JP2008207228A - METHOD FOR CUTTING OFF HIGH-Ni-ALLOY - Google Patents

METHOD FOR CUTTING OFF HIGH-Ni-ALLOY Download PDF

Info

Publication number
JP2008207228A
JP2008207228A JP2007048079A JP2007048079A JP2008207228A JP 2008207228 A JP2008207228 A JP 2008207228A JP 2007048079 A JP2007048079 A JP 2007048079A JP 2007048079 A JP2007048079 A JP 2007048079A JP 2008207228 A JP2008207228 A JP 2008207228A
Authority
JP
Japan
Prior art keywords
cutting
powder
alloy
mass
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007048079A
Other languages
Japanese (ja)
Other versions
JP4628382B2 (en
Inventor
Hidekazu Todoroki
秀和 轟
Teruaki Ishii
照彰 石井
Atsuya Hongo
敦哉 本郷
Kenji Mizuno
建次 水野
Yoshiharu Miyazaki
芳春 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2007048079A priority Critical patent/JP4628382B2/en
Publication of JP2008207228A publication Critical patent/JP2008207228A/en
Application granted granted Critical
Publication of JP4628382B2 publication Critical patent/JP4628382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quickly cutting off an alloy without interrupting the operation of a casting apparatus in continuous casting of the alloy, such as a high-Ni-alloy. <P>SOLUTION: In the method for cutting off the continuously cast alloy by using a torch, the torch comprises a nozzle for supplying propane gas and oxygen gas, two to four of nozzles for supplying Fe powder and/or Al powder as a combustion auxiliary, a powder tank for storing the powder, and an ejector for ejecting the powder. The content of Al powder is 20 to 50 mass% of the total powder of the combustion auxiliary. The ejector has the shape directed vertically downward with respect to the powder tank. The alloy is cut off by supplying the propane gas, the oxygen gas, and the combustion auxiliary by means of the torch. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、合金の切断方法に係り、特に、合金の連続鋳造におけるトーチによるパウダー切断方法に関する。   The present invention relates to an alloy cutting method, and more particularly to a powder cutting method using a torch in continuous casting of an alloy.

高いニッケル含有量を有する高ニッケル合金は、強度や耐熱性、耐食性等に優れており、様々な分野にて使用されている。高ニッケル合金を初めとする種々のステンレス鋼合金は、製造コストや納期面の有利性から、連続鋳造機にて造塊し、切断することが一般に行われている。   High nickel alloys having a high nickel content are excellent in strength, heat resistance, corrosion resistance and the like, and are used in various fields. Various stainless steel alloys such as high nickel alloys are generally ingoted and cut by a continuous casting machine from the viewpoint of manufacturing cost and delivery time advantage.

連続鋳造されたステンレス鋼合金のスラブを切断するには、トーチを用い、燃料ガスと酸素ガスを吹き込んで燃焼させるとともに鉄粉等の燃焼助剤を吹き込むことによってスラブの所定の箇所を燃焼させて溶断を行う技術(以下、単にトーチカットまたはパウダー切断と略称する場合がある)が知られている(例えば、特許文献1、2参照)。   To cut a continuously cast stainless steel alloy slab, a torch is used to blow and burn fuel gas and oxygen gas, and also burn a predetermined portion of the slab by blowing a combustion aid such as iron powder. A technique for performing fusing (hereinafter sometimes simply referred to as torch cutting or powder cutting) is known (see, for example, Patent Documents 1 and 2).

しかしながら、このパウダー切断を高ニッケル合金に適用した場合、合金中のニッケル含有量の増加に伴って切断が困難になる。この場合、燃焼助剤として熱量の大きいアルミニウム粉を鉄粉と併用しても、後述する実施例において説明するように、ステンレス鋼(例えばSUS304)と比較して5〜10倍もの時間を要する。現状の設備では、鋳造されたスラブが連続的に供給されてくるために切断が間に合わず、鋳造機の停止後に切断せざるを得ないなど、鋳造中の切断が困難であった。   However, when this powder cutting is applied to a high nickel alloy, the cutting becomes difficult as the nickel content in the alloy increases. In this case, even if aluminum powder having a large amount of heat is used in combination with iron powder as a combustion aid, it takes 5 to 10 times as long as stainless steel (for example, SUS304), as will be described in Examples below. With the current equipment, since the cast slab is continuously supplied, cutting is not in time, and it is difficult to cut during casting because the casting machine must be cut after the casting machine is stopped.

トーチによる切断が速やかに行えない原因は、切断中にトーチからの熱気流によってスラブの一部が溶解して発生したスラグ・溶融金属の混合物(以下、単に切断ノロと略称する場合がある)を吹き飛ばす能力が低いと、この切断ノロが切断面に残り切断を妨害する点にある。また、スラブのニッケル含有率が高くなる程、切断ノロの粘性が増大し、これを除くことがより困難であった。   The reason why cutting with a torch cannot be performed quickly is that a mixture of slag / molten metal (hereinafter sometimes simply referred to as “cutting noro”) generated by melting part of the slab by the hot air flow from the torch during cutting. If the ability to blow off is low, this cutting blade remains on the cut surface and interferes with cutting. In addition, the higher the nickel content of the slab, the more the cutting blade viscosity increased, making it more difficult to remove it.

そのため、鋳造の進行と同時に切断を行わず、鋳造機内で全スラブが納まるように溶鋼重量に制限を設けて一定量を鋳造し、鋳造完了後に40〜50分かけて慎重に切断するか、場合によっては数人がかりでランスにて切断していた。ランス切断は重筋作業であり、安全性に問題を有していた。また、スラブ切断面は平滑性に劣り、再切断工程が必要になるという問題点もあった。   Therefore, when cutting is not performed simultaneously with the progress of casting, a certain amount is cast by limiting the weight of the molten steel so that all slabs can be accommodated in the casting machine, and carefully cutting over 40 to 50 minutes after completion of casting, or Some were cut by a lance with several people. Lance cutting was a heavy work and had a safety problem. In addition, the slab cut surface is inferior in smoothness and requires a recutting process.

特開昭59−199170号公報JP 59-199170 A 実開昭57−36368号公報Japanese Utility Model Publication No. 57-36368

このように、高ニッケル合金のスラブ切断技術は、生産性、安全性の両側面から早期開発が望まれていた。本願発明は、高ニッケル合金等の合金の連続鋳造において、鋳造装置の稼動を中断することなく速やかに実施することのできる合金の切断方法の提供を目的としている。   Thus, early development of the high nickel alloy slab cutting technology has been desired in terms of both productivity and safety. An object of the present invention is to provide an alloy cutting method that can be carried out quickly without interrupting the operation of a casting apparatus in continuous casting of an alloy such as a high nickel alloy.

即ち、本願発明は、上記実情に鑑みて鋭意検討を重ねた結果なされたものであり、連続鋳造した合金をトーチによって切断する合金の切断方法であって、トーチは、プロパンガスと酸素ガスを吹き込むためのノズルと、燃焼助剤としての鉄粉および/またはアルミニウム粉を吹き込むためのノズル2〜4本と、粉末を格納する粉末タンクと、粉末を吹き込むためのエゼクターとを備え、アルミニウム粉の含有量は、燃焼助剤としての全粉末量の20〜50mass%であり、エゼクター形状を、粉末タンクに対して鉛直下向きとし、トーチによってプロパンガスと酸素ガスを吹き込むとともに燃焼助剤を吹き込んで合金を切断することを特徴としている。   That is, the present invention was made as a result of intensive studies in view of the above circumstances, and is an alloy cutting method in which a continuously cast alloy is cut by a torch, and the torch blows propane gas and oxygen gas. A nozzle for the injection, 2 to 4 nozzles for blowing iron powder and / or aluminum powder as a combustion aid, a powder tank for storing the powder, and an ejector for blowing the powder, and containing aluminum powder The amount is 20-50 mass% of the total amount of powder as a combustion aid, the ejector shape is vertically downward with respect to the powder tank, propane gas and oxygen gas are blown with a torch and combustion aid is blown into the alloy. It is characterized by cutting.

本願発明においては、切断の対象となる合金がニッケルを35%以上含有する合金であることを好ましい形態としており、特に、ニッケルを50%以上含有する合金であることをさらに好ましい形態としている。   In the present invention, the alloy to be cut is preferably an alloy containing 35% or more of nickel, and particularly preferably an alloy containing 50% or more of nickel.

本願発明によれば、上記の構成を備えていることにより、トーチによるパウダー切断の際に発生する切断ノロをスラブの反対側へ吹き飛ばす能力が向上しているので、切断ノロを切断面に残存させずに、合金の連続鋳造を行いつつ速やかに切断を行うことができる。さらに、従来のパウダー切断では困難であったニッケル含有率が35mass%以上の合金であっても、これを連続鋳造中に切断することができるという効果を奏する。   According to the present invention, by providing the above-described configuration, the ability to blow off the cutting blade generated when the powder is cut by the torch to the opposite side of the slab is improved, so that the cutting blade remains on the cutting surface. Without cutting, the alloy can be cut quickly while performing continuous casting. Furthermore, even if it is an alloy whose nickel content rate is 35 mass% or more which was difficult by the conventional powder cutting, there is an effect that it can be cut during continuous casting.

本願発明の好ましい実施形態について図面を用いて以下に説明する。
A.製鋼工程
本願発明における製鋼工程のうちCCM(Continuous Casting Machine、連続鋳造機)の模式図を図1に示す。図1に示す鋳造機は、原料が上方から供給されてスラブが下方へ送出される垂直型の鋳造機である。高合金では多くの元素が添加されるため、冷却されて固まるときに大きく曲がると割れが入りやすい傾向があるが、垂直型の装置では偏った無理な力が加わりにくく、高合金に適した装置として利用される。
Preferred embodiments of the present invention will be described below with reference to the drawings.
A. FIG. 1 shows a schematic diagram of a CCM (Continuous Casting Machine, continuous casting machine) in the steel making process of the present invention. The casting machine shown in FIG. 1 is a vertical casting machine in which raw materials are supplied from above and slabs are sent downward. Since many elements are added in high alloys, cracks tend to easily occur when bent when cooled and hardened. However, in a vertical type device, it is difficult to apply an unreasonable force and is suitable for high alloys. Used as

まず、図示しない30tもしくは60tEF(Electric Furnace、電子炉)で、スクラップ、鉄−クロム合金、鉄−ニッケル合金等の原料を溶解する。その後、精錬工程として、AOD(Argon−oxygen decarburization、アルゴン酸素脱炭)、もしくはVOD(Vacuum oxygen decarburization、真空酸素脱炭)で脱炭、脱酸、脱硫を行い、LF(Ladle furnace、取鍋精錬)にて温度調整を行う。   First, raw materials such as scrap, iron-chromium alloy, iron-nickel alloy, etc. are melted in 30 t or 60 tEF (electric furnace, not shown). After that, as a refining process, AOD (Argon-oxygen decarburization, argon oxygen decarburization) or VOD (Vacuum oxygen decarburization, vacuum oxygen decarburization) performs decarburization, deoxidation, desulfurization, and LF (Laddle furnace, ladle refining). ) To adjust the temperature.

最終的に、図1に示す1CCMもしくは2CCMで溶鋼を鋳造し、スラブを製造する。図1において符号10は注入鍋であり、注入鍋10に、上記溶解工程と精錬工程を経た溶鋼20を出鋼する。続いて溶鋼20は、注入鍋10の下流側に設けられたタンディッシュ11を経て、モールド12に供給されて型入れされる。型に注湯された溶鋼20は、下流側に設けられたスプレー冷却帯13を通過することによって凝固させられつつ、ピンチロール14によって引き抜かれて所定の厚さを有するスラブ21が得られる。スラブ21は、所定の位置にてトーチ15によって本願発明のパウダー切断が行われる。   Finally, molten steel is cast with 1 CCM or 2 CCM shown in FIG. 1 to produce a slab. In FIG. 1, reference numeral 10 denotes an pouring pan, and the molten steel 20 that has been subjected to the melting step and the refining step is put into the pouring pan 10. Subsequently, the molten steel 20 is supplied to the mold 12 through the tundish 11 provided on the downstream side of the pouring pan 10 and is put into the mold. The molten steel 20 poured into the mold is solidified by passing through a spray cooling zone 13 provided on the downstream side, and is drawn by the pinch roll 14 to obtain a slab 21 having a predetermined thickness. The slab 21 is subjected to the powder cutting of the present invention by the torch 15 at a predetermined position.

垂直型のCCMにおいては、機内に納まるスラブの長さに制限が発生し、結果としてスラブ切断に要する時間に制限が出来てしまう。また、切断方向が地軸に対し、垂直になってしまうため、切断中に発生する切断ノロを吹き飛ばす能力が低いと、切断ノロが切断面に残り切断を妨害するという、湾曲型CCMと比べて不利な点を抱えている。   In the vertical CCM, the length of the slab that can be accommodated in the machine is limited, and as a result, the time required for cutting the slab can be limited. In addition, since the cutting direction is perpendicular to the ground axis, it is disadvantageous compared to the curved CCM in that if the ability to blow off the cutting blade generated during cutting is low, the cutting blade remains on the cutting surface and obstructs cutting. I have an important point.

B.スラブ切断のメカニズム
トーチ15によるトーチカットによるスラブの溶断の模式図を図2に示す。図1に示すようにトーチ15は2機設けられており、これらは対称的に動作するため、図2においては、これらのうち片方を模式的に説明する。図2において、紙面表面から裏面へ向かう方向がスラブの供給方向である。すなわち、連続鋳造装置の上流側から下流側を見た際のトーチカット部分におけるスラブの断面図である。向かって右側から左側へトーチが移動しつつスラブを切断しており、符号22は既切断部、符号23は燃焼部、符号24は溶融部(切断ノロ)、符号25は未切断部である。
B. FIG. 2 shows a schematic diagram of slab fusing by a torch cut by a slab cutting mechanism torch 15. As shown in FIG. 1, two torches 15 are provided, and these operate symmetrically. In FIG. 2, one of them is schematically described. In FIG. 2, the direction from the front surface to the back surface is the slab supply direction. That is, it is sectional drawing of the slab in the torch cut part at the time of seeing the downstream from the upstream of a continuous casting apparatus. The slab is cut while moving the torch from the right side toward the left side. Reference numeral 22 denotes an already cut part, reference numeral 23 denotes a combustion part, reference numeral 24 denotes a melting part (cutting nose), and reference numeral 25 denotes an uncut part.

このトーチカットでは、微細な鉄粉またはアルミニウム含有鉄粉を、連続的に酸素ガスに混入し供給している。微細な鉄粉またはアルミニウム含有鉄粉の燃焼により生じた酸化熱により、被切断材(以後、母材と記述する)は発火温度まで加熱され、そこに高純度の酸素を高速で供給すると母材自身の燃焼が起こる。この燃焼部23における粉末および母材の燃焼により発生した反応熱は、金属および酸化物を溶融させる。そして、酸素の気流によりこれら溶融部(切断ノロ)24がスラブの反対側へ吹き飛ばされ、切断溝(既切断部22)が形成される。このような現象が連続的に生じることで母材が切断される。すなわち、パウダー切断に望まれる特性は以下の5項目となる。   In this torch cut, fine iron powder or aluminum-containing iron powder is continuously mixed in oxygen gas and supplied. The material to be cut (hereinafter referred to as the base material) is heated to the ignition temperature by the oxidation heat generated by the combustion of the fine iron powder or aluminum-containing iron powder, and when high-purity oxygen is supplied thereto at a high speed, the base material Own combustion occurs. The reaction heat generated by the combustion of the powder and the base material in the combustion section 23 melts the metal and the oxide. Then, the melted portion (cutting nose) 24 is blown off to the opposite side of the slab by the airflow of oxygen, and the cutting groove (the already cut portion 22) is formed. When such a phenomenon occurs continuously, the base material is cut. That is, the properties desired for powder cutting are the following five items.

1)連続的に母材の燃焼反応を進行させるために、母材の燃焼温度がその融点よりも低いこと。
2)酸化物あるいはスラグが母材より低融点であること。
3)酸化物あるいはスラグの流動性がよく、かつ母材からの剥離性が良いこと。
4)母材成分中に不燃焼物および反応による不純物の生成量が少ないこと。
5)切断酸素の気流が速く、切断反応部における溶融物を十分に排除できること。
1) The combustion temperature of the base material is lower than its melting point in order to continuously advance the base material combustion reaction.
2) The oxide or slag has a lower melting point than the base material.
3) Good fluidity of oxide or slag and good peelability from the base material.
4) The amount of incombustible substances and impurities generated by reaction in the base material component is small.
5) The cutting oxygen stream is fast and the melt in the cutting reaction part can be sufficiently eliminated.

エリンガム図からも明らかな通り、ニッケルは鉄と比べると貴金属であり、もともと燃焼しにくいことが知られている。そのため、上記1)の母材自身の燃焼に関しては、もともと不利である。さらに、2)〜5)に関しても、その特性を把握すべきと考えて、切断ノロについても調査・研究した。   As is clear from the Ellingham diagram, nickel is a precious metal compared to iron and is known to be difficult to burn. Therefore, the combustion of the base material itself in 1) is disadvantageous from the beginning. Furthermore, as for 2) to 5), we thought that the characteristics should be grasped, and investigated and studied cutting noro.

C.切断ノロの観察
高ニッケル合金としてNW2201を使用し、また、比較材としてステンレス鋼SUS304を使用し、トーチカット時に発生する、切断ノロの調査を行った。各母材の化学成分は、下記表1の通りである。
C. Observation of cutting blades NW2201 was used as a high nickel alloy, and stainless steel SUS304 was used as a comparative material, and cutting blades generated during torch cutting were investigated. The chemical composition of each base material is as shown in Table 1 below.

Figure 2008207228
Figure 2008207228

切断時に使用した燃焼助剤(パウダー)は、SUS304では鉄粉のみを使用した。一方、NW2201では切断が困難なため、より発熱量の大きいアルミニウム含有鉄粉を使用し、45分程度かけて切断した際に採取したものである。これら試料について、(i)外観観察、(ii)酸化物部分のX線回折、(iii)光学顕微鏡および走査型電子顕微鏡(SEM)によるミクロ組織観察、および(iv)EDSによる酸化物の分析を実施した。   As the combustion aid (powder) used at the time of cutting, only iron powder was used in SUS304. On the other hand, since cutting with NW2201 is difficult, the aluminum-containing iron powder having a larger calorific value was used, and it was collected when cutting over about 45 minutes. For these samples, (i) appearance observation, (ii) X-ray diffraction of oxide portion, (iii) microstructure observation by optical microscope and scanning electron microscope (SEM), and (iv) analysis of oxide by EDS. Carried out.

(i)外観観察結果
図3に示すように、SUS304のノロは細く流れているのに対し、NW2201のノロは厚くボテボテした様子であることから、流動性が悪かったことが推測される。また、SUS304のノロは光沢が全く無いのに対し、NW2201はほぼ全体に光沢が見られた。
(I) Appearance Observation Results As shown in FIG. 3, the SUS304 slot is flowing thin, whereas the NW2201 slot is thickly squirting, so it is estimated that the fluidity was poor. In addition, SUS304 Noro has no luster at all, whereas NW2201 showed almost luster.

(ii)X線回折結果
これらの試料のノロを振動ミル(40秒間)で粉砕したところ、SUS304のノロは極少量が粉化した以外は、ほとんどが金属質であった。一方、NW2201のノロは重量比で約50%も粉化した。粉化した試料にX線回折を行った結果を図4および図5に示す。粉化した部分は双方共に酸化物主体であったが、その組成は異なっていることが分かった。すなわち、図4および5から明らかなように、SUS304はFe、FeおよびNiOの酸化物であったのに対し、NW2201はNiOのみからなる酸化物であった。
(Ii) Results of X-ray diffraction When these samples were ground with a vibration mill (40 seconds), most of the stainless steel 304 was metallic except that a very small amount was powdered. On the other hand, the NW2201 Noro powdered about 50% by weight. The results of X-ray diffraction performed on the powdered sample are shown in FIGS. Both powdered parts were mainly oxides, but the composition was found to be different. That is, as is apparent from FIGS. 4 and 5, SUS304 was an oxide of Fe 3 O 4 , Fe 2 O 3 and NiO, whereas NW2201 was an oxide consisting only of NiO.

(iii)ミクロ組織観察および(iv)EDSによる測定結果
図6に、SUS304の切断ノロの断面ミクロ組織を示す。SUS304の切断ノロには気泡が多数見られ、構成する物質のほとんどが金属であった。図6のシミのように見える部分にはCrの高融点(2275℃)酸化物が見られるが、極少量である。また、前述のX線回折で同定されたFeやNiOの酸化物はノロの内部には見られないことから、切断ノロの表面に生成した酸化スケールであったと考えられる。
(Iii) Microstructure observation and (iv) Measurement result by EDS FIG. 6 shows a cross-sectional microstructure of the cut SUS304. Many bubbles were observed in the cutting blade of SUS304, and most of the constituent materials were metals. A high melting point (2275 ° C.) oxide of Cr 2 O 3 is seen in a portion that looks like a stain in FIG. In addition, since the oxides of Fe 3 O 4 and NiO identified by the above-mentioned X-ray diffraction are not found inside Noro, it is considered that the oxide scale was generated on the surface of the cut Noro.

一方、図7に示すNW2201のノロに気泡は比較的少なく、金属光沢のある溶融物であったと考えられるものが幾重にも折り重なって見え、その隙間にNiOの酸化物を噛み込んでいる。このNiOは母材の燃焼時に発生した酸化物と思われる。さらに、金属光沢のある部分をより詳細に観察すると、NiOの高融点(1950℃)酸化物がデンドライト状に多量に分布していることがわかった。これは、酸素が飽和した溶融Niから凝固時に過飽和となり、初晶として晶出したものと考えられる。   On the other hand, the NW2201 slot shown in FIG. 7 has relatively few bubbles, and what appears to be a melt with a metallic luster appears to be folded several times, and NiO oxide is bitten in the gap. This NiO is considered to be an oxide generated during combustion of the base material. Further, when the portion having metallic luster was observed in more detail, it was found that a high melting point (1950 ° C.) oxide of NiO was distributed in a large amount in a dendrite shape. This is presumably that the molten Ni saturated with oxygen became supersaturated during solidification and crystallized as primary crystals.

以上の結果から、NW2201の場合に切断性が劣る理由を、以下のように推察することができる。もともとNiは燃焼しにくいことに加え、切断ノロ中に、母材の融点(約1450℃)と比較して非常に高融点なNiOが、多量に懸濁した状態となる。さらに、温度が低下するにしたがって、この混合溶融物の見掛けの粘度が高くなる。その結果、この混合物が酸素気流で充分に吹き飛ばされずに切断面を覆ってしまう。このように混合物が母材表面を覆うことによって、最終的に、酸素が母材を燃焼させる反応を妨げ、切断を阻害してしまう。また、この混合溶融物が充分に排除されないために、切断溝に残存して再結合されてしまう可能性も考えられる。   From the above results, the reason why the cutting performance is poor in the case of NW2201 can be inferred as follows. In addition to Ni being difficult to burn originally, NiO, which has a very high melting point compared to the melting point of the base material (about 1450 ° C.), is suspended in a large amount in the cutting blade. Furthermore, the apparent viscosity of this mixed melt increases as the temperature decreases. As a result, the mixture is not sufficiently blown away by the oxygen stream and covers the cut surface. Thus, when the mixture covers the surface of the base material, the reaction of oxygen to burn the base material is finally prevented and cutting is inhibited. In addition, since this mixed melt is not sufficiently eliminated, there is a possibility that it remains in the cutting groove and is recombined.

D.固体NiOと平衡する溶融Ni中の酸素濃度
上述のとおり、NW2201の切断ノロ中に多量に散在しているデンドライト状のNiOは、酸素によって母材が燃焼し、その場で生成した酸化物というより、酸素が飽和状態に達した溶融Niから、凝固時に晶出したものと考えた。そこで、溶融純Ni中の酸素溶解度について熱力学的な検討を行った。計算には、以下の熱力学データを使用した。
2Ni(l)+O(g)=2NiO(s)
ΔG=−499030+185.75T(J)・・・(1)
(1)式は、溶融Niが燃焼するときの標準自由エネルギー変化である。
1/2O(g)=(in liq. Ni)
ΔG=−79700+7.15T(J)・・・(2)
(2)式は溶融Ni中に、酸素が溶解する反応の自由エネルギー変化である。溶融Ni中の酸素の活量は、mass%を単位とした無限希薄溶液を基準に取っており、NiOの活量は純固体を基準に取っている。また、酸素の活量係数に必要となる溶融Ni中における酸素間の相互作用助係数は(3)式を用いた。
(in liq. Ni)=0・・・(3)
D. Oxygen concentration in molten Ni in equilibrium with solid NiO As mentioned above, dendritic NiO scattered in large amounts in the cutting nod of NW2201 is not an oxide generated in situ when the base material is burned by oxygen. It was thought that it was crystallized during solidification from molten Ni in which oxygen reached saturation. Therefore, a thermodynamic study was conducted on the solubility of oxygen in molten pure Ni. The following thermodynamic data was used for the calculation.
2Ni (l) + O 2 (g) = 2NiO (s)
ΔG 0 = −49930 + 185.75 T (J) (1)
Formula (1) is a standard free energy change when molten Ni burns.
1 / 2O 2 (g) = O (in liq. Ni)
ΔG 0 = −79700 + 7.15T (J) (2)
Equation (2) is a change in free energy of reaction in which oxygen dissolves in molten Ni. The activity of oxygen in the molten Ni is based on an infinitely dilute solution with mass% as a unit, and the activity of NiO is based on a pure solid. Further, the equation (3) was used as an interaction assistant coefficient between oxygen in molten Ni required for the activity coefficient of oxygen.
e 0 0 (in liq. Ni) = 0 (3)

(1)〜(3)式を組み合わせることにより、純固体NiOと平衡する酸素濃度を計算することができる。計算結果を図8に示す。純Niの1550〜1650℃における酸素濃度は4000〜8000ppmであった。これはFe−18mass%Cr溶鋼が同じ温度範囲で純固体Crと平衡する酸素濃度、300〜400ppmに対し、約10〜20倍の値を示している。さらにNi−O系状態図から、より高温の2000℃においては約20%もの酸素溶解度があることがわかる。以上の結果は、高温で多量に酸素を溶解した溶融Niから、凝固時に、過飽和となった酸素が、初晶であるNiOとして多量に晶出してくることを裏付けている。 By combining the equations (1) to (3), the oxygen concentration in equilibrium with pure solid NiO can be calculated. The calculation results are shown in FIG. The oxygen concentration of pure Ni at 1550 to 1650 ° C. was 4000 to 8000 ppm. This shows a value of about 10 to 20 times the oxygen concentration 300 to 400 ppm at which the Fe-18 mass% Cr molten steel equilibrates with pure solid Cr 3 O 4 in the same temperature range. Furthermore, it can be seen from the Ni-O system phase diagram that there is an oxygen solubility of about 20% at a higher temperature of 2000 ° C. The above results confirm that a large amount of supersaturated oxygen crystallizes as NiO, which is the primary crystal, during solidification from molten Ni in which a large amount of oxygen is dissolved at a high temperature.

E.設備改善
NW2201のスラブ切断に時間を要する原因について調査した結果を、以下にまとめる。
1)Ni自体が燃焼しにくいことに加えて、溶融Niは高温で多量に酸素を溶解可能なため、切断ノロの凝固時に多量のNiOが晶出する。
2)NiOの融点は1950℃と、NW2201の母材の融点1450℃と比較して、非常に高融点である。したがって、このNiOを多量に懸濁した溶融金属は流動性が悪い。
3)母材の燃焼によって生じた酸化物もNiOであり、これが溶融金属に混入することにより、溶融状態にもかかわらず、切断ノロの流動性がさらに悪化する。
E. The results of investigating the cause of the time required to cut the slab of the facility improvement NW2201 are summarized below.
1) In addition to Ni being difficult to burn, molten Ni can dissolve a large amount of oxygen at a high temperature, so that a large amount of NiO crystallizes during solidification of the cutting blade.
2) The melting point of NiO is 1950 ° C., which is very high compared to the melting point of 1450 ° C. of the base material of NW2201. Therefore, the molten metal in which a large amount of NiO is suspended has poor fluidity.
3) The oxide produced by the combustion of the base material is also NiO, and when mixed with the molten metal, the fluidity of the cutting blade is further deteriorated despite the molten state.

上記1)〜3)と、上述のパウダー切断のメカニズムを照らし合わせ、高ニッケル合金のトーチカットに多大な時間を要してしまう理由を、以下の通り考えた。
I. 2)、3)の理由で極端に流動性の悪化したノロを排除するには現状の切断酸素気流が十分でない。
II. Iの理由により高融点酸化物(NiO)を多量に含むノロが排除できずに、切断表面を覆ってしまい、酸素と母材との反応を妨げ、切断が阻害される。
III. 切断酸素気流によって飛散・排除できず切断溝に残存した溶融切断ノロにより、再接合されてしまう。
The above 1) to 3) were compared with the above-described powder cutting mechanism, and the reason why a large amount of time was required for torch cutting of the high nickel alloy was considered as follows.
I. 2) The current cutting oxygen stream is not enough to eliminate the fluid whose fluidity has been extremely deteriorated for the reason of 3).
II. Due to the reason I, noro containing a large amount of high-melting-point oxide (NiO) cannot be eliminated and the cutting surface is covered, the reaction between oxygen and the base material is hindered, and cutting is inhibited.
III. It is rejoined by the melt cutting blade remaining in the cutting groove that cannot be scattered and eliminated by the cutting oxygen stream.

以上の問題点をまとめて解決するためには、現状の設備では能力不足であった。
次に、現状の設備で対応できない問題点を挙げた。また、解決しなくてならない具体的な設備とその改善および改造内容の検討を行い、現状のトーチカットの問題点と改善項目を表2にまとめて示した。
In order to solve the above problems collectively, the current facilities were insufficient.
Next, problems that cannot be handled by the current equipment were listed. In addition, the specific equipment that must be solved, the improvement and modification contents were examined, and the problems and improvement items of the current torch cut are summarized in Table 2.

Figure 2008207228
Figure 2008207228

以上の項目を解決するために、吹管、火口、ディスペンサーを改造した。さらに、設備導入後は切断圧力、切断パウダー中の含有Al量の適正化を行い、結果を後述の実施例に示した。   In order to solve the above items, the blowpipe, crater, and dispenser were modified. Further, after the installation of the equipment, the cutting pressure and the amount of Al contained in the cutting powder were optimized, and the results are shown in the examples described later.

(i)吹管の改良
新規に導入した吹管の模式図を図9に示す。図9において、符号30は、吹管本体であり、吹管30の先端には、酸素ガスおよび燃料ガスをスラブに吹き込む火口31が接続されており、さらに、吹管30には、吹管ホルダー32およびノズルホルダー33を介してパウダーノズル34が接続されている。パウダーノズル34は、鉄粉やアルミニウム粉を吹き込むためのノズルである。パウダーノズル34は、後述するディスペンサーに接続されている。
(I) Improvement of blowpipe A schematic diagram of a newly introduced blowpipe is shown in FIG. In FIG. 9, reference numeral 30 denotes a blow pipe main body, and a crater 31 for blowing oxygen gas and fuel gas into the slab is connected to the tip of the blow pipe 30. Further, the blow pipe 30 includes a blow pipe holder 32 and a nozzle holder. A powder nozzle 34 is connected via 33. The powder nozzle 34 is a nozzle for blowing iron powder or aluminum powder. The powder nozzle 34 is connected to a dispenser described later.

吹管30の後方には、パイプ類35が接続されており、図9に併記したその断面図に示すとおり、例えば、中央のパイプ36には切断酸素を通し、パイプ37および38に冷却水(出)および冷却水(入)を通して循環させ、パイプ39には予熱酸素を、パイプ40には予熱ガスを通すなどすることができる。   Pipes 35 are connected to the rear of the blowing pipe 30, and as shown in the cross-sectional view shown in FIG. 9, for example, cutting oxygen is passed through the central pipe 36, and cooling water (outflow ) And cooling water (entering), preheated oxygen can be passed through the pipe 39, preheated gas can be passed through the pipe 40, and the like.

本願発明では、切断酸素量と切断パウダー量を増やすことで切断熱量を増加させ、切断ノロが切断表面を被覆する前に切断するため、パウダーノズル34のツイン化(以後、ツインノズルと記述する)を行った。また、この変更に伴い、シングルよりもツインノズルはガス流速が高まり、切断ノロの排除性も向上した。   In the present invention, the amount of heat of cutting is increased by increasing the amount of cutting oxygen and the amount of cutting powder, and the powder nozzle 34 is twined (hereinafter referred to as a twin nozzle) to cut before the cutting blade covers the cutting surface. Went. As a result of this change, the twin nozzles have a higher gas flow rate than the single nozzle, and the cut-off resistance has been improved.

(ii)火口の改良
本願発明および従来のトーチの火口をそれぞれ図10に示す。本願発明においては、ガス流量とパウダーの燃焼熱量不足を解消するべく、プロパンと予熱酸素の混合性が優れガス流量が大きい構造の火口に変更し、番手の最適化も行った。ここで、番手とは、火口のガス配管径のサイズを表す設備的用語であり、数値が大きいほど径が大きいことを表す。
(Ii) Improvement of crater The crater of the present invention and the conventional torch are shown in FIG. In the present invention, in order to solve the shortage of the gas flow rate and the combustion heat amount of the powder, the crater was changed to a crater having a structure with excellent mixing of propane and preheated oxygen and a large gas flow rate, and the count was also optimized. Here, the count is an equipment term representing the size of the gas pipe diameter of the crater, and the larger the numerical value, the larger the diameter.

火口は、従来は3番手を用いていたが、ガス流量とのバランスを種々変化させてテストした結果から、5番手へ変更した。   The crater used to be 3rd in the past, but it was changed to 5th from the results of testing with various changes in the balance with the gas flow rate.

(iii)ディスペンサーの改良
本願発明および従来のディスペンサーをそれぞれ図11に示す。図11(a)の従来のディスペンサーは、パウダーを保持したタンク50にエゼクター54が接続され、タンク50内には抵抗板55が設けられており、さらに、図示しないトーチへ接続されたホース52が接続されている。また、エゼクター51の向きは、横向き(タンク内の加圧方向に対して直角)であった。従来のディスペンサーは、加圧ガス53と移送ガス54によって加圧され、これらの圧差制御によってパウダー供給量を調整していた。
(Iii) Improvement of dispenser The present invention and a conventional dispenser are shown in FIG. In the conventional dispenser of FIG. 11A, an ejector 54 is connected to a tank 50 holding powder, a resistance plate 55 is provided in the tank 50, and a hose 52 connected to a torch (not shown) is further provided. It is connected. Moreover, the direction of the ejector 51 was horizontal (perpendicular to the pressurizing direction in the tank). The conventional dispenser is pressurized by the pressurized gas 53 and the transfer gas 54, and the powder supply amount is adjusted by controlling the pressure difference between them.

一方、図11(b)の従来のディスペンサーは、タンク50、エゼクター51およびホース52が下向きに、すなわち一直線に配列するように接続され、さらに、タンク50とエゼクター51との間にローター回転用モーター56とパウダー供給量調整部57が設けられている。   On the other hand, in the conventional dispenser of FIG. 11B, the tank 50, the ejector 51, and the hose 52 are connected downward, that is, arranged in a straight line, and the rotor rotating motor is further interposed between the tank 50 and the ejector 51. 56 and a powder supply amount adjusting unit 57 are provided.

従来のディスペンサーでは、切断パウダーと切断酸素量のバランスが悪く、不完全燃焼する点を解消するため、本願発明のディスペンサーでは、パウダー供給方式を加圧と移送ガスの圧力差制御から、ローター制御に変更した。これにより、切断パウダー量の微調整が可能となった。さらに、エゼクターの形状を従来の横向きから下向きに変更したことで、各種ガス圧の最適化と切断パウダーの詰まり防止を図ることができる。さらに、先述したツインノズル化に伴い、切断パウダーを安定して供給するため、ディスペンサーを従来の2基から4基に増設した。   In the conventional dispenser, the balance between the cutting powder and the cutting oxygen amount is poor, and the problem of incomplete combustion is solved. Therefore, in the dispenser of the present invention, the powder supply method is changed from the pressure difference control between the pressurization and the transfer gas to the rotor control. changed. This made it possible to finely adjust the amount of cutting powder. Furthermore, by changing the shape of the ejector from the conventional horizontal direction to the downward direction, it is possible to optimize various gas pressures and prevent clogging of the cutting powder. Furthermore, with the twin nozzles described above, the number of dispensers has been increased from 2 to 4 in order to stably supply the cutting powder.

A.切断ガス圧力の検討
上述の構成を備えた本願発明のトーチを用い、切断ガス圧力の比率を変化させてスラブのトーチカットを行い、切断性を評価した実験結果を表3に示す。なお、プロパン圧力は0.05MPaで一定とし、表中の記号は、○<△<×の順に切断に要した時間が短いことを意味する。
A. Examination of cutting gas pressure Table 3 shows the experimental results of performing torch cutting of a slab by changing the ratio of cutting gas pressure using the torch of the present invention having the above-described configuration and evaluating cutting performance. The propane pressure is constant at 0.05 MPa, and the symbols in the table mean that the time required for cutting is short in the order of ◯ <Δ <x.

Figure 2008207228
Figure 2008207228

その結果、切断酸素圧力0.85MPa、予熱酸素圧力0.12MPaの組み合わせが最良であることが判明した。ただし、上記組み合わせが最良なのはプロパン圧力が0.05MPaの条件下に限るものであり、プロパン圧力によっては切断酸素圧力と予熱酸素圧力最良の組み合わせは変動しうる。   As a result, it was found that the combination of a cutting oxygen pressure of 0.85 MPa and a preheating oxygen pressure of 0.12 MPa was the best. However, the above combination is best only when the propane pressure is 0.05 MPa, and the best combination of the cutting oxygen pressure and the preheated oxygen pressure may vary depending on the propane pressure.

このことを示す実験として、プロパンガス圧力を0.04MPaで一定とした以外は上記と同様にして、切断性を評価した。その結果、予熱酸素圧力が0.06MPa、切断酸素圧力が0.8MPaの組み合わせが最良であることが判明した。このように、プロパン圧力によって、最適な予熱酸素圧力と切断酸素圧力の組み合わせは変化することが分かった。   As an experiment showing this, cutting performance was evaluated in the same manner as described above except that the propane gas pressure was kept constant at 0.04 MPa. As a result, it was found that the combination of the preheated oxygen pressure of 0.06 MPa and the cutting oxygen pressure of 0.8 MPa was the best. Thus, it has been found that the optimum combination of preheating oxygen pressure and cutting oxygen pressure varies depending on the propane pressure.

B.切断パウダー中の含有Al量
切断パウダー中の含有Al量が不適切のために、燃焼が不充分になっていた可能性も考えられた。そのため、切断パウダー中(Al粉とFe粉の総量)に対するAl含有量の割合が切断時間に及ぼす影響を測定する実験を別途行った。この実験は、所定の寸法の高ニッケル合金スラブを作製し、Al含有量を下記表4のごとく変化させてトーチカットを行った。結果を、下記表4および図12のグラフに示す。
B. The amount of Al contained in the cutting powder The amount of Al contained in the cutting powder was inadequate, and there was a possibility that combustion was insufficient. Therefore, another experiment was conducted to measure the influence of the ratio of the Al content to the cutting powder (total amount of Al powder and Fe powder) on the cutting time. In this experiment, a high nickel alloy slab having a predetermined size was produced, and the Al content was changed as shown in Table 4 below, and a torch cut was performed. The results are shown in the following Table 4 and the graph of FIG.

Figure 2008207228
Figure 2008207228

これら測定結果から、Al含有量が25%までは、切断時間が短縮されるが、それ以上ではほぼ一定となる傾向が分かる。この実験結果より、Al含有量を25%と設定した。   From these measurement results, it can be seen that when the Al content is up to 25%, the cutting time is shortened, but when the Al content is more than that, it tends to be almost constant. From this experimental result, the Al content was set to 25%.

C.切断時間の改善効果
一連の改善の効果を、切断時間で評価した結果として表5に示す。合金中のNi含有量が高くなるにしたがい、改善効果が大きく表れていることが明確である。特に、50%以上Niを含有する合金では、従来に比べてスラブ切断時間が約半分と大幅に短縮した。その結果、高ニッケル合金であっても、鋳造中にトーチカットが可能となり、それまで設けていた1回あたりの鋳造の重量制限を解除することができた。すなわち、鋳造機を停止させることなく溶鋼を連続的に供給して鋳造し続けることが可能になった。ここで言う高ニッケル合金とは、表5にも例示した評価No.2、3、4、5、6の合金を言い、Ni以外の残部は、主元素としては、Fe、Cr、Mo、Cuの一種または二種以上、場合によっては、Si、Mn、Nb、Ti、Al、W、Coの一種または二種以上を適宜含有しても構わない。
C. Cutting Time Improvement Effect Table 5 shows the results of a series of improvement effects evaluated by cutting time. As the Ni content in the alloy increases, it is clear that the improvement effect appears greatly. In particular, in the alloy containing Ni of 50% or more, the slab cutting time is significantly reduced to about half compared with the conventional case. As a result, even with a high nickel alloy, torch cutting was possible during casting, and the weight limit of casting per time that had been provided so far could be removed. That is, it has become possible to continuously supply molten steel and continue casting without stopping the casting machine. The high nickel alloy referred to here is the evaluation No. shown in Table 5. An alloy of 2, 3, 4, 5, 6 is used, and the balance other than Ni is one or more of Fe, Cr, Mo, and Cu as main elements. In some cases, Si, Mn, Nb, Ti One, two or more of Al, W, and Co may be appropriately contained.

高ニッケル合金の具体的な例としては、NW2201(99mass%Ni)、NCF825(Fe−42mass%Ni−21.5mass%Cr−3mass%Mo−2mass%Cu−1mass%Ti)、NCF625(Ni−21.5mass%Cr−9mass%Mo−3.5mass%Fe−3.6mass%(Nb+Ta))、NCF690(Ni−30.0mass%Cr−9.5mass%Fe)、NW6022(Hastelloy C−22:Ni−21.3mass%Cr−13.5mass%Mo−4mass%Fe−3mass%W)、NW0276(Hastelloy C−276:Ni−15.5mass%Cr−16mass%Mo−5.5mass%Fe−3.8mass%W)、NW4400(Monel400:Ni−31.5 mass%Cu)、NCF601(INCONEL 601: Ni−23mass%Cr−14.4mass%Fe−1.4 mass%Al)、NCF600(INCONEL 600:Ni−15.5mass%Cr−7mass%Fe)、NCF718(Ni−18.0mass%Cr−3.0mass%Mo−18.5mass%Fe−0.9mass%Ti−0.5mass%Al−5.1mass%(Nb+Ta))、NCF750(Ni−15.5mass%Cr−7mass%Fe−2.5mass%Ti−0.9mass%Al−1.0mass%(Nb+Ta))、NCF800(30〜35mass%Ni−21mass%Cr−Fe)、NCF800H(30〜35mass%Ni−21mass%Cr−Fe)、NCF80A(Ni−19.5mass%Cr−2.4mass%Ti−1.5mass%Al)、NW6002(Ni−21.5mass%Cr−9mass%Mo−18.5mass%Fe−1.2mass%Co)、NW5500(MonelK500:Ni−29.5mass%Cu−3mass%Al−0.5mass%Ti)、Fe−36%Ni、Fe−42%Ni、PB(パーマロイB)、PC(パーマロイC)、Fe−50.5%Ni、Fe−42%Ni−6%Cr、Fe−47%Ni−6%Cr等を挙げることができる。   Specific examples of the high nickel alloy include NW2201 (99 mass% Ni), NCF825 (Fe-42 mass% Ni-21.5 mass% Cr-3 mass% Mo-2 mass% Cu-1 mass% Ti), NCF625 (Ni-21). .5 mass% Cr-9 mass% Mo-3.5 mass% Fe-3.6 mass% (Nb + Ta)), NCF690 (Ni-30.0 mass% Cr-9.5 mass% Fe), NW6022 (Hastelloy C-22: Ni- 21.3 mass% Cr-13.5 mass% Mo-4 mass% Fe-3 mass% W), NW0276 (Hastelloy C-276: Ni-15.5 mass% Cr-16 mass% Mo-5.5 mass% Fe-3.8 mass% W), NW4400 (M onel400: Ni-31.5 mass% Cu), NCF601 (INCONEL 601: Ni-23 mass% Cr-14.4 mass% Fe-1.4 mass% Al), NCF600 (INCONEL 600: Ni-15.5 mass% Cr-) 7 mass% Fe), NCF718 (Ni-18.0 mass% Cr-3.0 mass% Mo-18.5 mass% Fe-0.9 mass% Ti-0.5 mass% Al-5.1 mass% (Nb + Ta)), NCF750 ( Ni-15.5 mass% Cr-7 mass% Fe-2.5 mass% Ti-0.9 mass% Al-1.0 mass% (Nb + Ta)), NCF800 (30-35 mass% Ni-21 mass% Cr-Fe), NCF800H ( 30-35 mass% Ni- 1 mass% Cr-Fe), NCF80A (Ni-19.5 mass% Cr-2.4 mass% Ti-1.5 mass% Al), NW6002 (Ni-21.5 mass% Cr-9 mass% Mo-18.5 mass% Fe- 1.2 mass% Co), NW 5500 (Monel K500: Ni-29.5 mass% Cu-3 mass% Al-0.5 mass% Ti), Fe-36% Ni, Fe-42% Ni, PB (Permalloy B), PC ( Permalloy C), Fe-50.5% Ni, Fe-42% Ni-6% Cr, Fe-47% Ni-6% Cr, and the like.

Figure 2008207228
Figure 2008207228

次に、従来のスラブ切断面および本願発明の実施後のスラブ切断面の写真を図14(a)および(b)に示す。従来の切断面はノロを被っており、凹凸が大きく平滑性に劣ることが分かる。そのため、トーチカットもしくはランス切断後に、スラブを水平にした状態で再切断する必要があった。しかし、改善後の切断面は凹凸が少なく、再切断工程を省略できるようになった。   Next, the photograph of the conventional slab cut surface and the slab cut surface after implementation of this invention are shown to Fig.14 (a) and (b). It can be seen that the conventional cut surface is covered with a slot and has large irregularities and poor smoothness. Therefore, it was necessary to recut the slab in a horizontal state after cutting the torch or lance. However, the improved cut surface has less unevenness, and the recutting process can be omitted.

従来、高ニッケル合金のトーチカットが困難であったため、本願発明では、その原因解明から始まり、設備改造に至る一連の改善を行った。以下にその結果をまとめる。
(1)NW2201の切断ノロを調査した結果、SUS304ステンレス鋼と比べ、流動性が悪い傾向が見られた。
(2)NW2201の切断ノロ中には、多量のNiOが混在していた。
(3)以上の観察結果より、切断を速やかに行うためには、吹管自体の変更、すなわち設備改造が必要と判断した。
(4)吹管変更に際し、火口改造、パウダーノズルのツイン化、ディスペンサー改造を行った。
(5)設備改造とともに、パウダー中Al含有量を適正化した。
(6)これらの改善活動により、切断が困難であった高ニッケル合金スラブを、鋳造中に切断可能となった。切断時間は、従来に比べ約半分に短縮された。
(7)切断のために設けられていた高ニッケル合金の重量制限が解除できたことにより、今後の高ニッケル合金の量産化ならびに生産性向上が実現した。
(8)危険かつ重筋作業であったランス切断が不要となり、安全性も向上した。
(9)従来必要であった再切断工程の省略が可能となった。
Conventionally, since it was difficult to torch cut high nickel alloys, the present invention has made a series of improvements starting from the elucidation of the cause to the equipment modification. The results are summarized below.
(1) As a result of investigating the cutting edge of NW2201, there was a tendency for the fluidity to be poor compared to SUS304 stainless steel.
(2) A large amount of NiO was mixed in the cutting blade of NW2201.
(3) From the above observation results, it was determined that the blow tube itself must be changed, that is, the equipment must be modified in order to cut quickly.
(4) The crater was remodeled, the powder nozzle was twined, and the dispenser was remodeled when changing the blowpipe.
(5) Along with the equipment modification, the Al content in the powder was optimized.
(6) These improvement activities made it possible to cut high nickel alloy slabs that were difficult to cut during casting. The cutting time was shortened to about half compared with the prior art.
(7) Since the weight limitation of the high nickel alloy provided for cutting was released, future mass production and productivity improvement of the high nickel alloy were realized.
(8) Lance cutting, which is dangerous and heavy work, is no longer necessary, and safety is improved.
(9) The re-cutting process, which was conventionally necessary, can be omitted.

高ニッケル合金製造における安全性の向上および低コスト化に寄与する。   Contributes to improved safety and lower costs in high nickel alloy production.

本願発明における合金の連続鋳造機を示す模式図である。It is a schematic diagram which shows the continuous casting machine of the alloy in this invention. 本願発明におけるパウダー切断のメカニズムを示す模式図である。It is a schematic diagram which shows the mechanism of the powder cutting | disconnection in this invention. 切断ノロの外観を示す写真である。It is a photograph which shows the external appearance of a cutting blade. NW2201の切断ノロの酸化物のX線回折結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the oxide of the cutting noro of NW2201. SUS304の切断ノロの酸化物のX線回折結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the oxide of the cutting | disconnection noro of SUS304. SUS304の切断ノロの断面写真である。It is a cross-sectional photograph of the cutting blade of SUS304. NW2201の切断ノロの断面写真である。It is a cross-sectional photograph of the cutting blade of NW2201. 固体NiOと平衡する溶融Ni中の酸素濃度と温度との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration and temperature in molten Ni which equilibrates with solid NiO. 本願発明におけるトーチ用吹管を示す模式図である。It is a schematic diagram which shows the blow pipe for torches in this invention. (a)は従来の火口、(b)は本願発明の火口を示す写真である。(A) is a conventional crater, (b) is a photograph showing the crater of the present invention. (a)は従来のディスペンサー、(b)は本願発明のディスペンサーを示す模式断面図である。(A) is a conventional dispenser, (b) is a schematic cross-sectional view showing a dispenser of the present invention. 切断時間とパウダー中のAl含有量との関係を示すグラフである。It is a graph which shows the relationship between cutting time and Al content in powder. 切断時間とスラブ中のNi含有量との関係を示すグラフである。It is a graph which shows the relationship between cutting time and Ni content in a slab. (a)は従来のスラブ切断面、(b)は本願発明のスラブ切断面を示す写真である。(A) is the conventional slab cut surface, (b) is a photograph showing the slab cut surface of the present invention.

符号の説明Explanation of symbols

C 連続鋳造機
10 注入鍋
11 タンディッシュ
12 モールド
13 スプレー冷却帯
14 ピンチロール
15 トーチ
20 溶鋼
21 スラブ
22 既切断部
23 燃焼部
24 溶融部(切断ノロ)
25 未切断部
30 吹管
31 火口
32 吹管ホルダー
33 ノズルホルダー
34 パウダーノズル
35〜40 パイプ
50 タンク
51 エゼクター
52 ホース
53 加圧ガス
54 移送ガス
55 抵抗板
56 ローター回転用モーター
57 パウダー供給量調整部
C continuous casting machine 10 pouring pan 11 tundish 12 mold 13 spray cooling zone 14 pinch roll 15 torch 20 molten steel 21 slab 22 already cut part 23 burning part 24 melting part (cutting nose)
25 Uncut part 30 Blow pipe 31 Tinder 32 Blow pipe holder 33 Nozzle holder 34 Powder nozzle 35-40 Pipe 50 Tank 51 Ejector 52 Hose 53 Pressurized gas 54 Transfer gas 55 Resistance plate 56 Motor for rotor rotation 57 Powder supply amount adjustment part

Claims (6)

連続鋳造した合金をトーチによって切断する合金の切断方法であって、
上記トーチは、プロパンガスと酸素ガスを吹き込むためのノズルと、燃焼助剤としての鉄粉および/またはアルミニウム粉を吹き込むためのノズル2〜4本と、上記粉末を格納する粉末タンクと、上記粉末を吹き込むためのエゼクターとを備え、
上記アルミニウム粉の含有量は、燃焼助剤としての全粉末量の20〜50mass%であり、
上記エゼクター形状を、上記粉末タンクに対して鉛直下向きとし、
上記トーチによってプロパンガスと酸素ガスを吹き込むとともに燃焼助剤を吹き込んで合金を切断することを特徴とする合金の切断方法。
An alloy cutting method for cutting a continuously cast alloy with a torch,
The torch includes a nozzle for blowing propane gas and oxygen gas, 2 to 4 nozzles for blowing iron powder and / or aluminum powder as a combustion aid, a powder tank for storing the powder, and the powder With an ejector for blowing
The content of the aluminum powder is 20 to 50 mass% of the total powder amount as a combustion aid,
The ejector shape is vertically downward with respect to the powder tank,
A method for cutting an alloy, characterized in that propane gas and oxygen gas are blown by the torch and a combustion aid is blown to cut the alloy.
切断の対象となる上記合金は、ニッケルを35mass%以上含有する合金であることを特徴とする請求項1に記載の合金の切断方法。 2. The alloy cutting method according to claim 1, wherein the alloy to be cut is an alloy containing 35 mass% or more of nickel. 切断の対象となる合金は、ニッケルを50mass%以上含有する合金であることを特徴とする請求項1に記載の合金の切断方法。 The alloy cutting method according to claim 1, wherein the alloy to be cut is an alloy containing 50 mass% or more of nickel. 前記アルミニウム粉の含有量は、燃焼助剤としての全粉末量の25〜50mass%であることを特徴とする請求項1に記載の合金の切断方法。 The alloy cutting method according to claim 1, wherein the content of the aluminum powder is 25 to 50 mass% of the total amount of powder as a combustion aid. 上記プロパンガス圧力を0.03〜0.06MPaとし、予熱酸素圧力を0.04〜0.14MPaとし、切断酸素圧力を0.6〜0.9MPaとして行うことを特徴とする請求項1に記載の合金の切断方法。 The propane gas pressure is set to 0.03 to 0.06 MPa, the preheating oxygen pressure is set to 0.04 to 0.14 MPa, and the cutting oxygen pressure is set to 0.6 to 0.9 MPa. Alloy cutting method. 上記プロパンガス圧力を0.05MPaとし、予熱酸素圧力を0.11〜0.14MPaとし、切断酸素圧力を0.85MPaとして行うことを特徴とする請求項1に記載の合金の切断方法。 The alloy cutting method according to claim 1, wherein the propane gas pressure is 0.05 MPa, the preheating oxygen pressure is 0.11 to 0.14 MPa, and the cutting oxygen pressure is 0.85 MPa.
JP2007048079A 2007-02-27 2007-02-27 Cutting method of high nickel alloy Active JP4628382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048079A JP4628382B2 (en) 2007-02-27 2007-02-27 Cutting method of high nickel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048079A JP4628382B2 (en) 2007-02-27 2007-02-27 Cutting method of high nickel alloy

Publications (2)

Publication Number Publication Date
JP2008207228A true JP2008207228A (en) 2008-09-11
JP4628382B2 JP4628382B2 (en) 2011-02-09

Family

ID=39783982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048079A Active JP4628382B2 (en) 2007-02-27 2007-02-27 Cutting method of high nickel alloy

Country Status (1)

Country Link
JP (1) JP4628382B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016155A (en) * 2009-07-09 2011-01-27 Nippon Steel Corp Method and device for gas-cutting cast slab
JP2013103242A (en) * 2011-11-11 2013-05-30 Nippon Yakin Kogyo Co Ltd Cutting device and cutting method for high nickel alloy
CN108213370A (en) * 2018-01-02 2018-06-29 丛林集团有限公司 A kind of aluminium alloy round cast ingot oil-air lubrication film casting method
KR101921598B1 (en) 2017-11-01 2018-11-26 주식회사 포스코 Powder supplying appratus
JP7360050B2 (en) 2020-03-23 2023-10-12 日本製鉄株式会社 How to determine cutting conditions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736368Y2 (en) * 1978-07-07 1982-08-11
JPS59199170A (en) * 1983-04-28 1984-11-12 Koike Sanso Kogyo Co Ltd Method and device for powder gas cutting
JPS6345722U (en) * 1986-09-10 1988-03-28
JPH044973A (en) * 1990-04-20 1992-01-09 Sumitomo Metal Ind Ltd Powder gas cutting method and device for high alloy stainless steel
JPH06285626A (en) * 1993-04-05 1994-10-11 Daido Steel Co Ltd Auxiliary fuel for cutting of continuous casting super alloy
JPH08168877A (en) * 1994-12-15 1996-07-02 Kawasaki Steel Corp Powder gas cutting method for hardly fusion cuttable metallic material and iron powder used for the same
JPH1085931A (en) * 1996-09-18 1998-04-07 Nippon Steel Corp Device for cutting stainless steel cast billet
JP2001179436A (en) * 1999-12-20 2001-07-03 Sumitomo Heavy Ind Ltd Method and apparatus for cutting non-metallic material making use of combustion heat of inflammable gas and oxidation heat of metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736368Y2 (en) * 1978-07-07 1982-08-11
JPS59199170A (en) * 1983-04-28 1984-11-12 Koike Sanso Kogyo Co Ltd Method and device for powder gas cutting
JPS6345722U (en) * 1986-09-10 1988-03-28
JPH044973A (en) * 1990-04-20 1992-01-09 Sumitomo Metal Ind Ltd Powder gas cutting method and device for high alloy stainless steel
JPH06285626A (en) * 1993-04-05 1994-10-11 Daido Steel Co Ltd Auxiliary fuel for cutting of continuous casting super alloy
JPH08168877A (en) * 1994-12-15 1996-07-02 Kawasaki Steel Corp Powder gas cutting method for hardly fusion cuttable metallic material and iron powder used for the same
JPH1085931A (en) * 1996-09-18 1998-04-07 Nippon Steel Corp Device for cutting stainless steel cast billet
JP2001179436A (en) * 1999-12-20 2001-07-03 Sumitomo Heavy Ind Ltd Method and apparatus for cutting non-metallic material making use of combustion heat of inflammable gas and oxidation heat of metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016155A (en) * 2009-07-09 2011-01-27 Nippon Steel Corp Method and device for gas-cutting cast slab
JP2013103242A (en) * 2011-11-11 2013-05-30 Nippon Yakin Kogyo Co Ltd Cutting device and cutting method for high nickel alloy
KR101921598B1 (en) 2017-11-01 2018-11-26 주식회사 포스코 Powder supplying appratus
CN108213370A (en) * 2018-01-02 2018-06-29 丛林集团有限公司 A kind of aluminium alloy round cast ingot oil-air lubrication film casting method
CN108213370B (en) * 2018-01-02 2019-10-22 丛林集团有限公司 A kind of aluminium alloy round cast ingot oil-air lubrication film casting method
JP7360050B2 (en) 2020-03-23 2023-10-12 日本製鉄株式会社 How to determine cutting conditions

Also Published As

Publication number Publication date
JP4628382B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5041029B2 (en) Method for producing high manganese steel
JP4628382B2 (en) Cutting method of high nickel alloy
CN1321766C (en) Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
JP5158931B2 (en) Nickel-base alloy refining and continuous casting method
Wang et al. Effect of filler metal composition on microstructure and mechanical properties of electron beam welded titanium/copper joint
JP7230243B2 (en) Nickel-base alloy for powder and method for producing powder
JP5063024B2 (en) Method of casting alloy steel containing Cr and Ni
JP2020032442A (en) Method for casting molten steel
JP5839947B2 (en) High nickel alloy cutting apparatus and method
US3623862A (en) Use of rare earth elements for reducing nozzle deposits in the continuous casting of steel process
TW200523051A (en) Casting steel strip
JP2009248113A (en) Continuous casting method for molten steel comprising rare earth element
JP5637081B2 (en) Mold flux for continuous casting of high Mn steel and continuous casting method
TW201919792A (en) Continuous casting method for steel and method for manufacturing thin steel plate
WO2021106484A1 (en) Method for casting molten steel, method for producing continuous cast slab, and method for producing steel for bearing
EP2039785B1 (en) Ladle steel deoxidation method
JP2010133017A (en) B-added austenitic stainless cast steel having excellent hot workability, and method for producing the same
EP2197608A1 (en) Method for making stainless steel comprising fine carbonitrides and product obtained by said method
JP2003147492A (en) Ti-CONTAINING Fe-Cr-Ni STEEL HAVING EXCELLENT SURFACE PROPERTY, AND CASTING METHOD THEREFOR
JP5188766B2 (en) Molten alloy sealing device and method of air separation at the start of continuous casting
JP2009066650A (en) Atmosphere shielding method upon start of continuous casting
JPH08225822A (en) Reformation of aluminum inclusion in molten steel
JP4999627B2 (en) Molten alloy sealing device, casting method using this device, and method for shutting off air at the start of continuous casting
JP3238090B2 (en) Continuous casting method of steel slab
RU2228235C2 (en) Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250