JP2008207999A - Method for manufacturing piezoelectric ceramic composition - Google Patents

Method for manufacturing piezoelectric ceramic composition Download PDF

Info

Publication number
JP2008207999A
JP2008207999A JP2007046891A JP2007046891A JP2008207999A JP 2008207999 A JP2008207999 A JP 2008207999A JP 2007046891 A JP2007046891 A JP 2007046891A JP 2007046891 A JP2007046891 A JP 2007046891A JP 2008207999 A JP2008207999 A JP 2008207999A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic composition
alkali metal
sintering
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007046891A
Other languages
Japanese (ja)
Inventor
Shingo Uraki
信吾 浦木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007046891A priority Critical patent/JP2008207999A/en
Publication of JP2008207999A publication Critical patent/JP2008207999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a piezoelectric ceramic composition capable of sintering at a low temperature compared with a conventional sintering and capable of obtaining a dense piezoelectric ceramic composition without damaging electric characteristics. <P>SOLUTION: In the method for manufacturing the piezoelectric ceramic composition having a main component containing an alkali metal-containing niobium oxide and a sintering aid, the method for manufacturing the piezoelectric ceramic composition comprises a calcining step for calcining the main component, a mixing step for mixing a calcined powder of the main component obtained through the calcining step and the sintering aid having a compound containing an alkali metal and a sintering step for obtaining a sintered body by sintering a mixed powder obtained by the mixing step. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電磁器組成物の製造方法に関する。   The present invention relates to a method for producing a piezoelectric ceramic composition.

従来、圧電磁器組成物としては、鉛を含んだPZT(PbTiO−PbZrO)成分系磁器が用いられてきた。前記PZTは、大きな圧電性を示しかつ高い機械的品質係数を有しており、センサ、アクチュエータ、フィルター等の各用途に要求されるさまざまな特性の材料を容易に作製できるからである。また、前記PZTは高い比誘電率を有するためコンデンサ等としても利用することができる。 Conventionally, PZT (PbTiO 3 —PbZrO 3 ) component-based porcelain containing lead has been used as a piezoelectric ceramic composition. This is because the PZT exhibits a large piezoelectricity and has a high mechanical quality factor, and can easily produce materials having various characteristics required for each application such as a sensor, an actuator, and a filter. Moreover, since the PZT has a high relative dielectric constant, it can also be used as a capacitor.

ところが、前記PZTからなる圧電磁器組成物は、優れた特性を有する一方、その構成元素に鉛を含んでいるため、PZTを含んだ製品の産業廃棄物から有害な鉛が溶出し、環境汚染を引き起こすおそれがあった。そして、近年の環境問題に対する意識の高まりは、PZTのように環境汚染の原因となりうる製品の製造を困難にしてきた。   However, the piezoelectric ceramic composition made of PZT has excellent characteristics, but contains lead as a constituent element, so that harmful lead is eluted from industrial waste of products containing PZT, thereby preventing environmental pollution. There was a risk of causing it. The recent increase in awareness of environmental problems has made it difficult to manufacture products that can cause environmental pollution such as PZT.

そこで、鉛系物質等の有害物質を含有することなく高特性を備える圧電磁器組成物が要求されることになる。   Therefore, a piezoelectric ceramic composition having high properties without containing harmful substances such as lead-based substances is required.

このような鉛系物質を含まない圧電磁器組成物として、アルカリ金属含有ニオブ酸化物が知られている。   Alkali metal-containing niobium oxides are known as piezoelectric ceramic compositions that do not contain such lead-based substances.

しかしながら、前記アルカリ金属含有ニオブ酸化物は、優れた特性を有するものの材料の焼結性に劣る。そのため、材料を通常圧力で成形し焼結する、いわゆる常圧焼結法により高密度の焼結体を得ることが難しい。   However, although the said alkali metal containing niobium oxide has the outstanding characteristic, it is inferior to the sinterability of the material. Therefore, it is difficult to obtain a high-density sintered body by a so-called atmospheric sintering method in which the material is molded and sintered at normal pressure.

そこで、アルカリ金属含有ニオブ酸化物に各種の副成分を添加することによって材料の焼結性を高めることによって、常圧焼結法での焼結体の相対密度を高めんとするものが知られている(特許文献1参照)。このように焼結性が高まると、材料の成分や相が緻密化し高密度化することができる。そのため、電気特性が比較的高く得られる。   Therefore, it is known to increase the relative density of the sintered body in the atmospheric pressure sintering method by adding various subcomponents to the alkali metal-containing niobium oxide to enhance the sinterability of the material. (See Patent Document 1). When the sinterability is increased in this way, the components and phases of the material can be densified and densified. Therefore, electrical characteristics can be obtained relatively high.

特許文献1には、一般式{Li(K1−yNa1−x}(Nb1−z−wTaSb)Oで表され、かつ、x、y、z、wがそれぞれ0≦x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2の組成範囲にある化合物を主成分とする圧電磁器組成物に,Ag,Al,Au,B,Ba,Bi,Ca,Ce,Co,Cs,Cu,Dy,Er,Eu,Fe,Ga,Gd,Ge,Hf,Ho,In,Ir,La,Lu,Mg,Mn,Nd,Ni,Pd,Pr,Pt,Rb,Re,Ru,Sc,Si,Sm,Sn,Sr,Tb,Ti,Tm,V,Y,Yb,Zn,Zrから選ばれるいずれか1種以上の金属元素を添加元素として、上記添加元素の含有量の合計が、上記一般式で表される化合物1molに対して、0.0005mol〜0.15molの範囲となるように添加する圧電磁器組成物が開示され、上記金属元素を焼結助剤として添加して1000℃〜1300℃の温度で常圧焼成することにより高密度の焼結体が得られるとしている。
特開2004−244300号公報
In Patent Document 1, it is represented by the general formula {Li x (K 1−y Na y ) 1−x } (Nb 1−z−w Ta z Sb w ) O 3 , and x, y, z, w In a piezoelectric ceramic composition mainly composed of a compound having a composition range of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, and 0 <w ≦ 0.2. Al, Au, B, Ba, Bi, Ca, Ce, Co, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Any one or more selected from Nd, Ni, Pd, Pr, Pt, Rb, Re, Ru, Sc, Si, Sm, Sn, Sn, Tb, Ti, Tm, V, Y, Yb, Zn, Zr With a metal element as an additive element, the total content of the additive element is 0.000 per 1 mol of the compound represented by the above general formula. A piezoelectric ceramic composition to be added in a range of from mol to 0.15 mol is disclosed, and the metal element is added as a sintering aid and high-pressure sintering is performed at a temperature of 1000 ° C to 1300 ° C. It is said that a sintered body can be obtained.
JP 2004-244300 A

しかしながら、特許文献1に開示された金属元素を添加した場合には、十分な焼結性の改善が得られず、焼結の最高温度が1300℃に達する高温であるため、アルカリ金属含有ニオブ酸化物中のアルカリ金属が蒸発する。このため、組成制御が難しく、電気特性を一定に保つことが困難となるという問題がある。   However, when the metal element disclosed in Patent Document 1 is added, sufficient improvement in sinterability cannot be obtained, and since the maximum temperature of sintering reaches 1300 ° C., the alkali metal-containing niobium oxidation The alkali metal in the material evaporates. For this reason, there exists a problem that composition control is difficult and it becomes difficult to keep electrical characteristics constant.

また、さらなる高い電気特性を得るため焼結密度を高めるには焼結温度を上昇させるしかなく、アルカリ金属の蒸発が増加する問題があった。   Further, in order to increase the sintering density in order to obtain further high electrical characteristics, the sintering temperature must be increased, and there has been a problem that the evaporation of alkali metal increases.

そこで本発明の目的は、従来焼結に比べ低温での焼結が可能になり、電気特性を損なうことなく緻密化した圧電磁器組成物を得ることができる圧電磁器組成物の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing a piezoelectric ceramic composition that enables sintering at a lower temperature than conventional sintering and can obtain a densified piezoelectric ceramic composition without impairing electrical characteristics. There is.

本発明の上記課題は、以下の各発明により達成される。
1.
アルカリ金属含有ニオブ酸化物を含む主成分と、焼結助剤とを有する圧電磁器組成物の製造方法であって、
前記主成分を仮焼する仮焼工程と、前記仮焼工程を経て得られた前記主成分の仮焼粉と、アルカリ金属を含む化合物を有する焼結助剤とを混合する混合工程と、前記混合工程で得られた混合紛を焼成して焼結体とする焼成工程とを含むことを特徴とする圧電磁器組成物の製造方法。
2.
前記焼結体の相対密度が90%以上であることを特徴とする前記1に記載の圧電磁器組成物の製造方法。
3.
前記混合工程において、前記主成分の仮焼粉に、前記アルカリ金属を含む化合物を有する焼結助剤を混合後の混合紛全体量に対して4質量%未満となるように添加して混合することを特徴とする前記1または2に記載の圧電磁器組成物の製造方法。
4.
前記アルカリ金属含有ニオブ酸化物が、{Li(K1−yNa1−x}(Nb1−z−wTaSb)Oで表され、かつ、x、y、z、wがそれぞれ0≦x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2の組成範囲にあることを特徴とする前記1乃至3のいずれか1項に記載の圧電磁器組成物の製造方法。
5.
前記焼成を、800℃以上1000℃未満の温度範囲で行うことを特徴とする前記1乃至4のいずれか1項に記載の圧電磁器組成物の製造方法。
6.
前記アルカリ金属を含む化合物を有する焼結助剤の融点が、800℃以上1000℃未満であることを特徴とする前記1乃至5のいずれか1項に記載の圧電磁器組成物の製造方法。
7.
前記アルカリ金属を含む化合物を有する焼結助剤は、Liを含む化合物であることを特徴とする前記1乃至6のいずれか1項に記載の圧電磁器組成物の製造方法。
8.
前記Liを含む化合物は、LiBOであることを特徴とする前記7に記載の圧電磁器組成物の製造方法。
The above-described problems of the present invention are achieved by the following inventions.
1.
A method for producing a piezoelectric ceramic composition comprising a main component containing an alkali metal-containing niobium oxide and a sintering aid,
A mixing step of mixing a calcining step of calcining the main component, a calcining powder of the main component obtained through the calcining step, and a sintering aid having a compound containing an alkali metal; A method for producing a piezoelectric ceramic composition, comprising: a firing step of firing the mixed powder obtained in the mixing step to obtain a sintered body.
2.
2. The method for producing a piezoelectric ceramic composition according to 1 above, wherein a relative density of the sintered body is 90% or more.
3.
In the mixing step, the sintering aid having the compound containing the alkali metal is added to the calcined powder of the main component so as to be less than 4% by mass with respect to the total amount of the mixed powder after mixing. 3. The method for producing a piezoelectric ceramic composition as described in 1 or 2 above.
4).
Wherein the alkali metal-containing niobium oxide is represented by {Li x (K 1-y Na y) 1-x} (Nb 1-z-w Ta z Sb w) O 3, and, x, y, z, Any one of the above 1 to 3, wherein w is in the composition range of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, and 0 <w ≦ 0.2, respectively. A method for producing a piezoelectric ceramic composition as described in the item.
5.
5. The method for producing a piezoelectric ceramic composition according to any one of 1 to 4, wherein the firing is performed in a temperature range of 800 ° C. or more and less than 1000 ° C.
6).
6. The method for producing a piezoelectric ceramic composition according to any one of 1 to 5, wherein the sintering aid having a compound containing an alkali metal has a melting point of 800 ° C. or higher and lower than 1000 ° C.
7).
The method for producing a piezoelectric ceramic composition according to any one of 1 to 6, wherein the sintering aid having a compound containing an alkali metal is a compound containing Li.
8).
8. The method for producing a piezoelectric ceramic composition as described in 7 above, wherein the compound containing Li is LiBO 2 .

本発明によれば、アルカリ金属を含む化合物を有する焼結助剤の作用によって、従来焼結に比べ低温での焼結が可能になり、電気特性を損なうことなく緻密化した圧電磁器組成物を得ることができる圧電磁器組成物の製造方法を提供することができる。   According to the present invention, the action of a sintering aid having a compound containing an alkali metal enables sintering at a lower temperature than conventional sintering, and a densified piezoelectric ceramic composition without impairing electrical characteristics. The manufacturing method of the piezoelectric ceramic composition which can be obtained can be provided.

以下に、本発明に係る圧電磁器組成物の製造方法の一実施形態について説明する。   Below, one Embodiment of the manufacturing method of the piezoelectric ceramic composition which concerns on this invention is described.

本発明に係る圧電磁器組成物の製造方法は、アルカリ金属含有ニオブ酸化物を含む主成分と、焼結助剤とを有する圧電磁器組成物の製造方法であって、前記主成分を仮焼する仮焼工程と、前記仮焼工程を経て得られた前記主成分の仮焼粉と、アルカリ金属を含む化合物を有する焼結助剤とを混合する混合工程と、前記混合工程で得られた混合紛を焼成して焼結体とする焼成工程とを含むことを特徴とする。   A method for manufacturing a piezoelectric ceramic composition according to the present invention is a method for manufacturing a piezoelectric ceramic composition having a main component containing an alkali metal-containing niobium oxide and a sintering aid, and calcining the main component. A mixing step obtained by mixing a calcining step, a calcining powder of the main component obtained through the calcining step, and a sintering aid having a compound containing an alkali metal, and a mixing obtained in the mixing step. And a firing step in which the powder is fired to form a sintered body.

ここで、上記アルカリ金属含有ニオブ酸化物とは、例えば、KNbO、(K、Na)NbO、(K、Na)(Nb、Ta)O、K(Ta、Nb)O他、これらの固溶体など、Aサイトが、K、Na、Liなどに代表されるアルカリ金属一つもしくはそれ以上から構成され、BサイトがNbもしくはNbとTa、NbとSb、NbとTaとSbなど5価の元素との複数の元素から構成されているものの総称である。 Here, the alkali metal-containing niobium oxide includes, for example, KNbO 3 , (K, Na) NbO 3 , (K, Na) (Nb, Ta) O 3 , K (Ta, Nb) O 3 , etc. The A site is composed of one or more alkali metals typified by K, Na, Li and the like, and the B site is pentavalent such as Nb or Nb and Ta, Nb and Sb, Nb and Ta and Sb. It is a general term for what is composed of a plurality of elements.

また、前記アルカリ金属含有ニオブ酸化物が、{Li(K1−yNa1−x}(Nb1−z−wTaSb)Oで表され、かつ、x、y、z、wがそれぞれ0≦x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2の組成範囲になるようにすると得られる圧電磁器組成物の分極量が増加するとともに比誘電率が向上し、圧電特性に優れた圧電磁器組成物とすることができる。 Further, the alkali metal-containing niobium oxide is represented by {Li x (K 1-y Na y) 1-x} (Nb 1-z-w Ta z Sb w) O 3, and, x, y, Polarization of a piezoelectric ceramic composition obtained when z and w are in the composition ranges of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, and 0 <w ≦ 0.2, respectively. As the amount increases, the relative dielectric constant improves, and a piezoelectric ceramic composition having excellent piezoelectric characteristics can be obtained.

本実施形態においては、上記アルカリ金属含有ニオブ酸化物を含む主成分と、焼結助剤とを有する圧電磁器組成物を以下のように製造する。   In the present embodiment, a piezoelectric ceramic composition having a main component containing the alkali metal-containing niobium oxide and a sintering aid is manufactured as follows.

まず、主成分の仮焼粉を作製する。   First, the main component calcined powder is prepared.

原料として、Liを含有する化合物としては、LiCO、LiO、LiNO、LiOH等、Naを含有する化合物としては、NaCO、NaHCO、NaNO等、Kを含有する化合物としては、KNO、KNO、KNbO、KTaO等を、また、Nbを含有する化合物としては、Nb、Nb、NbO等、Taを含有する化合物としては、Ta等、Sbを含有する化合物としては、Sb、Sb、Sb等を準備する。 As a raw material, the compound containing Li includes Li 2 CO 3 , Li 2 O, LiNO 3 , LiOH, etc., and the compound containing Na includes Na 2 CO 3 , NaHCO 3 , NaNO 3, etc. Examples of the compound include K 2 NO 3 , KNO 3 , KNbO 3 , KTaO 3, etc., and examples of the compound containing Nb include Nb 2 O 5 , Nb 2 O 3 , NbO 2, etc. Prepares Sb 2 O 5 , Sb 2 O 3 , Sb 2 O 4, etc. as compounds containing Sb, such as Ta 2 O 5 .

ここで、Li、K、Naのそれぞれを含有する化合物は、Li、K、Naの炭酸塩であることが好ましい。すなわち、Liを含有する化合物としては、LiCO、Naを含有する化合物としては、NaCO、Kを含有する化合物としては、KCOが好ましい。Li、K、Naと揮発成分のみを含むので、原料の配合時に焼成後の化学量論比を容易に決定することができる。 Here, the compound containing each of Li, K, and Na is preferably a carbonate of Li, K, and Na. That is, as the compound containing Li, a compound containing Li 2 CO 3, Na Examples of the compound containing Na 2 CO 3, K, K 2 CO 3 are preferred. Since it contains only Li, K, Na and volatile components, the stoichiometric ratio after firing can be easily determined when the raw materials are blended.

原料を十分に乾燥させ、乾燥後の各原料を化学量論比に基づいて秤量し、無水アセトン中でボールミル等により混合、乾燥させる。   The raw materials are sufficiently dried, and each dried raw material is weighed based on the stoichiometric ratio, and mixed and dried in anhydrous acetone by a ball mill or the like.

続いて、この混合紛を700〜800℃程度で仮焼し、原料を分解するとともに固相熱化学反応により固溶体化する(仮焼工程)。得られた仮焼後の混合紛を、無水アセトン中で、中心粒径5μm以下の微粒子に粉砕し、乾燥して仮焼粉とする。   Subsequently, the mixed powder is calcined at about 700 to 800 ° C. to decompose the raw material and form a solid solution by a solid-phase thermochemical reaction (calcination step). The obtained mixed powder after calcining is pulverized into fine particles having a center particle size of 5 μm or less in anhydrous acetone and dried to obtain calcined powder.

以上が主成分の仮焼粉を作製する工程である。   The above is the process for producing the main component calcined powder.

次に、仮焼工程を経て得られた前記主成分の仮焼粉と、アルカリ金属を含む化合物を有する焼結助剤とを混合する(混合工程)。   Next, the calcined powder of the main component obtained through the calcining step and a sintering aid having a compound containing an alkali metal are mixed (mixing step).

本実施形態においては、主成分としてはアルカリ金属含有ニオブ酸化物を、焼結助剤としてはアルカリ金属を含む化合物を用いる。   In the present embodiment, an alkali metal-containing niobium oxide is used as the main component, and a compound containing an alkali metal is used as the sintering aid.

圧電磁器組成物に焼結助剤を添加した場合には、焼成時に主成分であるアルカリ金属含有ニオブ酸化物の格子内に焼成助剤が拡散する。しかるに、焼成助剤は、その成分が主成分の格子に取り込まれた際に、圧電磁器組成物の電気特性が低下する等の悪影響を及ぼさないものを選定する必要がある。主成分であるアルカリ金属含有ニオブ酸化物は、アルカリ金属が必須成分となるので、アルカリ金属を含む化合物を焼結助剤として用いれば、アルカリ金属が主成分の格子に取り込まれても、得られる圧電磁器組成物の電気特性等に悪影響を及ぼすことはほとんどない。   When a sintering aid is added to the piezoelectric ceramic composition, the firing aid diffuses into the lattice of the alkali metal-containing niobium oxide that is the main component during firing. However, it is necessary to select a firing aid that does not adversely affect the electrical characteristics of the piezoelectric ceramic composition when the component is incorporated into the main component lattice. The alkali metal-containing niobium oxide, which is the main component, is obtained even if the alkali metal is incorporated into the main component lattice if a compound containing the alkali metal is used as a sintering aid because the alkali metal is an essential component. There is almost no adverse effect on the electrical characteristics of the piezoelectric ceramic composition.

また、アルカリ金属含有ニオブ酸化物を主成分とする圧電磁器組成物の場合には、特にK,Na,Li等のアルカリ金属が焼成工程である程度蒸発することは避けられない。アルカリ金属を含む化合物を焼結助剤として用いれば、アルカリ金属が主成分の格子に取り込まれることで、このような焼成工程上の蒸発による組成変動を補うことができ、主成分の結晶中の格子欠陥をより少なくし、高い電気的特性を得ることができる。   Further, in the case of a piezoelectric ceramic composition mainly composed of an alkali metal-containing niobium oxide, it is inevitable that alkali metals such as K, Na and Li evaporate to some extent during the firing process. If a compound containing an alkali metal is used as a sintering aid, the alkali metal is incorporated into the main component lattice, so that the composition variation due to evaporation during the baking process can be compensated for, and Lattice defects can be reduced and high electrical characteristics can be obtained.

また、アルカリ金属を含む化合物としては、アルカリ金属の中でも焼結を促進する効果が高いLiを含む化合物が好ましい。例えば、LiCO(融点:723〜726℃)、LiBO(融点:845℃)、Li(融点:920℃)を用いることができる。 Moreover, as a compound containing an alkali metal, the compound containing Li with a high effect which accelerates | stimulates sintering among alkali metals is preferable. For example, Li 2 CO 3 (melting point: 723-726 ° C.), LiBO 2 (melting point: 845 ° C.), Li 2 B 4 O 7 (melting point: 920 ° C.) can be used.

さらに、焼結助剤の融点が800℃以上1000℃未満であることがより好ましい。例えば、LiBO(融点:845℃)、Li(融点:920℃)を用いることができる。 Furthermore, the melting point of the sintering aid is more preferably 800 ° C. or higher and lower than 1000 ° C. For example, LiBO 2 (melting point: 845 ° C.) or Li 2 B 4 O 7 (melting point: 920 ° C.) can be used.

後述するように、本発明における焼成は、800℃以上1000℃未満の温度範囲で行うことが好ましい。この工程で、焼結助剤の融点が800℃以上1000℃未満であれば、焼結助剤は、確実に液相を形成し、それらは主成分の粒子の粒界で粒子間の物質移動を促進し、焼結を進める役目をするために緻密な組織を形成する。故に、焼結助剤の融点は、焼成温度近傍であるほど焼結を促進させる効果を高めることができる。また、焼結助剤の融点が800℃未満である場合は、アルカリ金属を含む化合物の分解や蒸発により、液相の形成が不十分になり、焼結性の促進効果を十分に得られない場合がある。   As described later, the firing in the present invention is preferably performed in a temperature range of 800 ° C. or higher and lower than 1000 ° C. In this step, if the sintering aid has a melting point of 800 ° C. or higher and lower than 1000 ° C., the sintering aid will surely form a liquid phase, and they will move between particles at the grain boundaries of the main component particles. A dense structure is formed in order to promote the sintering and to promote the sintering. Therefore, as the melting point of the sintering aid is closer to the firing temperature, the effect of promoting the sintering can be enhanced. Further, when the melting point of the sintering aid is less than 800 ° C., the formation of the liquid phase becomes insufficient due to decomposition or evaporation of the compound containing the alkali metal, and the sinterability promoting effect cannot be sufficiently obtained. There is a case.

また、Liを含む化合物としては、LiBO(融点:845℃)がより好ましい。前述のように粒界近傍は粒子内に比べ、焼結助剤が多く存在することになるが、粒界に圧電性を有さない焼結助剤が多く析出すると、リーク電流が発生し分極が難しくなる場合がある。LiBOは、焼成時は、粒界近傍に多くが存在し、焼結助剤としての高い効果を発揮し、その後は、その多くが格子に取り込まれるため、分極特性の低下が少ない。 The compound containing Li, LiBO 2 (melting point: 845 ° C.) is more preferable. As described above, there are more sintering aids in the vicinity of the grain boundaries than in the grains. However, if a large amount of sintering aid that does not have piezoelectricity is precipitated at the grain boundaries, a leakage current is generated and polarization occurs. May be difficult. A large amount of LiBO 2 is present in the vicinity of the grain boundary during firing, and exhibits a high effect as a sintering aid. Thereafter, most of the LiBO 2 is taken into the lattice, so that there is little decrease in polarization characteristics.

前記焼結助剤は、その化合物を主成分に添加することが好ましいが、主成分と混合する工程においてその化合物となる原料を組み合わせて添加することとしても良い。   Although it is preferable to add the compound to the main component, the sintering aid may be added in combination with raw materials that become the compound in the step of mixing with the main component.

例えば、LiBOを主成分に添加する場合には、LiBOを準備することが好ましいが、焼結助剤の原料として、たとえば、Liを含有する化合物としてはLiO、Bを含有する化合物としてはBを準備し、十分に乾燥させ、乾燥後の各原料をLiBOとなるような化学量論比に基づいて秤量し、湿式混合させて焼結助剤混合粉としてもよい。 For example, when LiBO 2 is added to the main component, it is preferable to prepare LiBO 2 , but as a raw material of the sintering aid, for example, as a compound containing Li, a compound containing Li 2 O and B the prepare B 2 O 3, thoroughly dried, the respective raw material after drying was weighed according to the stoichiometric ratio such that LiBO 2, or as a sintering aid powder mixture by wet mixing .

焼結助剤の化合物あるいは焼結助剤混合粉と上記の方法で得られた主成分仮焼粉とを、前記主成分の仮焼粉に、焼結助剤を混合後の混合紛全体量に対して4質量%未満(0質量%は含まず)となるように添加して混合する。配合したものをボールミル等により十分混合、乾燥して混合紛を作製する。   The total amount of mixed powder after mixing the sintering aid with the sintering aid compound or the sintering aid mixed powder and the main component calcined powder obtained by the above-described method. And added so as to be less than 4% by mass (not including 0% by mass). The blended product is sufficiently mixed and dried by a ball mill or the like to produce a mixed powder.

本発明において、焼結助剤の添加量は特に制限しないが、4質量%以上添加した場合には、粒界に圧電性を有さない焼結助剤が析出し、分極が難しくなる場合があるため、4質量%未満とすることが好ましい。   In the present invention, the amount of addition of the sintering aid is not particularly limited, but when added in an amount of 4% by mass or more, the sintering aid having no piezoelectricity is precipitated at the grain boundary, which may make polarization difficult. Therefore, the content is preferably less than 4% by mass.

そして、得られた混合紛に有機質の粘結剤(バインダー等)を添加し、造粒して加圧成形を行う。加圧成形は、造粒した粉砕物を一軸プレス成形等によりペレット状に成形したものを、さらに冷間等方圧プレス(CIP)等により再成形するのが好ましい。このようにして得られた成形体を、焼成(本焼成)し、焼結体を作製する(焼成工程)。上記焼成は、常圧下にて行うことができる。   And an organic binder (binder etc.) is added to the obtained mixed powder, and it granulates and performs pressure molding. In the pressure molding, it is preferable that a granulated pulverized product is molded into a pellet by uniaxial press molding or the like and further remolded by cold isostatic pressing (CIP) or the like. The molded body thus obtained is fired (main firing) to produce a sintered body (firing step). The firing can be performed under normal pressure.

焼結体の相対密度が90%以上であることが好ましい。   It is preferable that the relative density of the sintered body is 90% or more.

前記焼成工程における前記焼成は、800℃以上1000℃未満の温度範囲で行われることが好ましい。   The firing in the firing step is preferably performed in a temperature range of 800 ° C. or higher and lower than 1000 ° C.

前記焼成は、1000℃未満の温度で行うと確かに焼結体の相対密度は低下する場合があるが、その低下度合いは僅かで充分使用可能な範囲にあり、それよりも1000℃以上の焼成温度での主成分に含まれるアルカリ金属の蒸発の増加の度合いの方が極めて大きいことから、前記焼成は1000℃未満の温度範囲で行うことが好ましい。一方、下限の温度は、焼結体の相対密度をより高めるため、800℃以上が好ましい。   If the firing is performed at a temperature of less than 1000 ° C., the relative density of the sintered body may certainly decrease. However, the degree of the decrease is slight and is in a usable range, and the firing is performed at 1000 ° C. or higher. Since the degree of increase in evaporation of the alkali metal contained in the main component at temperature is much larger, the firing is preferably performed in a temperature range of less than 1000 ° C. On the other hand, the lower limit temperature is preferably 800 ° C. or higher in order to further increase the relative density of the sintered body.

以上が、本発明に係る圧電磁器組成物の製造工程である。   The above is the manufacturing process of the piezoelectric ceramic composition according to the present invention.

このような工程で圧電磁器組成物を製造することによって、アルカリ金属を含む化合物を有する焼結助剤の作用によって、従来焼結に比べ低温での焼結が可能になり、電気特性を損なうことなく緻密化した圧電磁器組成物を得ることができる。   By producing a piezoelectric ceramic composition in such a process, the sintering aid having an alkali metal-containing compound enables sintering at a lower temperature than conventional sintering, thereby impairing electrical characteristics. A dense piezoelectric ceramic composition can be obtained.

本発明では、焼結を常圧下にて行うことが可能になり、簡単かつ低コストにて上記圧電磁器組成物を製造することができる。そして、上記焼成後に得られる圧電磁器組成物は、鉛を含有せず、相対密度が高く、電気特性に優れたものとなる。そのため、高性能な圧電素子及び誘電素子等の材料として用いることができる。   In the present invention, sintering can be performed under normal pressure, and the piezoelectric ceramic composition can be manufactured easily and at low cost. The piezoelectric ceramic composition obtained after firing does not contain lead, has a high relative density, and has excellent electrical characteristics. Therefore, it can be used as a material for high-performance piezoelectric elements and dielectric elements.

得られた焼結体を所定のサイズに切断、平行研磨した後、試料の両面にスパッタ法等により電極を形成する。そして、80〜150℃程度のシリコーンオイル中において1〜6kV/mmの直流電圧を電極間に印加し、厚み方向に分極を施して本発明の圧電磁器組成物を有する単板型の圧電素子が作製される。   The obtained sintered body is cut into a predetermined size and subjected to parallel polishing, and then electrodes are formed on both surfaces of the sample by sputtering or the like. Then, a single plate type piezoelectric element having the piezoelectric ceramic composition of the present invention is obtained by applying a DC voltage of 1 to 6 kV / mm between the electrodes in silicone oil at about 80 to 150 ° C. and applying polarization in the thickness direction. Produced.

さらに、上記圧電磁器組成物の圧電セラミック層と内部電極層を交互に積み重ねた積層型の圧電素子を作製する場合について以下に説明する。   Further, a case where a laminated piezoelectric element in which piezoelectric ceramic layers and internal electrode layers of the piezoelectric ceramic composition are alternately stacked will be described below.

図1は本実施形態の積層型の圧電素子の概略断面図である。   FIG. 1 is a schematic cross-sectional view of the multilayer piezoelectric element of the present embodiment.

まず、アルカリ金属含有ニオブ酸化物を含む主成分の仮焼粉とアルカリ金属を含む化合物を有する焼結助剤を混合した混合紛を前述の単板型の圧電素子の作製工程と同様に作製する。尚、この製造工程(仮焼工程及び混合工程)は単板型の圧電素子の作製にて既述していることから、その説明については割愛する。   First, a mixed powder obtained by mixing a calcined powder containing a main component containing an alkali metal-containing niobium oxide and a sintering aid having a compound containing an alkali metal is prepared in the same manner as the above-described single plate type piezoelectric element manufacturing process. . In addition, since this manufacturing process (calcination process and mixing process) has already been described in the production of a single-plate type piezoelectric element, the description thereof will be omitted.

次に、この混合粉に有機質の粘結剤(バインダー等)を添加し、造粒後、ドクターブレード法で所定の厚さ(例えば、60〜100μm)のセラミックグリーンシートを得る。次に、このセラミックグリーンシート上に、Cu、Ni、Ag等の安価な金属材料の内部電極ペーストを塗布して内部電極層を形成し、この内部電極層が交互に相対する面上に導出されるように、かつセラミックグリーンシートと内部電極層とが交互に積み重ねられるように積層し、積層体とする。   Next, an organic binder (binder or the like) is added to the mixed powder, and after granulation, a ceramic green sheet having a predetermined thickness (for example, 60 to 100 μm) is obtained by a doctor blade method. Next, an internal electrode layer of an inexpensive metal material such as Cu, Ni, or Ag is applied onto the ceramic green sheet to form an internal electrode layer, and the internal electrode layers are led out on opposite surfaces. The ceramic green sheets and the internal electrode layers are laminated so that they are alternately stacked to form a laminate.

そして、上記にて得られた積層体をそれぞれ圧着治具に固定し、熱圧着する。熱圧着した積層体は、シートカッターにて所定の大きさに切断する。   And each laminated body obtained above is fixed to a crimping jig, and thermocompression bonded. The laminated body which has been thermocompression bonded is cut into a predetermined size by a sheet cutter.

このようにして得られた積層体を、焼成(本焼成)し、圧電セラミック層と内部電極層とからなる積層焼結体とする(焼成工程)。焼結体の相対密度が90%以上であることが好ましい。前記焼成工程における前記焼成は、800℃以上1000℃未満の温度範囲で行うことがより好ましい。   The laminate thus obtained is fired (main firing) to obtain a laminated sintered body comprising a piezoelectric ceramic layer and an internal electrode layer (firing step). It is preferable that the relative density of the sintered body is 90% or more. The firing in the firing step is more preferably performed in a temperature range of 800 ° C. or higher and lower than 1000 ° C.

さらに、図1のように、積層焼結体12の上下の主面ほぼ全面に第1外部電極13aを形成する。さらに、内部電極14導出面である側面に第2外部電極13bを形成する。このようにして外部電極13を形成した積層焼結体12を、80〜150℃程度のシリコーンオイル中において1〜6kV/mmの直流電圧を外部電極13a、13b間に印加し、厚み方向に分極を施して積層型の圧電素子10が完成する。   Further, as shown in FIG. 1, first external electrodes 13 a are formed on almost the entire upper and lower main surfaces of the laminated sintered body 12. Further, the second external electrode 13b is formed on the side surface that is the lead-out surface of the internal electrode. The laminated sintered body 12 thus formed with the external electrode 13 is polarized in the thickness direction by applying a DC voltage of 1 to 6 kV / mm between the external electrodes 13a and 13b in silicone oil at about 80 to 150 ° C. As a result, the laminated piezoelectric element 10 is completed.

近年、圧電応用装置に、圧電セラミック層と内部電極層を交互に積み重ねた積層型の圧電素子を用いるものが数多く開発されている。この積層型の圧電素子は、圧電セラミック層のセラミックグリーンシートと内部電極層とを共焼結させることが必要となる。したがって、アルカリ金属含有ニオブ酸化物の従来焼結のように、焼結の最高温度が1300℃に達する高温である場合に使用できる内部電極材料としては、Pt、Pd等の高価な材料に限られてしまい、安価な金属材料を使用することができず、製造コストが高くなるという問題がある。   In recent years, many piezoelectric application devices have been developed that use stacked piezoelectric elements in which piezoelectric ceramic layers and internal electrode layers are alternately stacked. This multilayer piezoelectric element needs to co-sinter the ceramic green sheet of the piezoelectric ceramic layer and the internal electrode layer. Therefore, the internal electrode material that can be used when the maximum sintering temperature reaches 1300 ° C. as in the conventional sintering of alkali metal-containing niobium oxide is limited to expensive materials such as Pt and Pd. Therefore, there is a problem that an inexpensive metal material cannot be used and the manufacturing cost becomes high.

本発明では、圧電磁器組成物と内部電極とを共焼結する場合においても、アルカリ金属を含む化合物を有する焼結助剤の作用によって、従来焼結より、低温焼結で高密度化できるので、その内部電極にAg,Cu、Niなどの安価な金属材料を用いることができ、積層型の圧電素子の製造コストを下げることができる。   In the present invention, even when the piezoelectric ceramic composition and the internal electrode are co-sintered, the sintering aid having a compound containing an alkali metal can be densified by low-temperature sintering as compared with conventional sintering. In addition, an inexpensive metal material such as Ag, Cu, or Ni can be used for the internal electrode, and the manufacturing cost of the multilayer piezoelectric element can be reduced.

上記焼成は、常圧下にて行うことができる。そのため、簡単かつ低コストにて上記圧電磁器組成物を製造することができる。そして、上記焼成後に得られる圧電磁器組成物は、鉛を含有せず、相対密度が高く、電気特性に優れたものとなる。   The firing can be performed under normal pressure. Therefore, the piezoelectric ceramic composition can be produced easily and at low cost. The piezoelectric ceramic composition obtained after firing does not contain lead, has a high relative density, and has excellent electrical characteristics.

以下、実験例により本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail by experimental examples.

まず、純度99%以上の高純度のLiCO、NaCO、KCO、Nb、Ta、Sbを準備した。これらの原料を十分乾燥させ、前記一般式{Li(K1−yNa1−x}(Nb1−z−wTaSb)Oにおいて、x=0.04、y=0.52、z=0.1、w=0.06となるような化学量論比、即ち前記一般式が{Li0.04(K0.48Na0.520.96}(Nb0.84Ta0.1Sb0.06)Oとなるような化学量論比にて配合した。配合した原料をボールミルにより無水アセトン中で24時間粉砕、混合、乾燥して混合紛を作製した。 First, high purity Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Nb 2 O 5 , Ta 2 O 5 , and Sb 2 O 5 having a purity of 99% or more were prepared. These raw materials are sufficiently dried, and in the general formula {Li x (K 1−y Na y ) 1−x } (Nb 1−z−w Ta z Sb w ) O 3 , x = 0.04, y = The stoichiometric ratio of 0.52, z = 0.1, w = 0.06, that is, the general formula is {Li 0.04 (K 0.48 Na 0.52 ) 0.96 } (Nb 0.84 Ta 0.1 Sb 0.06 ) O 3 was added at a stoichiometric ratio. The blended raw materials were pulverized in anhydrous acetone for 24 hours by a ball mill, mixed and dried to prepare a mixed powder.

次に、この混合紛を750℃にて1〜5時間仮焼し、この仮焼後の混合紛をボールミルにて24時間粉砕した。この粉砕した混合紛を乾燥し、主成分仮焼粉とした。   Next, the mixed powder was calcined at 750 ° C. for 1 to 5 hours, and the mixed powder after the calcining was pulverized for 24 hours by a ball mill. The pulverized mixed powder was dried to obtain a main component calcined powder.

一方、焼結助剤としての純度99%以上の高純度のLiBOの粉末を準備し、焼結助剤とした。 On the other hand, high purity LiBO 2 powder having a purity of 99% or more as a sintering aid was prepared and used as a sintering aid.

主成分仮焼粉と焼結助剤を、({Li0.04(K0.48Na0.520.96}(Nb0.84Ta0.1Sb0.06)O1−Vと(LiBOにおいて、v=0.02、0.03、0.04となるような質量比にてそれぞれ配合した。 The main component calcined powder and the sintering aid are ({Li 0.04 (K 0.48 Na 0.52 ) 0.96 } (Nb 0.84 Ta 0.1 Sb 0.06 ) O 3 ) 1 -V and (LiBO 2 ) V were blended at mass ratios such that v = 0.02, 0.03, and 0.04.

それぞれ配合した粒子をボールミルにより無水アセトン中で24時間混合、乾燥して混合紛を作製した。   The blended particles were mixed in anhydrous acetone for 24 hours by a ball mill and dried to prepare a mixed powder.

次に、この混合紛にバインダーとしてポリビニールブチラールを添加し、造粒し加圧成形を行った。加圧成形は、造粒した粉砕物を一軸プレス成形によりペレット状に成形したものを、さらに冷間等方圧プレス(CIP)により1ton/cmの圧力で再成形した。 Next, polyvinyl butyral was added to the mixed powder as a binder, granulated, and subjected to pressure molding. In the pressure molding, the granulated pulverized product formed into a pellet by uniaxial press molding was further re-molded at a pressure of 1 ton / cm 2 by cold isostatic pressing (CIP).

このようにして得られた成形体をアルミナるつぼに入れ、電気加熱ヒーター炉にて、大気中で860〜1050℃にて1〜2時間の常圧焼結した。   The molded body thus obtained was put in an alumina crucible and sintered under normal pressure at 860 to 1050 ° C. for 1 to 2 hours in the air in an electric heater furnace.

表1に示すように、得られた焼結体は、焼結助剤としてLiBOが添加されていないもので、焼結温度(焼成の温度)が980℃、1050℃の順に試料No.1、試料No.2とした。焼結助剤としてLiBOが添加されているもので添加量が2質量%のものを、焼結温度が860℃、950℃、980℃、1050℃の順に試料No.3、No.4、No.5、No.6とした。同様に、焼結助剤としてLiBOが添加されているもので添加量が3質量%のものを、順に試料No.7〜No.10とし、焼結助剤としてLiBOが添加されているもので添加量が4質量%のものを、順に試料No.11〜No.14とした。 As shown in Table 1, the obtained sintered body was one to which LiBO 2 was not added as a sintering aid, and the sample temperature was 980 ° C. and 1050 ° C. in the order of the sample temperatures of 980 ° C. and 1050 ° C. 1, sample no. 2. Samples in which LiBO 2 was added as a sintering aid and the amount added was 2% by mass were used in the order of sintering temperatures of 860 ° C., 950 ° C., 980 ° C., and 1050 ° C. 3, no. 4, no. 5, no. It was set to 6. Similarly, LiBO 2 is added as a sintering aid, and the amount added is 3% by mass. 7-No. No. 10 and LiBO 2 added as a sintering aid, and the amount added was 4% by mass. 11-No. It was set to 14.

得られた試料は、アルキメデス法によるかさ密度測定を行い、理論密度比から相対密度(%)を算出した。   The obtained sample was subjected to bulk density measurement by Archimedes method, and the relative density (%) was calculated from the theoretical density ratio.

表1からわかるように、本発明の焼結体は、相対密度が顕著に高いことが判る。本発明の焼結体の密度は理論密度のほぼ98%に達した。本発明の焼結温度が860℃〜1050℃で実施したが、950℃〜980℃でほぼ95%に達しており、比較例は1050℃でほぼ85%であり、本発明の効果が確認できた。   As can be seen from Table 1, the sintered body of the present invention is found to have a remarkably high relative density. The density of the sintered body of the present invention reached approximately 98% of the theoretical density. Although the sintering temperature of the present invention was carried out at 860 ° C. to 1050 ° C., it reached approximately 95% at 950 ° C. to 980 ° C., and the comparative example was approximately 85% at 1050 ° C., confirming the effect of the present invention. It was.

また、焼結の最高温度が1300℃に達する高温である従来焼結に比較しても100℃以上低い焼結温度にも関わらず理論密度のほぼ95%に達していることが確認できた。   In addition, it was confirmed that even when compared with the conventional sintering, which is a high temperature at which the maximum temperature of sintering reaches 1300 ° C., it reaches almost 95% of the theoretical density regardless of the sintering temperature lower by 100 ° C. or more.

焼結助剤であるLiBOを4質量%添加した試料は、分極時にリーク電流が流れ、分極が困難であった。 In the sample to which 4% by mass of LiBO 2 as a sintering aid was added, leakage current flowed during polarization, and polarization was difficult.

図2は本発明の試料NO.10で得られた焼結体の断面を観察したSEM(Scanning Electron Microscope:走査型電子顕微鏡)像(×4000)であり、図3は比較例の試料NO.2で得られた焼結体の断面を観察したSEM(Scanning Electron Microscope:走査型電子顕微鏡)像(×4000)である。   FIG. 2 shows the sample NO. 10 is a SEM (Scanning Electron Microscope) image (× 4000) observing the cross section of the sintered body obtained in Step No. 10, and FIG. 2 is an SEM (Scanning Electron Microscope) image (× 4000) in which a cross section of the sintered body obtained in 2 is observed.

図2、図3において、灰色の部分が圧電磁器組成物の粒子100、黒色の部分が空隙101である。本発明の試料は、比較例の試料に比べ焼結が進んでいる様子が確認できた。   In FIGS. 2 and 3, the gray portion is the piezoelectric ceramic composition particle 100, and the black portion is the void 101. It was confirmed that the sample of the present invention was more sintered than the sample of the comparative example.

積層型の圧電素子の概略断面図である。It is a schematic sectional drawing of a lamination type piezoelectric element. 本発明にしたがって作製された焼結体の断面を示すSEM像である。It is a SEM image which shows the cross section of the sintered compact produced according to this invention. 比較例による焼結体の断面を示すSEM像である。It is a SEM image which shows the cross section of the sintered compact by a comparative example.

符号の説明Explanation of symbols

10 積層型の圧電素子
12 焼結体
13 外部電極
14 内部電極
DESCRIPTION OF SYMBOLS 10 Stack type piezoelectric element 12 Sintered body 13 External electrode 14 Internal electrode

Claims (8)

アルカリ金属含有ニオブ酸化物を含む主成分と、焼結助剤とを有する圧電磁器組成物の製造方法であって、
前記主成分を仮焼する仮焼工程と、前記仮焼工程を経て得られた前記主成分の仮焼粉と、アルカリ金属を含む化合物を有する焼結助剤とを混合する混合工程と、前記混合工程で得られた混合紛を焼成して焼結体とする焼成工程とを含むことを特徴とする圧電磁器組成物の製造方法。
A method for producing a piezoelectric ceramic composition comprising a main component containing an alkali metal-containing niobium oxide and a sintering aid,
A mixing step of mixing a calcining step of calcining the main component, a calcining powder of the main component obtained through the calcining step, and a sintering aid having a compound containing an alkali metal; A method for producing a piezoelectric ceramic composition, comprising: a firing step of firing the mixed powder obtained in the mixing step to obtain a sintered body.
前記焼結体の相対密度が90%以上であることを特徴とする請求項1に記載の圧電磁器組成物の製造方法。 The method for producing a piezoelectric ceramic composition according to claim 1, wherein a relative density of the sintered body is 90% or more. 前記混合工程において、前記主成分の仮焼粉に、前記アルカリ金属を含む化合物を有する焼結助剤を混合後の混合紛全体量に対して4質量%未満となるように添加して混合することを特徴とする請求項1または2に記載の圧電磁器組成物の製造方法。 In the mixing step, the sintering aid having the compound containing the alkali metal is added to the calcined powder of the main component so as to be less than 4% by mass with respect to the total amount of the mixed powder after mixing. The method for producing a piezoelectric ceramic composition according to claim 1 or 2. 前記アルカリ金属含有ニオブ酸化物が、{Li(K1−yNa1−x}(Nb1−z−wTaSb)Oで表され、かつ、x、y、z、wがそれぞれ0≦x≦0.2、0≦y≦1、0<z≦0.4、0<w≦0.2の組成範囲にあることを特徴とする請求項1乃至3のいずれか1項に記載の圧電磁器組成物の製造方法。 Wherein the alkali metal-containing niobium oxide is represented by {Li x (K 1-y Na y) 1-x} (Nb 1-z-w Ta z Sb w) O 3, and, x, y, z, The w is in the composition range of 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 1, 0 <z ≦ 0.4, and 0 <w ≦ 0.2, respectively. 2. A method for producing a piezoelectric ceramic composition according to item 1. 前記焼成を、800℃以上1000℃未満の温度範囲で行うことを特徴とする請求項1乃至4のいずれか1項に記載の圧電磁器組成物の製造方法。 The method for producing a piezoelectric ceramic composition according to any one of claims 1 to 4, wherein the firing is performed in a temperature range of 800 ° C or higher and lower than 1000 ° C. 前記アルカリ金属を含む化合物を有する焼結助剤の融点が、800℃以上1000℃未満であることを特徴とする請求項1乃至5のいずれか1項に記載の圧電磁器組成物の製造方法。 6. The method for producing a piezoelectric ceramic composition according to claim 1, wherein the sintering aid having a compound containing an alkali metal has a melting point of 800 ° C. or higher and lower than 1000 ° C. 6. 前記アルカリ金属を含む化合物を有する焼結助剤は、Liを含む化合物であることを特徴とする請求項1乃至6のいずれか1項に記載の圧電磁器組成物の製造方法。 The method for producing a piezoelectric ceramic composition according to any one of claims 1 to 6, wherein the sintering aid having a compound containing an alkali metal is a compound containing Li. 前記Liを含む化合物は、LiBOであることを特徴とする請求項7に記載の圧電磁器組成物の製造方法。 The method for producing a piezoelectric ceramic composition according to claim 7, wherein the compound containing Li is LiBO 2 .
JP2007046891A 2007-02-27 2007-02-27 Method for manufacturing piezoelectric ceramic composition Pending JP2008207999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046891A JP2008207999A (en) 2007-02-27 2007-02-27 Method for manufacturing piezoelectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046891A JP2008207999A (en) 2007-02-27 2007-02-27 Method for manufacturing piezoelectric ceramic composition

Publications (1)

Publication Number Publication Date
JP2008207999A true JP2008207999A (en) 2008-09-11

Family

ID=39784639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046891A Pending JP2008207999A (en) 2007-02-27 2007-02-27 Method for manufacturing piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP2008207999A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086449A1 (en) 2010-12-24 2012-06-28 太陽誘電株式会社 Piezoelectric ceramic, piezoelectric ceramic component, and piezoelectric device in which piezoelectric ceramic component is used
CN102863214A (en) * 2011-07-04 2013-01-09 太阳诱电株式会社 Piezoelectric ceramic and stacked piezoelectric ceramic component
EP2690679A1 (en) 2012-07-24 2014-01-29 Taiyo Yuden Co., Ltd. Piezoelectric element and method of manufacturing the same
JP2014063994A (en) * 2012-08-27 2014-04-10 Canon Inc Piezoelectric material, piezo electric element, and electronic apparatus
JPWO2013128651A1 (en) * 2012-03-02 2015-07-30 本多電子株式会社 Piezoelectric ceramic composition and method for producing the same
WO2015166914A1 (en) * 2014-04-28 2015-11-05 株式会社村田製作所 Piezoelectric element, method for manufacturing piezoelectric element, and piezoelectric vibrator provided with piezoelectric element
US9450173B2 (en) 2012-08-24 2016-09-20 Taiyo Yuden Co., Ltd. Piezoelectric ceramic and piezoelectric element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086449A1 (en) 2010-12-24 2012-06-28 太陽誘電株式会社 Piezoelectric ceramic, piezoelectric ceramic component, and piezoelectric device in which piezoelectric ceramic component is used
US9537082B2 (en) 2010-12-24 2017-01-03 Taiyo Yuden Co., Ltd. Piezoelectric ceramic, piezoelectric ceramic component, and piezoelectric device using such piezoelectric ceramic component
CN102863214A (en) * 2011-07-04 2013-01-09 太阳诱电株式会社 Piezoelectric ceramic and stacked piezoelectric ceramic component
JP2013014470A (en) * 2011-07-04 2013-01-24 Taiyo Yuden Co Ltd Piezoelectric ceramics, and laminated piezoelectric ceramic component
US8674589B2 (en) 2011-07-04 2014-03-18 Taiyo Yuden Co., Ltd. Piezoelectric ceramics and multi-layered piezoelectric ceramic components
US9172026B2 (en) 2012-03-02 2015-10-27 Honda Electronics Co., Ltd. Piezoceramic composition and method for manufacturing the same
JPWO2013128651A1 (en) * 2012-03-02 2015-07-30 本多電子株式会社 Piezoelectric ceramic composition and method for producing the same
EP2690679A1 (en) 2012-07-24 2014-01-29 Taiyo Yuden Co., Ltd. Piezoelectric element and method of manufacturing the same
US9281465B2 (en) 2012-07-24 2016-03-08 Taiyo Yuden Co., Ltd. Piezoelectric element and method of manufacturing the same
US9450173B2 (en) 2012-08-24 2016-09-20 Taiyo Yuden Co., Ltd. Piezoelectric ceramic and piezoelectric element
JP2014063994A (en) * 2012-08-27 2014-04-10 Canon Inc Piezoelectric material, piezo electric element, and electronic apparatus
WO2015166914A1 (en) * 2014-04-28 2015-11-05 株式会社村田製作所 Piezoelectric element, method for manufacturing piezoelectric element, and piezoelectric vibrator provided with piezoelectric element
JPWO2015166914A1 (en) * 2014-04-28 2017-04-20 株式会社村田製作所 Piezoelectric element, method for manufacturing piezoelectric element, and piezoelectric vibrator including piezoelectric element

Similar Documents

Publication Publication Date Title
WO2010128647A1 (en) Piezoelectric ceramic, method for producing same, and piezoelectric device
JP5120255B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
US9105845B2 (en) Piezoelectric ceramic comprising an oxide and piezoelectric device
JP2007258280A (en) Laminated piezoelectric element
JP2009242167A (en) Piezoelectric ceramic and piezoelectric element using it
JP2007204336A (en) Lead free piezoelectric ceramic
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
KR101976963B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP6316985B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR101366632B1 (en) Dielectric ceramic and laminated ceramic capacitor
JP5782457B2 (en) Piezoelectric ceramics, piezoelectric ceramic component, and piezoelectric device using the piezoelectric ceramic component
JP2009035431A (en) Dielectric porcelain, method for producing the same, and laminated ceramic capacitor using the same
JP2008207999A (en) Method for manufacturing piezoelectric ceramic composition
JP4177615B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component
JP2008156201A (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
CN110494999B (en) Piezoelectric composition and piezoelectric element
JP4640092B2 (en) Multilayer piezoelectric element and method for manufacturing the same
JP4954135B2 (en) Dielectric ceramic composition, manufacturing method thereof, and dielectric ceramic capacitor
JP2011068524A (en) Laminated ceramic capacitor
JP2010215418A (en) Method of manufacturing piezoelectric ceramic electronic component
JP4390082B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP5190894B2 (en) Piezoelectric or dielectric ceramic composition, piezoelectric device and dielectric device
JP4828570B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component