JP2008208110A - Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material - Google Patents

Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material Download PDF

Info

Publication number
JP2008208110A
JP2008208110A JP2007245762A JP2007245762A JP2008208110A JP 2008208110 A JP2008208110 A JP 2008208110A JP 2007245762 A JP2007245762 A JP 2007245762A JP 2007245762 A JP2007245762 A JP 2007245762A JP 2008208110 A JP2008208110 A JP 2008208110A
Authority
JP
Japan
Prior art keywords
metal complex
porous metal
producing
complex according
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007245762A
Other languages
Japanese (ja)
Other versions
JP5305278B2 (en
Inventor
Ami Ikura
亜美 伊倉
Hitoshi Ito
仁 伊藤
Kazuaki Mori
和亮 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Nissan Motor Co Ltd
Original Assignee
Kanagawa University
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University, Nissan Motor Co Ltd filed Critical Kanagawa University
Priority to JP2007245762A priority Critical patent/JP5305278B2/en
Publication of JP2008208110A publication Critical patent/JP2008208110A/en
Application granted granted Critical
Publication of JP5305278B2 publication Critical patent/JP5305278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a porous metal complex obtaining the porous metal complex having high purity and high surface area. <P>SOLUTION: In the method for producing the porous metal complex comprising a three-dimensional porous skeletal structure of a metal complex having a central metal and an organic ligand coordinated with the central metal and having a carboxylate group, a salt of the central metal is made to react with a compound which becomes the organic ligand in a solution obtained by dissolving those in the same solvent in the same reaction vessel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、多孔性金属錯体、多孔性金属錯体の製造方法、吸着材、分離材、ガス吸着材及び水素吸着材に関する。   The present invention relates to a porous metal complex, a method for producing a porous metal complex, an adsorbent, a separating material, a gas adsorbent, and a hydrogen adsorbent.

近年、燃料電池車両に搭載するための固体高分子型燃料電池の開発競争が活発に繰り広げられている。このような燃料電池車両の実用化のために、低コストで、軽量、水素吸蔵密度の高い水素吸蔵材料を用いた効率的な水素吸蔵法の開発が望まれている。   In recent years, development competition for solid polymer fuel cells to be installed in fuel cell vehicles has been actively developed. In order to put such fuel cell vehicles into practical use, development of an efficient hydrogen storage method using a hydrogen storage material that is low in cost, lightweight, and has a high hydrogen storage density is desired.

そこで、金属イオンと有機配位子からなる二次元格子構造を単位モチーフとして3次元的に積層した骨格構造を有する、多孔性の有機金属錯体を用いた水素吸蔵材料が提案され(特許文献1参照)、メタン、窒素、水素等のガス吸着材として注目されている。中でも特にフマル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等のジカルボン酸を有機配位子として用いた多孔性の有機金属錯体が、ガス吸蔵材として好適であることが見出されている(特許文献2、特許文献3、非特許文献1及び非特許文献2参照。)。中でも、有機配位子にテトラジン、トリアジン等の含窒素複素環骨格を用いた有機金属錯体は、水素とのアフィニティが向上し、水素吸蔵材として好適であることが見出されている(特許文献4参照。)。
特開2001−348361号公報 米国特許出願公開第2003/0004364号明細書 特開2003−342260号公報 特開2005−93181号公報 森和亮、大村哲賜、佐藤智彦,「カルボン酸金属錯体の気体吸蔵とその応用」,ペトロテック(PETROTECH),「社団法人石油学会」,2003年,第26巻,第2号,p.105−112 エム・エダウディ(M.Eddaoudi),エイチ・リー(H.Li), オウ・エム・ヤギ(O.M.Yaghi)著,「ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサエティ(J.Am.Chem.Soc.)」,2000年,第122号,p.1391−1397
Therefore, a hydrogen storage material using a porous organometallic complex having a skeleton structure in which a two-dimensional lattice structure composed of metal ions and an organic ligand is three-dimensionally stacked as a unit motif has been proposed (see Patent Document 1). ), Has attracted attention as gas adsorbents such as methane, nitrogen, and hydrogen. Among these, porous organometallic complexes using dicarboxylic acids such as fumaric acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid as organic ligands have been found to be particularly suitable as gas storage materials ( (See Patent Document 2, Patent Document 3, Non-Patent Document 1, and Non-Patent Document 2.) Among them, an organometallic complex using a nitrogen-containing heterocyclic skeleton such as tetrazine or triazine as an organic ligand has been found to have an improved affinity with hydrogen and is suitable as a hydrogen storage material (patent document) 4).
JP 2001-348361 A US Patent Application Publication No. 2003/0004364 JP 2003-342260 A JP-A-2005-93181 Mori Kazuaki, Omura Tetsuki, Sato Tomohiko, “Gas Occlusion and Application of Carboxylic Acid Metal Complexes”, PETROTECH, “Japan Petroleum Institute”, 2003, Vol. 26, No. 2, p. 105-112 M. Eddaoudi, H.Li, OMYaghi, “J.Am.Chem.Soc.” , 2000, No. 122, p. 1391-1397

このような多孔性金属錯体材料は、金属塩、有機配位子となる化合物を、それぞれアルコール等の有機溶媒に溶解させ、その溶液を混合することで合成される。しかし、単結晶や少量を合成する方法として用いられているこの方法で大量合成を行うと、使用する溶媒量が多くなり、コストの面で問題がある。また、溶媒量を少なくした高濃度の条件で合成を行うと、未反応物が多くなって純度が下がり、表面積、熱的安定性が低下する。また、表面積向上のために、単位モチーフを架橋配位子で結合した架橋金属錯体を合成する場合には、一度合成した金属錯体と架橋配位子となる化合物を溶媒中で反応させる二段階の合成方法をとっており、反応効率が問題となる。   Such a porous metal complex material is synthesized by dissolving a metal salt and a compound serving as an organic ligand in an organic solvent such as alcohol and mixing the solutions. However, if large-scale synthesis is performed by this method, which is used as a method for synthesizing a single crystal or a small amount, the amount of solvent to be used increases, and there is a problem in cost. In addition, when the synthesis is performed under a high concentration condition with a small amount of solvent, the amount of unreacted substances increases, the purity decreases, and the surface area and thermal stability decrease. In addition, when synthesizing a crosslinked metal complex in which a unit motif is bonded with a bridging ligand in order to improve the surface area, a two-stage reaction in which a metal complex once synthesized and a compound that becomes a bridging ligand are reacted in a solvent. Since the synthesis method is adopted, the reaction efficiency becomes a problem.

本発明は、上記課題を解決するためになされたものであり、本発明に係る多孔性金属錯体の製造方法は、中心金属と、この中心金属に配位し、カルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含む多孔性金属錯体の製造方法であって、中心金属の塩と有機配位子となる化合物とを同じ溶媒に溶解させた溶液を、同じ反応容器内で反応させることを特徴とする。   The present invention has been made to solve the above problems, and a method for producing a porous metal complex according to the present invention includes a central metal and an organic coordination having a carboxylate group coordinated to the central metal. A method for producing a porous metal complex comprising a three-dimensional porous skeleton structure of a metal complex comprising a child, wherein a solution in which a salt of a central metal and a compound to be an organic ligand are dissolved in the same solvent, The reaction is carried out in the same reaction vessel.

本発明に係る多孔性金属錯体は、上記本発明に係る多孔性金属錯体の製造方法により得られたことを特徴とする。   The porous metal complex according to the present invention is obtained by the method for producing a porous metal complex according to the present invention.

本発明に係る吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明に係る分離材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The separating material according to the present invention includes the porous metal complex according to the present invention.

本発明に係るガス吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The gas adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明に係る水素吸着材は、上記本発明に係る多孔性金属錯体を含むことを特徴とする。   The hydrogen adsorbent according to the present invention includes the porous metal complex according to the present invention.

本発明によれば、中心金属の塩と有機配位子となる化合物とを同じ溶媒に溶解させた溶液を、同じ反応容器内で反応させることにより、純度が高く、表面積が高い多孔性金属錯体を高効率で大量に合成することが可能となる。   According to the present invention, a porous metal complex having a high purity and a high surface area can be obtained by reacting a solution in which a salt of a central metal and a compound serving as an organic ligand are dissolved in the same solvent in the same reaction vessel. Can be synthesized in large quantities with high efficiency.

本発明によれば、純度の高い多孔性金属錯体が得られる。   According to the present invention, a highly pure porous metal complex is obtained.

本発明によれば、本発明に係る多孔性金属錯体を用いるので、高効率な吸着材、分離材、ガス吸着材及び水素吸着材が得られる。   According to the present invention, since the porous metal complex according to the present invention is used, a highly efficient adsorbent, separation material, gas adsorbent and hydrogen adsorbent can be obtained.

以下、本発明の実施の形態に係る多孔性金属錯体、多孔性金属錯体の製造方法、吸着材、分離材、ガス吸着材及び水素吸着材を説明する。   Hereinafter, a porous metal complex, a method for producing a porous metal complex, an adsorbent, a separation material, a gas adsorbent, and a hydrogen adsorbent according to embodiments of the present invention will be described.

図1に、本発明の実施の形態に係る多孔性金属錯体(以下、しばしば「多孔性架橋金属錯体」と呼ぶ。)の一例の結晶構造1を模式的に示す。ここでは、中心金属の間の結合には、有機配位子と架橋配位子の二種類を配位子として用いている。この結晶構造1を有する多孔性金属錯体は、2個の銅イオンを中心金属2とした二核錯体であり、中心金属2の周りにはRで示す構造を有するカルボン酸イオンが有機配位子として配位されて配位結合部3を形成している。各カルボン酸イオンは2つのカルボキシレート基を有し、このカルボキシレート基の2つの酸素原子を介して中心金属2である銅イオンに配位することにより、2つの銅イオンを4つの格子点とする環(空隙)が縮合した格子状の2次元構造(カルボン酸金属錯体)M1が形成されている。この二次元格子構造M1を単位モチーフ、つまり、基本的繰り返しパターンとして積層し、各二次元格子構造M1を架橋配位子4であるトリエチレンジアミンで架橋することにより三次元的多孔性骨格構造からなる多孔性架橋金属錯体が形成されている。架橋配位子4であるトリエチレンジアミンは、2個の配位基で中心金属2である銅イオンに配位している二座配位子である。この構造1では、中心金属2と配位結合部3によって画成された空隙GP1を有し、複数の二次元構造M1の各空隙列がc軸方向に一列に整列し、一次元のチャネルを複数形成している。   FIG. 1 schematically shows a crystal structure 1 as an example of a porous metal complex according to an embodiment of the present invention (hereinafter often referred to as “porous cross-linked metal complex”). Here, two types of organic ligands and bridging ligands are used as the ligands for the bond between the central metals. The porous metal complex having the crystal structure 1 is a binuclear complex having two copper ions as a central metal 2, and a carboxylate ion having a structure represented by R is an organic ligand around the central metal 2. To form a coordination bond 3. Each carboxylate ion has two carboxylate groups, and coordinates two copper ions with four lattice points by coordinating to the copper ion which is the central metal 2 through two oxygen atoms of the carboxylate group. A lattice-like two-dimensional structure (carboxylic acid metal complex) M1 in which rings (voids) to be condensed are formed. This two-dimensional lattice structure M1 is laminated as a unit motif, that is, a basic repetitive pattern, and each two-dimensional lattice structure M1 is composed of a three-dimensional porous skeleton structure by crosslinking with triethylenediamine as a bridging ligand 4. A porous cross-linked metal complex is formed. The triethylenediamine that is the bridging ligand 4 is a bidentate ligand that is coordinated to the copper ion that is the central metal 2 by two coordination groups. This structure 1 has a gap GP1 defined by the central metal 2 and the coordination coupling portion 3, and each gap row of the plurality of two-dimensional structures M1 is aligned in a line in the c-axis direction. A plurality are formed.

このような構造を有する多孔性架橋金属錯体は、中心金属と、この中心金属に配位し、カルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含む多孔性金属錯体の製造方法であって、中心金属の塩と有機配位子となる化合物とを同じ溶媒に溶解させた溶液を、同じ反応容器内で反応させることにより製造する。このように、中心金属の塩と有機配位子となる化合物とをそれぞれ別の溶媒に溶解して混合して反応させるのではなく、同じ溶媒に溶解させた溶液を、同じ反応容器内で反応させることにより、純度及び表面積の高い多孔性金属錯体を合成することが可能となる。また、一段階で合成することで、多孔性金属錯体を高効率で大量に得ることができる。   A porous cross-linked metal complex having such a structure is a porous material including a three-dimensional porous skeleton structure of a metal complex comprising a central metal and an organic ligand coordinated to the central metal and having a carboxylate group. This is a method for producing a reactive metal complex by reacting a solution in which a salt of a central metal and a compound serving as an organic ligand are dissolved in the same solvent in the same reaction vessel. In this way, instead of dissolving the central metal salt and the organic ligand compound in separate solvents and mixing them, the solutions dissolved in the same solvent are reacted in the same reaction vessel. By making it, it becomes possible to synthesize a porous metal complex having high purity and surface area. Moreover, a porous metal complex can be obtained in large quantities with high efficiency by synthesizing in one step.

また、図1に示すような、二次元格子構造M1を架橋した多孔性架橋金属錯体を合成する場合には、上記反応を行う際に中心金属2に2座配位可能な架橋配位子4となる化合物を加える。この場合には、二次元格子構造M1からなる単位モチーフが形成されると同時に、中心金属2に2座配位可能な架橋配位子4となる化合物を加えることにより、架橋配位子4が二次元格子構造M1間を架橋して三次元的多孔性骨格構造を有する多孔性金属錯体1を形成する。   When a porous cross-linked metal complex obtained by cross-linking the two-dimensional lattice structure M1 as shown in FIG. 1 is synthesized, a cross-linked ligand 4 capable of bidentate coordination with the central metal 2 when the above reaction is performed. Add the following compound. In this case, a unit motif composed of the two-dimensional lattice structure M1 is formed, and at the same time, by adding a compound that becomes a bridging ligand 4 capable of bidentate coordination to the central metal 2, the bridging ligand 4 becomes A porous metal complex 1 having a three-dimensional porous skeleton structure is formed by crosslinking between the two-dimensional lattice structures M1.

従来では、金属イオンと有機配位子とから形成される二次元格子構造M1を形成した後に、この二次元格子構造M1を3次元的に積層して、架橋配位子となる化合物で二次元格子構造M1間を結合するという2段階の合成法を取ることが多かったため、反応時間が増加して収率が低下し、合成された多孔性架橋金属錯体の純度が低く、表面積が小さくなって水素吸蔵能が上がらない、また熱的安定性が低いという問題があった。これに対し、本実施の形態においては、架橋配位子4となる化合物を、中心金属の塩と有機配位子となる化合物を溶媒に溶解させるのと同時に溶解、反応させることで、二次元格子構造M1の形成と同時に各二次元格子構造M1の間を架橋配位子4によって結合する自己集合反応が安定した環境で速やかに進行するため、副反応が起こりにくい。このため、純度が高く、表面積が大きく熱的安定性の高い多孔性金属錯体の製造が可能となり、更には合成プロセスを1段階に短縮することができ、単位時間当たりの生産性及び収率が増加し、製造コストを削減できる。   Conventionally, after forming a two-dimensional lattice structure M1 formed from a metal ion and an organic ligand, the two-dimensional lattice structure M1 is three-dimensionally stacked to form a two-dimensional compound with a bridge ligand. In many cases, a two-step synthesis method of bonding between the lattice structures M1 is performed, so that the reaction time increases and the yield decreases, the purity of the synthesized porous crosslinked metal complex is low, and the surface area is reduced. There were problems that the hydrogen storage capacity did not increase and the thermal stability was low. On the other hand, in the present embodiment, the compound serving as the bridging ligand 4 is dissolved and reacted at the same time as the salt of the central metal and the compound serving as the organic ligand are dissolved in the solvent. Since the self-assembly reaction of bonding between the two-dimensional lattice structures M1 by the bridging ligand 4 proceeds promptly in a stable environment simultaneously with the formation of the lattice structure M1, side reactions are unlikely to occur. For this reason, it is possible to produce a porous metal complex having a high purity, a large surface area, and a high thermal stability. Further, the synthesis process can be shortened to one stage, and the productivity and yield per unit time can be reduced. Increase and reduce manufacturing costs.

ここで、この反応は、触媒存在下で行うことが好ましい。触媒存在下で行うことにより、反応が効率良く進行する。   Here, this reaction is preferably performed in the presence of a catalyst. By carrying out in the presence of a catalyst, the reaction proceeds efficiently.

本発明の実施の形態の一例として、図2(a)に本発明の実施の形態に係る反応を、図2(b)に従来例における反応を示す。図2(b)に示すように、従来例では、中心金属の塩である酢酸銅一水和物31をその溶媒であるエタノール32に溶解し、有機配位子となる化合物であるテレフタル酸33をその溶媒であるメタノール34に溶解させる。この際、触媒として蟻酸35を加える。そしてエタノール溶液とメタノール溶液を混合することにより、テレフタル酸イオン36と、銅イオン37と、酢酸38となり、二次元格子構造である金属錯体39と副生成物である酢酸40が得られる。次に、金属錯体41を架橋するために、架橋配位子となるトリエチレンジアミン42を溶媒であるジメチルホルムアミド43に溶解させた溶液に合成した金属錯体41を加えて反応させることにより、多孔性架橋金属錯体である架橋金属錯体44を得る。この反応では、中心金属の塩、有機配位子となる化合物をそれぞれが溶ける溶媒に溶解して反応させて金属錯体を得、その後、架橋配位子となる化合物を溶解した溶媒にその金属錯体と混合して反応させている。このため、反応が2段階となり、収率が下がって不純物が多くなり、得られた多孔性金属錯体の表面積も下がり、熱的安定性も下がった。これに対し、本発明の実施の形態に係る方法では、図2(a)に示すように、中心金属の塩である酢酸銅一水和物11と、有機配位子となる化合物であるテレフタル酸12と、架橋配位子となるトリエチレンジアミン13と、触媒である蟻酸14とを溶媒であるジメチルホルムアミド15に溶解して、1つの容器で反応させる。溶液中には、テレフタル酸イオン16と、銅イオン17と、トリエチレンジアミン18と、酢酸19が存在する。そして、反応により、架橋金属錯体20と副生成物である酢酸21が得られる。このように、合成プロセスを1段階で、1つの容器で行うことにより、純度及び表面積が高く、熱的安定性の高い多孔性金属錯体が得られる。また、単位時間当たりの生産性及び収率が増加し、製造コストを削減できる。   As an example of the embodiment of the present invention, FIG. 2A shows a reaction according to the embodiment of the present invention, and FIG. 2B shows a reaction in a conventional example. As shown in FIG. 2B, in the conventional example, copper acetate monohydrate 31 that is a salt of a central metal is dissolved in ethanol 32 that is a solvent thereof, and terephthalic acid 33 that is a compound that becomes an organic ligand. Is dissolved in methanol 34 as the solvent. At this time, formic acid 35 is added as a catalyst. By mixing the ethanol solution and the methanol solution, terephthalic acid ions 36, copper ions 37, and acetic acid 38 are obtained, and a metal complex 39 having a two-dimensional lattice structure and acetic acid 40 as a by-product are obtained. Next, in order to crosslink the metal complex 41, the synthesized metal complex 41 is added to and reacted with a solution obtained by dissolving triethylenediamine 42 serving as a bridging ligand in dimethylformamide 43 as a solvent. A cross-linked metal complex 44 which is a metal complex is obtained. In this reaction, the salt of the central metal and the compound that becomes the organic ligand are dissolved in a solvent in which they are dissolved and reacted to obtain a metal complex, and then the metal complex is dissolved in the solvent in which the compound that becomes the bridging ligand is dissolved. It is mixed and reacted. For this reason, the reaction was in two stages, the yield decreased, the impurities increased, the surface area of the obtained porous metal complex decreased, and the thermal stability also decreased. In contrast, in the method according to the embodiment of the present invention, as shown in FIG. 2A, copper acetate monohydrate 11 which is a salt of a central metal and terephthal which is a compound which becomes an organic ligand. The acid 12, triethylenediamine 13 serving as a bridging ligand, and formic acid 14 serving as a catalyst are dissolved in dimethylformamide 15 serving as a solvent and reacted in one container. In the solution, there are terephthalic acid ions 16, copper ions 17, triethylenediamine 18, and acetic acid 19. And the acetic acid 21 which is a crosslinked metal complex 20 and a by-product is obtained by reaction. Thus, a porous metal complex with high purity and surface area and high thermal stability can be obtained by carrying out the synthesis process in one stage in one container. Further, productivity and yield per unit time can be increased, and manufacturing costs can be reduced.

なお、反応の際には、反応溶液に超音波を照射してもよい。この場合には、超音波を照射することで反応が促進されるため、従来に比べ、高純度で表面積の高い多孔性金属錯体を大量に合成することができる。   In the reaction, the reaction solution may be irradiated with ultrasonic waves. In this case, since the reaction is promoted by irradiating ultrasonic waves, a porous metal complex having a high purity and a high surface area can be synthesized in a large amount as compared with the conventional case.

架橋配位子は、トリエチレンジアミン又はピラジンを含むことが好ましい。また、溶媒は、1種の溶媒からなることが好ましい。溶媒が1種であることにより、副反応が抑制される。この溶媒に対し、中心金属の塩、有機配位子となる化合物、及び架橋配位子となる化合物は、溶解度が、それぞれ0.001[mol/L]以上であることが好ましい。溶媒に対する溶解度が高い場合には、純度の高い多孔性金属錯体を大量に合成することが可能となる。溶媒は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、ピリジン、N−メチル−2−ピロリジノン及び水を含む溶媒群から選択される溶媒を含むことが好ましい。   The bridging ligand preferably contains triethylenediamine or pyrazine. Moreover, it is preferable that a solvent consists of 1 type of solvent. Side reactions are suppressed by using only one solvent. The solubility of the central metal salt, the compound serving as an organic ligand, and the compound serving as a bridging ligand with respect to this solvent is preferably 0.001 [mol / L] or more. When the solubility in a solvent is high, a porous metal complex having a high purity can be synthesized in large quantities. The solvent preferably comprises a solvent selected from the solvent group comprising N, N'-dimethylformamide, N, N'-diethylformamide, pyridine, N-methyl-2-pyrrolidinone and water.

触媒は、有機酸を含むことが好ましい。この場合には、多孔性金属錯体の合成が促進される。この有機酸は、蟻酸、酢酸及びプロピオン酸から選択される有機酸を含むことが好ましい。蟻酸、酢酸及びプロピオン酸から選択される有機酸を触媒として用いた場合には、多孔性金属錯体の合成が促進される。なかでも酢酸が好ましい。   The catalyst preferably contains an organic acid. In this case, the synthesis of the porous metal complex is promoted. This organic acid preferably contains an organic acid selected from formic acid, acetic acid and propionic acid. When an organic acid selected from formic acid, acetic acid and propionic acid is used as a catalyst, the synthesis of the porous metal complex is promoted. Of these, acetic acid is preferred.

有機配位子となる化合物は、次の一般式(I)
(HOOC)n1−R−(COOH)n2 ・・・(I)
(ただし、Rはアルキレン基、アルキニレン基、アルケニレン基又はアリーレン基を示し、前記Rは置換基を含んでもよく、n1及びn2は整数を示し、1≦n1≦8、0≦n2≦8である。)で表されるカルボン酸を含むことが好ましい。特に、1≦n1+n2≦4であることが好ましく、Rは、次の一般式(II)〜(XI)

Figure 2008208110
The compound that becomes the organic ligand is represented by the following general formula (I)
(HOOC) n1- R- (COOH) n2 (I)
(However, R represents an alkylene group, an alkynylene group, an alkenylene group, or an arylene group, the R may include a substituent, n1 and n2 represent integers, and 1 ≦ n1 ≦ 8 and 0 ≦ n2 ≦ 8. It is preferable that the carboxylic acid represented by this is included. In particular, 1 ≦ n1 + n2 ≦ 4 is preferable, and R is represented by the following general formulas (II) to (XI).
Figure 2008208110

のいずれか一つで表される置換基を含むことが好ましい。一般式(II)〜(XI)において、*の箇所にはカルボキシレート基が結合し、このカルボキシレート基の2つの酸素原子が中心金属に配位して錯体を形成することにより二次元格子構造を形成する。ここで、有機配位子となる化合物はカルボン酸誘導体であり、カルボン酸誘導体を目的にあわせて選ぶことにより、水素とのアフィニティや細孔の形、径を変化させた高純度で表面積の高い多孔性金属錯体を大量に合成することができる。なお、カルボン酸誘導体のカルボキシレート基を、イオン交換により調製しても良い。 It is preferable that the substituent represented by any one of these is included. In general formulas (II) to (XI), a two-dimensional lattice structure is formed by binding a carboxylate group at a position * and forming a complex by coordination of two oxygen atoms of the carboxylate group to a central metal. Form. Here, the compound that becomes the organic ligand is a carboxylic acid derivative, and by selecting the carboxylic acid derivative according to the purpose, the affinity with hydrogen, the shape and diameter of the pores are changed, the purity is high, and the surface area is high. Porous metal complexes can be synthesized in large quantities. The carboxylate group of the carboxylic acid derivative may be prepared by ion exchange.

Rは、炭素をヘテロ元素に置換した複素環を含んでいても良い。つまり、有機配位子となる化合物として複素環カルボン酸誘導体を用いても良い。複素環は、環骨格内にN、O、S、P、B、As、Si、Sb及びHgを含む元素群から選択される元素を含むことが好ましく、Rは、次の一般式(XII)〜(XXXVII)

Figure 2008208110
R may contain a heterocyclic ring in which carbon is substituted with a hetero element. That is, you may use a heterocyclic carboxylic acid derivative as a compound used as an organic ligand. The heterocyclic ring preferably contains an element selected from the group of elements including N, O, S, P, B, As, Si, Sb and Hg in the ring skeleton, and R is represented by the following general formula (XII) ~ (XXXVII)
Figure 2008208110

のいずれか一つで表される置換基を含むことが好ましい。異なる種類の複素環カルボン酸有機配位子を目的にあわせて用いることにより、水素とのアフィニティや細孔の形、径を変化させた高純度で表面積の高い多孔性金属錯体を大量に合成することができる。 It is preferable that the substituent represented by any one of these is included. By using different types of heterocyclic carboxylic acid organic ligands for different purposes, we can synthesize a large amount of porous metal complexes with high purity and high surface area with varying affinity for hydrogen, pore shape and diameter. be able to.

中心金属の塩は、2〜4価の金属を含む金属群から選択される金属を含むことが好ましい。異なる金属塩を用いることにより、目的に応じて水素とのアフィニティや細孔の形、径を変化させた高純度で表面積の高い多孔性金属錯体を大量に合成することができる。この中心金属の塩は、2価又は3価の金属を含むことが好ましく、中心金属の塩は、Cu、Zn、Mo、Ru、Ni、Rh、Al、Cr、Re、Mn、Fe、Co、Pd、Cd、Tb、W及びPtを含む金属群から選択される金属を含むことが好ましい。また、中心金属の塩は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩を含むことが好ましい。なかでも酢酸塩が好ましい。使用する溶媒に対して高い溶解度を有する塩を選ぶことにより、反応の収率を上げることが可能となる。   The central metal salt preferably contains a metal selected from a metal group containing a divalent to tetravalent metal. By using different metal salts, it is possible to synthesize a large amount of porous metal complexes having a high purity and a large surface area in which the affinity with hydrogen and the shape and diameter of the pores are changed according to the purpose. The central metal salt preferably contains a divalent or trivalent metal, and the central metal salt is Cu, Zn, Mo, Ru, Ni, Rh, Al, Cr, Re, Mn, Fe, Co, It is preferable to include a metal selected from a metal group including Pd, Cd, Tb, W and Pt. The central metal salt preferably contains a metal salt selected from the group of metal salts including nitrates, sulfates, acetates, carbonates and formates. Of these, acetate is preferred. By selecting a salt having a high solubility in the solvent used, the yield of the reaction can be increased.

この多孔性架橋金属錯体の製造方法により生成した多孔性架橋金属錯体は、中心金属とカルボキシレート基を有する有機配位子と中心金属に二座配位可能な架橋配位子を備え、中心金属の周りに有機配位子及び架橋配位子が配位される。各有機配位子は2つのカルボキシレート基を有し、各カルボキシレート基の2つの酸素原子を介して中心金属に配位することにより、中心金属を格子点とする環(空隙)が縮合した格子状の二次元構造が形成される。この二次元格子構造を単位モチーフ、つまり、基本的繰り返しパターンとして積層し、各二次元格子構造を更に架橋配位子で架橋することにより三次元的多孔性骨格構造が形成される。この構造では、複数の二次元構造の各空隙列が一列に整列するため、一次元のチャネルを複数形成する。   The porous bridged metal complex produced by this method for producing a porous bridged metal complex comprises an organic ligand having a central metal and a carboxylate group, and a bridging ligand capable of bidentate coordination with the central metal. An organic ligand and a bridging ligand are coordinated around. Each organic ligand has two carboxylate groups and is coordinated to the central metal via two oxygen atoms of each carboxylate group, thereby condensing a ring (void) having the central metal as a lattice point. A lattice-like two-dimensional structure is formed. This two-dimensional lattice structure is laminated as a unit motif, that is, a basic repeating pattern, and each two-dimensional lattice structure is further crosslinked with a bridging ligand to form a three-dimensional porous skeleton structure. In this structure, each gap row of a plurality of two-dimensional structures is aligned in a row, so that a plurality of one-dimensional channels are formed.

この多孔性架橋金属錯体において、二次元格子構造の単位モチーフを積層した三次元的多孔性骨格構造は空隙を画成する骨格部であり、各空隙の細孔径は0.3〜2.0[nm]の大きさである。そして、この細孔径より小さな気体又は液体分子を骨格構造に取り込むことが可能である。この骨格構造は比較的強い結合である配位結合により形成されているため強固であり、気体又は液体分子を除去してもその骨格構造が安定に維持される。このため、気体又は液体分子を可逆的に取り込むことが可能である。なお、この多孔性架橋金属錯体は上記溶媒を残留物として含む。上記溶媒を残留物を含む場合には、反応に上記溶媒を使用したことが示される。   In this porous cross-linked metal complex, a three-dimensional porous skeleton structure in which unit motifs of a two-dimensional lattice structure are stacked is a skeleton part that defines voids, and the pore diameter of each void is 0.3 to 2.0 [ nm]. A gas or liquid molecule smaller than the pore diameter can be taken into the skeleton structure. This skeletal structure is strong because it is formed by a coordinate bond which is a relatively strong bond, and the skeletal structure is stably maintained even if gas or liquid molecules are removed. For this reason, it is possible to reversibly take in gas or liquid molecules. In addition, this porous bridge | crosslinking metal complex contains the said solvent as a residue. If the solvent contains a residue, it indicates that the solvent was used in the reaction.

また、この多孔性金属錯体において、BET比表面積が1000[m/g]以上であることが好ましく、BET比表面積が1500[m/g]以上であることがより好ましい。この場合には、高い水素吸蔵能を有する。 In this porous metal complex, the BET specific surface area is preferably 1000 [m 2 / g] or more, and the BET specific surface area is more preferably 1500 [m 2 / g] or more. In this case, it has a high hydrogen storage capacity.

以上説明したように、本発明の実施の形態に係る多孔性金属錯体の製造方法では、純度及び表面積の高い多孔性金属錯体の製造が可能となり、更には合成プロセスを1段階に短縮することができ、単位時間当たりの生産性及び収率が増加し、製造コストを削減できる。また、この製造方法により、純度及び表面積の高い多孔性金属錯体が得られ、この多孔性金属錯体を用いて吸着材、分離材、ガス吸着材及び水素吸着材を製造した場合には、従来に比べて高効率な吸着材、分離材、ガス吸着材及び水素吸着材が得られる。   As described above, the method for producing a porous metal complex according to the embodiment of the present invention makes it possible to produce a porous metal complex having a high purity and a high surface area, and can further shorten the synthesis process to one stage. The productivity and yield per unit time can be increased, and the manufacturing cost can be reduced. In addition, a porous metal complex having a high purity and surface area is obtained by this production method, and when an adsorbent, a separation material, a gas adsorbent and a hydrogen adsorbent are produced using this porous metal complex, In comparison, a highly efficient adsorbent, separation material, gas adsorbent and hydrogen adsorbent can be obtained.

以下、実施例1及び比較例1により本発明の実施の形態に係る多孔性金属錯体の製造方法について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, although the manufacturing method of the porous metal complex which concerns on embodiment of this invention is demonstrated more concretely by Example 1 and Comparative Example 1, the scope of the present invention is not limited to these.

1.試料の調製
実施例1 {Cu(OOC−C−COO)−1/2C12の合成
有機配位子としてテレフタル酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。まず、テレフタル酸0.83 [g]、トリエチレンジアミン0.34[g]、酢酸銅一水和物1.00 [g]を、触媒である蟻酸2.5[mL]存在下でジメチルホルムアミド250[mL]に溶解し、80[℃]で3[時間]還流後攪拌を行った。析出した固体を遠心分離機で回収し、メタノールで洗浄した。その後、80[℃]で3[時間]真空乾燥を行い、目的物である{Cu(OOC−C−COO)−1/2C121.62[g]を得た。
1. Terephthalic acid as a synthetic organic ligand of Example 1 {Cu (OOC-C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} n samples, triethylenediamine as a bridging ligand, metal Copper acetate monohydrate was used as the salt. First, 0.83 [g] terephthalic acid, 0.34 [g] triethylenediamine, and 1.00 [g] copper acetate monohydrate were added to dimethylformamide 250 in the presence of 2.5 [mL] formic acid as a catalyst. It melt | dissolved in [mL], and it stirred after recirculation | reflux at 80 [degreeC] for 3 [hours]. The precipitated solid was collected with a centrifuge and washed with methanol. Thereafter, vacuum drying is performed at 80 [° C.] for 3 [hour], and {Cu (OOC—C 6 H 4 —COO) −1 / 2C 6 H 12 N 2 } n 1.62 [g], which is the target product, is obtained. Obtained.

実施例2 {Cu(OOC−C−COO)−1/2C12の合成
有機配位子としてテレフタル酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。まず、テレフタル酸0.83[g]、トリエチレンジアミン0.56[g]、酢酸銅一水和物1.00[g]を、触媒である蟻酸3.0[mL]存在下でジメチルホルムアミド300[mL]に溶解し、85[℃]で3[時間]還流後攪拌を行った。析出した固体を遠心分離機で回収し、エタノールで洗浄した。その後、100[℃]で3[時間]真空乾燥を行い、目的物である{Cu(OOC−C−COO)−1/2C12を得た。
EXAMPLE 2 {Cu (OOC-C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} terephthalic acid as n synthetic organic ligand, triethylenediamine as a bridging ligand, acetate as a metal salt Copper monohydrate was used. First, terephthalic acid 0.83 [g], triethylenediamine 0.56 [g] and copper acetate monohydrate 1.00 [g] in the presence of 3.0 [mL] formic acid as a catalyst, dimethylformamide 300 It melt | dissolved in [mL], and stirred after recirculation | reflux at 85 [degreeC] for 3 [hours]. The precipitated solid was collected with a centrifuge and washed with ethanol. Thereafter, 100 [° C.] at 3 [time] and vacuum dried to obtain the desired product {Cu (OOC-C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} n.

実施例3 {Cu(OOC−C−COO)−1/2C12の合成
有機配位子としてテレフタル酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。まず、テレフタル酸0.83[g]、トリエチレンジアミン0.56[g]、酢酸銅一水和物1.00[g]を、触媒である酢酸6.0[mL]存在下でジメチルホルムアミド300[mL]に溶解し、85[℃]で3[時間]還流後攪拌を行った。析出した固体を遠心分離機で回収し、エタノールで洗浄した。その後、100[℃]で3[時間]真空乾燥を行い、目的物である{Cu(OOC−C−COO)−1/2C12を得た。
Terephthalic acid as Example 3 {Cu (OOC-C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} n synthetic organic ligand, triethylenediamine as a bridging ligand, acetate as a metal salt Copper monohydrate was used. First, 0.83 [g] terephthalic acid, 0.56 [g] triethylenediamine and 1.00 [g] copper acetate monohydrate were added to dimethylformamide 300 in the presence of 6.0 [mL] acetic acid as a catalyst. It melt | dissolved in [mL], and stirred after recirculation | reflux at 85 [degreeC] for 3 [hours]. The precipitated solid was collected with a centrifuge and washed with ethanol. Thereafter, 100 [° C.] at 3 [time] and vacuum dried to obtain the desired product {Cu (OOC-C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} n.

実施例4 {Cu(OOC−C106−COO)−1/2C12の合成
有機配位子としてナフタレンジカルボン酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。まず、2,6−ナフタレンジカルボン酸0.83[g]、トリエチレンジアミン0.45[g]、酢酸銅一水和物0.80[g]を、触媒である蟻酸3.0[mL]存在下でジメチルホルムアミド300[mL]に溶解し、85[℃]で3[時間]還流後攪拌を行った。析出した固体を遠心分離機で回収し、エタノールで洗浄した。その後、100[℃]で3[時間]真空乾燥を行い、目的物である{Cu(OOC−C10−COO)−1/2C12を得た。
EXAMPLE 4 {Cu (OOC-C 10 H 6 -COO) -1 / 2C 6 H 12 N 2} naphthalene dicarboxylic acid as n synthetic organic ligand, triethylenediamine as a bridging ligand, metal salt Copper acetate monohydrate was used. First, 2,6-naphthalenedicarboxylic acid 0.83 [g], triethylenediamine 0.45 [g], copper acetate monohydrate 0.80 [g], and formic acid 3.0 [mL] are present. It melt | dissolved in dimethylformamide 300 [mL] below, and stirred after refluxing at 85 [degreeC] for 3 [hours]. The precipitated solid was collected with a centrifuge and washed with ethanol. Thereafter, vacuum drying was performed at 100 [° C.] for 3 [hours] to obtain {Cu (OOC—C 10 H 6 —COO) -1 / 2C 6 H 12 N 2 } n which is the target product.

実施例5 {Cu(OOC−C106−COO)−1/2C12の合成
有機配位子としてナフタレンジカルボン酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。まず、2,6−ナフタレンジカルボン酸0.83[g]、トリエチレンジアミン0.45[g]、酢酸銅一水和物0.80[g]を、触媒である酢酸6.0[mL]存在下でジメチルホルムアミド300[mL]に溶解し、85[℃]で5[時間]還流後攪拌を行った。析出した固体を遠心分離機で回収し、エタノールで洗浄した。その後、100[℃]で3[時間]真空乾燥を行い、目的物である{Cu(OOC−C10−COO)−1/2C12を得た。
Naphthalene dicarboxylic acid as Example 5 {Cu (OOC-C 10 H 6 -COO) -1 / 2C 6 H 12 N 2} n synthetic organic ligand, triethylenediamine as a bridging ligand, metal salt Copper acetate monohydrate was used. First, 2,6-naphthalenedicarboxylic acid 0.83 [g], triethylenediamine 0.45 [g], copper acetate monohydrate 0.80 [g], and acetic acid 6.0 [mL] are present. It melt | dissolved in dimethylformamide 300 [mL] below, and stirred after refluxing at 85 [degreeC] for 5 [hours]. The precipitated solid was collected with a centrifuge and washed with ethanol. Thereafter, vacuum drying was performed at 100 [° C.] for 3 [hours] to obtain {Cu (OOC—C 10 H 6 —COO) -1 / 2C 6 H 12 N 2 } n which is the target product.

実施例6{Cu(OOC−C−C−COO)−1/2C12の合成
有機配位子としてビフェニルジカルボン酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。まず、4,4‘−ビフェニルジカルボン酸0.97[g]、トリエチレンジアミン0.90[g]、酢酸銅一水和物0.80[g]を、触媒である蟻酸4.5[mL]存在下でジメチルホルムアミド300[mL]に溶解し、85[℃]で5[時間]還流後攪拌を行った。析出した固体を遠心分離機で回収し、エタノールで洗浄した。その後、100[℃]で3[時間]真空乾燥を行い、目的物である{Cu(OOC−C−C−COO)−1/2C12を得た。
Biphenyl dicarboxylic acid as Example 6 {Cu (OOC-C 6 H 4 -C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} n synthetic organic ligand, triethylenediamine as bridging ligand Was used as a metal salt. First, 0.94 [g] of 4,4′-biphenyldicarboxylic acid, 0.90 [g] of triethylenediamine and 0.80 [g] of copper acetate monohydrate were added to formic acid 4.5 [mL] as a catalyst. In the presence, it was dissolved in dimethylformamide 300 [mL], stirred at 85 [° C.] for 5 hours, and then stirred. The precipitated solid was collected with a centrifuge and washed with ethanol. Then, vacuum drying is performed at 100 [° C.] for 3 [hours] to obtain {Cu (OOC—C 6 H 4 —C 6 H 4 —COO) −1 / 2C 6 H 12 N 2 } n which is the target product. It was.

比較例1 {Cu(OOC−C−COO)−1/2C12の合成
有機配位子としてテレフタル酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。酢酸銅一水和物0.12[mg]をエタノール30[mL]に溶解したもの、テレフタル酸0.17 [g]、蟻酸1[mL]をメタノール20[mL]に溶解したものを室温で混合攪拌し、4日間静置した。その後、沈殿物を吸引濾過した。沈殿物とトリエチレンジアミン0.06[g]をジメチルホルムアミド20[mL]に溶解し、3[時間]還流後攪拌を行った。析出した固体を吸引濾過し、メタノールで洗浄した。その後、120[℃]で2[時間]真空乾燥を行い、目的物である{Cu(OOC−C−COO)−1/2C12}n0.15[mg]を得た。
Comparative Example 1 {Cu (OOC-C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} terephthalic acid as n synthetic organic ligand, triethylenediamine as a bridging ligand, acetate as a metal salt Copper monohydrate was used. Copper acetate monohydrate 0.12 [mg] dissolved in ethanol 30 [mL], terephthalic acid 0.17 [g], formic acid 1 [mL] dissolved in methanol 20 [mL] at room temperature The mixture was stirred and allowed to stand for 4 days. Thereafter, the precipitate was suction filtered. The precipitate and 0.06 [g] triethylenediamine were dissolved in 20 [mL] dimethylformamide, and stirred for 3 [hours] after refluxing. The precipitated solid was filtered with suction and washed with methanol. Thereafter, vacuum drying is performed at 120 [° C.] for 2 [hours] to obtain {Cu (OOC—C 6 H 4 —COO) -1 / 2C 6 H 12 N 2 } n0.15 [mg] which is the target product. It was.

比較例2 {Cu(OOC−C10−COO)−1/2C12の合成
有機配位子としてナフタレンジカルボン酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。酢酸銅一水和物をエタノールに溶解したもの、ナフタレンジカルボン酸、蟻酸をメタノールに溶解したものを室温で混合攪拌し、4日間静置した。その後、沈殿物を吸引濾過した。沈殿物とトリエチレンジアミンをジメチルホルムアミドに溶解し、3[時間]還流後攪拌を行った。析出した固体を吸引濾過し、メタノールで洗浄した。その後、120[℃]で2[時間]真空乾燥を行い、目的物である{Cu(OOC−C10−COO)−1/2C12を得た。
Comparative Example 2 {Cu (OOC-C 10 H 6 -COO) -1 / 2C 6 H 12 N 2} naphthalene dicarboxylic acid as n synthetic organic ligand, triethylenediamine as a bridging ligand, metal salt Copper acetate monohydrate was used. A solution of copper acetate monohydrate dissolved in ethanol, naphthalene dicarboxylic acid, and formic acid dissolved in methanol were mixed and stirred at room temperature, and allowed to stand for 4 days. Thereafter, the precipitate was suction filtered. The precipitate and triethylenediamine were dissolved in dimethylformamide, stirred for 3 hours after refluxing. The precipitated solid was filtered with suction and washed with methanol. Thereafter, 120 [° C.] in two hours followed by vacuum drying to obtain the desired product {Cu (OOC-C 10 H 6 -COO) -1 / 2C 6 H 12 N 2} n.

比較例3{Cu(OOC−C−C−COO)−1/2C12の合成
有機配位子としてビフェニルジカルボン酸を、架橋配位子としてトリエチレンジアミンを、金属塩として酢酸銅一水和物を用いた。酢酸銅一水和物をエタノールに溶解したもの、ビフェニルジカルボン酸、蟻酸をメタノールに溶解したものを室温で混合攪拌し、4日間静置した。その後、沈殿物を吸引濾過した。沈殿物とトリエチレンジアミンをジメチルホルムアミドに溶解し、3[時間]還流後攪拌を行った。析出した固体を吸引濾過し、メタノールで洗浄した。その後、120[℃]で2[時間]真空乾燥を行い、目的物である{Cu(OOC−C−C−COO)−1/2C12を得た。
Comparative Example 3 {Cu (OOC-C 6 H 4 -C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} triethylenediamine biphenyl dicarboxylic acid as synthetic organic ligand n, as bridging ligand Was used as a metal salt. A solution of copper acetate monohydrate dissolved in ethanol, biphenyldicarboxylic acid, and formic acid dissolved in methanol were mixed and stirred at room temperature, and allowed to stand for 4 days. Thereafter, the precipitate was suction filtered. The precipitate and triethylenediamine were dissolved in dimethylformamide, stirred for 3 hours after refluxing. The precipitated solid was filtered with suction and washed with methanol. Thereafter, 120 [° C.] in two hours followed by vacuum drying, to give a the desired product {Cu (OOC-C 6 H 4 -C 6 H 4 -COO) -1 / 2C 6 H 12 N 2} n It was.

2.有効水素吸蔵能の測定
実施例1及び比較例1で得られた試料について、有効水素吸蔵能を測定し、水素吸着性能の評価をした。測定方法は、JIS H 7201の水素吸蔵放出測定試験に従った。試料を秤量して測定用耐圧試料管に入れ、100[℃]で4[時間]真空引きして試料管内に残留しているガスを放出させて、水素が吸蔵されていない原点を得た後測定を行った。測定温度は25[℃]とした。その後大気圧まで減圧して水素放出量の確認を行った。
2. Measurement of effective hydrogen storage capacity For the samples obtained in Example 1 and Comparative Example 1, the effective hydrogen storage capacity was measured and the hydrogen adsorption performance was evaluated. The measurement method followed the hydrogen storage / release measurement test of JIS H7201. After weighing the sample and placing it in a pressure-resistant sample tube for measurement and evacuating it at 100 [° C.] for 4 [hours] to release the gas remaining in the sample tube and obtaining the origin where hydrogen is not occluded Measurements were made. The measurement temperature was 25 [° C.]. Thereafter, the pressure was reduced to atmospheric pressure, and the amount of hydrogen released was confirmed.

3.結晶構造の確認
合成した試料の結晶構造の確認にはマックスサイエンス社製X線回折装置(MXP 18VAHF)を用い、電圧40[kV]、電流300[mA]、X線波長CuKαで測定を行った。
3. Confirmation of crystal structure To confirm the crystal structure of the synthesized sample, an X-ray diffractometer (MXP 18VAHF) manufactured by Max Science was used, and measurement was performed at a voltage of 40 [kV], a current of 300 [mA], and an X-ray wavelength of CuKα. .

4.組成の確認
合成した試料の組成は、元素分析により確認した。炭素、水素、窒素の確認にはJPI-5S-65-2004に記載の方法を用い、金属元素の確認には誘導結合プラズマ発光分光分析法を用いた。
4). Confirmation of composition The composition of the synthesized sample was confirmed by elemental analysis. The method described in JPI-5S-65-2004 was used for confirmation of carbon, hydrogen, and nitrogen, and inductively coupled plasma emission spectroscopy was used for confirmation of metal elements.

5.BET比表面積の確認
合成した試料の表面積測定にはマイクロメリティックス社製、比表面積・細孔分布測定装置(ASAP−2010)を用い、窒素吸着BET多点法にて評価した。測定前に60[℃]で15[時間]の減圧脱ガス処理を行った。
5. Confirmation of BET specific surface area The surface area of the synthesized sample was evaluated by a nitrogen adsorption BET multipoint method using a specific surface area / pore distribution measuring device (ASAP-2010) manufactured by Micromeritics. Before the measurement, vacuum degassing treatment was performed at 60 [° C.] for 15 [hours].

6.熱安定性の確認
合成した試料の組成は、理学電気社製、熱重量−示差熱同時分析装置(Thermo plus TG 8120)を用い、大気中、昇温速度4[℃/min]で室温から500[℃]までの測定を行った。
6. Confirmation of thermal stability The composition of the synthesized sample was measured by using a thermogravimetric-differential thermal simultaneous analyzer (Thermo plus TG 8120) manufactured by Rigaku Denki Co., Ltd. To 500 [° C.].

なお、本実施例における耐熱性の評価は、試料が重量減少し始めたときの温度を指標とした。試料が重量減少し始めることは、熱分解の最初の段階を意味し、この段階で三次元的多孔性骨格構造が壊れ始めることから、表面積の低下や活性の低下等により、ガスを吸蔵する能力が低下するからである。このような熱分析における重量減少の最初のピークを指標とする耐熱性は、一般の耐熱性の指標である、材料が完全に熱分解するときの温度とは、指標が異なるものである。   In addition, evaluation of the heat resistance in a present Example set temperature as a parameter | index when a sample began to reduce weight. When the sample begins to lose weight, it means the first stage of pyrolysis, and since the three-dimensional porous framework structure starts to break at this stage, the ability to occlude gas due to a decrease in surface area, a decrease in activity, etc. This is because of a decrease. The heat resistance with the first peak of weight loss in such thermal analysis as an index is different from the temperature at which a material is completely thermally decomposed, which is a general heat resistance index.

実施例1、実施例4、実施例5及び比較例1で得られた試料のBET比表面積、室温かつ測定圧力10[MPa]における水素吸蔵能及び耐熱性を表1に示す。

Figure 2008208110
Table 1 shows the BET specific surface area, the hydrogen storage capacity and the heat resistance at room temperature and a measurement pressure of 10 [MPa] for the samples obtained in Example 1, Example 4, Example 5, and Comparative Example 1.
Figure 2008208110

比較例1と比較し、実施例1ではBET比表面積が2倍となった。このため、水素吸蔵能も2倍近く高くなった。このように、実施例1では、表面積の大きな多孔性金属錯体の製造が可能となった。また、実施例1は、比較例1との対比で耐熱性が50[℃]以上向上した。そのため、実施例1では、加熱による脱気処理等を行ってもガス吸蔵能力が低下しない、熱的安定性の高い多孔性金属錯体の製造が可能となった。更に、実施例1の製造方法では、比較例1と比較して反応に要する時間が短い他、反応に必要な溶媒の種類及び量、反応に必要な容器が少なくて済み、合成プロセスの短縮化、単位時間当たりの生産性及び収率の増加、製造コストの削減が可能となることが示唆された。   Compared with Comparative Example 1, in Example 1, the BET specific surface area was doubled. For this reason, the hydrogen storage capacity was also nearly doubled. As described above, in Example 1, it was possible to produce a porous metal complex having a large surface area. Further, in Example 1, the heat resistance was improved by 50 [° C.] or more in comparison with Comparative Example 1. Therefore, in Example 1, it became possible to produce a porous metal complex having high thermal stability, in which the gas storage capacity does not decrease even if a degassing treatment by heating is performed. Furthermore, in the production method of Example 1, the time required for the reaction is shorter than that of Comparative Example 1, and the type and amount of the solvent required for the reaction and the number of containers required for the reaction are reduced, thereby shortening the synthesis process. It was suggested that productivity and yield per unit time can be increased and manufacturing cost can be reduced.

実施例4は、比較例1との対比でBET比表面積が2.4倍となった。このため、水素吸蔵能も2倍以上高くなった。また、耐熱性も向上した。このように、実施例4では、実施例1同様に、水素吸蔵能が高く、耐熱性に優れる多孔性金属錯体の製造が可能となり、また、単位時間当たりの生産性及び収率の増加が可能となることが示唆された。   In Example 4, the BET specific surface area was 2.4 times that of Comparative Example 1. For this reason, the hydrogen storage capacity was also more than doubled. In addition, heat resistance was improved. Thus, in Example 4, as in Example 1, it is possible to produce a porous metal complex having a high hydrogen storage capacity and excellent heat resistance, and it is possible to increase productivity and yield per unit time. It was suggested that

実施例5は、比較例1との対比でBET比表面積が3.1倍となった。このため、水素吸蔵能も2.3倍高くなった。また、耐熱性も80[℃]以上向上した。このように、実施例4では、実施例1同様に、水素吸蔵能が高く、耐熱性に優れる多孔性金属錯体の製造が可能となり、また、単位時間当たりの生産性及び収率の増加が可能となることが示唆された。   In Example 5, as compared with Comparative Example 1, the BET specific surface area was 3.1 times. For this reason, the hydrogen storage capacity also increased 2.3 times. Moreover, the heat resistance was improved by 80 [° C.] or more. As described above, in Example 4, as in Example 1, it is possible to produce a porous metal complex having a high hydrogen storage capacity and excellent heat resistance, and it is possible to increase productivity and yield per unit time. It was suggested that

また、実施例5と実施例4との比較により、触媒に酢酸を用いた実施例5は、蟻酸を用いた実施例4よりも更にBET比表面積が大きく、水素吸蔵能が高く、耐熱性が高いことが分かる。特に耐熱性が80[℃]向上しており、酢酸の使用が、熱的安定性に優れる多孔性金属錯体の製造に好適であることが判明した。   Further, in comparison between Example 5 and Example 4, Example 5 using acetic acid as a catalyst has a larger BET specific surface area, higher hydrogen storage capacity, and higher heat resistance than Example 4 using formic acid. I understand that it is expensive. In particular, the heat resistance has been improved by 80 [° C.], and it has been found that the use of acetic acid is suitable for the production of a porous metal complex having excellent thermal stability.

実施例1の試料の結晶構造の確認を、X線回折装置で行った結果を図3に示す。図3(a)が解析結果のチャート図で、図3(b)が、実施例1の目的物であるテレフタル酸銅−DABCOの理論的なシミュレーションピークのチャート図である。図3(a)及び図3(b)との対比により、実施例1は、目的物であるテレフタル酸銅−DABCOの構造のものが得られていることが確認された。   The result of confirming the crystal structure of the sample of Example 1 with an X-ray diffractometer is shown in FIG. FIG. 3A is a chart of the analysis results, and FIG. 3B is a chart of theoretical simulation peaks of copper terephthalate-DABCO, which is the object of Example 1. By comparison with FIG. 3 (a) and FIG. 3 (b), it was confirmed that Example 1 had a structure of copper terephthalate-DABCO, which was the target product.

実施例4の試料の結晶構造の確認を、X線回折装置で行った結果を図4に示す。図4から、実施例4は、目的物であるナフタレンジカルボン酸銅−DABCOのものが得られていることが確認された。   The result of confirming the crystal structure of the sample of Example 4 with an X-ray diffractometer is shown in FIG. From FIG. 4, it was confirmed that Example 4 obtained the target product of copper naphthalenedicarboxylate-DABCO.

実施例1及び実施例4の試料の組成の確認を、元素分析により行った結果を表2及び表3にそれぞれ示す。

Figure 2008208110
Figure 2008208110
The results of confirmation of the composition of the samples of Example 1 and Example 4 by elemental analysis are shown in Table 2 and Table 3, respectively.
Figure 2008208110
Figure 2008208110

表2に示した実施例1のテレフタル酸銅−DABCOについて、理論値と測定値とは、ほぼ同じ値であり、実施例1では、目的物であるテレフタル酸銅−DABCOが得られていることが分かる。   About the copper terephthalate-DABCO of Example 1 shown in Table 2, a theoretical value and a measured value are substantially the same value, and the terephthalic acid copper-DABCO which is a target object is obtained in Example 1. I understand.

また、表3に示した実施例4のナフタレンジカルボン酸銅−DABCOについて、理論値と測定値とは、ほぼ同じ値であり、実施例4では、目的物であるナフタレンジカルボン酸銅−DABCOが得られていることが分かる。   Moreover, about the naphthalene dicarboxylic acid copper-DABCO of Example 4 shown in Table 3, a theoretical value and a measured value are substantially the same value, and in Example 4, the naphthalene dicarboxylic acid copper-DABCO which is a target object is obtained. You can see that

以上、本実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the present embodiment has been described above, it should not be understood that the description and the drawings, which form part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

多孔性金属錯体の三次元構造を示す模式図である。It is a schematic diagram which shows the three-dimensional structure of a porous metal complex. (a)本発明の実施の形態に係る反応の一例を示す図である。(b)従来例における反応を示す図である。(A) It is a figure which shows an example of reaction which concerns on embodiment of this invention. (B) It is a figure which shows the reaction in a prior art example. 実施例の試料のX線回折解析結果を示す図である。It is a figure which shows the X-ray-diffraction analysis result of the sample of an Example. 実施例の試料のX線回折解析結果を示す図である。It is a figure which shows the X-ray-diffraction analysis result of the sample of an Example.

符号の説明Explanation of symbols

1 三次元的多孔性骨格構造
2 中心金属
3 配位結合部
4 架橋配位子
M1 二次元格子構造
GP1 空隙
1 Three-dimensional porous skeleton structure 2 Central metal 3 Coordination bond 4 Bridged ligand M1 Two-dimensional lattice structure GP1 Void

Claims (31)

中心金属と、前記中心金属に配位し、カルボキシレート基を有する有機配位子とを備える金属錯体の三次元的多孔性骨格構造を含む多孔性金属錯体の製造方法であって、
前記中心金属の塩と前記有機配位子となる化合物とを同じ溶媒に溶解させた溶液を、同じ反応容器内で反応させることを特徴とする多孔性金属錯体の製造方法。
A method for producing a porous metal complex comprising a three-dimensional porous skeleton structure of a metal complex comprising a central metal and an organic ligand coordinated to the central metal and having a carboxylate group,
A method for producing a porous metal complex, comprising reacting a solution in which a salt of a central metal and a compound serving as an organic ligand are dissolved in the same solvent in the same reaction vessel.
前記反応を触媒存在下で行うことを特徴とする請求項1に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 1, wherein the reaction is performed in the presence of a catalyst. 前記反応において、前記中心金属に2座配位可能な架橋配位子となる化合物を加えることを特徴とする請求項1又は請求項2に記載の多孔性金属錯体の製造方法。   3. The method for producing a porous metal complex according to claim 1, wherein a compound serving as a bridging ligand capable of bidentate coordination is added to the central metal in the reaction. 前記架橋配位子は、トリエチレンジアミン又はピラジンを含むことを特徴とする請求項3に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 3, wherein the bridging ligand contains triethylenediamine or pyrazine. 前記溶媒は、1種の溶媒からなることを特徴とする請求項1乃至請求項4のいずれか一項に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to any one of claims 1 to 4, wherein the solvent comprises one type of solvent. 前記中心金属の塩、前記有機配位子となる化合物、及び前記架橋配位子となる化合物は、前記溶媒に対する溶解度が、それぞれ0.001[mol/L]以上であることを特徴とする請求項3乃至請求項5のいずれか一項に記載の多孔性金属錯体の製造方法。   The central metal salt, the compound serving as the organic ligand, and the compound serving as the bridging ligand each have a solubility in the solvent of 0.001 [mol / L] or more. The manufacturing method of the porous metal complex as described in any one of Claims 3 thru | or 5. 前記溶媒は、N,N’−ジメチルホルムアミド、N,N’-ジエチルホルムアミド、ピリジン、N−メチル−2−ピロリジノン及び水を含む溶媒群から選択される溶媒を含むことを特徴とする請求項1乃至請求項6のいずれか一項に記載の多孔性金属錯体の製造方法。   The said solvent contains the solvent selected from the solvent group containing N, N'-dimethylformamide, N, N'-diethylformamide, pyridine, N-methyl-2-pyrrolidinone, and water. The manufacturing method of the porous metal complex as described in any one of thru | or 6. 前記触媒は、有機酸を含むことを特徴とする請求項2乃至請求項7のいずれか一項に記載の多孔性金属錯体の製造方法。   The said catalyst contains an organic acid, The manufacturing method of the porous metal complex as described in any one of Claim 2 thru | or 7 characterized by the above-mentioned. 前記有機酸は、蟻酸、酢酸及びプロピオン酸から選択される有機酸を含むことを特徴とする請求項8に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 8, wherein the organic acid includes an organic acid selected from formic acid, acetic acid, and propionic acid. 前記有機酸は、酢酸を含むことを特徴とする請求項8に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 8, wherein the organic acid includes acetic acid. 前記有機配位子となる化合物は、次の一般式(I)
(HOOC)n1−R−(COOH)n2 ・・・(I)
(ただし、Rはアルキレン基、アルキニレン基、アルケニレン基又はアリーレン基を示し、前記Rは置換基を含んでもよく、n1及びn2は整数を示し、1≦n1≦8、0≦n2≦8である。)で表されるカルボン酸を含むことを特徴とする請求項1乃至請求項10のいずれか一項に記載の多孔性金属錯体の製造方法。
The compound to be the organic ligand is represented by the following general formula (I)
(HOOC) n1- R- (COOH) n2 (I)
(However, R represents an alkylene group, an alkynylene group, an alkenylene group, or an arylene group, the R may include a substituent, n1 and n2 represent integers, and 1 ≦ n1 ≦ 8 and 0 ≦ n2 ≦ 8. The method for producing a porous metal complex according to any one of claims 1 to 10, comprising a carboxylic acid represented by the formula:
1≦n1+n2≦4であることを特徴とする請求項11に記載の多孔性金属錯体の製造方法。   It is 1 <= n1 + n2 <= 4, The manufacturing method of the porous metal complex of Claim 11 characterized by the above-mentioned. 前記Rは、次の一般式(II)〜(XI)
Figure 2008208110
のいずれか一つで表される置換基を含むことを特徴とする請求項11又は請求項12に記載の多孔性金属錯体の製造方法。
R represents the following general formulas (II) to (XI)
Figure 2008208110
The manufacturing method of the porous metal complex of Claim 11 or Claim 12 containing the substituent represented by any one of these.
前記Rは、炭素をヘテロ元素に置換した複素環を含むことを特徴とする請求項11又は請求項12に記載の多孔性金属錯体の製造方法。   13. The method for producing a porous metal complex according to claim 11, wherein R includes a heterocyclic ring in which carbon is substituted with a hetero element. 前記複素環は、環骨格内にN、O、S、P、B、As、Si、Sb及びHgを含む元素群から選択される元素を含むことを特徴とする請求項14に記載の多孔性金属錯体の製造方法。   The porous structure according to claim 14, wherein the heterocyclic ring includes an element selected from an element group including N, O, S, P, B, As, Si, Sb, and Hg in the ring skeleton. A method for producing a metal complex. 前記Rは、次の一般式(XII)〜(XXXVII)
Figure 2008208110
のいずれか一つで表される置換基を含むことを特徴とする請求項15に記載の多孔性金属錯体の製造方法。
R represents the following general formulas (XII) to (XXXVII)
Figure 2008208110
The method for producing a porous metal complex according to claim 15, comprising a substituent represented by any one of the following:
前記中心金属の塩は、2〜4価の金属を含む金属群から選択される金属を含むことを特徴とする請求項1乃至請求項16のいずれか一項に記載の多孔性金属錯体の製造方法。   The porous metal complex according to any one of claims 1 to 16, wherein the salt of the central metal includes a metal selected from a metal group including a divalent to tetravalent metal. Method. 前記中心金属の塩は、2価又は3価の金属を含むことを特徴とする請求項17に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to claim 17, wherein the salt of the central metal contains a divalent or trivalent metal. 前記中心金属の塩は、Cu、Zn、Mo、Ru、Ni、Rh、Al、Cr、Re、Mn、Fe、Co、Pd、Cd、Tb、W及びPtを含む金属群から選択される金属を含むことを特徴とする請求項18に記載の多孔性金属錯体の製造方法。   The salt of the central metal is a metal selected from a metal group including Cu, Zn, Mo, Ru, Ni, Rh, Al, Cr, Re, Mn, Fe, Co, Pd, Cd, Tb, W, and Pt. The method for producing a porous metal complex according to claim 18, comprising: 前記中心金属の塩は、硝酸塩、硫酸塩、酢酸塩、炭酸塩及び蟻酸塩を含む金属塩群から選択される金属塩を含むことを特徴とする請求項17乃至請求項19のいずれか一項に記載の多孔性金属錯体の製造方法。   The salt of the central metal includes a metal salt selected from a group of metal salts including nitrate, sulfate, acetate, carbonate, and formate. A method for producing the porous metal complex according to 1. 前記中心金属の塩は、酢酸塩を含むことを特徴とする請求項17乃至請求項19のいずれか一項に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to any one of claims 17 to 19, wherein the salt of the central metal includes an acetate salt. 前記反応は、反応溶液に超音波を照射することを含むことを特徴とする請求項1乃至請求項21のいずれか一項に記載の多孔性金属錯体の製造方法。   The method for producing a porous metal complex according to any one of claims 1 to 21, wherein the reaction includes irradiating a reaction solution with ultrasonic waves. 請求項1乃至請求項22のいずれか一項に係る多孔性金属錯体の製造方法により得られたことを特徴とする多孔性金属錯体。   A porous metal complex obtained by the method for producing a porous metal complex according to any one of claims 1 to 22. 前記多孔性金属錯体は、前記溶媒を残留物として含むことを特徴とする請求項23に記載の多孔性金属錯体。   The porous metal complex according to claim 23, wherein the porous metal complex contains the solvent as a residue. 前記多孔性金属錯体は、BET比表面積が1000[m/g]以上であることを特徴とする請求項23又は請求項24に記載の多孔性金属錯体。 The porous metal complex according to claim 23 or 24, wherein the porous metal complex has a BET specific surface area of 1000 [m 2 / g] or more. 前記多孔性金属錯体は、BET比表面積が1500[m/g]以上であることを特徴とする請求項25に記載の多孔性金属錯体。 The porous metal complex according to claim 25, wherein the porous metal complex has a BET specific surface area of 1500 [m 2 / g] or more. 前記骨格構造内に取り込まれた気体又は液体を有することを特徴とする請求項23乃至請求項26のいずれか一項に記載の多孔性金属錯体。   27. The porous metal complex according to any one of claims 23 to 26, comprising a gas or a liquid taken into the skeleton structure. 請求項23乃至請求項27のいずれか一項に係る多孔性金属錯体を含むことを特徴とする吸着材。   An adsorbent comprising the porous metal complex according to any one of claims 23 to 27. 請求項23乃至請求項27のいずれか一項に係る多孔性金属錯体を含むことを特徴とする分離材。   A separator comprising the porous metal complex according to any one of claims 23 to 27. 請求項23乃至請求項27のいずれか一項に係る多孔性金属錯体を含むことを特徴とするガス吸着材。   A gas adsorbent comprising the porous metal complex according to any one of claims 23 to 27. 請求項23乃至請求項27のいずれか一項に係る多孔性金属錯体を含むことを特徴とする水素吸着材。   A hydrogen adsorbent comprising the porous metal complex according to any one of claims 23 to 27.
JP2007245762A 2007-01-31 2007-09-21 Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent Active JP5305278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245762A JP5305278B2 (en) 2007-01-31 2007-09-21 Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007021373 2007-01-31
JP2007021373 2007-01-31
JP2007245762A JP5305278B2 (en) 2007-01-31 2007-09-21 Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent

Publications (2)

Publication Number Publication Date
JP2008208110A true JP2008208110A (en) 2008-09-11
JP5305278B2 JP5305278B2 (en) 2013-10-02

Family

ID=39784738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245762A Active JP5305278B2 (en) 2007-01-31 2007-09-21 Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent

Country Status (1)

Country Link
JP (1) JP5305278B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035493A (en) * 2007-07-31 2009-02-19 Honda Motor Co Ltd Method for producing metal complex
JP2010013393A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Porous metal complex, manufacturing method of porous metal complex, adsorbing material, separating material and hydrogen-adsorbing material
JP2011195575A (en) * 2010-02-24 2011-10-06 Kuraray Co Ltd Metal complex and production method thereof
JP2013040128A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and adsorbing material and occluding material each comprising the same
WO2013084826A1 (en) * 2011-12-07 2013-06-13 株式会社クラレ Metal complex, and adsorbent material, storage material and separator material each comprising same
WO2014007179A1 (en) 2012-07-02 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
JP2014046260A (en) * 2012-08-31 2014-03-17 Toyobo Co Ltd Siloxane gas removing material
WO2015030045A1 (en) * 2013-08-30 2015-03-05 国立大学法人東北大学 Porous metal wire, film containing same, and methods for manufacturing same
JP2017048145A (en) * 2015-09-02 2017-03-09 株式会社クラレ Metal complex as well as adsorbent, occlusion material and separation material comprising the same
CN107056824A (en) * 2017-04-24 2017-08-18 桂林理工大学 Preparation, structure and the photoluminescent property of terephthalic acid (TPA) Zn complex
JP2021116504A (en) * 2020-01-29 2021-08-10 平岡織染株式会社 Deodorant antibacterial sheet-like material and method for manufacturing the same
JP2022502430A (en) * 2018-09-28 2022-01-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Control of metal-organic framework phase and crystallite shape

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132580A (en) * 1995-11-13 1997-05-20 Osaka Gas Co Ltd New dicarboxylic acid copper complex, gas-storage apparatus and gas-fueled automobile
JP2000109485A (en) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd New three-dimensional type organometallic complex and gas-adsorptive material
JP2000210559A (en) * 1999-01-22 2000-08-02 Osaka Gas Co Ltd Gas storable organic metal complex, manufacture thereof and gas storage device
JP2001348361A (en) * 2000-04-04 2001-12-18 Osaka Gas Co Ltd New three-dimensional organometallic complex and gas adsorptive material
JP2003342260A (en) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbing material and separating material
JP2005093181A (en) * 2003-09-16 2005-04-07 Toyota Central Res & Dev Lab Inc Three dimensional polymer complex, and porous hydrogen storage material made of same
JP2006290774A (en) * 2005-04-08 2006-10-26 Honda Motor Co Ltd Method for producing metal-organic skeleton structure
JP2006328050A (en) * 2005-04-25 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
JP2006341188A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Volatile organic compound adsorbent and hydrogen occlusion material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132580A (en) * 1995-11-13 1997-05-20 Osaka Gas Co Ltd New dicarboxylic acid copper complex, gas-storage apparatus and gas-fueled automobile
JP2000109485A (en) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd New three-dimensional type organometallic complex and gas-adsorptive material
JP2000210559A (en) * 1999-01-22 2000-08-02 Osaka Gas Co Ltd Gas storable organic metal complex, manufacture thereof and gas storage device
JP2001348361A (en) * 2000-04-04 2001-12-18 Osaka Gas Co Ltd New three-dimensional organometallic complex and gas adsorptive material
JP2003342260A (en) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd Three-dimensional metal complex, adsorbing material and separating material
JP2005093181A (en) * 2003-09-16 2005-04-07 Toyota Central Res & Dev Lab Inc Three dimensional polymer complex, and porous hydrogen storage material made of same
JP2006290774A (en) * 2005-04-08 2006-10-26 Honda Motor Co Ltd Method for producing metal-organic skeleton structure
JP2006328050A (en) * 2005-04-25 2006-12-07 Nissan Motor Co Ltd Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent, and hydrogen adsorbent
JP2006341188A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Volatile organic compound adsorbent and hydrogen occlusion material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035493A (en) * 2007-07-31 2009-02-19 Honda Motor Co Ltd Method for producing metal complex
JP2010013393A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Porous metal complex, manufacturing method of porous metal complex, adsorbing material, separating material and hydrogen-adsorbing material
JP2011195575A (en) * 2010-02-24 2011-10-06 Kuraray Co Ltd Metal complex and production method thereof
JP2013040128A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and adsorbing material and occluding material each comprising the same
WO2013084826A1 (en) * 2011-12-07 2013-06-13 株式会社クラレ Metal complex, and adsorbent material, storage material and separator material each comprising same
US9586170B2 (en) 2012-07-02 2017-03-07 Kuraray Co., Ltd. Metal complex, and adsorbent material, storage material and separation material comprising metal complex
WO2014007179A1 (en) 2012-07-02 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
JP2014046260A (en) * 2012-08-31 2014-03-17 Toyobo Co Ltd Siloxane gas removing material
WO2015030045A1 (en) * 2013-08-30 2015-03-05 国立大学法人東北大学 Porous metal wire, film containing same, and methods for manufacturing same
JPWO2015030045A1 (en) * 2013-08-30 2017-03-02 国立大学法人東北大学 Porous metal wire, film containing the same, and manufacturing method thereof
JP2017048145A (en) * 2015-09-02 2017-03-09 株式会社クラレ Metal complex as well as adsorbent, occlusion material and separation material comprising the same
CN107056824A (en) * 2017-04-24 2017-08-18 桂林理工大学 Preparation, structure and the photoluminescent property of terephthalic acid (TPA) Zn complex
JP2022502430A (en) * 2018-09-28 2022-01-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Control of metal-organic framework phase and crystallite shape
JP2021116504A (en) * 2020-01-29 2021-08-10 平岡織染株式会社 Deodorant antibacterial sheet-like material and method for manufacturing the same
JP7290330B2 (en) 2020-01-29 2023-06-13 平岡織染株式会社 Deodorant antibacterial sheet-like material and method for producing the same

Also Published As

Publication number Publication date
JP5305278B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5305278B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
KR100680767B1 (en) A preparation method of porous organic inorganic hybrid materials
US8168813B2 (en) Porous organic-inorganic hybrid materials and adsorbent comprising the same
JP5646789B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP2007277106A (en) Porous metal complex, method for producing the same, adsorbent, separating agent, gas adsorbent, and hydrogen adsorbent
JP5965643B2 (en) Process for producing metal organic structure type crystalline porous aluminum aromatic azocarboxylate
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
JP2006503946A (en) Process for producing polyalkylene carbonate
JP5437554B2 (en) Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
JP5176286B2 (en) Method for producing porous metal complex
EP3529252B1 (en) A crystalline metal organic framework
JP2008266269A (en) Porous metal complex, method for producing porous metal complex, adsorbent, separating material, gas adsorbent, and catalyst material
Jiao et al. A porous metal–organic framework based on an asymmetric angular diisophthalate for selective adsorption of C 2 H 2 and CO 2 over CH 4
JP2000210559A (en) Gas storable organic metal complex, manufacture thereof and gas storage device
JP2005232109A (en) Method for producing polycarboxylic acid metal complex
CN114656648A (en) Rapid preparation method of metal organic framework material and metal organic framework composite material
JP5245208B2 (en) Method for producing porous metal complex
JP5213242B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, and hydrogen adsorbent
JP5292679B2 (en) Method for producing porous metal complex as hydrogen storage material
JP6525686B2 (en) Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6591728B2 (en) Polymer complex containing bent ligand, gas adsorbent using the same, gas separation device and gas storage device
JP5403505B2 (en) Method for producing self-assembled metal complex crystals
JP5759175B2 (en) Gas adsorption material, precursor thereof, and method for producing gas adsorption material
Ayyavu et al. The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis
JP6676406B2 (en) Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350