JP2008196561A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2008196561A
JP2008196561A JP2007031102A JP2007031102A JP2008196561A JP 2008196561 A JP2008196561 A JP 2008196561A JP 2007031102 A JP2007031102 A JP 2007031102A JP 2007031102 A JP2007031102 A JP 2007031102A JP 2008196561 A JP2008196561 A JP 2008196561A
Authority
JP
Japan
Prior art keywords
groove
bearing
outer ring
flow
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007031102A
Other languages
Japanese (ja)
Inventor
Hidehiko Itaya
英彦 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007031102A priority Critical patent/JP2008196561A/en
Publication of JP2008196561A publication Critical patent/JP2008196561A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing capable of further improving the lubrication performance. <P>SOLUTION: The rolling bearing is provided with bearing rings (an outer ring 1, an inner ring 4) disposed oppositely to each other so as to be relatively rotatable, and a plurality of rolling elements 6 incorporated into between the bearing rings so as to roll therein. One of the bearing rings (the outer ring) has formed thereon double row raceway surfaces 2s on which the rolling elements roll. A lubricant flow mechanism for providing a lubricant flow is built in between the double row raceway surfaces. The lubricant flow mechanism is provided with a recess groove G1 formed in a recessed manner continuously in the circumferential direction on a part of a circumferential surface extending between the raceway surfaces, and at least one flow groove G2 formed in a recessed manner on a part of a region from the recess groove to the raceway surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転部材を回転自在に支持するための転がり軸受に関する。   The present invention relates to a rolling bearing for rotatably supporting a rotating member.

従来、例えば自動車をはじめ各種駆動系の変速機には、当該変速機を構成する種々の歯車を回転軸に対して回転自在に支持するための転がり軸受が用いられている。そして、かかる転がり軸受には、回転軸を長期に亘って円滑に且つ安定して回転させるための技術が構築されている。その一例として特許文献1には、外輪内周に形成された複列の軌道面相互間に潤滑剤を一時的に貯溜することで、軸受の潤滑性能を一定に維持する技術が提案されている。かかる技術において、軌道面相互間に延在する周面には、その一部を凹状に窪ませた凹溝が周方向に沿って連続して形成されている。この場合、軸受回転中に凹溝に貯溜された潤滑剤は、当該凹溝に沿って周方向に広く分配されることになり、その結果、軸受の潤滑性能を一定に維持することができる。   2. Description of the Related Art Conventionally, rolling bearings for rotatably supporting various gears constituting a transmission with respect to a rotating shaft are used in transmissions of various drive systems such as automobiles. And the technique for rotating a rotating shaft smoothly and stably over a long period of time is built in this rolling bearing. As an example, Patent Document 1 proposes a technique for maintaining the lubrication performance of a bearing constant by temporarily storing a lubricant between double-row raceway surfaces formed on the inner periphery of an outer ring. . In such a technique, a circumferential groove extending between the raceway surfaces is continuously formed along the circumferential direction with a concave groove partially recessed. In this case, the lubricant stored in the concave groove during the rotation of the bearing is widely distributed in the circumferential direction along the concave groove, and as a result, the lubricating performance of the bearing can be kept constant.

ところで、近年における駆動系の高出力化や高速化に伴って、その変速機には、急激な加減速が繰り返される場合があり、これに応じて、回転軸の回転速度も急激に変化することになる。このような状況において、回転軸を円滑に且つ安定して回転させるためには、転がり軸受の潤滑性能を更に向上させる必要がある。この場合、潤滑性能を向上させるためには、軸受内部に封入した潤滑剤を更に効率良く流動させれば良いが、現在そのような技術は知られていない。
特開平10−274243号公報
By the way, with the recent increase in the output and speed of the drive system, the transmission may be repeatedly accelerated and decelerated, and the rotational speed of the rotating shaft also changes rapidly accordingly. become. In such a situation, in order to rotate the rotating shaft smoothly and stably, it is necessary to further improve the lubrication performance of the rolling bearing. In this case, in order to improve the lubrication performance, the lubricant enclosed in the bearing may be flowed more efficiently, but such a technique is not known at present.
Japanese Patent Laid-Open No. 10-274243

そこで、本発明の目的は、潤滑性能を更に向上させることが可能な転がり軸受を提供することにある。   Therefore, an object of the present invention is to provide a rolling bearing capable of further improving the lubricating performance.

この目的を達成するために、本発明は、相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組み込まれた複数の転動体とを備えた転がり軸受であって、一方の軌道輪には、転動体を転動させるための軌道面が複列で形成されていると共に、当該複列の軌道面相互間には、潤滑剤を流動させるための潤滑剤流動機構が構築されており、潤滑剤流動機構は、軌道面相互間に延在する周面の一部を周方向に沿って連続して凹状に窪ませて形成した凹溝と、凹溝から軌道面に亘る領域の一部を凹状に窪ませて形成した少なくとも1つの流動溝とを備えている。この場合、流動溝は、凹溝から軌道面に向うに従って所定の角度で傾斜して形成されている。また、流動溝は、凹溝から少なくとも一方の軌道面に亘って連続して形成されている。   In order to achieve this object, the present invention is a rolling bearing comprising a bearing ring disposed so as to be relatively rotatable and a plurality of rolling elements that are rotatably incorporated between the bearing rings, The raceway has a raceway surface for rolling the rolling elements in a double row, and a lubricant flow mechanism is built between the raceway surfaces in the double row to flow the lubricant. The lubricant flow mechanism includes a concave groove formed by continuously recessing a part of the circumferential surface extending between the raceway surfaces along the circumferential direction, and extending from the groove to the raceway surface. And at least one flow groove formed by recessing a part of the region in a concave shape. In this case, the flow groove is formed to be inclined at a predetermined angle from the concave groove toward the raceway surface. In addition, the flow groove is formed continuously from the concave groove to at least one of the raceway surfaces.

本発明の転がり軸受によれば、潤滑性能を更に向上させることができる。   According to the rolling bearing of the present invention, the lubricating performance can be further improved.

以下、本発明の第1の実施の形態に係る転がり軸受について、添付図面を参照して説明する。
図1(a)に示すように、本実施の形態の転がり軸受は、相対回転可能に対向配置された軌道輪(外輪2、内輪4)と、外内輪2,4間に転動自在に組み込まれた複数の転動体6と、各転動体6を保持する保持器8とを備えている。この場合、一方の軌道輪である外輪2の内周(内輪4に対向する周面)には、転動体6を転動させるための軌道面(外輪軌道面)2sが複列で周方向に連続して形成されており、他方の軌道輪である内輪4は、転動体6を転動させるための単列の軌道面(内輪軌道面)4sを各外輪軌道面2sに対向させるように、互いに分離した状態で2個配置されている。
Hereinafter, a rolling bearing according to a first embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1 (a), the rolling bearing according to the present embodiment is incorporated between a raceway (outer ring 2, inner ring 4) and an outer ring 2 and 4 that are opposed to each other so as to be relatively rotatable. A plurality of rolling elements 6 and a cage 8 for holding each rolling element 6 are provided. In this case, a raceway surface (outer ring raceway surface) 2s for rolling the rolling elements 6 is formed in a double row in the circumferential direction on the inner circumference (a circumferential surface facing the inner ring 4) of the outer race 2 which is one raceway. The inner ring 4 that is formed continuously and that is the other raceway ring has a single row raceway surface (inner ring raceway surface) 4s for rolling the rolling elements 6 facing each outer ring raceway surface 2s. Two are arranged in a state of being separated from each other.

本実施の形態では、転動体6として“円すいころ”を適用しており、当該転動体6が外内輪2,4間に組み込まれた転がり軸受は、複列外向き円すいころ軸受として構成される。この場合、複列の外輪軌道面2sは、外輪2両側に向うに従って末広がり状に傾斜した円錐台形状を成しており、一方、内輪軌道面4sは、対向する外輪軌道面2sに沿って傾斜した円錐台形状を成している。なお、保持器8としては、複数の転動体(円すいころ)6を1つずつ回転自在に保持できれば、その種類や形状が制限されることは無い。   In the present embodiment, a “tapered roller” is applied as the rolling element 6, and the rolling bearing in which the rolling element 6 is incorporated between the outer inner rings 2 and 4 is configured as a double-row outward tapered roller bearing. . In this case, the double-row outer ring raceway surface 2s has a truncated conical shape inclined toward the outer ring 2 toward both sides, while the inner ring raceway surface 4s is inclined along the opposing outer ring raceway surface 2s. It has a truncated cone shape. Note that the type and shape of the cage 8 are not limited as long as a plurality of rolling elements (cone rollers) 6 can be rotatably held one by one.

このような複列外向き円すいころ軸受(転がり軸受)において、図1(b)に示すように、外輪2には、その複列の外輪軌道面2s相互間に、潤滑剤(図示しない)を流動させるための潤滑剤流動機構が構築されている。潤滑剤流動機構は、外輪軌道面2s相互間に延在する周面の一部を周方向に沿って連続して凹状に窪ませて形成した凹溝G1と、凹溝G1から外輪軌道面2sに亘る領域の一部を凹状に窪ませて形成した少なくとも1つの流動溝G2とを備えている。この場合、流動溝G2は、凹溝G1から外輪軌道面2sに亘って連続して形成されている。   In such a double-row outward tapered roller bearing (rolling bearing), as shown in FIG. 1B, a lubricant (not shown) is applied to the outer ring 2 between the double-row outer ring raceway surfaces 2s. A lubricant flow mechanism for fluidization has been established. The lubricant flow mechanism includes a concave groove G1 formed by recessing a part of the circumferential surface extending between the outer ring raceway surfaces 2s continuously in the circumferential direction, and the outer ring raceway surface 2s from the concave groove G1. And at least one flow groove G2 formed by recessing a part of the region extending in a concave shape. In this case, the flow groove G2 is formed continuously from the concave groove G1 to the outer ring raceway surface 2s.

ここで、凹溝G1及び流動溝G2の大きさ(幅、深さ)は、例えば外輪2の内周の形状や広さに応じて任意に設定することができるため特に限定しない。また、凹溝G1及び流動溝G2の溝形状は、図面では矩形状としているが、例えば円弧形状や三角形状など各種の形状とすることが可能である。要するに、潤滑剤が流動し易い形状であれば任意の溝形状とすることができる。また、図面では一例として、凹溝G1の両側にそれぞれ複数の流動溝G2を周方向に沿って所定間隔で形成しているが、凹溝G1の両側にそれぞれ1つだけ流動溝G2を形成しても良い。   Here, the size (width, depth) of the concave groove G1 and the flow groove G2 is not particularly limited because it can be arbitrarily set according to, for example, the shape and width of the inner periphery of the outer ring 2. In addition, the groove shapes of the concave groove G1 and the flow groove G2 are rectangular in the drawing, but can be various shapes such as an arc shape and a triangular shape. In short, any groove shape can be used as long as the lubricant easily flows. Also, in the drawing, as an example, a plurality of flow grooves G2 are formed at predetermined intervals along the circumferential direction on both sides of the concave groove G1, but only one flow groove G2 is formed on both sides of the concave groove G1. May be.

以上、本実施の形態の潤滑剤流動機構によれば、軸受回転中に凹溝G1に貯溜された潤滑剤は、当該凹溝G1に沿って周方向に広く分配されると同時に、その分配された潤滑剤は、更に流動溝G2に沿って外輪軌道面2sに供給される。これにより、潤滑剤を外輪2の内周から軸受内部の隅々に亘って効率良く且つ万遍無く流動させることができるため、転がり軸受の潤滑性能を飛躍的に向上させることができる。   As described above, according to the lubricant flow mechanism of the present embodiment, the lubricant stored in the concave groove G1 during rotation of the bearing is widely distributed in the circumferential direction along the concave groove G1, and at the same time, distributed. The lubricant further supplied to the outer ring raceway surface 2s along the flow groove G2. As a result, the lubricant can be efficiently and uniformly flowed from the inner circumference of the outer ring 2 to every corner of the bearing, so that the lubrication performance of the rolling bearing can be dramatically improved.

また、本実施の形態の転がり軸受を上述したような変速機に用いた場合、回転軸の速度変化によって当該軸受の回転状態が急激に変化しても、潤滑剤流動機構により潤滑剤を軸受内部の隅々に流動させることができる。この場合、軸受内部の潤滑性能を常に一定に維持することができるため、軸受の早期焼付きやフレッチングなどの発生を防止することが可能となり、その結果、当該軸受を長期に亘って円滑に且つ安定して回転させることができる。   Further, when the rolling bearing according to the present embodiment is used in the transmission as described above, even if the rotational state of the bearing suddenly changes due to a change in the speed of the rotating shaft, the lubricant flows into the bearing by the lubricant flow mechanism. It can be made to flow in every corner. In this case, since the lubrication performance inside the bearing can always be maintained constant, it is possible to prevent the occurrence of premature seizure and fretting of the bearing, and as a result, the bearing can be smoothly and over the long term. It can be rotated stably.

なお、上述した実施の形態では、流動溝G2の傾き(勾配)について特に言及しなかったが、流動溝G2を軸受のアキシアル方向に沿って平行に形成しても良いし、或いは、流動溝G2を凹溝G1から外輪軌道面2sに向うに従って所定の角度で傾斜させて形成しても良い。   In the above-described embodiment, the inclination (gradient) of the flow groove G2 is not particularly mentioned. However, the flow groove G2 may be formed in parallel along the axial direction of the bearing, or the flow groove G2 May be inclined at a predetermined angle from the concave groove G1 toward the outer ring raceway surface 2s.

その一例として図2(a),(b)には、本実施の形態の変形例に係る転がり軸受の構成が示されており、当該軸受において、流動溝G2は、凹溝G1から外輪軌道面2sに向うに従って外輪2の外径方向(アキシアル方向に対して軸受外方)に傾斜して形成されている。この場合、流動溝G2の傾斜角度は、例えば外輪2の内周の形状や外輪軌道面2sの大きさや傾斜角度などに応じて任意に設定されるため、ここでは特に限定しない。   As an example, FIGS. 2 (a) and 2 (b) show the configuration of a rolling bearing according to a modification of the present embodiment, in which the flow groove G2 extends from the concave groove G1 to the outer ring raceway surface. It is formed so as to be inclined in the outer diameter direction of the outer ring 2 (outward of the bearing with respect to the axial direction) toward 2s. In this case, the inclination angle of the flow groove G2 is not particularly limited because it is arbitrarily set according to, for example, the shape of the inner periphery of the outer ring 2 and the size and inclination angle of the outer ring raceway surface 2s.

このように、流動溝G2を傾斜させることで、凹溝G1に貯溜された潤滑剤を流動溝G2から更に効率良く且つ円滑に流動させることができるため、軸受内部の潤滑性能を飛躍的に向上させることができる。なお、その他の効果は、上述した第1の実施の形態と同様であるため、その説明は省略する。   In this way, by inclining the flow groove G2, the lubricant stored in the concave groove G1 can flow more efficiently and smoothly from the flow groove G2, so that the lubrication performance inside the bearing is dramatically improved. Can be made. Since other effects are the same as those of the first embodiment described above, description thereof is omitted.

図3(a)には、本発明の第2の実施の形態に係る転がり軸受の構成が示されており、当該軸受には、転動体6として“玉”が適用されている。この場合、複列の外輪軌道面2sは、転動体(玉)6の外形輪郭に沿った円弧形状を成しており、一方、内輪軌道面4sは、外輪軌道面2sとの間に転動体(玉)6の転動路を構成するように、転動体(玉)6の外形輪郭に沿った円弧形状を成している。また、保持器8としては、複数の転動体(玉)6を1つずつ回転自在に保持できれば、その種類や形状が制限されることは無い。なお、その他の軸受構成は、上述した第1の実施の形態と同様であるため、その説明は省略する。   FIG. 3A shows the configuration of a rolling bearing according to the second embodiment of the present invention, and “balls” are applied as rolling elements 6 to the bearing. In this case, the double-row outer ring raceway surface 2s has an arc shape along the outer contour of the rolling element (ball) 6, while the inner ring raceway surface 4s is in contact with the outer ring raceway surface 2s. An arc shape is formed along the outer contour of the rolling element (ball) 6 so as to constitute the rolling path of the (ball) 6. Further, as the cage 8, as long as a plurality of rolling elements (balls) 6 can be rotatably held one by one, the type and shape thereof are not limited. Since other bearing configurations are the same as those in the first embodiment described above, description thereof is omitted.

このような玉軸受(転がり軸受)において、図3(b)に示すように、複列の外輪軌道面2s相互間には、潤滑剤(図示しない)を流動させる潤滑剤流動機構が構築されている。潤滑剤流動機構は、上述した第1の実施の形態と同様に、外輪軌道面2s相互間に形成された凹溝G1と、凹溝G1から外輪軌道面2sに亘る領域に形成された流動溝G2とを備えている。なお、その他の潤滑剤流動機構の構成は、上述した第1の実施の形態と同様であるため、その説明は省略する。   In such a ball bearing (rolling bearing), as shown in FIG. 3 (b), a lubricant flow mechanism for causing a lubricant (not shown) to flow between the double row outer ring raceway surfaces 2s is constructed. Yes. As in the first embodiment described above, the lubricant flow mechanism includes a groove G1 formed between the outer ring raceway surfaces 2s and a flow groove formed in a region extending from the groove G1 to the outer ring raceway surface 2s. G2. In addition, since the structure of another lubricant flow mechanism is the same as that of 1st Embodiment mentioned above, the description is abbreviate | omitted.

以上、本実施の形態の潤滑剤流動機構によれば、軸受回転中に凹溝G1に貯溜された潤滑剤は、当該凹溝G1に沿って周方向に広く分配されると同時に、その分配された潤滑剤は、更に流動溝G2に沿って外輪軌道面2sに供給される。これにより、潤滑剤を外輪2の内周から軸受内部の隅々に亘って効率良く且つ万遍無く流動させることができるため、転がり軸受の潤滑性能を飛躍的に向上させることができる。なお、その他の効果は、上述した第1の実施の形態と同様であるため、その説明は省略する。   As described above, according to the lubricant flow mechanism of the present embodiment, the lubricant stored in the concave groove G1 during rotation of the bearing is widely distributed in the circumferential direction along the concave groove G1, and at the same time, distributed. The lubricant further supplied to the outer ring raceway surface 2s along the flow groove G2. As a result, the lubricant can be efficiently and uniformly flowed from the inner circumference of the outer ring 2 to every corner of the bearing, so that the lubrication performance of the rolling bearing can be dramatically improved. Since other effects are the same as those of the first embodiment described above, description thereof is omitted.

また、本実施の形態において、流動溝G2の傾き(勾配)については特に言及しなかったが、流動溝G2を軸受のアキシアル方向に沿って平行に形成しても良いし、或いは、流動溝G2を凹溝G1から外輪軌道面2sに向うに従って所定の角度で傾斜させて形成しても良い。   Further, in the present embodiment, the inclination (gradient) of the flow groove G2 is not particularly mentioned, but the flow groove G2 may be formed in parallel along the axial direction of the bearing, or the flow groove G2 May be inclined at a predetermined angle from the concave groove G1 toward the outer ring raceway surface 2s.

その一例として図4(a),(b)には、本実施の形態の変形例に係る転がり軸受の構成が示されており、当該軸受において、流動溝G2は、凹溝G1から外輪軌道面2sに向うに従って外輪2の外径方向(アキシアル方向に対して軸受外方)に傾斜して形成されている。この場合、流動溝G2の傾斜角度は、例えば外輪2の内周の形状や外輪軌道面2sの大きさや傾斜角度などに応じて任意に設定されるため、ここでは特に限定しない。   As an example, FIGS. 4 (a) and 4 (b) show the configuration of a rolling bearing according to a modification of the present embodiment, in which the flow groove G2 extends from the concave groove G1 to the outer ring raceway surface. It is formed so as to be inclined in the outer diameter direction of the outer ring 2 (outward of the bearing with respect to the axial direction) toward 2s. In this case, the inclination angle of the flow groove G2 is not particularly limited because it is arbitrarily set according to, for example, the shape of the inner periphery of the outer ring 2 and the size and inclination angle of the outer ring raceway surface 2s.

このように、流動溝G2を傾斜させることで、凹溝G1に貯溜された潤滑剤を流動溝G2から更に効率良く且つ円滑に流動させることができるため、軸受内部の潤滑性能を飛躍的に向上させることができる。なお、その他の効果は、上述した第1の実施の形態と同様であるため、その説明は省略する。   In this way, by inclining the flow groove G2, the lubricant stored in the concave groove G1 can flow more efficiently and smoothly from the flow groove G2, so that the lubrication performance inside the bearing is dramatically improved. Can be made. Since other effects are the same as those of the first embodiment described above, description thereof is omitted.

図5(a),(b)には、本発明の第3の実施の形態に係る転がり軸受の構成が示されており、当該軸受の潤滑剤流動機構において、流動溝G2は、凹溝G1の片側にのみ形成されている。なお、その他の潤滑剤流動機構の構成は、上述した第2の実施の形態と同様であるため、その説明は省略する。このように、凹溝G1の片側にのみ流動溝G2を形成しても、その効果は、上述した第2の実施の形態と同様であるため、その説明は省略する。   FIGS. 5A and 5B show the configuration of a rolling bearing according to the third embodiment of the present invention. In the lubricant flow mechanism of the bearing, the flow groove G2 is a concave groove G1. It is formed only on one side. In addition, since the structure of another lubricant flow mechanism is the same as that of 2nd Embodiment mentioned above, the description is abbreviate | omitted. Thus, even if the flow groove G2 is formed only on one side of the groove G1, the effect is the same as that of the second embodiment described above, and the description thereof is omitted.

また、図6(a),(b)には、本実施の形態の変形例に係る転がり軸受の構成が示されており、当該軸受において、流動溝G2は、凹溝G1から外輪軌道面2sに向うに従って外輪2の外径方向(アキシアル方向に対して軸受外方)に傾斜して形成されている。なお、その他の構成や効果については、上述した第2の実施の形態の変形例と同様であるため、その説明は省略する。   6 (a) and 6 (b) show the configuration of a rolling bearing according to a modification of the present embodiment. In the bearing, the flow groove G2 extends from the concave groove G1 to the outer ring raceway surface 2s. The outer ring 2 is formed so as to be inclined toward the outer diameter direction of the outer ring 2 (outward of the bearing with respect to the axial direction). Other configurations and effects are the same as those of the modified example of the second embodiment described above, and thus description thereof is omitted.

また、上述した各実施の形態及び変形例では、潤滑剤流動機構を外輪2の内周に形成した場合を想定しているが、これに代えて、例えば内輪4の外周に複列で内輪軌道面4sが形成されている軸受構成であれば、その複列の内輪軌道面4s相互間に、潤滑剤(図示しない)を流動させるための潤滑剤流動機構を構築しても良い。この場合、潤滑剤流動機構は、内輪軌道面4s相互間に延在する周面の一部を周方向に沿って連続して凹状に窪ませて形成した凹溝と、凹溝から内輪軌道面4sに亘る領域の一部を凹状に窪ませて形成した少なくとも1つの流動溝とを備えて構成すれば良い。   Further, in each of the above-described embodiments and modifications, it is assumed that the lubricant flow mechanism is formed on the inner periphery of the outer ring 2, but instead, for example, the inner ring raceway is formed in a double row on the outer periphery of the inner ring 4. In the case of a bearing configuration in which the surface 4s is formed, a lubricant flow mechanism for allowing a lubricant (not shown) to flow between the double row inner ring raceway surfaces 4s may be constructed. In this case, the lubricant flow mechanism includes a concave groove formed by continuously recessing a part of the circumferential surface extending between the inner ring raceway surfaces 4s along the circumferential direction, and the inner ring raceway surface from the concave groove. What is necessary is just to comprise and comprise at least 1 flow groove formed by denting a part of area | region over 4 s to concave shape.

(a)は、本発明の第1の実施の形態に係る転がり軸受の構成を示す断面図、(b)は、同図(a)の外輪に構築された潤滑剤流動機構の構成を示す図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on the 1st Embodiment of this invention, (b) is a figure which shows the structure of the lubricant flow mechanism constructed | assembled to the outer ring | wheel of the same figure (a). . (a)は、第1の実施の形態の変形例に係る転がり軸受の構成を示す断面図、(b)は、同図(a)の外輪に構築された潤滑剤流動機構の構成を示す図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on the modification of 1st Embodiment, (b) is a figure which shows the structure of the lubricant flow mechanism constructed | assembled to the outer ring | wheel of the same figure (a). . (a)は、本発明の第2の実施の形態に係る転がり軸受の構成を示す断面図、(b)は、同図(a)の外輪に構築された潤滑剤流動機構の構成を示す図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on the 2nd Embodiment of this invention, (b) is a figure which shows the structure of the lubricant flow mechanism constructed | assembled by the outer ring | wheel of the same figure (a). . (a)は、第2の実施の形態の変形例に係る転がり軸受の構成を示す断面図、(b)は、同図(a)の外輪に構築された潤滑剤流動機構の構成を示す図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on the modification of 2nd Embodiment, (b) is a figure which shows the structure of the lubricant flow mechanism constructed | assembled to the outer ring | wheel of the same figure (a). . (a)は、本発明の第3の実施の形態に係る転がり軸受の構成を示す断面図、(b)は、同図(a)の外輪に構築された潤滑剤流動機構の構成を示す図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on the 3rd Embodiment of this invention, (b) is a figure which shows the structure of the lubricant flow mechanism constructed | assembled to the outer ring | wheel of the same figure (a). . (a)は、第3の実施の形態の変形例に係る転がり軸受の構成を示す断面図、(b)は、同図(a)の外輪に構築された潤滑剤流動機構の構成を示す図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on the modification of 3rd Embodiment, (b) is a figure which shows the structure of the lubricant flow mechanism constructed | assembled to the outer ring | wheel of the same figure (a). .

符号の説明Explanation of symbols

2 外輪
2s 外輪軌道面
4 内輪
4s 内輪軌道面
6 転動体
G1 凹溝
G2 流動溝
2 outer ring 2s outer ring raceway surface 4 inner ring 4s inner ring raceway surface 6 rolling element G1 concave groove G2 flow groove

Claims (3)

相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組み込まれた複数の転動体とを備えた転がり軸受であって、
一方の軌道輪には、転動体を転動させるための軌道面が複列で形成されていると共に、当該複列の軌道面相互間には、潤滑剤を流動させるための潤滑剤流動機構が構築されており、
潤滑剤流動機構は、軌道面相互間に延在する周面の一部を周方向に沿って連続して凹状に窪ませて形成した凹溝と、凹溝から軌道面に亘る領域の一部を凹状に窪ませて形成した少なくとも1つの流動溝とを備えていることを特徴とする転がり軸受。
A rolling bearing comprising a bearing ring disposed so as to be relatively rotatable and a plurality of rolling elements that are rotatably incorporated between the bearing rings,
On one of the race rings, raceway surfaces for rolling the rolling elements are formed in double rows, and a lubricant flow mechanism for causing a lubricant to flow between the raceways of the double row is provided. Built,
The lubricant flow mechanism includes a groove formed by continuously recessing a part of the circumferential surface extending between the raceway surfaces along the circumferential direction, and a part of the region extending from the groove to the raceway surface. A rolling bearing characterized by comprising at least one flow groove formed by recessing a groove in a concave shape.
流動溝は、凹溝から軌道面に向うに従って所定の角度で傾斜して形成されていることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the flow groove is formed to be inclined at a predetermined angle from the concave groove toward the raceway surface. 流動溝は、凹溝から少なくとも一方の軌道面に亘って連続して形成されていることを特徴とする請求項1又は2に記載の転がり軸受。   The rolling bearing according to claim 1 or 2, wherein the flow groove is formed continuously from the concave groove to at least one of the raceway surfaces.
JP2007031102A 2007-02-09 2007-02-09 Rolling bearing Pending JP2008196561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031102A JP2008196561A (en) 2007-02-09 2007-02-09 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031102A JP2008196561A (en) 2007-02-09 2007-02-09 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2008196561A true JP2008196561A (en) 2008-08-28

Family

ID=39755698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031102A Pending JP2008196561A (en) 2007-02-09 2007-02-09 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2008196561A (en)

Similar Documents

Publication Publication Date Title
WO2015041109A1 (en) Bearing structure
JP2007071355A (en) Pinion supporting structure for planetary gear
JP2016109253A (en) Rolling bearing
JP2009108963A (en) Rolling member
JP2008151181A (en) Roller bearing
JP2009121659A (en) Rolling member
JP2009036348A (en) Tandem type double-row angular contact ball bearing and bearing device for pinion shaft
US20130202238A1 (en) Multi-row tapered roller bearing and transmission having such a bearing
JP2006071016A (en) Retainer for ball bearing
JP2006200677A (en) Thrust ball bearing
JP6171444B2 (en) Rolling bearing device and pinion shaft support device for vehicle
JP2008232295A (en) Tapered roller bearing
JP2007177858A (en) Ball bearing and ball bearing assembly
JP2008002495A (en) Automatic aligning roller bearing
JP2010156383A (en) Rolling bearing device
JP2008196561A (en) Rolling bearing
JP2010025191A (en) Self-aligning roller bearing
JP2006258262A (en) Double-row rolling bearing
JP2010159787A (en) Thrust roller bearing
JP2009168171A (en) Roller bearing
JP2009216112A (en) Radial needle roller bearing
JP2007327518A (en) Cylindrical roller bearing and its cage
JP2006125604A (en) Thrust roller bearing
JP2009210078A (en) Self-aligning roller bearing
EP4291792B1 (en) Skew limiting bearing cage