   FIG. 3 shows an example of the outer shape of the wind direction rotating disk 44 of the wind direction anemometer 10 shown in FIG. FIG. 3 shows the wind direction rotating disk 44 as seen from the bottom surface (surface opposite to the wind direction body 40) of the base 20 shown in FIG. A thick broken line REF1 (hereinafter also referred to as a base direction REF1) in the figure indicates a direction (for example, a north direction) that serves as a reference of the base 20 shown in FIG. In addition, an arrow figure REF2 (hereinafter also referred to as wind direction body direction REF2) in the vertical rotation member 42 in the figure is the direction of the wind direction body 40 shown in FIG. 1 (for example, the one to which the propeller 30 is attached). Direction). Note that the figure REF2 is provided for explanation and does not actually exist.

風向用回転円板44は、複数の同心円上(図の破線)に形成された複数の風向用穴46(図の網掛け部分)を有している。また、風向用穴46は、風向体40と基台20との相対角度毎に異なる組合せを有し、放射方向に沿って形成される。ここで、風向体40と基台20との相対角度は、例えば、基台方向REF1(基台20の向き)と風向体方向REF2(風向体40の向き)との角度である。図中の例では、風向用穴46は、16分の360度(22.5度)の相対角度毎に異なる組合せを有している。換言すれば、上述した図1に示した風向体40の向きは、風向用穴46の組合せにより、16の方位に分割されて検出される。   The wind direction rotating disk 44 has a plurality of wind direction holes 46 (shaded portions in the figure) formed on a plurality of concentric circles (broken lines in the figure). The wind direction hole 46 has a different combination for each relative angle between the wind direction body 40 and the base 20 and is formed along the radial direction. Here, the relative angle between the wind direction body 40 and the base 20 is, for example, an angle between the base direction REF1 (direction of the base 20) and the wind direction body direction REF2 (direction of the wind direction body 40). In the example in the figure, the wind direction hole 46 has a different combination for each relative angle of 360 degrees (22.5 degrees). In other words, the direction of the wind direction body 40 shown in FIG. 1 described above is detected by being divided into 16 directions by the combination of the wind direction holes 46.

図1に示した第2発光用光ファイバ64および第2受光用光ファイバ66は、風向用回転円板44を挟み、破線で示した各同心円上で互いに対向する位置にそれぞれ配置される。例えば、図1に示した光信号S1、S2、S3、S4を送受信する光ファイバ対(第2発光用光ファイバ64および第2受光用光ファイバ66)は、内側の同心円から順にそれぞれ配置される。そして、第2発光用光ファイバ64および第2受光用光ファイバ66は、風向用回転円板44の回転に伴い回転する風向用穴46を介して光信号の送受信を実施する。第2受光用光ファイバ66が受ける光信号の組合せは、風向用回転円板44の回転に伴い変化する。この結果、例えば、図示していない観測局は、複数の第2受光用光ファイバ66が受ける光信号を解析し、光信号の組合せを検出することにより、風向を算出できる。   The second light-emitting optical fiber 64 and the second light-receiving optical fiber 66 shown in FIG. 1 are arranged at positions facing each other on concentric circles indicated by broken lines with the wind direction rotating disk 44 interposed therebetween. For example, the optical fiber pairs (the second light-emitting optical fiber 64 and the second light-receiving optical fiber 66) that transmit and receive the optical signals S1, S2, S3, and S4 illustrated in FIG. 1 are sequentially arranged from the inner concentric circles. . The second light-emitting optical fiber 64 and the second light-receiving optical fiber 66 perform transmission and reception of optical signals through the wind direction hole 46 that rotates as the wind direction rotating disk 44 rotates. The combination of optical signals received by the second light receiving optical fiber 66 changes as the wind direction rotating disk 44 rotates. As a result, for example, an observation station (not shown) can calculate the wind direction by analyzing the optical signals received by the plurality of second light receiving optical fibers 66 and detecting the combination of the optical signals.

図4は、図1および図3に示した風向用回転円板44を用いたときに第2受光用光ファイバ66が受ける光信号S1−S4と風向との関係の一例を示している。図中の丸印は、第2受光用光ファイバ66が光信号を受けたことを示し、×印は、第2受光用光ファイバ66が光信号を受けていないことを示している。換言すれば、図中の丸印は、図3に示した風向用穴46を通過した光信号を示し、×印は、風向用回転円板44により遮断された光信号を示している。また、図中のN、E、S、Wは、北、東、南、西の方角をそれぞれ示している。図中の例では、図1に示した第2発光用光ファイバ64および第2受光用光ファイバ66は、風向体40の向き(図3に示した風向体方向REF2)が北の方角のときに、全ての光信号S1−S4が風向用穴46を通過する位置に配置されている。   FIG. 4 shows an example of the relationship between the optical signals S1-S4 received by the second light receiving optical fiber 66 and the wind direction when the wind direction rotating disk 44 shown in FIGS. 1 and 3 is used. In the drawing, a circle indicates that the second light receiving optical fiber 66 has received an optical signal, and a cross indicates that the second light receiving optical fiber 66 has not received an optical signal. In other words, a circle in the drawing indicates an optical signal that has passed through the wind direction hole 46 illustrated in FIG. 3, and an X indicates an optical signal that is blocked by the wind direction rotating disk 44. Further, N, E, S, and W in the figure indicate north, east, south, and west directions, respectively. In the example in the drawing, the second light-emitting optical fiber 64 and the second light-receiving optical fiber 66 shown in FIG. 1 are when the direction of the wind direction body 40 (wind direction body direction REF2 shown in FIG. 3) is the north direction. , All the optical signals S1 to S4 are arranged at positions passing through the wind direction hole 46.

例えば、図1に示した第2受光用光ファイバ66は、風向Dが北(N)の場合、全ての光信号S1−S4を受け(番号No.1)、風向Dが東(E)の場合、光信号S1およびS3−S4を受け(番号No.5)、風向Dが南(S)の場合、光信号S2−4を受け(番号No.9)、風向Dが西(W)の場合、光信号S3−4を受ける(番号No.13)。また、風向Dが北北西(NNW)の場合、全ての光信号S1−S4は、上述した図3に示した風向用回転円板44により遮断され、第2受光用光ファイバ66は、光信号S1−S4を受けない。したがって、例えば、図示していない観測局は、第2受光用光ファイバ66が受ける光信号を解析し、図4に示した光信号S1−S4の組合せに基づいて、風向を算出できる。   For example, when the wind direction D is north (N), the second light receiving optical fiber 66 shown in FIG. 1 receives all the optical signals S1-S4 (number No. 1), and the wind direction D is east (E). In this case, the optical signals S1 and S3-S4 are received (No. 5), and when the wind direction D is south (S), the optical signal S2-4 is received (No. 9), and the wind direction D is west (W). In this case, the optical signal S3-4 is received (No. 13). When the wind direction D is north-northwest (NNW), all the optical signals S1 to S4 are blocked by the wind direction rotating disk 44 shown in FIG. 3 and the second light receiving optical fiber 66 is an optical signal. Do not receive S1-S4. Therefore, for example, an observation station (not shown) can analyze the optical signal received by the second light receiving optical fiber 66 and calculate the wind direction based on the combination of the optical signals S1 to S4 shown in FIG.

以上、第1の実施形態では、プロペラ30の回転に伴い回転する風速用回転円板52を基台20の内部に設けているため、風向体40と基台20との間で光信号を伝送する必要がない。したがって、光ファイバを風向体40側と基台20側とに分ける必要がないため、測定系での光損失を小さくでき、光ファイバ(第1発光用光ファイバ60、第1受光用光ファイバ62)を長くすることができる。この結果、風向風速計10の外部(例えば、遠方の観測局)に設置された発光素子EOおよび受光素子OEとの通信を光ファイバ60−64を用いた光信号S1−S5の送受信で実現できるため、通信時の雷やノイズの影響を低減させることができる。また、風向風速計10は、内部に発光素子EOおよび受光素子OEを有していないため、電源を必要としない。換言すれば、電源電圧降下による光素子(発光素子EO、受光素子OE)の性能の低下を防止するために、風向風速計10と観測局との距離を近くする必要がない。このため、風向風速計10と観測局との距離が遠い場合でも風向風速計10の検出精度を確保できる。さらに、風向風速計10内部に発光素子EOおよび受光素子OEを有していないため、経年変化により劣化した光素子(発光素子EOおよび受光素子OE)の取り替え作業を、風向風速計10毎に実施する必要がない。例えば、発光素子EOおよび受光素子OEが設置された観測局で光素子の取り替え作業を一括してできるため、メンテナンス性が良い。   As described above, in the first embodiment, since the wind speed rotating disc 52 that rotates with the rotation of the propeller 30 is provided inside the base 20, an optical signal is transmitted between the wind direction body 40 and the base 20. There is no need to do. Accordingly, since it is not necessary to divide the optical fiber into the wind direction body 40 side and the base 20 side, the optical loss in the measurement system can be reduced, and the optical fibers (the first light-emitting optical fiber 60 and the first light-receiving optical fiber 62). ) Can be lengthened. As a result, communication with the light emitting element EO and the light receiving element OE installed outside the anemometer 10 (for example, a distant observation station) can be realized by transmitting and receiving the optical signals S1-S5 using the optical fibers 60-64. Therefore, the influence of lightning and noise during communication can be reduced. Moreover, since the anemometer 10 does not have the light emitting element EO and the light receiving element OE inside, it does not require a power supply. In other words, it is not necessary to reduce the distance between the anemometer 10 and the observation station in order to prevent the performance of the optical elements (light emitting element EO, light receiving element OE) from being lowered due to a power supply voltage drop. For this reason, even when the distance between the anemometer 10 and the observation station is long, the detection accuracy of the anemometer 10 can be ensured. Furthermore, since the anemometer 10 does not have the light emitting element EO and the light receiving element OE, replacement work of the optical elements (light emitting element EO and light receiving element OE) deteriorated due to aging is performed for each anemometer 10. There is no need to do. For example, maintenance work is good because the optical element replacement work can be performed at the observation station where the light emitting element EO and the light receiving element OE are installed.

図5は、本発明の第2の実施形態の断面図を示している。第1の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速計10Aは、第1の実施形態の風向風速計10に第1伝送用光ファイバ80、第2伝送用光ファイバ82、光波長分波器84および光波長合波器86が追加されて構成されている。その他の構成は、第1の実施形態と同じである。また、この実施形態の風向風速計10Aは、風向の検出に使用する光信号S1−S4を多重化する点が第1の実施形態と異なる。なお、風速は、第1の実施形態と同様の動作で測定される。   FIG. 5 shows a cross-sectional view of a second embodiment of the present invention. The same elements as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. An anemometer 10A of this embodiment is similar to the anemometer 10 of the first embodiment except that the first transmission optical fiber 80, the second transmission optical fiber 82, the optical wavelength demultiplexer 84, and the optical wavelength multiplexer 86. Is added and configured. Other configurations are the same as those of the first embodiment. Further, the wind direction anemometer 10A of this embodiment is different from the first embodiment in that the optical signals S1-S4 used for detecting the wind direction are multiplexed. Note that the wind speed is measured by the same operation as in the first embodiment.

第1伝送用光ファイバ80は、例えば、1本(1芯)の光ファイバであり、風向風速計10Aの外部(例えば、遠方の観測局)に設置された光波長合波器COMにより、多重化された光信号WDM1を風向風速計10Aまで伝送する。例えば、図示しない観測局に設置された光波長合波器COMは、発光素子EOが発した異なる波長(λ1−λ4)の光信号S1−S4を波長分割多重方式で多重化し、多重化した光信号WDM1(波長λ1−λ4)を第1伝送用光ファイバ80に伝送する。   The first transmission optical fiber 80 is, for example, a single (single-core) optical fiber, and is multiplexed by an optical wavelength multiplexer COM installed outside the anemometer 10A (for example, a distant observation station). The converted optical signal WDM1 is transmitted to the anemometer 10A. For example, the optical wavelength multiplexer COM installed in an observation station (not shown) multiplexes optical signals S1-S4 of different wavelengths (λ1-λ4) emitted from the light emitting element EO by the wavelength division multiplexing method, and multiplexes them. The signal WDM1 (wavelengths λ1-λ4) is transmitted to the first transmission optical fiber 80.

第2伝送用光ファイバ82は、例えば、1本(1芯)の光ファイバであり、風向風速計10A内の光波長合波器86により多重化された光信号WDM1(波長λ1−λ4)を、風向風速計10Aの外部(例えば、遠方の観測局)に設置された光波長分波器DIVに伝送する。例えば、図示しない観測局に設置された光波長分波器DIVは、第2伝送用光ファイバ82から受けた多重化された光信号WDM1(波長λ1−λ4)を波長毎に分波し、分波した光信号S1−S4を受光素子OEに伝送する。   The second transmission optical fiber 82 is, for example, a single (one-core) optical fiber, and the optical signal WDM1 (wavelengths λ1-λ4) multiplexed by the optical wavelength multiplexer 86 in the anemometer 10A. And transmitted to the optical wavelength demultiplexer DIV installed outside the anemometer 10A (for example, a distant observation station). For example, an optical wavelength demultiplexer DIV installed in an observation station (not shown) demultiplexes the multiplexed optical signal WDM1 (wavelengths λ1 to λ4) received from the second transmission optical fiber 82 for each wavelength. The waved optical signals S1-S4 are transmitted to the light receiving element OE.

光波長分波器84は、第1伝送用光ファイバ80と第2発光用光ファイバ64との間に設けられ、第1伝送用光ファイバ80が受けた多重化された光信号WDM1を波長毎(λ1−λ4)に分波し、分波した光信号S1−S4を第2発光用光ファイバ64にそれぞれ伝送する。これにより、光信号S1−S4は、第1の実施形態と同様に、風向用回転円板44に形成された風向用穴46を介して、第2発光用光ファイバ64から第2受光用光ファイバ66にそれぞれ伝送される。   The optical wavelength demultiplexer 84 is provided between the first transmission optical fiber 80 and the second light-emitting optical fiber 64, and receives the multiplexed optical signal WDM1 received by the first transmission optical fiber 80 for each wavelength. The optical signals S1-S4 that have been demultiplexed into (λ1-λ4) are transmitted to the second light-emitting optical fiber 64, respectively. Thereby, the optical signals S1 to S4 are transmitted from the second light emitting optical fiber 64 to the second light receiving light through the wind direction hole 46 formed in the wind direction rotating disk 44, as in the first embodiment. Each is transmitted to a fiber 66.

光波長合波器86は、第2受光用光ファイバ66と第2伝送用光ファイバ82との間に設けられ、第2受光用光ファイバが受けた異なる波長(λ1−λ4)の光信号S1−S4を多重化し、多重化した光信号WDM1(波長λ1−λ4)を第2伝送用光ファイバ82に伝送する。これにより、例えば、図示しない観測局は、第2伝送用光ファイバ82を介して伝送された光信号WDM1(波長λ1−λ4)を、光波長分波器DIVを用いて波長毎に分波し、分波した光信号S1−S4の組合せに基づいて風向を算出できる。   The optical wavelength multiplexer 86 is provided between the second light receiving optical fiber 66 and the second transmission optical fiber 82, and has an optical signal S1 having a different wavelength (λ1-λ4) received by the second light receiving optical fiber. -S4 is multiplexed, and the multiplexed optical signal WDM1 (wavelengths λ1-λ4) is transmitted to the second transmission optical fiber 82. Thereby, for example, an observation station (not shown) demultiplexes the optical signal WDM1 (wavelengths λ1 to λ4) transmitted through the second transmission optical fiber 82 for each wavelength using the optical wavelength demultiplexer DIV. The wind direction can be calculated based on the combination of the demultiplexed optical signals S1-S4.

風向風速計10Aは、風向の検出に使用する光信号S1−S4の送受信を波長分割多重方式で多重化された光信号WDM1の送受信で実現できる。この結果、風向風速計10Aと外部(例えば、観測局)との送受信用の配線を、1芯の光ファイバ80、82にできるため、風向風速計10Aと外部(例えば、観測局)間の配線(光ファイバ80、82)の設置を簡易にできる。   The wind direction anemometer 10A can realize transmission / reception of the optical signals S1-S4 used for detecting the wind direction by transmission / reception of the optical signal WDM1 multiplexed by the wavelength division multiplexing method. As a result, since the wiring for transmission / reception between the wind direction anemometer 10A and the outside (for example, the observation station) can be made to the single optical fiber 80, 82, the wiring between the wind direction anemometer 10A and the outside (for example, the observation station) Installation of the (optical fibers 80 and 82) can be simplified.

図6は、図5に示した風向風速計10Aで使用する多重化された光信号WDM1と風向との関係の一例を示している。図中の上の図は、第1伝送用光ファイバ80により伝送される多重化された光信号WDM1を示している。また、図中の下の図は、第2伝送用光ファイバ82により伝送される多重化された光信号WDM1を示している。図中の破線は、図5に示した風向用回転円板44により遮断された光信号を示している。換言すれば、図中の破線は、図5に示した第2受光用光ファイバ66が受けていない光信号を示している。なお、図中の例では、風向Dが北東(NE)の場合を示している。   FIG. 6 shows an example of the relationship between the multiplexed optical signal WDM1 used in the wind direction anemometer 10A shown in FIG. 5 and the wind direction. The upper diagram in the figure shows a multiplexed optical signal WDM1 transmitted by the first transmission optical fiber 80. Further, the lower diagram in the figure shows a multiplexed optical signal WDM1 transmitted by the second transmission optical fiber 82. The broken line in the figure indicates the optical signal blocked by the wind direction rotating disk 44 shown in FIG. In other words, the broken line in the figure indicates an optical signal that is not received by the second light receiving optical fiber 66 shown in FIG. In the example in the figure, the wind direction D is in the northeast (NE).

第1伝送用光ファイバ80により伝送される光信号WDM1は、光信号S1、S2、S3、S4(波長λ1、λ2、λ3、λ4)が多重化されている。このため、この光信号WDM1は、波長λ1、λ2、λ3、λ4に光強度のピークがそれぞれ現れる。そして、この光信号WDM1は、図5に示した光波長分波器84により、波長毎(λ1−λ4)に分波され、第2発光用光ファイバ64にそれぞれ伝送される。   The optical signal WDM1 transmitted through the first transmission optical fiber 80 is multiplexed with optical signals S1, S2, S3, and S4 (wavelengths λ1, λ2, λ3, and λ4). Therefore, the optical signal WDM1 has light intensity peaks at wavelengths λ1, λ2, λ3, and λ4. The optical signal WDM1 is demultiplexed for each wavelength (λ1-λ4) by the optical wavelength demultiplexer 84 shown in FIG. 5 and transmitted to the second light-emitting optical fiber 64, respectively.

図中の例(風向D=北東(NE))では、上述した図3に示した風向用回転円板44が、図4に示した光信号と風向との関係に基づいて回転する場合、光信号S3(波長λ3)が風向用回転円板44により遮断される。したがって、図5に示した光波長合波器86は、波長λ1、λ2、λ4の光信号S1、S2、S4を波長分割多重方式で多重化し、多重化した光信号WDM1を第2伝送用光ファイバ82に伝送する。すなわち、第2伝送用光ファイバ82により伝送される光信号WDM1は、波長λ3の光信号S3を有していない。このため、この光信号WDM1は、波長λ1、λ2、λ4に光強度のピークがそれぞれ現れる。この結果、例えば、図示しない観測局は、第2伝送用光ファイバ82により伝送される光信号WDM1を解析(例えば、分波)することにより、光信号S1−S4の組合せを検出でき、図4に示した光信号S1−S4と風向との関係に基づいて風向を算出できる。   In the example in the figure (wind direction D = northeast (NE)), when the wind direction rotating disk 44 shown in FIG. 3 described above rotates based on the relationship between the optical signal and the wind direction shown in FIG. The signal S3 (wavelength λ3) is blocked by the wind direction rotating disk 44. Therefore, the optical wavelength multiplexer 86 shown in FIG. 5 multiplexes the optical signals S1, S2, and S4 having the wavelengths λ1, λ2, and λ4 by the wavelength division multiplexing method, and the multiplexed optical signal WDM1 is the second transmission light. Transmit to fiber 82. That is, the optical signal WDM1 transmitted by the second transmission optical fiber 82 does not have the optical signal S3 having the wavelength λ3. Therefore, the optical signal WDM1 has light intensity peaks at wavelengths λ1, λ2, and λ4. As a result, for example, an observation station (not shown) can detect the combination of the optical signals S1 to S4 by analyzing (for example, demultiplexing) the optical signal WDM1 transmitted by the second transmission optical fiber 82. FIG. The wind direction can be calculated based on the relationship between the optical signals S1-S4 and the wind direction shown in FIG.

以上、第2の実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、風向風速計10Aは、風向風速計10Aの外部(例えば、遠方の観測局)に設置された発光素子EOおよび受光素子OEとの通信を波長分割多重方式で多重化された光信号WDM1の送受信で実現できる。この結果、風向風速計10Aと外部(例えば、観測局)間の配線を1芯の光ファイバ60、62、80、82のみにできるため、配線(光ファイバ60、62、80、82)の設置を簡易にできる。   As mentioned above, also in 2nd Embodiment, the effect similar to 1st Embodiment mentioned above can be acquired. Further, the anemometer 10A is an optical signal WDM1 in which communication with the light emitting element EO and the light receiving element OE installed outside the anemometer 10A (for example, a remote observation station) is multiplexed by the wavelength division multiplexing method. It can be realized by sending and receiving. As a result, since the wiring between the anemometer 10A and the outside (for example, the observation station) can be made only by the single optical fibers 60, 62, 80, 82, the wiring (optical fibers 60, 62, 80, 82) is installed. Can be simplified.

図7は、本発明の第3の実施形態の断面図を示している。第2の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速計10Bは、第2の実施形態の風向風速計10Aの光波長分波器84および光波長合波器86の代わりに、光波長分波器84Aおよび光波長合波器86Aが設けられている。その他の構成は、第2の実施形態と同じである。また、この実施形態の風向風速計10Bは、風向および風速の検出に使用する光信号S1−S5を多重化する点が第2の実施形態と異なる。   FIG. 7 shows a cross-sectional view of a third embodiment of the present invention. The same elements as those described in the second embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. An anemometer 10B of this embodiment is an optical wavelength demultiplexer 84A and an optical wavelength multiplexer in place of the optical wavelength demultiplexer 84 and the optical wavelength multiplexer 86 of the anemometer 10A of the second embodiment. 86A is provided. Other configurations are the same as those of the second embodiment. The wind direction anemometer 10B of this embodiment is different from the second embodiment in that the optical signals S1-S5 used for detecting the wind direction and the wind speed are multiplexed.

第1伝送用光ファイバ80は、風向風速計10Bの外部(例えば、遠方の観測局)に設置された光波長合波器COM2により、多重化された光信号WDM2を風向風速計10Bまで伝送する。例えば、図示しない観測局に設置された光波長合波器COM2は、風向の検出に使用する光信号S1−S4(波長λ1−λ4)および風速の検出に使用する光信号S5(波長λ5)を波長分割多重方式で多重化し、多重化した光信号WDM2(波長λ1−λ5)を第1伝送用光ファイバ80に伝送する。   The first transmission optical fiber 80 transmits the multiplexed optical signal WDM2 to the wind direction anemometer 10B by the optical wavelength multiplexer COM2 installed outside the wind direction anemometer 10B (for example, a distant observation station). . For example, an optical wavelength multiplexer COM2 installed in an observation station (not shown) receives an optical signal S1-S4 (wavelength λ1-λ4) used for detecting the wind direction and an optical signal S5 (wavelength λ5) used for detecting the wind speed. The multiplexed optical signal WDM2 (wavelengths λ1-λ5) is transmitted to the first transmission optical fiber 80 by wavelength division multiplexing.

第2伝送用光ファイバ82は、風向風速計10B内の光波長合波器86Aにより多重化された光信号WDM2(波長λ1−λ5)を、風向風速計10Bの外部(例えば、遠方の観測局)に設置された光波長分波器DIV2に伝送する。例えば、図示しない観測局に設置された光波長分波器DIV2は、第2伝送用光ファイバ82から受けた多重化された光信号WDM2(波長λ1−λ5)を波長毎に分波し、分波した光信号S1−S5を受光素子OEに伝送する。   The second transmission optical fiber 82 transmits the optical signal WDM2 (wavelengths λ1 to λ5) multiplexed by the optical wavelength multiplexer 86A in the anemometer 10B to the outside of the anemometer 10B (for example, a remote observation station). ) Is transmitted to the optical wavelength demultiplexer DIV2 installed in (1). For example, the optical wavelength demultiplexer DIV2 installed in the observation station (not shown) demultiplexes the multiplexed optical signal WDM2 (wavelengths λ1-λ5) received from the second transmission optical fiber 82 for each wavelength, and demultiplexes them. The waved optical signals S1-S5 are transmitted to the light receiving element OE.

光波長分波器84Aは、第1伝送用光ファイバ80と第1発光用光ファイバ60および第2発光用光ファイバ64との間に設けられ、第1伝送用光ファイバ80が受けた多重化された光信号WDM2を波長毎(λ1−λ5)に分波する。そして、光波長分波器84Aは、分波した光信号S5およびS1−S4を第1発光用光ファイバ60および第2発光用光ファイバ64にそれぞれ伝送する。これにより、光信号S5は、第2の実施形態と同様に、風速用回転円板52に形成された風速用穴54を介して、第1発光用光ファイバ60から第1受光用光ファイバ62に伝送される。また、光信号S1−S4は、第2の実施形態と同様に、風向用回転円板44に形成された風向用穴46を介して、第2発光用光ファイバ64から第2受光用光ファイバ66にそれぞれ伝送される。なお、図の例では、風速用回転円板52の下側(基台20の底面側)に第1受光用光ファイバ62を配置しているが、第2の実施形態と同様に、風速用回転円板52の上側に第1受光用光ファイバ62を配置してもよい。   The optical wavelength demultiplexer 84A is provided between the first transmission optical fiber 80 and the first light-emitting optical fiber 60 and the second light-emitting optical fiber 64, and is multiplexed by the first transmission optical fiber 80. The optical signal WDM2 is demultiplexed for each wavelength (λ1-λ5). Then, the optical wavelength demultiplexer 84A transmits the demultiplexed optical signals S5 and S1-S4 to the first light emitting optical fiber 60 and the second light emitting optical fiber 64, respectively. Thereby, the optical signal S5 is transmitted from the first light emitting optical fiber 60 to the first light receiving optical fiber 62 through the wind speed hole 54 formed in the wind speed rotating disk 52, as in the second embodiment. Is transmitted. Similarly to the second embodiment, the optical signals S1 to S4 are transmitted from the second light emitting optical fiber 64 to the second light receiving optical fiber through the wind direction hole 46 formed in the wind direction rotating disk 44. 66, respectively. In the example shown in the drawing, the first light receiving optical fiber 62 is disposed on the lower side of the wind speed rotating disk 52 (the bottom surface side of the base 20). However, as in the second embodiment, The first light receiving optical fiber 62 may be disposed above the rotating disk 52.

光波長合波器86Aは、第1受光用光ファイバ62および第2受光用光ファイバ66と第2伝送用光ファイバ82との間に設けられ、第2受光用光ファイバ66が受けた光信号S1−S4(波長λ1−λ4)および第1受光用光ファイバ62が受けた光信号S5(波長λ5)を波長分割多重方式で多重化する。そして、光波長合波器86Aは、多重化した光信号WDM2(波長λ1−λ5)を第2伝送用光ファイバ82に伝送する。これにより、例えば、図示しない観測局は、第2伝送用光ファイバ82を介して伝送された光信号WDM2(波長λ1−λ5)を、光波長分波器DIV2を用いて波長毎に分波する。そして、観測局は、分波した光信号S1−S4およびS5に基づいて、風向および風速をそれぞれ算出できる。   The optical wavelength multiplexer 86A is provided between the first light receiving optical fiber 62, the second light receiving optical fiber 66, and the second transmission optical fiber 82, and the optical signal received by the second light receiving optical fiber 66. S1-S4 (wavelengths λ1-λ4) and the optical signal S5 (wavelength λ5) received by the first light receiving optical fiber 62 are multiplexed by the wavelength division multiplexing method. Then, the optical wavelength multiplexer 86A transmits the multiplexed optical signal WDM2 (wavelengths λ1-λ5) to the second transmission optical fiber 82. Thereby, for example, an observation station (not shown) demultiplexes the optical signal WDM2 (wavelengths λ1 to λ5) transmitted through the second transmission optical fiber 82 for each wavelength using the optical wavelength demultiplexer DIV2. . The observation station can calculate the wind direction and the wind speed based on the demultiplexed optical signals S1-S4 and S5, respectively.

以上、第3の実施形態においても、上述した第2の実施形態と同様の効果を得ることができる。さらに、風向風速計10Bは、風向および風速の検出に使用する光信号S1−S5を波長分割多重方式で多重化された光信号WDM2で送受信できる。この結果、風向風速計10Bと外部(例えば、観測局)間の配線を1芯の光ファイバ80、82のみにできるため、配線(光ファイバ80、82)の設置を簡易にできる。   As described above, also in the third embodiment, the same effect as in the second embodiment described above can be obtained. Further, the wind direction anemometer 10B can transmit and receive the optical signal S1-S5 used for detecting the wind direction and the wind speed by the optical signal WDM2 multiplexed by the wavelength division multiplexing method. As a result, since the wiring between the anemometer 10B and the outside (for example, the observation station) can be made only by the single-core optical fibers 80 and 82, the installation of the wiring (optical fibers 80 and 82) can be simplified.

図8は、本発明の第4の実施形態の断面図を示している。第3の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速計10Cは、第3の実施形態の風向風速計10Bの風向用回転円板44、第2発光用光ファイバ64、第2受光用光ファイバ66、光波長分波器84Aおよび光波長合波器86Aの代わりに、風向用回転円板44A、第2発光用光ファイバ64A、第2受光用光ファイバ66A、光波長分波器84Bおよび光波長合波器86Bが設けられている。また、風向用回転円板44Aは、複数の風向用穴46とは別に、同心円上に所定の角度を置いて形成された複数の風速補正用穴47を有している。その他の構成は、第3の実施形態と同じである。また、この実施形態の風向風速計10Cは、垂直回転部材42の回転速度を検出する点が第3の実施形態と異なる。   FIG. 8 shows a cross-sectional view of a fourth embodiment of the present invention. The same elements as those described in the third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The wind direction anemometer 10C of this embodiment includes a wind direction rotating disk 44, a second light emitting optical fiber 64, a second light receiving optical fiber 66, and an optical wavelength demultiplexer 84A of the wind direction anemometer 10B of the third embodiment. Instead of the optical wavelength multiplexer 86A, a wind direction rotating disk 44A, a second light emitting optical fiber 64A, a second light receiving optical fiber 66A, an optical wavelength demultiplexer 84B, and an optical wavelength multiplexer 86B are provided. ing. In addition, the wind direction rotating disk 44A has a plurality of wind speed correcting holes 47 formed at a predetermined angle on a concentric circle, in addition to the plurality of wind direction holes 46. Other configurations are the same as those of the third embodiment. Further, the anemometer 10C of this embodiment is different from the third embodiment in that the rotational speed of the vertical rotating member 42 is detected.

風速用回転円板52は、プロペラ30の回転に加えて、垂直回転部材42の回転に伴い回転する。このため、風速用回転円板52の回転速度に基づいて検出された風速は、誤差を含んでいる場合がある。したがって、精度の高い風速値を算出する場合、風向風速計10Cは、垂直回転部材42の回転速度を検出する必要がある。
第2発光用光ファイバ64Aは、光信号S1−S4およびS6(波長λ1−λ4およびλ6)を、風向用回転円板44Aに向けて発する。ここで、光信号S6(波長λ6)は、風向体40の回転に伴い回転する垂直回転部材42の回転速度の検出に使用される。また、第2受光用光ファイバ66Aは、第2発光用光ファイバ64Aから光信号S1−S4およびS6(波長λ1−λ4およびλ6)を、風向用回転円板44Aの風向用穴46および風速補正用穴47を介してそれぞれ受信する。
The wind speed rotating disk 52 rotates in accordance with the rotation of the vertical rotating member 42 in addition to the rotation of the propeller 30. For this reason, the wind speed detected based on the rotational speed of the wind speed rotating disk 52 may include an error. Therefore, when calculating a highly accurate wind speed value, the anemometer 10C needs to detect the rotational speed of the vertical rotating member 42.
The second light-emitting optical fiber 64A emits optical signals S1-S4 and S6 (wavelengths λ1-λ4 and λ6) toward the wind direction rotating disk 44A. Here, the optical signal S <b> 6 (wavelength λ <b> 6) is used to detect the rotation speed of the vertical rotation member 42 that rotates as the wind direction body 40 rotates. Further, the second light receiving optical fiber 66A receives the optical signals S1-S4 and S6 (wavelengths λ1-λ4 and λ6) from the second light emitting optical fiber 64A, the wind direction hole 46 of the wind direction rotating disk 44A and the wind speed correction. Each is received through the hole 47.

第1伝送用光ファイバ80は、風向風速計10Cの外部(例えば、遠方の観測局)に設置された光波長合波器COM3により、多重化された光信号WDM3(波長λ1−λ6)を風向風速計10Cまで伝送する。第2伝送用光ファイバ82は、風向風速計10C内の光波長合波器86Bにより多重化された光信号WDM3(波長λ1−λ6)を、風向風速計10Cの外部(例えば、遠方の観測局)に設置された光波長分波器DIV3に伝送する。   The first transmission optical fiber 80 transmits the optical signal WDM3 (wavelength λ1-λ6) multiplexed by the optical wavelength multiplexer COM3 installed outside the anemometer 10C (for example, a distant observation station) in the wind direction. It transmits to the anemometer 10C. The second transmission optical fiber 82 uses the optical signal WDM3 (wavelengths λ1 to λ6) multiplexed by the optical wavelength multiplexer 86B in the anemometer 10C outside the anemometer 10C (for example, a remote observation station). ) Is transmitted to the optical wavelength demultiplexer DIV3.

光波長分波器84Bは、第1伝送用光ファイバ80が受けた多重化された光信号WDM3を波長毎(λ1−λ6)に分波する。そして、光波長分波器84Bは、分波した光信号S5を第1発光用光ファイバ60に伝送し、分波した光信号S1−S4、S6を第2発光用光ファイバ64Aにそれぞれ伝送する。
光波長合波器86Bは、第2受光用光ファイバ66Aが受けた光信号S1−S4、S6(波長λ1−λ4、λ6)および第1受光用光ファイバ62が受けた光信号S5(波長λ5)を波長分割多重方式で多重化する。そして、光波長合波器86Bは、多重化した光信号WDM2(波長λ1−λ5)を第2伝送用光ファイバ82に伝送する。
The optical wavelength demultiplexer 84B demultiplexes the multiplexed optical signal WDM3 received by the first transmission optical fiber 80 for each wavelength (λ1-λ6). Then, the optical wavelength demultiplexer 84B transmits the demultiplexed optical signal S5 to the first light emitting optical fiber 60, and transmits the demultiplexed optical signals S1-S4 and S6 to the second light emitting optical fiber 64A. .
The optical wavelength multiplexer 86B includes optical signals S1-S4, S6 (wavelengths λ1-λ4, λ6) received by the second light receiving optical fiber 66A and an optical signal S5 (wavelength λ5) received by the first light receiving optical fiber 62. ) Is multiplexed by wavelength division multiplexing. Then, the optical wavelength multiplexer 86B transmits the multiplexed optical signal WDM2 (wavelengths λ1-λ5) to the second transmission optical fiber 82.

これにより、風向風速計10Cは、風向用回転円板44Aの回転に伴う風速補正用穴47の回転により、光信号S6を透過および遮断し、対応する第2受光用光ファイバ66Aが受ける光信号S6のパターンあるいはレベルを変化させる。したがって、受光素子OEが受信する光信号S6のパターンあるいはレベルは、風向用回転円板44Aの回転速度、すなわち、垂直回転部材42の回転速度により変化する。例えば、受光素子OEが設置された観測局では、この光信号S6のパターンあるいはレベルから垂直回転部材42の回転速度を算出できる。この結果、観測局は、風向体40の回転(垂直回転部材42の回転)により生じた誤差を含んだ風速値を、算出した垂直回転部材42の回転速度に基づいて補正できる。   Thus, the wind direction anemometer 10C transmits and blocks the optical signal S6 by the rotation of the wind speed correction hole 47 accompanying the rotation of the wind direction rotating disk 44A, and the optical signal received by the corresponding second light receiving optical fiber 66A. The pattern or level of S6 is changed. Accordingly, the pattern or level of the optical signal S6 received by the light receiving element OE varies depending on the rotational speed of the wind direction rotating disk 44A, that is, the rotational speed of the vertical rotating member 42. For example, the observation station in which the light receiving element OE is installed can calculate the rotation speed of the vertical rotation member 42 from the pattern or level of the optical signal S6. As a result, the observation station can correct the wind speed value including an error caused by the rotation of the wind direction body 40 (rotation of the vertical rotation member 42) based on the calculated rotation speed of the vertical rotation member 42.

図9は、図8に示した風向風速計10Cの風向用回転円板44Aの外形の一例を示している。第1の実施形態(図3)で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。図9は、図8に示した基台20の底面(風向体40と反対側の面)から見た風向用回転円板44Aを示している。
風向用回転円板44Aは、複数の風向用穴46(図の網掛け部分)とは別に、同心円上に所定の角度(例えば、10度)を置いて形成された複数の風速補正用穴47を有している。図中の例では、風速補正用穴47の間隔(角度)を、上述した図2に示した風速用穴54の間隔(角度)より小さくしているため、垂直回転部材42の回転速度を、風速の検出精度に比べて高い精度で検出できる。なお、風速補正用穴47の間隔(角度)は、風速用穴54の間隔(角度)と同じでもよいし、大きくてもよい。
FIG. 9 shows an example of the outer shape of the wind direction rotating disk 44A of the wind direction anemometer 10C shown in FIG. The same elements as those described in the first embodiment (FIG. 3) are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG. 9 shows a wind direction rotating disk 44A viewed from the bottom surface (surface opposite to the wind direction body 40) of the base 20 shown in FIG.
The wind direction rotating disk 44A has a plurality of wind speed correcting holes 47 formed at a predetermined angle (for example, 10 degrees) on a concentric circle separately from the plurality of wind direction holes 46 (shaded portions in the figure). have. In the example in the figure, the interval (angle) between the wind speed correction holes 47 is smaller than the interval (angle) between the wind speed holes 54 shown in FIG. It can be detected with higher accuracy than the detection accuracy of wind speed. The interval (angle) between the wind speed correction holes 47 may be the same as or larger than the interval (angle) between the wind speed holes 54.

上述した図8に示した第2発光用光ファイバ64Aおよび第2受光用光ファイバ66Aは、風向用回転円板44Aの回転に伴い回転する風速補正用穴47を介して光信号S6の送受信を実施する。これにより、垂直回転部材42の回転速度は、第1の実施形態で説明した風速値の算出方法と同様の方法で算出される。
以上、第4の実施形態においても、上述した第3の実施形態と同様の効果を得ることができる。さらに、風向風速計10Cは、垂直回転部材42の回転速度を検出できる。この結果、例えば、風向風速計10Cに接続された観測局は、風向体40の回転(垂直回転部材42の回転)により生じた誤差を含んだ風速値を、算出した垂直回転部材42の回転速度に基づいて補正でき、精度の高い風速値を算出できる。
The second light-emitting optical fiber 64A and the second light-receiving optical fiber 66A shown in FIG. 8 described above transmit and receive the optical signal S6 through the wind speed correcting hole 47 that rotates as the wind direction rotating disk 44A rotates. carry out. Thereby, the rotational speed of the vertical rotation member 42 is calculated by the same method as the wind speed value calculation method described in the first embodiment.
As described above, also in the fourth embodiment, the same effect as that of the above-described third embodiment can be obtained. Furthermore, the anemometer 10C can detect the rotation speed of the vertical rotation member 42. As a result, for example, the observation station connected to the wind direction anemometer 10 </ b> C calculates the rotation speed of the vertical rotation member 42 by calculating the wind speed value including an error caused by the rotation of the wind direction body 40 (rotation of the vertical rotation member 42). The wind speed value can be calculated with high accuracy.

図10は、本発明の第5の実施形態を示している。図10は、風向風速計10を断面図で示し、観測局100をブロック図で示している。第1の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速監視装置1は、観測局100および第1の実施形態の風向風速計10を有している。   FIG. 10 shows a fifth embodiment of the present invention. FIG. 10 shows the anemometer 10 in a sectional view and the observation station 100 in a block diagram. The same elements as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The wind direction and wind speed monitoring device 1 of this embodiment includes an observation station 100 and the wind direction anemometer 10 of the first embodiment.

観測局100は、発光部102、106、受光部104、108、風速演算部110、風向演算部112および電源120を有している。発光部102(風速用発光部)は、発光素子EO(第1発光素子)から出力される光信号S5を第1発光用光ファイバ60に伝送する。受光部104(風速用受光部)は、第1受光用光ファイバ62を介して伝送される光信号S5を受光素子OE(第1受光素子)で受ける。そして、風速演算部110は、受光部104で受けた光信号S5に基づいて、第1の実施形態で説明した風速値の算出方法と同様の方法で、風速値を算出する。   The observation station 100 includes light emitting units 102 and 106, light receiving units 104 and 108, a wind speed calculating unit 110, a wind direction calculating unit 112, and a power source 120. The light emitting unit 102 (wind speed light emitting unit) transmits the optical signal S5 output from the light emitting element EO (first light emitting element) to the first light emitting optical fiber 60. The light receiving unit 104 (wind speed light receiving unit) receives an optical signal S5 transmitted through the first light receiving optical fiber 62 by the light receiving element OE (first light receiving element). And the wind speed calculating part 110 calculates a wind speed value by the method similar to the calculation method of the wind speed value demonstrated in 1st Embodiment based on the optical signal S5 received in the light-receiving part 104. FIG.

発光部106(風向用発光部)は、複数の発光素子EO(第2発光素子)から出力される光信号S1−S4を第2発光用光ファイバ64に伝送する。受光部108(風向用受光部)は、第2受光用光ファイバ66を介して伝送される光信号S1−S4を複数の受光素子OE(第2受光素子)でそれぞれ受ける。そして、風向演算部112は、受光部108で受けた光信号S1−S4の組合せに基づいて、第1の実施形態で説明した風向の算出方法と同様の方法で、風向を算出する。電源部120は、発光部102、106、受光部104、108、風速演算部110、風向演算部112に電源電圧を供給する。   The light emitting unit 106 (wind direction light emitting unit) transmits the optical signals S1 to S4 output from the plurality of light emitting elements EO (second light emitting elements) to the second light emitting optical fiber 64. The light receiving unit 108 (wind direction light receiving unit) receives the optical signals S1 to S4 transmitted through the second light receiving optical fiber 66 by a plurality of light receiving elements OE (second light receiving elements). And the wind direction calculating part 112 calculates a wind direction by the method similar to the calculation method of the wind direction demonstrated in 1st Embodiment based on the combination of optical signal S1-S4 received by the light-receiving part 108. FIG. The power supply unit 120 supplies power supply voltage to the light emitting units 102 and 106, the light receiving units 104 and 108, the wind speed calculation unit 110, and the wind direction calculation unit 112.

以上、第4の実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。風向風速計10と観測局100との通信を光ファイバ60−64を用いた光信号S1−S5の送受信で実現できるため、通信時の雷やノイズの影響を低減させることができる。また、風向風速計10は、内部に発光素子EOおよび受光素子OEを有していないため、電源を必要としない。換言すれば、電源電圧降下による光素子(発光素子EO、受光素子OE)の性能の低下を防止するために、風向風速計10と観測局100との距離を近くする必要がない。このため、風向風速計10と観測局100との距離が遠い場合でも風向風速計10の検出精度を確保できる。さらに、経年変化により劣化した光素子(発光素子EOおよび受光素子OE)の取り替え作業を、観測局100で一括してできるため、メンテナンス性が良い。   As described above, also in the fourth embodiment, the same effect as that of the above-described first embodiment can be obtained. Since communication between the anemometer 10 and the observation station 100 can be realized by transmitting and receiving optical signals S1-S5 using the optical fiber 60-64, the influence of lightning and noise during communication can be reduced. Moreover, since the anemometer 10 does not have the light emitting element EO and the light receiving element OE inside, it does not require a power supply. In other words, it is not necessary to reduce the distance between the anemometer 10 and the observation station 100 in order to prevent the performance of the optical elements (light emitting element EO, light receiving element OE) from being lowered due to a power supply voltage drop. For this reason, even when the distance between the anemometer 10 and the observation station 100 is long, the detection accuracy of the anemometer 10 can be ensured. Furthermore, since the observation station 100 can collectively replace optical elements (light emitting element EO and light receiving element OE) that have deteriorated due to secular change, the maintainability is good.

図11は、本発明の第6の実施形態を示している。図11は、風向風速計10Aを断面図で示し、観測局100Aをブロック図で示している。第2および第5の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速監視装置1Aは、観測局100Aおよび第2の実施形態の風向風速計10Aを有している。観測局100Aは、第5の実施形態の観測局100に、光波長合波器COMおよび光波長分波器DIVが追加されて構成されている。観測局100Aのその他の構成は、第5の実施形態の観測局100と同じである。   FIG. 11 shows a sixth embodiment of the present invention. FIG. 11 shows the anemometer 10A in a cross-sectional view and the observation station 100A in a block diagram. The same elements as those described in the second and fifth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. The wind direction and wind speed monitoring device 1A of this embodiment includes an observation station 100A and a wind direction anemometer 10A of the second embodiment. The observation station 100A is configured by adding an optical wavelength multiplexer COM and an optical wavelength demultiplexer DIV to the observation station 100 of the fifth embodiment. The other configuration of the observation station 100A is the same as that of the observation station 100 of the fifth embodiment.

光波長合波器COMは、発光部106内の発光素子EOが発した異なる波長(λ1−λ4)の光信号S1−S4を波長分割多重方式で多重化し、多重化した光信号WDM1(波長λ1−λ4)を第1伝送用光ファイバ80に伝送する。また、光波長分波器DIVは、第2伝送用光ファイバ82から受けた多重化された光信号WDM1(波長λ1−λ4)を波長毎に分波し、分波した光信号S1−S4を受光部108内の受光素子OEにそれぞれ伝送する。   The optical wavelength multiplexer COM multiplexes the optical signals S1 to S4 having different wavelengths (λ1 to λ4) emitted from the light emitting elements EO in the light emitting unit 106 by the wavelength division multiplexing method, and multiplexes the optical signals WDM1 (wavelength λ1 -Λ4) is transmitted to the first transmission optical fiber 80. The optical wavelength demultiplexer DIV demultiplexes the multiplexed optical signal WDM1 (wavelengths λ1-λ4) received from the second transmission optical fiber 82 for each wavelength, and demultiplexes the optical signals S1-S4. The light is transmitted to the light receiving element OE in the light receiving unit 108.

以上、第6の実施形態においても、上述した第2および第5の実施形態と同様の効果を得ることができる。
図12は、本発明の第7の実施形態を示している。図12は、風向風速計10Bを断面図で示し、観測局100Bをブロック図で示している。第3および第6の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速監視装置1Bは、観測局100Bおよび第3の実施形態の風向風速計10Bを有している。観測局100Bは、第6の実施形態の観測局100Aの光波長合波器COMおよび光波長分波器DIVの代わりに、光波長合波器COM2および光波長分波器DIV2が設けられている。観測局100Bのその他の構成は、第6の実施形態の観測局100Aと同じである。
As described above, also in the sixth embodiment, the same effect as in the second and fifth embodiments described above can be obtained.
FIG. 12 shows a seventh embodiment of the present invention. FIG. 12 shows the anemometer 10B in a cross-sectional view and the observation station 100B in a block diagram. The same elements as those described in the third and sixth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. The wind direction and wind speed monitoring device 1B of this embodiment includes an observation station 100B and a wind direction anemometer 10B of the third embodiment. The observation station 100B is provided with an optical wavelength multiplexer COM2 and an optical wavelength demultiplexer DIV2 instead of the optical wavelength multiplexer COM and the optical wavelength demultiplexer DIV of the observation station 100A of the sixth embodiment. . The other configuration of the observation station 100B is the same as that of the observation station 100A of the sixth embodiment.

光波長合波器COM2は、発光部106内の発光素子EOが発した光信号S1−S4(波長λ1−λ4)および発光部102内の発光素子EOが発した光信号S5(波長λ5)を波長分割多重方式で多重化し、多重化した光信号WDM2(波長λ1−λ5)を第1伝送用光ファイバ80に伝送する。また、光波長分波器DIV2は、第2伝送用光ファイバ82から受けた多重化された光信号WDM2(波長λ1−λ5)を波長毎に分波し、分波した光信号S1−S4を受光部108内の受光素子OEにそれぞれ伝送し、分波した光信号S5を受光部104内の受光素子OEに伝送する。   The optical wavelength multiplexer COM2 generates an optical signal S1-S4 (wavelength λ1-λ4) emitted from the light emitting element EO in the light emitting unit 106 and an optical signal S5 (wavelength λ5) emitted from the light emitting element EO in the light emitting unit 102. The multiplexed optical signal WDM2 (wavelengths λ1-λ5) is transmitted to the first transmission optical fiber 80 by wavelength division multiplexing. The optical wavelength demultiplexer DIV2 demultiplexes the multiplexed optical signal WDM2 (wavelengths λ1-λ5) received from the second transmission optical fiber 82 for each wavelength, and demultiplexes the optical signals S1-S4. The light signal S5 transmitted to the light receiving element OE in the light receiving unit 108 is transmitted to the light receiving element OE in the light receiving unit 104.

以上、第7の実施形態においても、上述した第3および第6の実施形態と同様の効果を得ることができる。
図13は、本発明の第8の実施形態を示している。図13は、風向風速計10Cを断面図で示し、観測局100Cをブロック図で示している。第4および第7の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の風向風速監視装置1Cは、観測局100Cおよび第4の実施形態の風向風速計10Cを有している。観測局100Cは、第7の実施形態の観測局100Bの発光部106、受光部108、光波長合波器COM2および光波長分波器DIV2の代わりに、発光部106A、受光部108A、光波長合波器COM3および光波長分波器DIV3が設けられ、軸速度演算部114および風速補正演算部116が追加されて構成されている。観測局100Cのその他の構成は、第7の実施形態の観測局100Bと同じである。
As mentioned above, also in 7th Embodiment, the effect similar to 3rd and 6th Embodiment mentioned above can be acquired.
FIG. 13 shows an eighth embodiment of the present invention. FIG. 13 shows the anemometer 10C in a sectional view and the observation station 100C in a block diagram. The same elements as those described in the fourth and seventh embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. The wind direction and wind speed monitoring device 1C of this embodiment includes an observation station 100C and an anemometer 10C of the fourth embodiment. The observation station 100C includes a light emitting unit 106A, a light receiving unit 108A, an optical wavelength instead of the light emitting unit 106, the light receiving unit 108, the optical wavelength multiplexer COM2 and the optical wavelength demultiplexer DIV2 of the observation station 100B of the seventh embodiment. A multiplexer COM3 and an optical wavelength demultiplexer DIV3 are provided, and an axial speed calculator 114 and a wind speed correction calculator 116 are added. The other configuration of the observation station 100C is the same as that of the observation station 100B of the seventh embodiment.

発光部106Aは、複数の発光素子EO(第2発光素子)から出力される光信号S1−S4およびS6を光波長合波器COM3に伝送する。受光部108Aは、光波長分波器DIV3により分波された光信号S1−S6のうち光信号S1−S4およびS6を受光素子OEでそれぞれ受ける。そして、軸速度演算部114は、受光部108Aで受けた光信号S6に基づいて、垂直回転部材42の回転速度を算出する。また、風速補正演算部116は、風速演算部110により算出され、風向体40の回転(垂直回転部材42の回転)により生じた誤差を含んだ風速値を、軸速度演算部114により算出された垂直回転部材42の回転速度に基づいて補正する。これにより、風向風速監視装置1Cは、精度の高い風速値を算出できる。   The light emitting unit 106A transmits the optical signals S1-S4 and S6 output from the plurality of light emitting elements EO (second light emitting elements) to the optical wavelength multiplexer COM3. The light receiving unit 108A receives the optical signals S1-S4 and S6 among the optical signals S1-S6 demultiplexed by the optical wavelength demultiplexer DIV3 by the light receiving element OE. Then, the shaft speed calculation unit 114 calculates the rotation speed of the vertical rotation member 42 based on the optical signal S6 received by the light receiving unit 108A. Further, the wind speed correction calculation unit 116 is calculated by the wind speed calculation unit 110, and the wind speed value including an error caused by the rotation of the wind direction body 40 (rotation of the vertical rotation member 42) is calculated by the shaft speed calculation unit 114. Correction is performed based on the rotation speed of the vertical rotation member. Thereby, 1 C of wind direction wind speed monitoring apparatuses can calculate a highly accurate wind speed value.

光波長合波器COM3は、発光部106A内の発光素子EOが発した光信号S1−S4、S6(波長λ1−λ4、λ6)および発光部102内の発光素子EOが発した光信号S5(波長λ5)を波長分割多重方式で多重化し、多重化した光信号WDM3(波長λ1−λ6)を第1伝送用光ファイバ80に伝送する。また、光波長分波器DIV3は、第2伝送用光ファイバ82から受けた多重化された光信号WDM3(波長λ1−λ6)を波長毎に分波し、分波した光信号S1−S4、S6を受光部108A内の受光素子OEにそれぞれ伝送し、分波した光信号S5を受光部104内の受光素子OEに伝送する。   The optical wavelength multiplexer COM3 includes optical signals S1-S4, S6 (wavelengths λ1-λ4, λ6) emitted from the light emitting element EO in the light emitting unit 106A and an optical signal S5 (generated from the light emitting element EO in the light emitting unit 102). The wavelength λ 5) is multiplexed by the wavelength division multiplexing method, and the multiplexed optical signal WDM 3 (wavelengths λ 1 -λ 6) is transmitted to the first transmission optical fiber 80. The optical wavelength demultiplexer DIV3 demultiplexes the multiplexed optical signal WDM3 (wavelengths λ1-λ6) received from the second transmission optical fiber 82 for each wavelength, and demultiplexes the optical signals S1-S4, S6 is transmitted to the light receiving element OE in the light receiving unit 108A, and the demultiplexed optical signal S5 is transmitted to the light receiving element OE in the light receiving unit 104.

以上、第6の実施形態においても、上述した第4および第7の実施形態と同様の効果を得ることができる。
なお、上述した実施形態では、風速用回転円板52に形成される風速用穴54を図2で示した配置にする例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、図14に示すように、風速用回転円板52Aの縁に沿って風速用穴54A(切欠き)を形成してもよい。なお、風速用穴は、上述した図2に示したように丸形でもよいし、同心円に沿った円弧状のスリットでもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。
As described above, also in the sixth embodiment, the same effect as in the fourth and seventh embodiments described above can be obtained.
In the above-described embodiment, the example in which the wind speed holes 54 formed in the wind speed rotating disk 52 are arranged as shown in FIG. 2 has been described. The present invention is not limited to such an embodiment. For example, as shown in FIG. 14, a wind speed hole 54A (notch) may be formed along the edge of the wind speed rotating disk 52A. The wind speed hole may be round as shown in FIG. 2 described above, or may be an arc-shaped slit along a concentric circle. Also in this case, the same effect as the above-described embodiment can be obtained.

上述した実施形態では、第1傘歯車34と第2傘歯車52との歯数の比を限定していないが、歯数の比は、1:1でもよいし、N:1(Nは正の整数)あるいは1:N(Nは正の整数)でもよい。例えば、第1傘歯車34と第2傘歯車52との歯数の比をN:1(Nは正の整数)にした場合、風速用回転円板52の回転速度は、プロペラ30の回転速度のN倍になるため、風向体40の回転(垂直回転部材42の回転)により生じる誤差を無視できるレベルに小さくできる。この場合にも、上述した実施形態と同様の効果を得ることができる。   In the embodiment described above, the ratio of the number of teeth of the first bevel gear 34 and the second bevel gear 52 is not limited, but the ratio of the number of teeth may be 1: 1 or N: 1 (N is a positive value). Integer) or 1: N (N is a positive integer). For example, when the ratio of the number of teeth of the first bevel gear 34 and the second bevel gear 52 is N: 1 (N is a positive integer), the rotational speed of the wind speed rotating disk 52 is the rotational speed of the propeller 30. Therefore, an error caused by the rotation of the wind direction body 40 (rotation of the vertical rotation member 42) can be reduced to a negligible level. Also in this case, the same effect as the above-described embodiment can be obtained.

上述した実施形態では、1つの観測局100(100A−100C)に対して1つの風向風速計10(10A−10C)を設置する例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、1つの観測局100(100A−100C)に対して複数の風向風速計10(10A−10C)を設置してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。   In the embodiment described above, an example in which one anemometer 10 (10A-10C) is installed for one observation station 100 (100A-100C) has been described. The present invention is not limited to such an embodiment. For example, a plurality of anemometers 10 (10A-10C) may be installed for one observation station 100 (100A-100C). Also in this case, the same effect as the above-described embodiment can be obtained.

以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。   As mentioned above, although this invention was demonstrated in detail, said embodiment and its modification are only examples of this invention, and this invention is not limited to this. Obviously, modifications can be made without departing from the scope of the present invention.

本発明は、風の強さおよび風の向きを測定する風向風速計および風向風速監視装置に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a wind direction anemometer and a wind direction wind speed monitoring device that measure wind strength and wind direction.

本発明の第1の実施形態を示す断面図である。It is sectional drawing which shows the 1st Embodiment of this invention. 図1に示した風向風速計の風速用回転円板の一例を示す外形図である。FIG. 2 is an outline view showing an example of a wind speed rotating disk of the anemometer shown in FIG. 1. 図1に示した風向風速計の風向用回転円板の一例を示す外形図である。It is an external view which shows an example of the rotation direction disk for the wind direction anemometer shown in FIG. 図1および図3に示した風向用回転円板を用いたときに第2受光用光ファイバが受ける光信号と風向との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the optical signal which a 2nd optical fiber for light reception receives, and a wind direction when the rotating disk for wind directions shown in FIG. 1 and FIG. 3 is used. 本発明の第2の実施形態を示す断面図である。It is sectional drawing which shows the 2nd Embodiment of this invention. 図5に示した風向風速計で使用する多重化された光信号と風向との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the multiplexed optical signal and wind direction which are used with the wind direction anemometer shown in FIG. 本発明の第3の実施形態を示す断面図である。It is sectional drawing which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す断面図である。It is sectional drawing which shows the 4th Embodiment of this invention. 図8に示した風向風速計の風向用回転円板の一例を示す外形図である。It is an external view which shows an example of the rotation direction disk for the wind direction anemometer shown in FIG. 本発明の第5の実施形態を示す断面図およびブロック図である。It is sectional drawing and block diagram which show the 5th Embodiment of this invention. 本発明の第6の実施形態を示す断面図およびブロック図である。It is sectional drawing and block diagram which show the 6th Embodiment of this invention. 本発明の第7の実施形態を示す断面図およびブロック図である。It is sectional drawing and block diagram which show the 7th Embodiment of this invention. 本発明の第8の実施形態を示す断面図およびブロック図である。It is sectional drawing and block diagram which show the 8th Embodiment of this invention. 風速用回転円板の別の例を示す外形図である。It is an external view which shows another example of the rotating disc for wind speeds.

符号の説明Explanation of symbols

1、1A-1C‥風向風速監視装置;10、10A−10C‥風向風速計;20‥基台;30‥プロペラ;32‥回転軸;34、52‥傘歯車;40‥風向体;42‥垂直回転部材;44、44A‥風向用回転円板;46‥風向用穴;47‥風速補正用穴;50‥垂直回転軸;52、52A‥風速用回転円板;54‥風速用穴;60、62、64、66、64A、66A、80、82‥光ファイバ;70、72、74‥軸受け;84、84A、84B、DIV、DIV1−3‥光波長分波器;86、86A、86B、COM、COM1−3‥光波長合波器;100、100A−100C‥観測局;102、106、106A‥発光部;104、108、108A‥受光部;110‥風速演算部;112‥風向演算部;114‥軸速度演算部;116‥風速補正演算部;120‥電源;EO‥発光素子;OE‥受光素子;S1−S6‥光信号;WDM1−WDM3‥多重化された光信号;λ1−λ6‥光信号の波長
1, 1A-1C ... Wind direction and wind speed monitoring device; 10, 10A-10C ... Wind direction anemometer; 20 ... Base; 30 ... Propeller; 32 ... Rotating shaft; 34, 52 ... Bevel gear; Rotating member; 44, 44A ... Wind direction rotating disk; 46 ... Wind direction hole; 47 ... Wind speed correcting hole; 50 ... Vertical rotating shaft; 52, 52A ... Wind speed rotating disk; 54 ... Wind speed hole; 62, 64, 66, 64A, 66A, 80, 82 ... optical fiber; 70, 72, 74 ... bearings; 84, 84A, 84B, DIV, DIV1-3 ... optical wavelength demultiplexers; 86, 86A, 86B, COM COM1-3, optical wavelength multiplexer; 100, 100A-100C, observation station, 102, 106, 106A, light emitting unit, 104, 108, 108A, light receiving unit, 110, wind speed calculating unit, 112, wind direction calculating unit; 114... Axis speed calculation unit; 1 16. Wind speed correction calculation unit; 120, power supply, EO, light emitting element, OE, light receiving element, S1-S6, optical signal; WDM1-WDM3, multiplexed optical signal; λ1-λ6, wavelength of optical signal

Claims (8)

基台と、前記基台に支持され、受ける風の強さに応じて回転するプロペラが取り付けられ、風の向きに合わせて前記基台に対して回転する風向体とを有し、風速および風向を測定するために、前記プロペラの回転速度および前記風向体と前記基台との相対角度をそれぞれ検出する風向風速計において、
前記プロペラに接続され、前記プロペラとともに回転する回転軸と、
前記回転軸に設けられた第1傘歯車と、
前記風向体に設けられ、前記回転軸に対して垂直方向に延在し、前記基台に回転自在に支持される筒状の垂直回転部材と、
前記垂直回転部材に挿入され、前記垂直回転部材に回転自在に支持される垂直回転軸と、
前記垂直回転軸に設けられ、前記第1傘歯車に噛み合わせられた第2傘歯車と、
前記垂直回転軸の前記基台側に設けられ、前記垂直回転軸の中心から同心円上に形成された複数の風速用穴を有する風速用回転円板と、
前記風速用回転円板を挟み、前記風速用穴を介して互いに対向する位置に配置され、発光素子に接続させる第1発光用光ファイバおよび受光素子に接続させる第1受光用光ファイバと、
前記垂直回転部材における前記プロペラ側と反対側に設けられ、前記相対角度毎に異なる組合せを有し、放射方向に沿って形成された複数の風向用穴を有する風向用回転円板と、
前記風向用回転円板を挟み、前記風向用穴を介して互いに対向する位置に配置され、発光素子に接続させる複数の第2発光用光ファイバおよび受光素子に接続させる複数の第2受光用光ファイバとを備えていることを特徴とする風向風速計。
A base and a propeller that is supported by the base and rotates according to the strength of the wind received, and has a wind direction body that rotates relative to the base according to the direction of the wind, and the wind speed and direction In an anemometer that detects the rotational speed of the propeller and the relative angle between the wind direction body and the base, respectively,
A rotating shaft connected to the propeller and rotating together with the propeller;
A first bevel gear provided on the rotating shaft;
A cylindrical vertical rotation member provided on the wind direction body, extending in a direction perpendicular to the rotation axis, and rotatably supported by the base;
A vertical rotation axis inserted into the vertical rotation member and rotatably supported by the vertical rotation member;
A second bevel gear provided on the vertical rotation shaft and meshed with the first bevel gear;
A wind speed rotating disk provided on the base side of the vertical rotating shaft and having a plurality of wind speed holes formed concentrically from the center of the vertical rotating shaft;
A first light-emitting optical fiber connected to a light-emitting element and a first light-receiving optical fiber that are arranged at positions facing each other through the wind speed hole and sandwiching the wind-speed rotating disk;
A wind direction rotating disk provided on the side opposite to the propeller side of the vertical rotating member, having a combination different for each relative angle, and having a plurality of wind direction holes formed along a radial direction;
A plurality of second light-receiving optical fibers that are connected to the light-emitting elements and a plurality of second light-receiving lights that are connected to the light-emitting elements and are disposed at positions facing each other via the wind-direction holes with the wind direction rotating disk interposed therebetween. An anemometer characterized by comprising a fiber.
請求項1記載の風向風速計において、
波長分割多重方式により多重化された光信号を伝送する第1および第2伝送用光ファイバと、
前記第1伝送用光ファイバと前記第2発光用光ファイバとの間に設けられ、前記第1伝送用光ファイバが受けた多重化された光信号を波長毎に分波し、分波した光信号を前記第2発光用光ファイバにそれぞれ伝送する光波長分波器と、
前記第2受光用光ファイバと前記第2伝送用光ファイバとの間に設けられ、前記第2受光用光ファイバが受けた波長の異なる複数の光信号を多重化し、多重化した光信号を前記第2伝送用光ファイバに伝送する光波長合波器とを備えていることを特徴とする風向風速計。
In the anemometer of Claim 1,
First and second transmission optical fibers for transmitting optical signals multiplexed by wavelength division multiplexing;
Light that is provided between the first transmission optical fiber and the second light-emitting optical fiber, demultiplexes the multiplexed optical signal received by the first transmission optical fiber for each wavelength, and demultiplexes the light. An optical wavelength demultiplexer for transmitting a signal to each of the second light-emitting optical fibers;
Provided between the second light-receiving optical fiber and the second transmission optical fiber, a plurality of optical signals having different wavelengths received by the second light-receiving optical fiber are multiplexed, and the multiplexed optical signal is An anemometer comprising an optical wavelength multiplexer for transmitting to a second transmission optical fiber.
請求項2記載の風向風速計において、
前記光波長分波器は、前記第1伝送用光ファイバが受けた多重化された光信号を波長毎に分波し、分波した光信号を前記第1および第2発光用光ファイバにそれぞれ伝送し、
前記光波長合波器は、前記第1および第2受光用光ファイバが受けた波長の異なる複数の光信号を多重化し、多重化した光信号を前記第2伝送用光ファイバに伝送することを特徴とする風向風速計。
In the anemometer of Claim 2,
The optical wavelength demultiplexer demultiplexes the multiplexed optical signal received by the first transmission optical fiber for each wavelength, and the demultiplexed optical signal is applied to the first and second light emitting optical fibers, respectively. Transmit
The optical wavelength multiplexer multiplexes a plurality of optical signals having different wavelengths received by the first and second light receiving optical fibers, and transmits the multiplexed optical signals to the second transmission optical fiber. Characteristic anemometer.
請求項1乃至請求項3のいずれか1項に記載の風向風速計において、
前記風向用回転円板は、前記風向用穴とは別に、同心円上に所定の角度を置いて形成された複数の風速補正用穴を有し、
前記第2発光用光ファイバの1つは、前記風速補正用穴を介して、対応する前記第2受光用光ファイバに光信号を伝送することを特徴とする風向風速計。
In the anemometer of any one of Claims 1 to 3,
The wind direction rotating disc has a plurality of wind speed correcting holes formed at a predetermined angle on a concentric circle separately from the wind direction hole,
One of the second light emitting optical fibers transmits an optical signal to the corresponding second light receiving optical fiber through the wind speed correcting hole.
基台と、前記基台に支持され、受ける風の強さに応じて回転するプロペラが取り付けられ、風の向きに合わせて前記基台に対して回転する風向体とを有し、風速および風向を測定するために、前記プロペラの回転速度および前記風向体と前記基台との相対角度をそれぞれ検出する風向風速計と、前記風向風速計から受ける光信号に基づいて風速および風向を算出する観測局とを備えた風向風速監視装置であって、
前記風向風速計は、
前記プロペラに接続され、前記プロペラとともに回転する回転軸と、
前記回転軸に設けられた第1傘歯車と、
前記風向体に設けられ、前記回転軸に対して垂直方向に延在し、前記基台に回転自在に支持される筒状の垂直回転部材と、
前記垂直回転部材に挿入され、前記垂直回転部材に回転自在に支持される垂直回転軸と、
前記垂直回転軸に設けられ、前記第1傘歯車に噛み合わせられた第2傘歯車と、
前記垂直回転軸の前記基台側に設けられ、前記垂直回転軸の中心から同心円上に形成された複数の風速用穴を有する風速用回転円板と、
前記風速用回転円板を挟み、前記風速用穴を介して互いに対向する位置に配置され、第1発光素子から出力される光信号を伝送する第1発光用光ファイバおよび第1受光素子に受けさせる光信号を伝送する第1受光用光ファイバと、
前記垂直回転部材における前記プロペラ側と反対側に設けられ、前記相対角度毎に異なる組合せを有し、放射方向に沿って形成された複数の風向用穴を有する風向用回転円板と、
前記風向用回転円板を挟み、前記風向用穴を介して互いに対向する位置に配置され、第2発光素子から出力される光信号を伝送する複数の第2発光用光ファイバおよび第2受光素子に受けさせる光信号を伝送する複数の第2受光用光ファイバとを備え、
前記観測局は、
前記第1発光素子を有し、前記第1発光素子から出力される光信号を前記第1発光用光ファイバに伝送する風速用発光部と、
前記第1受光素子を有し、前記第1受光用光ファイバを介して伝送される光信号を前記第1受光素子で受ける風速用受光部と、
前記風速用受光部で受けた光信号に基づいて、風速値を算出する風速演算部と、
前記第2発光素子を有し、前記第2発光素子から出力される光信号を前記第2発光用光ファイバにそれぞれ伝送する風向用発光部と、
前記第2受光素子を有し、前記第2受光用光ファイバを介して伝送される光信号を前記第2受光素子で受ける風向用受光部と、
前記風向用受光部で受けた光信号に基づいて、風向を算出する風向演算部とを備えていることを特徴とする風向風速監視装置。
A base and a propeller that is supported by the base and rotates according to the strength of the wind received, and has a wind direction body that rotates relative to the base according to the direction of the wind, and the wind speed and direction An anemometer that detects the rotational speed of the propeller and the relative angle between the wind direction body and the base, respectively, and an observation that calculates the wind speed and direction based on an optical signal received from the anemometer A wind direction and wind speed monitoring device comprising a station,
The anemometer is
A rotating shaft connected to the propeller and rotating together with the propeller;
A first bevel gear provided on the rotating shaft;
A cylindrical vertical rotation member provided on the wind direction body, extending in a direction perpendicular to the rotation axis, and rotatably supported by the base;
A vertical rotation axis inserted into the vertical rotation member and rotatably supported by the vertical rotation member;
A second bevel gear provided on the vertical rotation shaft and meshed with the first bevel gear;
A wind speed rotating disk provided on the base side of the vertical rotating shaft and having a plurality of wind speed holes formed concentrically from the center of the vertical rotating shaft;
The first light-emitting optical fiber and the first light-receiving element, which are arranged at positions facing each other through the wind speed hole with the wind-speed rotating disk interposed therebetween, transmit an optical signal output from the first light-emitting element. A first light receiving optical fiber for transmitting an optical signal to be transmitted;
A wind direction rotating disk provided on the side opposite to the propeller side of the vertical rotating member, having a combination different for each relative angle, and having a plurality of wind direction holes formed along a radial direction;
A plurality of second light-emitting optical fibers and second light-receiving elements that are disposed at positions facing each other through the air-direction hole and sandwich the wind-direction rotating disk, and transmit optical signals output from the second light-emitting elements. A plurality of second light-receiving optical fibers that transmit optical signals to be received by
The observation station is
A light emitting unit for wind speed that has the first light emitting element and transmits an optical signal output from the first light emitting element to the first light emitting optical fiber;
A wind speed light receiving section that includes the first light receiving element and receives an optical signal transmitted through the first light receiving optical fiber by the first light receiving element;
A wind speed calculation unit that calculates a wind speed value based on an optical signal received by the light receiving unit for wind speed;
A light emitting unit for wind direction that has the second light emitting element and transmits an optical signal output from the second light emitting element to the second light emitting optical fiber;
A wind-direction light-receiving unit that has the second light-receiving element and receives an optical signal transmitted through the second light-receiving optical fiber by the second light-receiving element;
A wind direction and wind speed monitoring apparatus comprising: a wind direction calculation unit that calculates a wind direction based on an optical signal received by the light receiving unit for wind direction.
請求項5記載の風向風速監視装置において、
前記風向風速計は、
波長分割多重方式により多重化された光信号を伝送する第1および第2伝送用光ファイバと、
前記第1伝送用光ファイバと前記第2発光用光ファイバとの間に設けられ、前記第1伝送用光ファイバが受けた多重化された光信号を波長毎に分波し、分波した光信号を前記第2発光用光ファイバにそれぞれ伝送する第1光波長分波器と、
前記第2受光用光ファイバと前記第2伝送用光ファイバとの間に設けられ、前記第2受光用光ファイバが受けた波長の異なる複数の光信号を多重化し、多重化した光信号を前記第2伝送用光ファイバに伝送する第1光波長合波器とを備え、
前記観測局は、
前記風向用発光部と前記第1伝送用光ファイバとの間に設けられ、前記風向用発光部から出力される波長の異なる複数の光信号を多重化し、多重化した光信号を前記第1伝送用光ファイバに伝送する第2光波長合波器と、
前記第2伝送用光ファイバと前記風向用受光部との間に設けられ、前記第2伝送用光ファイバが受けた多重化された光信号を波長毎に分波し、分波した光信号を前記風向用受光部に伝送する第2光波長分波器とを備えていることを特徴とする風向風速監視装置。
In the wind direction wind speed monitoring device according to claim 5,
The anemometer is
First and second transmission optical fibers for transmitting optical signals multiplexed by wavelength division multiplexing;
Light that is provided between the first transmission optical fiber and the second light-emitting optical fiber, demultiplexes the multiplexed optical signal received by the first transmission optical fiber for each wavelength, and demultiplexes the light. A first optical wavelength demultiplexer that respectively transmits a signal to the second light emitting optical fiber;
Provided between the second light-receiving optical fiber and the second transmission optical fiber, a plurality of optical signals having different wavelengths received by the second light-receiving optical fiber are multiplexed, and the multiplexed optical signal is A first optical wavelength multiplexer that transmits to the second transmission optical fiber,
The observation station is
Provided between the wind direction light emitting section and the first transmission optical fiber, a plurality of optical signals having different wavelengths output from the wind direction light emitting section are multiplexed, and the multiplexed optical signal is transmitted to the first transmission. A second optical wavelength multiplexer that transmits to the optical fiber;
A multiplexed optical signal provided between the second transmission optical fiber and the wind direction light receiving unit and received by the second transmission optical fiber is demultiplexed for each wavelength, and the demultiplexed optical signal is A wind direction and wind speed monitoring device comprising: a second optical wavelength demultiplexer that transmits to the light receiving unit for wind direction.
請求項6記載の風向風速監視装置において、
前記第1光波長分波器は、前記第1伝送用光ファイバと前記第1および第2発光用光ファイバとの間に設けられ、前記第1伝送用光ファイバが受けた多重化された光信号を波長毎に分波し、分波した光信号を前記第1および第2発光用光ファイバにそれぞれ伝送し、
前記第1光波長合波器は、前記第1および第2受光用光ファイバと前記第2伝送用光ファイバとの間に設けられ、前記第1および第2受光用光ファイバが受けた波長の異なる複数の光信号を多重化し、多重化した光信号を前記第2伝送用光ファイバに伝送し、
前記第2光波長合波器は、前記風向用発光部および前記風速用発光部と前記第1伝送用光ファイバとの間に設けられ、前記風向用発光部および前記風速用発光部から出力される波長の異なる複数の光信号を多重化し、多重化した光信号を前記第1伝送用光ファイバに伝送し、
前記第2光波長分波器は、前記第2伝送用光ファイバと前記風向用受光部および前記風速用受光部との間に設けられ、前記第2伝送用光ファイバが受けた多重化された光信号を波長毎に分波し、分波した光信号を前記風向用受光部および前記風速用受光部にそれぞれ伝送することを特徴とする風向風速監視装置。
In the wind direction wind speed monitoring device according to claim 6,
The first optical wavelength demultiplexer is provided between the first transmission optical fiber and the first and second light emitting optical fibers, and is multiplexed light received by the first transmission optical fiber. Demultiplexing the signal for each wavelength, and transmitting the demultiplexed optical signals to the first and second light emitting optical fibers,
The first optical wavelength multiplexer is provided between the first and second light receiving optical fibers and the second transmission optical fiber, and has a wavelength received by the first and second light receiving optical fibers. A plurality of different optical signals are multiplexed, and the multiplexed optical signal is transmitted to the second transmission optical fiber;
The second optical wavelength multiplexer is provided between the light emitting unit for wind direction and the light emitting unit for wind speed and the first transmission optical fiber, and is output from the light emitting unit for wind direction and the light emitting unit for wind speed. Multiplexing a plurality of optical signals having different wavelengths, and transmitting the multiplexed optical signal to the first transmission optical fiber,
The second optical wavelength demultiplexer is provided between the second transmission optical fiber and the wind direction light receiving unit and the wind speed light receiving unit, and is multiplexed by the second transmission optical fiber. A wind direction and wind speed monitoring apparatus, wherein an optical signal is demultiplexed for each wavelength, and the demultiplexed optical signal is transmitted to the wind direction light receiving unit and the wind speed light receiving unit.
請求項5乃至請求項7のいずれか1項に記載の風向風速監視装置において、
前記風向用回転円板は、前記風向用穴とは別に、同心円上に所定の角度を置いて形成された複数の風速補正用穴を有し、
前記第2発光用光ファイバの1つは、前記風速補正用穴を介して、対応する前記第2受光用光ファイバに光信号を伝送し、
前記観測局は、
前記風速補正用穴を通過した光信号に基づいて、前記垂直回転部材の回転速度を算出する軸速度演算部と、
前記軸速度演算部により算出された回転速度に基づいて、前記風速演算部により算出された風速値を補正する風速補正演算部とを備えていることを特徴とする風向風速監視装置。
In the wind direction wind speed monitoring device according to any one of claims 5 to 7,
The wind direction rotating disc has a plurality of wind speed correcting holes formed at a predetermined angle on a concentric circle separately from the wind direction hole,
One of the second light emitting optical fibers transmits an optical signal to the corresponding second light receiving optical fiber through the wind speed correcting hole,
The observation station is
Based on the optical signal that has passed through the wind speed correction hole, an axial speed calculation unit that calculates the rotational speed of the vertical rotation member;
A wind direction and wind speed monitoring device, comprising: a wind speed correction calculation unit that corrects the wind speed value calculated by the wind speed calculation unit based on the rotation speed calculated by the shaft speed calculation unit.
JP2007046504A 2007-02-27 2007-02-27 Wind direction anemometer and wind direction wind speed monitoring device Expired - Fee Related JP5058628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046504A JP5058628B2 (en) 2007-02-27 2007-02-27 Wind direction anemometer and wind direction wind speed monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046504A JP5058628B2 (en) 2007-02-27 2007-02-27 Wind direction anemometer and wind direction wind speed monitoring device

Publications (2)

Publication Number Publication Date
JP2008209254A true JP2008209254A (en) 2008-09-11
JP5058628B2 JP5058628B2 (en) 2012-10-24

Family

ID=39785683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046504A Expired - Fee Related JP5058628B2 (en) 2007-02-27 2007-02-27 Wind direction anemometer and wind direction wind speed monitoring device

Country Status (1)

Country Link
JP (1) JP5058628B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009301A (en) * 2015-06-17 2017-01-12 東日本旅客鉄道株式会社 Wind speed monitoring system
JP2017026610A (en) * 2015-07-15 2017-02-02 古河電気工業株式会社 Wind speed measuring device and wind speed measuring method
JP2019113428A (en) * 2017-12-25 2019-07-11 東日本旅客鉄道株式会社 Wind direction measuring apparatus
CN110145700A (en) * 2018-07-26 2019-08-20 江苏天楹之光光电科技有限公司 A kind of LED light that water-bed undercurrent or ocean current display can be directed toward
CN112649623A (en) * 2020-11-30 2021-04-13 中国科学院声学研究所南海研究站 Environment self-adaptive ultrasonic anemometry system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126869A (en) * 1984-07-17 1986-02-06 Mitsubishi Electric Corp Wind vane and anemometer
JPS61210961A (en) * 1985-03-15 1986-09-19 Nippon Telegr & Teleph Corp <Ntt> Slip detector of in-pit carrier
JPH074580Y2 (en) * 1986-07-31 1995-02-01 株式会社日本エレクトリックインスルメント Anemometer
JP2515512Y2 (en) * 1990-06-05 1996-10-30 中浅測器株式会社 Anemometer
JP2006189371A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Speed detection system for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126869A (en) * 1984-07-17 1986-02-06 Mitsubishi Electric Corp Wind vane and anemometer
JPS61210961A (en) * 1985-03-15 1986-09-19 Nippon Telegr & Teleph Corp <Ntt> Slip detector of in-pit carrier
JPH074580Y2 (en) * 1986-07-31 1995-02-01 株式会社日本エレクトリックインスルメント Anemometer
JP2515512Y2 (en) * 1990-06-05 1996-10-30 中浅測器株式会社 Anemometer
JP2006189371A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Speed detection system for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009301A (en) * 2015-06-17 2017-01-12 東日本旅客鉄道株式会社 Wind speed monitoring system
JP2017026610A (en) * 2015-07-15 2017-02-02 古河電気工業株式会社 Wind speed measuring device and wind speed measuring method
JP2019113428A (en) * 2017-12-25 2019-07-11 東日本旅客鉄道株式会社 Wind direction measuring apparatus
CN110145700A (en) * 2018-07-26 2019-08-20 江苏天楹之光光电科技有限公司 A kind of LED light that water-bed undercurrent or ocean current display can be directed toward
CN112649623A (en) * 2020-11-30 2021-04-13 中国科学院声学研究所南海研究站 Environment self-adaptive ultrasonic anemometry system

Also Published As

Publication number Publication date
JP5058628B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5058628B2 (en) Wind direction anemometer and wind direction wind speed monitoring device
JP5678086B2 (en) Bearing management using fiber Bragg grating
EP1759168B1 (en) Monitoring device for rotating body
EP2643663B1 (en) Long fibre optic sensor system in a wind turbine component
US8790074B2 (en) Multiplexed optical fiber wear sensor
US20100014072A1 (en) Optical device for monitoring a rotatable shaft with an oriented axis
US20120198849A1 (en) Multiplexed optical fiber crack sensor
US20180038471A1 (en) Measuring system and measuring method for detecting variables on planetary carriers of a planetary gear train
US9664506B2 (en) High speed and high spatial density parameter measurement using fiber optic sensing technology
KR20140031930A (en) Fluid flow velocity and temperature measurement
JP2012159640A (en) Single core bidirectional optical communication module and manufacturing method thereof
EP2196807B1 (en) Arrangement to detect a high rotational-speed of a blade
WO2014108170A1 (en) Fibreoptic sensor clip
JP4975519B2 (en) Rotating body measuring apparatus and measuring method
US7066035B2 (en) Torque measuring device for rotating body
JP4303188B2 (en) Fiber optic cable flood detection system and method
EP2630338A1 (en) Gas turbine plant for the production of electric energy, provided with an apparatus for monitoring rotating parts
CN111520456A (en) Intelligent speed reducer
WO2015004736A1 (en) Optical transmission device, rotary electric machine using same, and wind power generation system
JP2017040611A (en) State monitoring device for rotary machine
JP6521755B2 (en) Wind speed monitoring system
CN112525236A (en) Optical fiber sensor bearing assembly, bearing state monitoring system and measuring method
JP2012230193A (en) Light rotary joint and rotor strain measuring device
JP2009010059A (en) Signal transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees