JP2008203070A - Composite sensor - Google Patents

Composite sensor Download PDF

Info

Publication number
JP2008203070A
JP2008203070A JP2007038991A JP2007038991A JP2008203070A JP 2008203070 A JP2008203070 A JP 2008203070A JP 2007038991 A JP2007038991 A JP 2007038991A JP 2007038991 A JP2007038991 A JP 2007038991A JP 2008203070 A JP2008203070 A JP 2008203070A
Authority
JP
Japan
Prior art keywords
electrode
unit
acceleration
angular velocity
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007038991A
Other languages
Japanese (ja)
Other versions
JP5125138B2 (en
Inventor
Satoshi Ouchi
智 大内
Hiroyuki Aizawa
宏幸 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007038991A priority Critical patent/JP5125138B2/en
Priority to PCT/JP2008/000253 priority patent/WO2008102537A1/en
Publication of JP2008203070A publication Critical patent/JP2008203070A/en
Application granted granted Critical
Publication of JP5125138B2 publication Critical patent/JP5125138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor miniaturized by reducing a mounting area, when detecting an angular velocity or an acceleration. <P>SOLUTION: First to fourth counter electrodes 14, 16, 18, 20 arranged on a weight part 2 and first and second detection electrodes 26, 28 arranged on the second arm 10 have an upper electrode and a lower electrode interposed with a piezoelectric layer, and a substrate 6, a fixed part 4, the first arm 8, the second arm 10 and the weight part 2 comprise a nonmetal material having a higher resistance than the lower electrode 34. An acceleration detection part generates short circuit between the upper electrode and the lower electrode of the first to fourth counter electrodes 14, 16, 18, 20 arranged on the weight part 2, detects a capacitance between each first electrode arranged on each facing surface of the weight part 2 and the substrate 6, and detects the acceleration. An angular velocity detection part detects a state change of the second arm 10 bent by a Coriolis force by the first and second detection electrodes 26, 28, and detects the angular velocity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、航空機、自動車、ロボット、船舶、車両等の移動体の姿勢制御やナビゲーション等、各種電子機器に用いる角速度や加速度を検出する複合センサに関するものである。   The present invention relates to a composite sensor that detects angular velocities and accelerations used in various electronic devices such as attitude control and navigation of moving bodies such as aircraft, automobiles, robots, ships, and vehicles.

以下、従来の複合センサについて説明する。   Hereinafter, a conventional composite sensor will be described.

従来、角速度や加速度を検出するセンサを用いる場合は、角速度を検出するには専用の角速度センサを用い、加速度を検出するには専用の加速度センサを用いていた。   Conventionally, when a sensor that detects angular velocity or acceleration is used, a dedicated angular velocity sensor is used to detect angular velocity, and a dedicated acceleration sensor is used to detect acceleration.

したがって、各種電子機器において、角速度と加速度とを複合して検出する場合は、複数の角速度センサと加速度センサを各種電子機器の実装基板に各々実装していた。   Therefore, when various angular velocity and acceleration are detected in various electronic devices, a plurality of angular velocity sensors and acceleration sensors are mounted on the mounting boards of the various electronic devices.

一般に、角速度センサは、音さ形状やH形状やT形状等、各種の形状の検出素子を振動させて、コリオリ力の発生に伴う検出素子の歪を電気的に検知して角速度を検出するものであり、加速度センサは、錘部を有し、加速度に伴う錘部の可動を、可動前と比較検知して加速度を検出するものである。   In general, an angular velocity sensor detects an angular velocity by electrically detecting a distortion of a detection element caused by the generation of Coriolis force by vibrating a detection element having various shapes such as a sound shape, an H shape, and a T shape. The acceleration sensor has a weight part, and detects acceleration by comparing and detecting the movement of the weight part accompanying the acceleration with that before the movement.

このような角速度センサや加速度センサを検出したい検出軸に対応させて、車両等の移動体の姿勢制御装置やナビゲーション装置等に用いている。   Such an angular velocity sensor or an acceleration sensor is used for a posture control device, a navigation device, or the like of a moving body such as a vehicle corresponding to a detection axis to be detected.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1および特許文献2が知られている。
特開2001−208546号公報 特開2001−74767号公報
For example, Patent Literature 1 and Patent Literature 2 are known as prior art literature information related to the invention of this application.
JP 2001-208546 A JP 2001-74767 A

上記構成では、検出したい角速度や加速度の検出軸に対応させて、角速度センサおよび加速度センサを実装基板に各々実装するので実装面積を確保する必要があり、小型化を図れないという問題点を有していた。   In the above configuration, since the angular velocity sensor and the acceleration sensor are mounted on the mounting substrate in correspondence with the detection axis of the angular velocity and acceleration to be detected, it is necessary to secure a mounting area, and there is a problem that the size cannot be reduced. It was.

本発明は上記問題点を解決し、角速度や加速度を検出するにあたり、実装面積を低減して小型化を図ったセンサを提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a sensor that is reduced in size by reducing the mounting area when detecting angular velocity and acceleration.

上記目的を達成するために本発明は、加速度検出部と角速度検出部を有する検出素子を備え、検出素子は、可撓部を介して錘部を連結した固定部と、前記錘部と対向させた基板と、前記錘部と前記基板の各々の対向面に配置した第1電極と、前記可撓部に配置した第2電極とを有し、前記加速度検出部では、前記錘部と前記基板の各々の対向面に配置した第1電極間の静電容量を検出して加速度を検出しており、前記角速度検出部ではコリオリ力に起因して撓む前記可撓部の状態変化を前記第2電極で検出して角速度を検出しており、前記錘部に配置した前記第1電極を延長して引き出した信号線を、前記可撓部を介して前記固定部まで配置し、前記錘部に配置した第1電極およびそれを延長して引き出した前記信号線は圧電層を介在させた上部電極と下部電極で形成するとともに、前記下部電極間に生じる不要静電容量による検出精度のばらつきを抑制する抑制手段を設けた構成である。   In order to achieve the above object, the present invention includes a detection element having an acceleration detection unit and an angular velocity detection unit, and the detection element is opposed to the weight unit and a fixed unit in which a weight unit is connected via a flexible unit. A first electrode disposed on the opposing surface of each of the weight portion and the substrate, and a second electrode disposed on the flexible portion, and the acceleration detecting portion includes the weight portion and the substrate. The acceleration is detected by detecting the capacitance between the first electrodes arranged on the opposing surfaces of each of the first and second angular velocities, and the angular velocity detecting unit changes the state change of the flexible unit due to the Coriolis force. An angular velocity is detected by detecting with two electrodes, and a signal line extending from the first electrode arranged on the weight part is extended to the fixed part via the flexible part, and the weight part The first electrode disposed on the first electrode and the signal line extended from the first electrode have a piezoelectric layer interposed therebetween. Thereby forming in parts and lower electrodes, a structure in which a suppression means for suppressing variations in detection accuracy due to unnecessary electrostatic capacitance generated between the lower electrode.

上記構成により、加速度検出部によって、錘部と基板の各々の対向面に配置した第1電極間の静電容量を検出して加速度を検出し、角速度検出部によって、コリオリ力に起因して撓む可撓部の状態変化を第2電極で検出し、一つの検出素子で加速度と角速度を検出できるので、実装面積を低減して小型化を図れる。特に、加速度検出部の第1電極と角速度検出部の第2電極とは、圧電層を介在させた上部電極と下部電極とを有しており、同一工程で形成できるので、生産性を向上しつつ小型化を図れる。   With the above configuration, the acceleration detection unit detects the capacitance between the first electrodes arranged on the opposing surfaces of the weight unit and the substrate to detect the acceleration, and the angular velocity detection unit deflects due to the Coriolis force. The change in the state of the flexible portion can be detected by the second electrode, and the acceleration and angular velocity can be detected by one detection element, so that the mounting area can be reduced and the size can be reduced. In particular, the first electrode of the acceleration detection unit and the second electrode of the angular velocity detection unit have an upper electrode and a lower electrode with a piezoelectric layer interposed therebetween, and can be formed in the same process, improving productivity. It can be downsized.

特に、下部電極間に生じる不要静電容量による検出精度のばらつきを抑制する抑制手段を設けているので、不要静電容量に起因したS/N比の劣化を抑制できる。特に、信号線が長くなったとしても、S/N比の劣化を抑制でき、検出精度を向上できるものである。   In particular, since suppression means for suppressing variation in detection accuracy due to unnecessary capacitance generated between the lower electrodes is provided, deterioration of the S / N ratio due to unnecessary capacitance can be suppressed. In particular, even if the signal line becomes longer, the deterioration of the S / N ratio can be suppressed and the detection accuracy can be improved.

図1は本発明の一実施の形態における複合センサの検出素子の分解斜視図、図2は図1のA−A断面図である。   FIG. 1 is an exploded perspective view of a detection element of a composite sensor according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

図1において、本発明の一実施の形態における複合センサは、加速度検出部と角速度検出部を有する検出素子1を備え、この検出素子1は、可撓部を介して錘部2を連結した固定部4と、錘部2と対向させた基板6と、錘部2と基板6の各々の対向面に配置した第1電極と、可撓部に配置した第2電極とを有する。   In FIG. 1, a composite sensor according to an embodiment of the present invention includes a detection element 1 having an acceleration detection unit and an angular velocity detection unit, and the detection element 1 is fixed by connecting a weight part 2 via a flexible part. Part 4, substrate 6 opposed to weight part 2, a first electrode arranged on each facing surface of weight part 2 and substrate 6, and a second electrode arranged in a flexible part.

具体的には、この検出素子1は、第1アーム8を第2アーム10に略直交方向に連結して形成した2つの直交アームと、2つの第1アーム8の一端を支持する支持部12と、2つの第1アーム8の他端を接続した枠体形状の固定部4とを有する。第1アーム8の厚みは第2アーム10の厚みよりも非常に薄く形成しており、第2アーム10は第2アーム10自身と対向するまで折曲し、折曲した第2アーム10の先端部に錘部2を連結している。第1アーム8と支持部12とは略同一直線上に配置し、第1アーム8および第2アーム10は検出素子1の中心に対して対称配置している。ここで、可撓部は固定部4と錘部2とを連結する部分を指しており、第1アーム8、第2アーム10が可撓部に相当する。   Specifically, the detection element 1 includes two orthogonal arms formed by connecting the first arm 8 to the second arm 10 in a substantially orthogonal direction, and a support portion 12 that supports one end of the two first arms 8. And a frame-shaped fixing portion 4 in which the other ends of the two first arms 8 are connected. The thickness of the first arm 8 is much thinner than the thickness of the second arm 10, and the second arm 10 is bent until it faces the second arm 10 itself, and the tip of the bent second arm 10 is bent. The weight part 2 is connected to the part. The first arm 8 and the support portion 12 are arranged on substantially the same straight line, and the first arm 8 and the second arm 10 are arranged symmetrically with respect to the center of the detection element 1. Here, the flexible portion refers to a portion connecting the fixed portion 4 and the weight portion 2, and the first arm 8 and the second arm 10 correspond to the flexible portion.

また、錘部2に対向させて基板6を配置し、錘部2と基板6の各々の対向面には、第1電極として第1対向電極〜第4対向電極14、16、18、20を配置している。さらに、互いに対向する一方の2つの第2アーム10には錘部2を駆動振動させる駆動電極22および検知電極24を設けるとともに、互いに対向する他方の2つの第2アーム10には、第2電極として第2アーム10の歪を感知する第1感知電極26、第2感知電極28を設けている。   Further, the substrate 6 is disposed so as to face the weight portion 2, and the first to fourth counter electrodes 14, 16, 18, and 20 are provided as first electrodes on the facing surfaces of the weight portion 2 and the substrate 6. It is arranged. Further, one of the two second arms 10 facing each other is provided with a drive electrode 22 and a detection electrode 24 for driving and vibrating the weight portion 2, and the other two second arms 10 facing each other have a second electrode. Are provided with a first sensing electrode 26 and a second sensing electrode 28 for sensing the distortion of the second arm 10.

さらに、錘部2に配置した第1対向電極〜第4対向電極14、16、18、20を延長して引き出した信号線(図示せず)を、第2アーム10および第1アーム8を介して固定部4に設けた電極パッドまで配置している。   Further, a signal line (not shown) extended from the first counter electrode to the fourth counter electrodes 14, 16, 18, 20 arranged on the weight portion 2 is routed through the second arm 10 and the first arm 8. The electrode pads provided on the fixing portion 4 are arranged.

上記の錘部2に配置した第1対向電極〜第4対向電極14、16、18、20、駆動電極22、検知電極24、第1感知電極26、第2感知電極28は、図2に示すように、圧電層30を介在させた上部電極32と下部電極34とを有し、信号線も同様の構成である。   The first counter electrode to the fourth counter electrodes 14, 16, 18, 20, the drive electrode 22, the detection electrode 24, the first detection electrode 26, and the second detection electrode 28 arranged in the weight portion 2 are shown in FIG. As described above, the upper electrode 32 and the lower electrode 34 with the piezoelectric layer 30 interposed therebetween are provided, and the signal line has the same configuration.

そして、基板6と固定部4と第1アーム8と第2アーム10と錘部2とは、下部電極34よりも高抵抗のシリコン等からなる非金属材料からなり、固定部4と第1アーム8と第2アーム10と錘部2とを一体成形して、基板6と固定部4とを接合して互いに固定している。   The substrate 6, the fixed portion 4, the first arm 8, the second arm 10, and the weight portion 2 are made of a non-metallic material made of silicon or the like having a higher resistance than the lower electrode 34, and the fixed portion 4 and the first arm 8, the second arm 10, and the weight portion 2 are integrally formed, and the substrate 6 and the fixing portion 4 are joined and fixed to each other.

次に、角速度検出部および加速度検出部について説明する。   Next, the angular velocity detection unit and the acceleration detection unit will be described.

まず、角速度検出部について説明する。   First, the angular velocity detection unit will be described.

図3に示すように、互いに直交したX軸、Y軸、Z軸において、検出素子1の第1アーム8をX軸方向に配置して、第2アーム10をY軸方向に配置した場合、駆動電極22に共振周波数の交流電圧を印加すると、駆動電極22が配置された第2アーム10の支持部12を起点に第2アーム10が駆動振動し、それに伴って錘部2も第2アーム10の対向方向(実線の矢印と点線の矢印で記した駆動振動方向)に駆動振動する。また、4つの第2アーム10および4つの錘部2の全てが同調して第2アーム10の対向方向に駆動振動する。この検出素子1における駆動振動方向はX軸方向となる。   As shown in FIG. 3, when the first arm 8 of the detection element 1 is arranged in the X-axis direction and the second arm 10 is arranged in the Y-axis direction on the X axis, the Y axis, and the Z axis orthogonal to each other, When an AC voltage having a resonance frequency is applied to the drive electrode 22, the second arm 10 is driven to vibrate starting from the support portion 12 of the second arm 10 on which the drive electrode 22 is disposed. Drive vibration occurs in 10 opposing directions (drive vibration directions indicated by solid arrows and dotted arrows). In addition, all of the four second arms 10 and the four weight portions 2 are synchronously driven and vibrated in the opposite direction of the second arm 10. The driving vibration direction in the detection element 1 is the X-axis direction.

このとき、例えば、Z軸の左回りに角速度が生じた場合は、錘部2の駆動振動と同調して、錘部2に対して駆動振動方向と直交した方向(実線の矢印と点線の矢印で記したコリオリ方向(Y軸方向))にコリオリ力が発生するので、第2アーム10にZ軸の左回りの角速度に起因した歪を発生させることができる。すなわち、コリオリ力に起因して撓むこの第2アーム10の状態変化(第2アーム10に発生した歪)によって、第1、第2感知電極26、28から電圧が出力され、この出力電圧に基づき角速度が検出される。   At this time, for example, when an angular velocity is generated in the counterclockwise direction of the Z axis, a direction (solid line arrow and dotted line arrow) perpendicular to the drive vibration direction with respect to the weight part 2 is synchronized with the drive vibration of the weight part 2. Since the Coriolis force is generated in the Coriolis direction (Y-axis direction) described above, distortion caused by the counterclockwise angular velocity of the Z-axis can be generated in the second arm 10. That is, a voltage is output from the first and second sensing electrodes 26 and 28 due to a change in the state of the second arm 10 that is bent due to the Coriolis force (a strain generated in the second arm 10). Based on this, the angular velocity is detected.

次に、加速度検出部について説明する。   Next, the acceleration detection unit will be described.

図4に示すように、互いに直交するX軸、Y軸、Z軸において、基板6をXY平面に配置した場合、加速度が発生していなければ、基板6と錘部2の対向面の第1対向電極14の対向距離(H1)と、基板6と錘部2との対向面の第2対向電極16の対向距離(H2)は等しい。図示していないが、第3対向電極18の対向距離と第4対向電極20の対向距離も等しくなる。   As shown in FIG. 4, when the substrate 6 is arranged on the XY plane in the X axis, the Y axis, and the Z axis that are orthogonal to each other, if the acceleration is not generated, the first surface of the opposing surface of the substrate 6 and the weight portion 2 is used. The opposing distance (H1) of the opposing electrode 14 and the opposing distance (H2) of the second opposing electrode 16 on the opposing surface of the substrate 6 and the weight portion 2 are equal. Although not shown, the facing distance of the third counter electrode 18 and the facing distance of the fourth counter electrode 20 are also equal.

このとき、例えば、X軸方向に加速度が生じた場合、図5に示すように、錘部2は支持部12を中心にしてY軸周りに回転しようとする。この結果、基板6と錘部2の対向面の第1対向電極14の対向距離(H1)が小さくなり、基板6と錘部2との対向面の第2対向電極16の対向距離(H2)が大きくなる。第3対向電極18の対向距離と第4対向電極20の対向距離も同様である。   At this time, for example, when acceleration occurs in the X-axis direction, the weight portion 2 tends to rotate around the Y-axis around the support portion 12 as shown in FIG. As a result, the facing distance (H1) of the first counter electrode 14 on the facing surface of the substrate 6 and the weight portion 2 is reduced, and the facing distance (H2) of the second facing electrode 16 on the facing surface of the substrate 6 and the weight portion 2 is reduced. Becomes larger. The same applies to the facing distance of the third counter electrode 18 and the facing distance of the fourth counter electrode 20.

一方、Y軸方向に加速度が生じた場合も同様に、錘部2は支持部12を中心にしてX軸周りに回転しようとするため、例えば、第3、第4対向電極18、20の対向距離が大きくなり、第1、第2対向電極14、16の対向距離が小さくなる。すなわち、各々の電極間の静電容量が変化するので、この静電容量の変化に基づいてX軸方向またはY軸方向の加速度を検出するものである。   On the other hand, when acceleration occurs in the Y-axis direction, similarly, the weight portion 2 tends to rotate around the X-axis around the support portion 12, so that, for example, the third and fourth counter electrodes 18 and 20 face each other. The distance increases, and the opposing distance between the first and second counter electrodes 14, 16 decreases. That is, since the capacitance between the electrodes changes, acceleration in the X-axis direction or Y-axis direction is detected based on the change in capacitance.

上記構成により、加速度検出部によって、錘部2と基板6の各々の対向面に配置した第1電極の静電容量を検出して加速度を検出し、角速度検出部によって、コリオリ力に起因して撓む可撓部の状態変化を第2電極で検出し、一つの検出素子1で加速度と角速度を検出できるので、実装面積を低減して小型化を図れる。また、加速度検出部の第1電極と角速度検出部の第2電極とは、圧電層30を介在させた上部電極32と下部電極34とを有しており、同一工程で形成できるので、生産性を向上しつつ小型化を図れる。   With the above configuration, the acceleration detection unit detects the capacitance of the first electrode disposed on the opposing surfaces of the weight unit 2 and the substrate 6 to detect the acceleration, and the angular velocity detection unit causes the Coriolis force. Since the change in the state of the flexible part to be bent is detected by the second electrode and the acceleration and the angular velocity can be detected by one detection element 1, the mounting area can be reduced and the size can be reduced. In addition, the first electrode of the acceleration detection unit and the second electrode of the angular velocity detection unit include the upper electrode 32 and the lower electrode 34 with the piezoelectric layer 30 interposed therebetween, and can be formed in the same process. The size can be reduced while improving.

特に、下部電極34間に生じる不要静電容量による検出精度のばらつきを抑制する抑制手段を設けているので、不要静電容量に起因したS/N比の劣化を抑制できる。信号線が長くなったとしても、S/N比の劣化を抑制でき、検出精度を向上できるものである。   In particular, since suppression means for suppressing variation in detection accuracy due to unnecessary capacitance generated between the lower electrodes 34 is provided, it is possible to suppress degradation of the S / N ratio due to unnecessary capacitance. Even if the signal line becomes long, the deterioration of the S / N ratio can be suppressed and the detection accuracy can be improved.

なお、不要静電容量が下部電極34間に発生することによる検出精度のばらつきを抑制する抑制手段としては、可撓部と錘部2と固定部4とを下部電極34よりも高抵抗の非金属材料で形成する他に、錘部2に配置した第1対向電極〜第4対向電極14、16、18、20およびそれらを延長して形成した信号線の下部電極34を同電位にしたり、隣接する信号線の間にアース線を配置したりして、抑制してもよい。   As a suppression means for suppressing variation in detection accuracy due to generation of unnecessary capacitance between the lower electrodes 34, the flexible portion, the weight portion 2, and the fixed portion 4 are made to have a higher resistance than the lower electrode 34. In addition to being formed of a metal material, the first to fourth counter electrodes 14, 16, 18, 20 disposed on the weight portion 2 and the lower electrode 34 of the signal line formed by extending them have the same potential, You may suppress by arrange | positioning a ground wire between adjacent signal lines.

本発明に係る加速度センサは、加速度の検出精度を向上できるので、各種電子機器に適用できるものである。   Since the acceleration sensor according to the present invention can improve the detection accuracy of acceleration, it can be applied to various electronic devices.

本発明の一実施の形態における複合センサの検出素子の分解斜視図The disassembled perspective view of the detection element of the composite sensor in one embodiment of this invention 図1のA−A断面図AA sectional view of FIG. 角速度発生時における同検出素子の動作状態を示す説明図Explanatory drawing which shows the operation state of the detection element at the time of angular velocity generation 同検出素子の断面図Cross section of the detector 加速度発生時における同検出素子の動作状態を示す説明図Explanatory drawing which shows the operation state of the detection element at the time of acceleration generation

符号の説明Explanation of symbols

1 検出素子
2 錘部
4 固定部
6 基板
8 第1アーム
10 第2アーム
12 支持部
14 第1対向電極
16 第2対向電極
18 第3対向電極
20 第4対向電極
22 駆動電極
24 検知電極
26 第1感知電極
28 第2感知電極
30 圧電層
32 上部電極
34 下部電極
DESCRIPTION OF SYMBOLS 1 Detection element 2 Weight part 4 Fixed part 6 Board | substrate 8 1st arm 10 2nd arm 12 Support part 14 1st counter electrode 16 2nd counter electrode 18 3rd counter electrode 20 4th counter electrode 22 Drive electrode 24 Detection electrode 26 26th 1 sensing electrode 28 2nd sensing electrode 30 piezoelectric layer 32 upper electrode 34 lower electrode

Claims (4)

加速度検出部と角速度検出部を有する検出素子を備え、
前記検出素子は、可撓部を介して錘部を連結した固定部と、前記錘部と対向させた基板と、前記錘部と前記基板の各々の対向面に配置した第1電極と、前記可撓部に配置した第2電極とを有し、
前記加速度検出部では、前記錘部と前記基板の各々の対向面に配置した第1電極間の静電容量を検出して加速度を検出しており、前記角速度検出部ではコリオリ力に起因して撓む前記可撓部の状態変化を前記第2電極で検出して角速度を検出しており、
前記錘部に配置した前記第1電極を延長して引き出した信号線を、前記可撓部を介して前記固定部まで配置し、
前記錘部に配置した第1電極およびそれを延長して引き出した信号線は圧電層を介在させた上部電極と下部電極で形成するとともに、前記下部電極間に生じる不要静電容量による検出精度のばらつきを抑制する抑制手段を設けた複合センサ。
A detection element having an acceleration detection unit and an angular velocity detection unit;
The detection element includes a fixed portion that connects a weight portion via a flexible portion, a substrate that faces the weight portion, a first electrode that is disposed on each of the opposing surfaces of the weight portion and the substrate, and A second electrode disposed in the flexible part,
In the acceleration detection unit, an acceleration is detected by detecting a capacitance between first electrodes arranged on the opposing surfaces of the weight unit and the substrate, and the angular velocity detection unit is caused by Coriolis force. The angular velocity is detected by detecting a change in the state of the flexible portion that is bent by the second electrode,
A signal line that extends and extends the first electrode disposed on the weight portion is disposed up to the fixed portion via the flexible portion,
The first electrode arranged on the weight part and the signal line extended from the first electrode are formed by an upper electrode and a lower electrode with a piezoelectric layer interposed therebetween, and detection accuracy due to unnecessary capacitance generated between the lower electrodes is increased. A composite sensor provided with suppression means for suppressing variations.
前記抑制手段は、少なくとも、前記第1電極の前記下部電極を同電位にして抑制する手段とした請求項1記載の複合センサ。 The composite sensor according to claim 1, wherein the suppression unit is a unit that suppresses at least the lower electrode of the first electrode at the same potential. 前記抑制手段は、前記可撓部または前記固定部を前記下部電極よりも高抵抗の非金属材料で形成して抑制する手段とした請求項1記載の複合センサ。 The composite sensor according to claim 1, wherein the suppression unit is a unit that suppresses the flexible part or the fixed part by forming the flexible part or the fixed part with a non-metallic material having a higher resistance than the lower electrode. 前記抑制手段は、隣接する前記信号線の間にアース線を配置して抑制する手段とした請求項1記載の複合センサ。 The composite sensor according to claim 1, wherein the suppression unit is a unit that suppresses by arranging a ground wire between the adjacent signal lines.
JP2007038991A 2007-02-20 2007-02-20 Compound sensor Expired - Fee Related JP5125138B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007038991A JP5125138B2 (en) 2007-02-20 2007-02-20 Compound sensor
PCT/JP2008/000253 WO2008102537A1 (en) 2007-02-20 2008-02-19 Composite sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038991A JP5125138B2 (en) 2007-02-20 2007-02-20 Compound sensor

Publications (2)

Publication Number Publication Date
JP2008203070A true JP2008203070A (en) 2008-09-04
JP5125138B2 JP5125138B2 (en) 2013-01-23

Family

ID=39709817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038991A Expired - Fee Related JP5125138B2 (en) 2007-02-20 2007-02-20 Compound sensor

Country Status (2)

Country Link
JP (1) JP5125138B2 (en)
WO (1) WO2008102537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092806A1 (en) 2009-02-13 2010-08-19 パナソニック株式会社 Inertial force sensor and detecting element used for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464749B2 (en) * 2015-01-06 2019-02-06 セイコーエプソン株式会社 Physical quantity sensor, electronic device and mobile object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145736A (en) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd Composite acceleration/angular velocity sensor
JPH09318649A (en) * 1996-05-30 1997-12-12 Texas Instr Japan Ltd Composite sensor
JP2000180175A (en) * 1998-12-15 2000-06-30 Mitsumi Electric Co Ltd Multi-axial-detection-type angular velocity and acceleration sensor
JP2002243450A (en) * 2001-02-16 2002-08-28 Victor Co Of Japan Ltd Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor
JP2002350138A (en) * 2001-05-28 2002-12-04 Wacoh Corp Detector of both of acceleration and angular velocity
JP2006162314A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Compound sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749962B2 (en) * 1989-10-18 1995-05-31 日本電装株式会社 Angular velocity sensor
JP4178192B2 (en) * 1998-04-22 2008-11-12 ミツミ電機株式会社 Physical quantity detection sensor
JP3972790B2 (en) * 2001-11-27 2007-09-05 松下電器産業株式会社 Thin film micromechanical resonator and thin film micromechanical resonator gyro

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145736A (en) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd Composite acceleration/angular velocity sensor
JPH09318649A (en) * 1996-05-30 1997-12-12 Texas Instr Japan Ltd Composite sensor
JP2000180175A (en) * 1998-12-15 2000-06-30 Mitsumi Electric Co Ltd Multi-axial-detection-type angular velocity and acceleration sensor
JP2002243450A (en) * 2001-02-16 2002-08-28 Victor Co Of Japan Ltd Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor
JP2002350138A (en) * 2001-05-28 2002-12-04 Wacoh Corp Detector of both of acceleration and angular velocity
JP2006162314A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Compound sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092806A1 (en) 2009-02-13 2010-08-19 パナソニック株式会社 Inertial force sensor and detecting element used for same
US8689630B2 (en) 2009-02-13 2014-04-08 Panasonic Corporation Inertial force sensor and detecting element used for same

Also Published As

Publication number Publication date
JP5125138B2 (en) 2013-01-23
WO2008102537A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5293187B2 (en) Sensor
JP5205970B2 (en) Inertial force sensor
JP5205725B2 (en) Angular velocity sensor
JP4929918B2 (en) Compound sensor
JP2007256235A (en) Inertia force sensor
WO2010095412A1 (en) Inertial force sensor
JP2008076265A (en) Inertial force sensor
JP2009222475A (en) Compound sensor
JP5125138B2 (en) Compound sensor
JP4858215B2 (en) Compound sensor
JP4687085B2 (en) Compound sensor
JP2008122263A (en) Angular velocity sensor
JP2008232704A (en) Inertia force sensor
JP2007256234A (en) Inertia force sensor
JP2006226802A (en) Compound sensor
JP2009156603A (en) Combined sensor
JP2008190887A (en) Sensor
JP2008232703A (en) Inertia force sensor
JP2007198778A (en) Inertial force sensor
JP2010230346A (en) Angular velocity sensor
JP2008122262A (en) Angular velocity sensor
JP2008261771A (en) Inertia force sensor
JP2009222476A (en) Compound sensor
JP2009250955A (en) Inertial force sensor
JP2008046056A (en) Angular velocity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees