JP2008191122A - Instrument for measuring surface shape, and method - Google Patents

Instrument for measuring surface shape, and method Download PDF

Info

Publication number
JP2008191122A
JP2008191122A JP2007028762A JP2007028762A JP2008191122A JP 2008191122 A JP2008191122 A JP 2008191122A JP 2007028762 A JP2007028762 A JP 2007028762A JP 2007028762 A JP2007028762 A JP 2007028762A JP 2008191122 A JP2008191122 A JP 2008191122A
Authority
JP
Japan
Prior art keywords
light
wavelength
light beam
inspection
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028762A
Other languages
Japanese (ja)
Inventor
Hidehiko Kuroda
英彦 黒田
Satoshi Yamamoto
智 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007028762A priority Critical patent/JP2008191122A/en
Publication of JP2008191122A publication Critical patent/JP2008191122A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent interference of a reflected light beam from each inspection portion, when measuring collectively the surface heights of a plurality of inspection portions in an inspection object by a confocal method. <P>SOLUTION: This instrument/method has a transmission means 2 for dividing a wide-band wavelength of light beam into a plurality of beams, a first wavelength selecting means 3 for executing selection to differ wavelengths of the respective divided light beams, a transceiving means 5 for converging each wavelength-selected light beam to each inspection portion and for receiving a reflected light beam, light converging means 7a, 7b for converging the reflected light beam from each inspection portion, an opening means 8 for passing each converged light beam, the second wavelength selecting means 10 for selecting the wavelength of each reflected light beam, to avoid the interference with the other, a photodetector 11 for detecting luminous energy of each reflected light after selecting the wavelength; and a computing means 12 for finding the surface height of each inspection portion, by using a position of the transceiving means with the maximum detection luminous energy as the surface height, since the convergence diameter of the reflected light beam gets minimum when a position of the inspection portion is consistent with a focal point of the transceiving means, by a principle of the confocal point, and since the luminous energy gets maximum. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、検査対象の複数の検査部位における表面形状(表面高さ)を、共焦点法を用いて広範囲に一括して測定する表面形状測定装置及び表面形状測定方法に関する。   The present invention relates to a surface shape measuring apparatus and a surface shape measuring method for collectively measuring a surface shape (surface height) at a plurality of inspection sites to be inspected over a wide range using a confocal method.

検査対象の表面形状を非接触で測定する手法の一つとして共焦点法がある。共焦点法では、検査対象の検査部位へ集光レンズを介して集光照射した光の反射光は、集光照射した光と共焦点の関係になるように集光する。これにより、反射光の焦点位置における集光径が、検査部位へ集光照射した光の集光径と同一となり、検査部位へ集光照射した光の集光径によって集光レンズから検査部位までの距離が光学的に分かるため、反射光の集光径によって、集光レンズから検査部位までの距離である検査部位の表面高さを求めることができる。共焦点法では、検査対象の検査部位へ光を集光照射して、その検査部位における集光点の表面高さを求めるため、高空間分解能で表面高さを測定できるが、検査対象の広範囲の表面高さを測定する場合には走査が必要となり、測定に長時間を要するという課題がある。   There is a confocal method as one method for measuring the surface shape of an inspection object in a non-contact manner. In the confocal method, the reflected light of the light condensed and irradiated to the inspection site to be inspected via the condenser lens is condensed so as to have a confocal relationship with the light that has been condensed and irradiated. Thereby, the condensing diameter at the focal position of the reflected light becomes the same as the condensing diameter of the light condensed and irradiated on the examination site, and from the condensing lens to the examination site depending on the condensing diameter of the light condensed and irradiated on the examination site. Therefore, the surface height of the examination site, which is the distance from the condensing lens to the examination site, can be obtained from the collection diameter of the reflected light. In the confocal method, the surface height of the light condensing point at the inspection site is obtained by condensing and irradiating light onto the inspection site of the inspection target, so the surface height can be measured with high spatial resolution. When measuring the surface height of the film, scanning is required, and there is a problem that it takes a long time for the measurement.

このため、共焦点法の探触子(つまり、上記集光レンズ等を有する共焦点光学系)を複数組み合せ、複数の検査部位を一括して測定し、検査対象における広範囲の表面高さ(表面形状)を測定する手法がある。この手法を用いた共焦点法の装置としては、図10に示す装置(共焦点顕微鏡)が挙げられる(例えば、特許文献1参照)。この装置では、光源100からの偏光した光が、ビームスプリッタ101へ入射し、複数のレンズから成るレンズアレイ102によって分割される。分割された各光は、レンズアレイ102の各レンズに対応した開口を有する開口アレイ103を通り、同時にその偏光方向が隣り合う光で直交するように偏光方向が調整される。そして、集光レンズアレイ104により、各光が検査対象105へ照射され、その反射光が受光される。   For this reason, a plurality of confocal probes (that is, the confocal optical system having the above-described condenser lens) are combined, and a plurality of inspection sites are measured at a time. There is a technique for measuring the shape. As an apparatus for the confocal method using this technique, an apparatus (confocal microscope) shown in FIG. 10 can be cited (for example, see Patent Document 1). In this apparatus, polarized light from the light source 100 enters the beam splitter 101 and is divided by a lens array 102 including a plurality of lenses. Each of the divided lights passes through an aperture array 103 having an aperture corresponding to each lens of the lens array 102, and at the same time, the polarization direction is adjusted so that the polarization direction thereof is orthogonal to the adjacent light. And each light is irradiated to the test object 105 by the condensing lens array 104, and the reflected light is received.

このように、隣り合う光で偏光方向を直交させて光を検査対象105へ照射することにより、共焦点法の探触子を複数組み合わせた場合でも、隣り合う光の反射光が干渉することがない。各反射光は、集光レンズアレイ104および開口アレイ103によって照射した光と共焦点の関係となり、レンズアレイ102およびビームスプリッタ101を通って撮像素子106で観測される。撮像素子106では、各反射光の集光径の画像が一括して観測され、共焦点の原理によってこの集光径から各検査部位の表面高さがわかるため、検査対象105における広範囲の表面高さ(表面形状)を一度に求めることができる。   As described above, by irradiating the inspection target 105 with light that is orthogonally polarized with adjacent light, even when a plurality of confocal probes are combined, the reflected light of the adjacent light may interfere. Absent. Each reflected light has a confocal relationship with the light irradiated by the condenser lens array 104 and the aperture array 103, and is observed by the image sensor 106 through the lens array 102 and the beam splitter 101. In the image sensor 106, images of the condensed diameters of the reflected lights are collectively observed, and the surface height of each examination site is known from the condensed diameter by the confocal principle. The thickness (surface shape) can be obtained at a time.

以上のように、隣り合う光で偏光方向を直交させて検査対象105へ各光を照射させることにより、共焦点法の探触子を複数組み合わせた場合であっても、隣り合う反射光が干渉することなく、複数の検査部位を一括して測定し、検査対象105における広範囲の表面高さを測定することができる。
国際公開第2004/036284 A1号パンフレット
As described above, even when a plurality of confocal probes are combined by irradiating each light to the inspection target 105 with the polarization directions orthogonal to each other, adjacent reflected light interferes. Without doing so, it is possible to measure a plurality of inspection sites at once, and to measure a wide range of surface heights in the inspection object 105.
International Publication No. 2004/036284 A1 Pamphlet

しかしながら、特許文献1に記載の共焦点法の装置では、例えば、検査対象における複数の検査部位のそれぞれへ照射する各光において、上下左右方向に位置する各光の偏光方向を隣接する光において直交させた場合、対角方向に位置する光の偏光方向を直交させることができない等、隣り合う光の偏光方向を全て直交させることができない。このため、隣り合う反射光の干渉を完全に取り除くことができないという課題がある。   However, in the confocal method apparatus described in Patent Document 1, for example, in each light irradiated to each of a plurality of examination sites in an examination target, the polarization direction of each light positioned in the vertical and horizontal directions is orthogonal in the adjacent light. In such a case, the polarization directions of adjacent lights cannot be orthogonalized, for example, the polarization directions of light positioned diagonally cannot be orthogonal. For this reason, there exists a subject that interference of adjacent reflected light cannot be removed completely.

そこで、本発明の目的は、上述の事情を考慮してなされたものであり、検査対象の複数の検査部位の表面高さ(表面形状)を、共焦点法を用いて一括して測定する場合に、複数の検査部位からの各反射光線の干渉を確実に防止して、検査対象の表面形状を広範囲に効率的に測定できる表面形状測定装置及び表面形状測定方法を提供することにある。   Therefore, an object of the present invention is made in consideration of the above-mentioned circumstances, and the surface height (surface shape) of a plurality of inspection parts to be inspected is collectively measured using a confocal method. Another object of the present invention is to provide a surface shape measuring device and a surface shape measuring method that can reliably prevent the interference of each reflected light beam from a plurality of inspection sites and efficiently measure the surface shape of an inspection object in a wide range.

本発明は、広帯域波長の光線を発する光源と、この光源からの光線を伝送して複数の光線に分割する伝送手段と、複数に分割された各光線の波長が異なるように各光線の波長を選択する第1波長選択手段と、波長選択された各光線を検査対象の各検査部位に集光し、それぞれの検査部位からの反射光線を受光する送受信手段と、この送受信手段をその焦点方向に走査する焦点方向走査手段と、上記送受信手段を走査して得られた各検査部位の反射光線をそれぞれ集光させる集光手段と、この集光手段の焦点位置に設置され、集光された各反射光線を通過させる開口手段と、この開口手段を通過した各反射光線の波長を選択して他の反射光線との干渉を波長によって回避する第2波長選択手段と、波長選択後の反射光線が前記開口手段を通過した反射光線を表わし、この開口手段を通過する反射光線の光量がその集光径で変わることから、波長選択後の各反射光線の光量を検出する光検出器と、共焦点の原理により、検査部位の位置が前記送受信手段の焦点と一致した場合に反射光線の集光径が最小となり、前記開口手段を通過する光量が最大となるため、前記光検出器による検出光量が最大となる前記送受信手段の位置を表面高さとして、各検査部位の表面高さを求める表面高さ演算手段と、を有することを特徴とするものである。   The present invention provides a light source that emits a light beam having a broadband wavelength, a transmission unit that transmits the light beam from the light source and divides the light beam into a plurality of light beams, First wavelength selection means to select, transmission / reception means for collecting each wavelength-selected light beam on each inspection site to be inspected, and receiving reflected light from each inspection site, and this transmission / reception device in its focal direction Focus direction scanning means for scanning, condensing means for condensing the reflected light beam of each examination site obtained by scanning the transmission / reception means, and each of the collected and condensed light at the focal position of the condensing means An aperture means for allowing the reflected light beam to pass through; a second wavelength selecting means for selecting the wavelength of each reflected light beam that has passed through the aperture means to avoid interference with other reflected light beams according to the wavelength; Through the opening means Since the amount of reflected light passing through the aperture means changes with its condensing diameter, it represents the reflected light, and the inspection site is detected by a photodetector that detects the amount of each reflected light after wavelength selection and the principle of confocal. When the position of coincides with the focal point of the transmission / reception means, the condensing diameter of the reflected light is minimized, and the light quantity passing through the aperture means is maximized, so that the light quantity detected by the photodetector is maximized. And surface height calculating means for determining the surface height of each examination site.

本発明によれば、検査対象の複数の検査部位の表面高さ(表面形状)を、共焦点法を用いて一括して測定する場合に、伝送手段により分割された複数の各光線の波長を第1波長選択手段により異ならせ、この波長が異なる複数の光線を検査対象へ照射することにより、検査対象の複数の検査部位からの各反射光線の波長がそれぞれ異なるため、これらの各反射光線が互いに干渉することを確実に防止できる。この結果、複数の検査部位の表面高さを一括して測定し、検査対象の表面形状を広範囲に効率的に測定することができる。   According to the present invention, when the surface height (surface shape) of a plurality of inspection sites to be inspected is collectively measured using the confocal method, the wavelength of each of the plurality of light beams divided by the transmission means is determined. Since the wavelength of each reflected light from the plurality of examination parts to be inspected is different by irradiating the inspection object with a plurality of light beams having different wavelengths by the first wavelength selection means, Interference with each other can be reliably prevented. As a result, it is possible to measure the surface height of a plurality of inspection parts at once and efficiently measure the surface shape of the inspection object in a wide range.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔A〕第1の実施の形態(図1、図2)
図1は、本発明に係る表面形状測定装置の第1の実施の形態を示す構成図である。本実施の形態の表面形状測定装置11Aは、検査対象の複数の検査部位における表面高さを共焦点法によって一括して測定し、広範囲の表面高さを効率的に測定するものであり、光源1、伝送手段2、第1波長選択手段3、送受信手段5、焦点方向走査手段6、集光手段7a、7b、開口手段8、伝送手段9、第2波長選択手段10、光検出器11、表面高さ演算手段12、移動手段13及び繋ぎ合せ演算手段14を有して構成される。
[A] First embodiment (FIGS. 1 and 2)
FIG. 1 is a configuration diagram showing a first embodiment of a surface shape measuring apparatus according to the present invention. The surface shape measuring apparatus 11A of the present embodiment measures the surface height at a plurality of inspection sites to be inspected collectively by the confocal method, and efficiently measures a wide range of surface heights. 1, transmission means 2, first wavelength selection means 3, transmission / reception means 5, focal direction scanning means 6, condensing means 7a, 7b, aperture means 8, transmission means 9, second wavelength selection means 10, photodetector 11, It has a surface height calculating means 12, a moving means 13, and a splicing calculating means 14.

光源1は、広帯域波長の光を発光するものである。この光源1は、異なる波長が含まれる光を同時に発する光源で構成され、例えば、ハロゲンランプ、キセノンランプ、水銀等のランプ、ASE(Amplified Spontaneous Emission 自然放出光)光源、または波長が異なるLD(Laser Diode 半導体レーザ)、SLD(Super Luminescence Diode スーパー・ルミネスセンス・ダイオード)、LED(Light Emitting Diode 発光ダイオード)等の発光素子やレーザ等を複数組み合わせて構成される。   The light source 1 emits light having a broad wavelength. The light source 1 includes a light source that simultaneously emits light including different wavelengths. For example, a halogen lamp, a xenon lamp, a mercury lamp, an ASE (Amplified Spontaneous Emission spontaneous emission) light source, or an LD (Laser) having different wavelengths. A plurality of light emitting elements such as a diode semiconductor laser (SLD), a super luminescence diode (SLD), a light emitting diode (LED), and the like are combined.

伝送手段2は、複数の検査部位を一括して測定するため、光源からの光線を伝送して複数の光線に分割するものである。この伝送手段2は、分割する光線の数に対応する数だけ束ねた光ファイバ、または単一の光ファイバとその出力端に格子状に並べた光学レンズを備える等により構成される。格子状に並べた光学レンズは、光ファイバによって伝送された光線を分割するための光学レンズであり、例えば、単一レンズや複数枚で構成されるレンズ、非球面レンズ、フレネルレンズ等を格子状に並べて構成される。   The transmission means 2 transmits a light beam from a light source and divides it into a plurality of light beams in order to collectively measure a plurality of examination sites. The transmission means 2 is constituted by an optical fiber bundled in a number corresponding to the number of light beams to be divided, or a single optical fiber and an optical lens arranged in a grid at the output end thereof. An optical lens arranged in a lattice shape is an optical lens for dividing a light beam transmitted by an optical fiber. For example, a single lens or a lens composed of a plurality of lenses, an aspheric lens, a Fresnel lens, etc. It is arranged side by side.

第1波長選択手段3は、複数に分割された各光線の波長が異なるようにして光線間の干渉を避けるため、各光線の波長を選択するものである。この第1波長選択手段3は、分割された光線の波長をそれぞれ異なるようにするために格子数n×nの格子状に並べられた波長選択素子を有してなり、例えば、干渉フィルタ、色ガラスフィルタ等を格子状に並べて構成される。   The first wavelength selection means 3 selects the wavelength of each light beam so that the wavelengths of the light beams divided into a plurality are different so as to avoid interference between the light beams. The first wavelength selection means 3 includes wavelength selection elements arranged in a lattice shape having a number of lattices of n × n in order to make the wavelengths of the divided light beams different from each other, for example, an interference filter, a color Glass filters are arranged in a grid.

送受信手段5は、波長選択された各光線を検査対象4の各検査部位に集光し、各検査部位からのそれぞれの反射光線を受光するものである。この送受信手段5は、分割された光線を検査対象4の各点に集光し、それぞれの反射光線を受光するため、格子数n×nの格子状に並べられた光学レンズを有してなり、例えば、単一レンズや複数枚で構成されるレンズ、非球面レンズ、フレネルレンズ等を格子状に並べて構成される。   The transmission / reception means 5 collects each wavelength-selected light beam on each inspection site of the inspection object 4 and receives each reflected light beam from each inspection site. The transmission / reception means 5 has optical lenses arranged in a lattice shape with a lattice number n × n in order to collect the divided light rays at each point of the inspection object 4 and receive the respective reflected light rays. For example, a single lens, a plurality of lenses, an aspherical lens, a Fresnel lens, and the like are arranged in a lattice pattern.

焦点方向走査手段6は、共焦点法によって各点の表面高さを求めるため、送受信手段5をその焦点方向(検査対象4に対して垂直方向)に走査するものである。この焦点方向走査手段6は、送受信手段5をその焦点方向に走査するための一軸の走査機構であり、送受信手段5の位置を示す位置信号を出力する。焦点方向走査手段6は、例えば、ACモータ、DCモータ、パルスモータ等を備えて構成される。   The focal direction scanning means 6 scans the transmission / reception means 5 in the focal direction (perpendicular to the inspection object 4) in order to obtain the surface height of each point by the confocal method. The focal direction scanning unit 6 is a uniaxial scanning mechanism for scanning the transmission / reception unit 5 in the focal direction, and outputs a position signal indicating the position of the transmission / reception unit 5. The focal direction scanning unit 6 includes, for example, an AC motor, a DC motor, a pulse motor, and the like.

集光手段7a、7bは、送受信手段5を焦点方向に走査して得られた各検査部位の反射光線をそれぞれ集光させるものである。集光手段7aは、各反射光線を取り出すための光学素子であり、例えば、ハーフミラー、ビームスプリッタ、ビームサンプラー等で構成される。また、集光手段7bは、送受信手段5と同様に、格子数n×nの格子状に並べられた光学レンズを有してなり、例えば、単一レンズや複数枚で構成されるレンズ、非球面レンズ、フレネルレンズ等を格子状に並べて構成される。   The condensing means 7a and 7b condense the reflected light beams of the respective examination parts obtained by scanning the transmitting / receiving means 5 in the focal direction. The condensing means 7a is an optical element for extracting each reflected light beam, and is composed of, for example, a half mirror, a beam splitter, a beam sampler, or the like. Similarly to the transmission / reception unit 5, the condensing unit 7b includes optical lenses arranged in a lattice shape having a lattice number of n × n. For example, a single lens or a plurality of lenses, Spherical lenses, Fresnel lenses, and the like are arranged in a lattice pattern.

開口手段8は、集光手段7bの焦点位置に設置され、集光された各反射光線を通過させるものである。この開口手段8は、集光手段7bを構成する光学レンズのそれぞれの焦点位置に設置され、格子数n×nの格子状に並べられた開口であり、例えば、金や銅等の薄板にピンホールを格子状に製作して構成される。   The aperture means 8 is installed at the focal position of the light collecting means 7b and allows the reflected light rays that have been collected to pass therethrough. The aperture means 8 is an aperture arranged at the focal position of each of the optical lenses constituting the light condensing means 7b and arranged in a grid shape having a grid number n × n. For example, the aperture means 8 is pinned on a thin plate such as gold or copper. It is constructed by making holes in a grid.

伝送手段9は、開口手段8を通過した各反射光線を伝送するものである。この伝送手段9は、反射光線の数に対応する数だけ束ねた光ファイバ、または単一の光ファイバで構成される。   The transmission means 9 transmits each reflected light beam that has passed through the opening means 8. The transmission means 9 is composed of optical fibers bundled in a number corresponding to the number of reflected light beams, or a single optical fiber.

第2波長選択手段10は、伝送手段9による伝送後の各反射光線の波長を選択して、他の反射光線との干渉を波長によって避けるものである。この第2波長選択手段10は、第1波長選択手段3の各格子で選択される波長と同じ波長の光を、対応する格子で選択できるように、格子数n×nの格子状に並べられた波長選択素子を有してなり、第1波長選択手段3と同様に、例えば、干渉フィルタ、色ガラスフィルタ等を格子状に並べて構成される。   The second wavelength selection means 10 selects the wavelength of each reflected light beam after transmission by the transmission means 9 and avoids interference with other reflected light beams depending on the wavelength. The second wavelength selection means 10 are arranged in a lattice shape with a number of lattices of n × n so that light having the same wavelength as that selected by each grating of the first wavelength selection means 3 can be selected by the corresponding grating. As with the first wavelength selection means 3, for example, an interference filter, a colored glass filter, and the like are arranged in a lattice pattern.

光検出器11は、波長選択後の反射光線が開口手段8を通過した反射光線を表わし、開口手段8を通過する光量がその集光径で変わることから、各反射光線の光量を検出するものである。この光検出器11は、各反射光線の光量を検出するように格子数n×nの格子状に並べられた光電変換器を有してなり、各反射光線の光量に関する信号を出力する。光検出器11は、例えば、フォトダイオード、PINフォトダイオード、アバランシュフォトダイオード、光電管、光電子増倍管等を格子状に並べて構成される。   The light detector 11 represents a reflected light beam that has passed through the aperture means 8 after the wavelength selection, and the amount of light that passes through the aperture means 8 varies depending on its condensing diameter. It is. The photodetector 11 includes photoelectric converters arranged in a lattice shape having a lattice number n × n so as to detect the light amount of each reflected light beam, and outputs a signal relating to the light amount of each reflected light beam. The photodetector 11 is configured, for example, by arranging photodiodes, PIN photodiodes, avalanche photodiodes, photoelectric tubes, photomultiplier tubes, and the like in a lattice pattern.

表面高さ演算手段12は、共焦点の原理により、送受信手段5を焦点方向に走査して検査部位の位置が送受信手段5の焦点と一致した場合に、反射光線の集光径が最小となり、開口手段8を通過する光量が最大となるため、検出器11の検出光量が最大となる送受信手段5の位置から各検査部位の表面高さを求めるものである。この表面高さ演算手段12は、焦点方向走査手段6が出力する位置信号と、光検出器11が出力する各反射光線の光量に関する信号とを取り込み、各検査部位の表面高さを演算して記憶し、必要に応じて出力するための装置である。この表面高さ演算手段12は、例えば、位置信号や光量に関する電気信号を取り込み、各検査部位の表面高さの電気信号を出力するための入出力インタフェースを備えたPC(パーソナルコンピュータ)で構成される。PCは、デスクトップPC,ラップトップPC,ノートPC等の汎用PCが適用可能である。   The surface height calculation means 12 scans the transmission / reception means 5 in the focal direction according to the principle of confocal, and when the position of the examination site coincides with the focus of the transmission / reception means 5, the condensed diameter of the reflected light beam is minimized, Since the amount of light passing through the opening means 8 is maximized, the surface height of each examination site is obtained from the position of the transmitting / receiving means 5 where the amount of light detected by the detector 11 is maximized. The surface height calculation means 12 takes in the position signal output from the focal direction scanning means 6 and the signal relating to the amount of each reflected light beam output from the photodetector 11, and calculates the surface height of each examination site. It is a device for storing and outputting as required. The surface height calculation means 12 is constituted by, for example, a PC (personal computer) equipped with an input / output interface for taking in an electric signal related to a position signal and a light amount and outputting an electric signal of the surface height of each examination site. The As the PC, a general-purpose PC such as a desktop PC, a laptop PC, or a notebook PC can be applied.

移動手段13は、検査対象4の表面と平行な水平方向(送受信手段5の焦点方向に垂直な方向)に、少なくとも送受信手段5を移動させるものである。この移動手段13は、検査対象4の表面と平行な水平方向に送受信手段5移動させるための二軸の走査機構であり、送受信手段5の水平位置(検査対象4の表面と平行な水平方向の位置)を示す位置信号を出力する。この移動手段13は、焦点方向走査手段6と同様、例えば、ACモータ、DCモータ、パルスモータ等を備えて構成される。   The moving means 13 moves at least the transmission / reception means 5 in a horizontal direction parallel to the surface of the inspection object 4 (a direction perpendicular to the focal direction of the transmission / reception means 5). The moving means 13 is a biaxial scanning mechanism for moving the transmitting / receiving means 5 in a horizontal direction parallel to the surface of the inspection object 4, and the horizontal position of the transmitting / receiving means 5 (in the horizontal direction parallel to the surface of the inspection object 4). A position signal indicating (position) is output. Similar to the focal direction scanning unit 6, the moving unit 13 includes, for example, an AC motor, a DC motor, a pulse motor, and the like.

繋ぎ合せ演算手段14は、検査部位を重複させて測定結果の重複部分を繋ぎ合せ、広範囲の表面高さを求めて表示するものである。この繋ぎ合せ演算手段14は、移動手段13が出力する位置信号と表面高さ演算手段12が出力する各検査部位の表面高さ信号を取り込み、検査領域15、16(図2)を重複させて測定結果の重複部分17を後述の如く繋ぎ合せ、広範囲の表面高さを演算して記憶するための装置である。この繋ぎ合せ演算手段14は、例えば、位置信号や表面高さの電気信号を取り込むための入力インタフェースを備えたPCで構成される。PCは、デスクトップPC,ラップトップPC,ノートPC等の汎用PCが適用可能である。   The joining calculation means 14 joins the overlapping portions of the measurement results by overlapping the inspection parts, and obtains and displays a wide range of surface heights. The splicing calculation means 14 takes in the position signal output from the movement means 13 and the surface height signal of each inspection site output from the surface height calculation means 12 and overlaps the inspection regions 15 and 16 (FIG. 2). This is an apparatus for connecting the overlapping portions 17 of the measurement results as described later and calculating and storing a wide range of surface heights. The splicing calculation means 14 is composed of, for example, a PC provided with an input interface for taking in a position signal and an electrical signal having a surface height. As the PC, a general-purpose PC such as a desktop PC, a laptop PC, or a notebook PC can be applied.

次に、本表面形状測定装置11Aの作用を説明する。   Next, the operation of the surface shape measuring apparatus 11A will be described.

光源1からの広帯域波長の光線は、伝送手段2によって伝送されると共に、光線数n×nの光線に分割され、さらに波長選択手段3により、波長がそれぞれ異なる光線数n×nの光線になる。そして、各光線は、集光手段7aを通った後、格子数n×nの送受信手段5によって検査対象4のn×nの検査部位に集光される。他方、この送受信手段5は、焦点方向走査手段6により検査対象4に対して焦点方向に往復運動をするように走査され、このため、検査部位の表面に集光され各光線の集光径が変わるが、各検査部位が送受信手段5の焦点に位置した場合にそれぞれ最小の集光径φとなる。   The light having a wide wavelength from the light source 1 is transmitted by the transmission means 2 and is divided into light having the number of light beams n × n, and further, the light having the number of light beams n × n having different wavelengths by the wavelength selection means 3. . Then, each light beam passes through the light condensing means 7a, and is then condensed on the n × n inspection region of the inspection object 4 by the transmission / reception means 5 having the lattice number n × n. On the other hand, the transmission / reception unit 5 is scanned by the focal direction scanning unit 6 so as to reciprocate in the focal direction with respect to the inspection object 4. Although it changes, when each examination site is located at the focal point of the transmission / reception means 5, the minimum condensing diameter φ is obtained.

そして、各検査部位の表面からの反射光線は、送受信手段5で受光され、集光手段7aで反射された後、格子数n×nの集光手段7bにより開口手段8の各開口に集光される。開口手段8の開口は、集光手段7bの各焦点に設置されているため、開口手段8へ集光された各反射光線は、検査部位に集光したそれぞれの光線と共焦点の関係になる。ここでは、開口手段8の開口径が上記集光径φと同一に設定されているため、各検査部位がそれぞれ送受信手段5の焦点に位置した場合、共焦点の原理により反射光線の集光径が上記集光径φと一致し、対応する開口を通る反射光線の光量が最大となる。   The reflected light from the surface of each examination site is received by the transmission / reception means 5, reflected by the light collection means 7a, and then condensed on each opening of the opening means 8 by the light collection means 7b having the number of lattices n × n. Is done. Since the aperture of the aperture means 8 is installed at each focal point of the condensing means 7b, each reflected light beam condensed on the aperture means 8 has a confocal relationship with each light beam condensed on the examination site. . Here, since the aperture diameter of the aperture means 8 is set to be the same as the above-described condensing diameter φ, when each inspection site is located at the focal point of the transmission / reception means 5, the condensing diameter of the reflected light beam is determined according to the confocal principle. Coincides with the condensing diameter φ, and the amount of reflected light passing through the corresponding aperture is maximized.

光電変換器数n×nの光検出器11では、波長選択手段3で選択した光線と同じ波長の反射光線を波長選択手段10により波長選択して受光する。反射光線は、光線数n×nであるが、波長がそれぞれ異なるため、光検出器11では隣り合う反射光線や隔たった反射光線が干渉して検出されることがない。これにより、光検出器11の各光電変換器では、それぞれの反射光線の光量だけを検出でき、共焦点の関係から反射光線の光量が最大となる場合の送受信手段5の位置が、その検査部位の表面高さを表わすことになる。   In the photo detector 11 having the number of photoelectric converters n × n, the reflected light having the same wavelength as the light selected by the wavelength selecting unit 3 is selected by the wavelength selecting unit 10 and received. Although the number of reflected rays is the number of rays n × n, since the wavelengths are different from each other, the photodetector 11 does not detect adjacent reflected rays or separated reflected rays by interference. Thereby, each photoelectric converter of the photodetector 11 can detect only the light quantity of each reflected light beam, and the position of the transmission / reception means 5 when the light quantity of the reflected light beam is maximized from the confocal relationship is the inspection site. It represents the surface height of.

そこで、表面高さ演算手段12によって、各反射光線の光量が最大となる場合の送受信手段5の位置をそれぞれ求めることにより、各反射光線が干渉することなく、図2の検査領域15におけるn×nの検査部位4Aの表面高さを一括して求め、広範囲の表面高さを効率的に測定することができる。また、検査領域15における各検査部位4A間の表面高さについては、正弦関数や多項式関数などにより補間して求めることができる。   Therefore, the surface height calculation means 12 obtains the position of the transmission / reception means 5 when the amount of each reflected light beam is maximized, so that each reflected light beam does not interfere with each other, and n × in the inspection region 15 in FIG. The surface heights of the n inspection sites 4A can be obtained collectively, and a wide range of surface heights can be efficiently measured. Further, the surface height between the respective inspection parts 4A in the inspection region 15 can be obtained by interpolation using a sine function or a polynomial function.

続いて、移動手段13により、図2に示す検査領域15から次の検査領域16に重複部分17を持たせて移動させる。そして、検査領域15の場合と同様にして、表面高さ演算手段12において、検査領域16におけるn×nの検査部位4Aの表面高さを一括して求める。ここで、移動先の検査領域16では、送受信手段5の高精度な位置決めやその位置把握が不要であり、このため移動手段13の位置決め精度や移動精度も高精度である必要はない。   Subsequently, the moving means 13 moves the inspection area 15 shown in FIG. In the same manner as in the case of the inspection region 15, the surface height calculation unit 12 determines the surface height of the n × n inspection regions 4 </ b> A in the inspection region 16 at a time. Here, in the inspection area 16 of the movement destination, it is not necessary to position and grasp the position of the transmission / reception means 5 with high accuracy. Therefore, the positioning accuracy and movement accuracy of the movement means 13 need not be high.

表面高さ演算手段12で求めた検査領域15、16の表面高さは、繋ぎ合せ演算手段14へ伝送されるが、検査対象4と送受信手段5の距離が、検査領域15、16で異なるため、そのまま繋ぎ合せただけでは、検査領域15、16の繋ぎ目に段差が発生し、正確な表面高さを表わすことができない。   The surface heights of the inspection areas 15 and 16 obtained by the surface height calculation means 12 are transmitted to the splicing calculation means 14, but the distance between the inspection object 4 and the transmission / reception means 5 differs between the inspection areas 15 and 16. If they are connected as they are, a step occurs at the connection between the inspection regions 15 and 16, and the accurate surface height cannot be expressed.

このため、まず、検査領域16のおおよその重複部分17を切り出し、切り出した重複部分17と検査領域15のおおよその重複部分17との間で表面高さに関するパターンマッチングを行う。そして、同一パターンの部分を見つけ出し、同一パターンの部分で検査領域15、16を重ね合わせることにより、検査対象4の表面に平行な水平方向に関して検査領域15、16を繋ぎ合せる。次に、重複部分17の表面高さが検査領域15、16で同じであるため、検査領域16の表面高さを全体的にシフトして検査領域15の表面高さと一致させ、検査対象4の表面に垂直な垂直方向(送受信手段5の焦点方向)に関して検査領域15、16を繋ぎ合せる。これにより、水平方向および垂直方向で検査領域15、16を繋ぎ合せることができ、これを繰り返すことにより、広範囲の表面高さを効率的に求めて表示することができる。   For this reason, first, an approximate overlapping portion 17 of the inspection region 16 is cut out, and pattern matching regarding the surface height is performed between the cut out overlapping portion 17 and the approximate overlapping portion 17 of the inspection region 15. Then, the inspection areas 15 and 16 are connected in the horizontal direction parallel to the surface of the inspection object 4 by finding the same pattern portion and superimposing the inspection areas 15 and 16 on the same pattern portion. Next, since the surface height of the overlapping portion 17 is the same in the inspection regions 15 and 16, the surface height of the inspection region 16 is entirely shifted to coincide with the surface height of the inspection region 15, and The inspection areas 15 and 16 are connected in the vertical direction perpendicular to the surface (the focal direction of the transmission / reception means 5). Accordingly, the inspection areas 15 and 16 can be joined in the horizontal direction and the vertical direction, and by repeating this, a wide range of surface heights can be efficiently obtained and displayed.

従って、本実施形態の表面形状測定装置11Aによれば、次の効果(1)及び(2)を奏する。   Therefore, according to the surface shape measuring apparatus 11A of the present embodiment, the following effects (1) and (2) are obtained.

(1)検査対象4における複数の検査部位4Aの表面高さ(表面形状)を、共焦点法を用いて一括して測定する場合、伝送手段2により分割された複数の各光線を第1波長選択手段3により異ならせ、この波長がそれぞれ異なる複数の光線を検査対象4へ照射することにより、検査対象4の複数の検査部位4Aからの各反射光線の波長がそれぞれ異なり、このため、これらの各反射光線が互いに干渉することを確実に防止できる。この結果、検査対象4の複数の検査部位4Aの表面高さを一括して測定でき、検査対象4の表面形状(表面高さ)を広範囲に効率的に測定することができる。   (1) When the surface height (surface shape) of a plurality of inspection parts 4A in the inspection object 4 is collectively measured using the confocal method, the plurality of light beams divided by the transmission means 2 are set to the first wavelength. Differentiating by the selection means 3 and irradiating the inspection object 4 with a plurality of light beams having different wavelengths, the wavelengths of the reflected light beams from the plurality of inspection parts 4A of the inspection object 4 are different from each other. It is possible to reliably prevent the reflected light beams from interfering with each other. As a result, the surface heights of the plurality of inspection parts 4A of the inspection object 4 can be collectively measured, and the surface shape (surface height) of the inspection object 4 can be efficiently measured over a wide range.

(2)検査領域15、16に重複部分17を持たせ、この重複部分17を繋ぎ合せることにより、送受信手段5の高精度な位置決めや位置把握が不要となる。このため、検査時間を短縮でき、また高精度な位置決め精度や移動精度を必要としない簡素な移動機構により移動手段13を構成することができる。   (2) By providing the inspection regions 15 and 16 with the overlapping portion 17 and connecting the overlapping portions 17, it is not necessary to position and grasp the transmission / reception means 5 with high accuracy. For this reason, the inspection means can be shortened, and the moving means 13 can be configured by a simple moving mechanism that does not require high-precision positioning accuracy or movement accuracy.

〔B〕第2の実施の形態(図3〜図5)
図3は、本発明に係る表面形状測定装置の第2の実施の形態を示す構成図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分は同一の符合を付し、詳細な説明を省略する。
[B] Second embodiment (FIGS. 3 to 5)
FIG. 3 is a configuration diagram showing a second embodiment of the surface shape measuring apparatus according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の表面形状測定装置12Aは、検査対象の複数の検査部位における表面高さを共焦点法によって一括して測定し、広範囲の表面高さを効率的に測定するものであり、光源1、伝送手段2、第1波長選択手段3、送受信手段18、集光手段7a、7b、集光径観測手段19、伝送手段20及び表面高さ演算手段21を有して構成される。   The surface shape measuring apparatus 12A of the present embodiment measures the surface height at a plurality of inspection sites to be inspected collectively by the confocal method, and efficiently measures a wide range of surface heights. 1, transmission means 2, first wavelength selection means 3, transmission / reception means 18, condensing means 7a, 7b, condensing diameter observation means 19, transmission means 20, and surface height calculation means 21.

光源1は、広帯域波長の光線を発するものである。また、伝送手段2は、検査対象4の複数の検査部位を一括して測定するため、光源1からの光線を伝送して複数の光線に分割するものである。更に、第1波長選択手段3は、複数に分割された各光線の波長が異なるように各光線の波長を選択して、光線間の干渉を回避する干渉回避手段である。   The light source 1 emits a light beam having a broadband wavelength. Further, the transmission means 2 transmits the light from the light source 1 and divides it into a plurality of light beams in order to collectively measure a plurality of inspection sites of the inspection object 4. Further, the first wavelength selecting means 3 is an interference avoiding means for selecting the wavelengths of the light beams so that the wavelengths of the light beams divided into a plurality are different to avoid interference between the light beams.

送受信手段18は、複数の円筒形光学素子41(図4)で構成され、外的作用としての電圧、圧力、熱等の付与により上記光学素子41の焦点距離が変わり、波長選択された各光線を検査対象4の各検査部位に集光し、それぞれの反射光線を受光するものである。つまり、この送受信手段18は、分割された光線をそれぞれ線形状の光線22(後に詳説)にして検査対象4の各検査部位に集光し、各反射光線を受光するため、図4に示すように一様に並べられた円筒形光学素子41を有する。この円筒形光学素子41は、例えば、集光効果のある方向23Aに揃えて並べられたシリンドリカルレンズで構成される。各円筒形光学素子41は、電圧付与によるポッケルス効果やカー効果等の電気光学効果、熱付与による熱光学効果、圧力付与による光弾性効果によって屈折率が変化し、その焦点距離がそれぞれ変わるようになっている。この円筒形光学素子41では、集光効果のある方向23Aに対し直交する方向には集光効果がないので、この方向を集光効果のない線方向23Bと称する。   The transmission / reception means 18 is composed of a plurality of cylindrical optical elements 41 (FIG. 4), and the focal length of the optical element 41 is changed by application of voltage, pressure, heat, etc. as an external action, and each wavelength-selected light beam is selected. Are condensed on each inspection site of the inspection object 4 and each reflected light beam is received. That is, the transmission / reception means 18 converts the divided light beams into linear light beams 22 (to be described in detail later) and collects the light beams on the inspection sites of the inspection object 4 and receives the reflected light beams as shown in FIG. The cylindrical optical elements 41 are uniformly arranged. The cylindrical optical element 41 is constituted by, for example, cylindrical lenses arranged in alignment in the light condensing effect direction 23A. Each cylindrical optical element 41 has a refractive index changed by an electro-optical effect such as a Pockels effect or a Kerr effect by applying a voltage, a thermo-optical effect by applying heat, or a photoelastic effect by applying pressure, and its focal length changes. It has become. In this cylindrical optical element 41, since there is no light condensing effect in a direction orthogonal to the direction 23A having a light condensing effect, this direction is referred to as a line direction 23B having no light condensing effect.

集光手段7a、7bは、送受信手段18への電圧、圧力、熱等の付与量から焦点距離を変えて得られた各検査部位の反射光線をそれぞれ集光させるものである。   The condensing means 7a and 7b condense the reflected light beams of the respective examination sites obtained by changing the focal length from the applied amount of voltage, pressure, heat and the like to the transmitting / receiving means 18.

集光径観測手段19は、集光手段7bの焦点位置に設置され、集光された各反射光線の波長を選択して他の反射光線との干渉を波長によって避け、各反射光線の集光径を撮像するものである。この集光径観測手段19は、第1波長選択手段3の各格子で選択される波長と同じ波長の光を、対応する格子で選択して撮像するように、格子数n×nの格子状に並べられた波長選択素子を受光面に取り付けた撮像素子で構成される。撮像素子の観測画像は、電気信号に変換されて出力される。波長選択素子は、第1波長選択手段3と同様に、例えば、干渉フィルタ、色ガラスフィルタ等を格子状に並べて構成され、撮像素子は、CCDやCMOS等で構成される。   The condensing diameter observing means 19 is installed at the focal position of the condensing means 7b, selects the wavelength of each reflected light beam collected, avoids interference with other reflected light beams, and condenses each reflected light beam. The diameter is imaged. This condensing diameter observing means 19 has a lattice shape of n × n so that light having the same wavelength as the wavelength selected by each grating of the first wavelength selecting means 3 is selected and imaged by the corresponding grating. The imaging device is configured by attaching the wavelength selection elements arranged in the above to the light receiving surface. The observation image of the image sensor is converted into an electrical signal and output. The wavelength selection element is configured by arranging interference filters, colored glass filters, and the like in a grid pattern, for example, as in the first wavelength selection unit 3, and the imaging element is configured by a CCD, a CMOS, or the like.

伝送手段20は、集光径観測手段19にて観測された観測画像を伝送するものである。この伝送手段20は、電気信号に変換された観測画像の電気信号を伝送するためのケーブルである。   The transmission means 20 transmits the observation image observed by the focused diameter observation means 19. This transmission means 20 is a cable for transmitting the electric signal of the observation image converted into the electric signal.

表面高さ演算手段21は、共焦点の原理により、反射光線の集光径が最小となるときの送受信手段18の焦点距離が表面高さとなることから、反射光線の集光径が最小となる時の電圧、圧力、熱等の付与量を知り、予め把握している付与量と送受信手段18の焦点距離との関係から表面高さを求めるものである。つまり、この表面高さ演算手段21は、送受信手段18に付与する電圧、圧力、熱等を出力する機器を備え、観測画像を取り込み、各検査部位の表面高さを演算して記憶する装置である。装置内部には、電圧、圧力、熱の付与量と送受信手段18の焦点距離との関係が予め記憶されている。表面高さ演算手段21は、例えば、電圧、圧力、熱等を出力する機器を備え、観測画像の電気信号を取り込むための入力インターフェースを備えたPC(パーソナルコンピュータ)で構成される。PCは、デスクトップPC,ラップトップPC,ノートPC等の汎用PCが適用可能である。   The surface height calculation means 21 has the focal length of the transmission / reception means 18 when the reflected light collecting diameter becomes the minimum due to the confocal principle, so that the condensed light diameter of the reflected light becomes the minimum. The amount of applied voltage, pressure, heat, etc. is known, and the surface height is obtained from the relationship between the previously determined amount of application and the focal length of the transmitting / receiving means 18. That is, the surface height calculation means 21 is a device that includes a device that outputs the voltage, pressure, heat, and the like applied to the transmission / reception means 18, takes in an observation image, and calculates and stores the surface height of each examination site. is there. Inside the apparatus, the relationship between the applied amount of voltage, pressure, and heat and the focal length of the transmission / reception means 18 is stored in advance. The surface height calculation means 21 includes, for example, a device that outputs voltage, pressure, heat, and the like, and is configured by a PC (personal computer) including an input interface for capturing an electric signal of an observation image. As the PC, a general-purpose PC such as a desktop PC, a laptop PC, or a notebook PC can be applied.

次に、本表面形状測定装置12Aの作用を説明する。   Next, the operation of the surface shape measuring apparatus 12A will be described.

光源1からの広帯域波長の光線は、伝送手段2及び第1波長選択手段3によって第1の実施形態と同様の作用を受け、波長がそれぞれ異なる光線数n×nの光線になり、送受信手段18によって検査対象4に集光される。この場合、検査対象4へ集光される光線は、集光効果のある方向23Aにのみ集光されるので、図5に示すように線形状光線22となる。線形状光線22はn本であり、それぞれの線形状光線22は、波長の異なるn個の領域42が連続して構成される。   The broadband wavelength light from the light source 1 is subjected to the same action as in the first embodiment by the transmission means 2 and the first wavelength selection means 3, and becomes a light beam having a number of light beams n × n different from each other. Is collected on the inspection object 4. In this case, the light beam condensed on the inspection object 4 is collected only in the direction 23A having a light condensing effect, and thus becomes a linear light beam 22 as shown in FIG. There are n linear rays 22, and each linear ray 22 is composed of a series of n regions 42 having different wavelengths.

また、送受信手段18には、円筒形光学素子41のそれぞれの焦点距離が検査対象4に対して往復運動をするように電圧、圧力、熱等が付与されている。このため、検査対象4の表面に集光される線形状光線22の集光幅が変わるが、各検査部位が送受信手段18の焦点に位置した場合にそれぞれ最小の集光幅となる。送受信手段を焦点方向に機械走査する場合には、走査に時間がかかる、可動部分の消耗による精度低下や故障、交換が必要などの問題があるが、この送受信手段18により、検査時間が短縮され、また走査機構の高信頼性化と長寿命化が可能となる。   In addition, voltage, pressure, heat, and the like are applied to the transmission / reception means 18 so that the focal lengths of the cylindrical optical elements 41 reciprocate with respect to the inspection object 4. For this reason, the condensing width of the linear light beam 22 condensed on the surface of the inspection object 4 changes, but when each inspection site is located at the focal point of the transmission / reception means 18, the condensing width becomes the minimum. When the transmission / reception means is mechanically scanned in the focal direction, there are problems such as time-consuming scanning, deterioration in accuracy due to wear of movable parts, failure, and replacement. However, the transmission / reception means 18 shortens the inspection time. In addition, it is possible to increase the reliability and the life of the scanning mechanism.

検査対象4の表面からの反射光線は線形状となり、送受信手段18で受光され、集光手段7aで反射された後、集光手段7bにより集光径観測手段19に集光される。そして、集光径観測手段19の受光面が、集光手段7bの焦点に設置されているため、集光径観測手段19へ集光された線形状の各反射光線は、検査部位に集光したそれぞれの線形状光線22と共焦点の関係になる。そして、各検査部位がそれぞれ送受信手段18の焦点に位置した場合、共焦点の原理により、対応する線形状の反射光線の集光幅が最小となる。   The reflected light beam from the surface of the inspection object 4 has a linear shape, is received by the transmission / reception means 18, reflected by the light collection means 7 a, and then collected by the light collection means 7 b on the light collection diameter observation means 19. And since the light-receiving surface of the condensing diameter observation means 19 is installed in the focus of the condensing means 7b, each linear reflected light condensed on the condensing diameter observation means 19 is condensed on an inspection site. Each line-shaped light beam 22 is in a confocal relationship. When each inspection site is located at the focal point of the transmission / reception means 18, the converging principle minimizes the light collection width of the corresponding linear reflected light beam.

集光径観測手段19では、第1波長選択手段3で選択した光線と同じ波長の反射光線を撮像することにより、n本の線形状の反射光線で構成されるが、波長の異なるn個の領域に分けられ、それぞれ波長が異なるため、隣り合う領域や隔たった領域の反射光線が干渉して撮像されることがない。これより、集光径観測手段19では、線形状の反射光線を同時に撮像でき、共焦点の関係から反射光線の集光幅が最小となる場合の送受信手段18の焦点距離が、その検査部位の表面高さを表わすことになる。   The condensing diameter observing means 19 is composed of n reflected light beams having the same wavelength as that of the light beam selected by the first wavelength selecting means 3. Since the light is divided into regions and each has a different wavelength, reflected light rays in adjacent regions or separated regions do not interfere and image. Thus, the condensing diameter observing means 19 can simultaneously image the linear reflected light beam, and the focal length of the transmitting / receiving means 18 when the condensing width of the reflected light beam is minimized due to the confocal relationship is It represents the surface height.

この場合、送受信手段18の集光効果のない線方向23Bについては、反射光線の波長の異なるn個の領域42が線形状で空間的に連続し、また集光径観測手段19が撮像素子であることから、その位置分解能は、集光径観測手段19の画素の大きさになり、このとき画素の大きさが数μmであるので高位置分解能となる。このように、線形状の光線22を検査対象4へ集光することにより、集光効果のない線方向23Bについては、波長の異なるn個の領域42が空間的に連続する線形状の反射光線となるため、検査対象において連続した位置の表面高さを検出でき、検査部位の位置分解能を向上させることができる。   In this case, in the line direction 23B without the light condensing effect of the transmission / reception means 18, n regions 42 having different reflected light wavelengths are spatially continuous in a linear shape, and the light condensing diameter observation means 19 is an image sensor. For this reason, the position resolution is the size of the pixel of the condensed diameter observation means 19, and since the size of the pixel is several μm at this time, the position resolution is high. In this way, by condensing the linear light beam 22 onto the inspection object 4, a linear reflected light beam in which n regions 42 having different wavelengths are spatially continuous in the line direction 23 </ b> B having no light condensing effect. Therefore, it is possible to detect the surface height of consecutive positions in the inspection target, and to improve the position resolution of the inspection site.

表面高さ演算手段21では、集光効果のない線方向23Bに直交する各画素行について、反射光線の集光幅が最小となる場合の送受信手段18への電圧等の付与量を求め、予め記憶されている付与量と送受信手段18の焦点距離との関係から各画素行に対応する検査部位の表面高さを求め、これを各反射光線の全ての画素行について行うことにより、n本の反射光線の各位置における表面高さを、集光径観測手段19の画素のみに依存する高空間分解能で一括して求め、広範囲の表面高さを効率的に測定することができる。   In the surface height calculation means 21, for each pixel row orthogonal to the line direction 23B having no light collection effect, the amount of application of voltage or the like to the transmission / reception means 18 when the light collection width of the reflected light is minimized is obtained in advance. By calculating the surface height of the examination region corresponding to each pixel row from the relationship between the stored application amount and the focal length of the transmission / reception means 18, and performing this for all the pixel rows of each reflected ray, n lines are obtained. The surface height at each position of the reflected light beam can be obtained collectively with a high spatial resolution that depends only on the pixels of the focused diameter observation means 19, and a wide range of surface heights can be measured efficiently.

従って、本実施形態の表面形状測定装置12Aによれば、前記第1の実施の形態の効果(1)と同様な効果を奏するほか、次の効果(3)及び(4)を奏する。   Therefore, according to the surface shape measuring apparatus 12A of the present embodiment, in addition to the same effect as the effect (1) of the first embodiment, there are the following effects (3) and (4).

(3)円筒形光学素子41で構成される送受信手段18を用い、線形状光線22を検査対象4へ集光することにより、集光効果のない線方向23Bに波長の異なるn個の領域42が連続するので、この集光効果のない線方向23Bに対する検査部位の位置分解能を向上させることができる。   (3) By using the transmission / reception means 18 constituted by the cylindrical optical element 41, the linear light beam 22 is condensed on the inspection object 4, so that n regions 42 having different wavelengths in the line direction 23B having no light condensing effect are obtained. Therefore, it is possible to improve the position resolution of the examination region with respect to the line direction 23B having no light collection effect.

(4)送受信手段18を焦点方向走査手段6により焦点方向へ機械走査する場合、走査に時間がかかる、可動部分の消耗による精度低下や故障、交換が必要などの問題があるが、電圧、圧力、熱等の付与によって光線の焦点距離が変わる送受信手段18を用いることで、送受信手段18の焦点方向への機械走査が不要となる。このように機械走査が無いため、検査時間を短縮でき、また走査機構の高信頼性と長寿命化を実現できる。   (4) When the transmission / reception means 18 is mechanically scanned in the focal direction by the focal direction scanning means 6, there are problems such as time-consuming scanning, deterioration in accuracy due to wear of movable parts, failure, and need for replacement. By using the transmission / reception means 18 that changes the focal length of the light beam due to the application of heat or the like, mechanical scanning in the focal direction of the transmission / reception means 18 becomes unnecessary. Since there is no mechanical scanning in this way, the inspection time can be shortened, and high reliability and long life of the scanning mechanism can be realized.

〔C〕第3の実施の形態(図6、図7)
図6は、本発明に係る表面形状測定装置の第3の実施の形態を示す構成図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分は同一の符合を付し、詳細な説明を省略する。
[C] Third embodiment (FIGS. 6 and 7)
FIG. 6 is a block diagram showing a third embodiment of the surface shape measuring apparatus according to the present invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の表面形状測定装置13Aは、検査対象の複数の検査部位における表面高さを共焦点法によって一括して測定し、広範囲の表面高さを効率的に測定するものであり、光源1、伝送手段2、第1波長選択手段3、送受信手段24、集光手段7a、7b、7c、7d、集光径観測手段19、伝送手段20、表面高さ演算手段25、回折光観測手段26及び表面欠陥判定手段27を有して構成される。   The surface shape measuring apparatus 13A of the present embodiment measures the surface height at a plurality of inspection sites to be inspected collectively by the confocal method, and efficiently measures a wide range of surface heights. 1, transmission means 2, first wavelength selection means 3, transmission / reception means 24, condensing means 7a, 7b, 7c, 7d, condensing diameter observation means 19, transmission means 20, surface height calculation means 25, diffracted light observation means 26 and surface defect determination means 27.

光源1は、広帯域波長の光線を発するものである。また、伝送手段2は、検査対象4の複数の検査部位を一括して測定するため、光源1からの光線を伝送して複数の光線に分割するものである。更に、第1波長選択手段3は、複数に分割された各光線の波長が異なるように各光線の波長を選択して、光線間の干渉を回避する干渉回避手段である。   The light source 1 emits a light beam having a broadband wavelength. Further, the transmission means 2 transmits the light from the light source 1 and divides it into a plurality of light beams in order to collectively measure a plurality of inspection sites of the inspection object 4. Further, the first wavelength selecting means 3 is an interference avoiding means for selecting the wavelengths of the light beams so that the wavelengths of the light beams divided into a plurality are different to avoid interference between the light beams.

送受信手段24は、焦点距離がそれぞれ異なる光学系(光学レンズ)を移動手段13による移動方向に沿って複数配置して構成され、波長選択された各光線を検査対象4の各検査部位に集光し、それぞれの反射光線を受光するものである。この送受信手段24は、分割された光線を検査対象4の各検査部位に集光し、各検査部位にて反射された反射光線を受光するため、格子数n×nの格子状に並べられた光学レンズを有してなる。この送受信手段24は、移動手段13の移動方向の光学レンズ数がn個であり、その焦点距離が全て異なるように配置されている。他方、移動方向に垂直な方向の光学レンズの配置については制限はない。このような送受信手段24は、例えば、単一レンズや複数枚で構成されるレンズ、非球面レンズ、フレネルレンズ等を格子状に並べ、その焦点距離が、移動手段13の移動方向に沿って単調に長く、つまり段階的に徐々に長くなるように配置して構成される。   The transmitting / receiving unit 24 is configured by arranging a plurality of optical systems (optical lenses) having different focal lengths along the moving direction of the moving unit 13, and condensing each wavelength-selected light beam on each inspection site of the inspection object 4. And each reflected light beam is received. The transmission / reception means 24 concentrates the divided light beams on the respective inspection parts of the inspection object 4 and receives the reflected light beams reflected at the respective inspection parts, so that they are arranged in a lattice shape having a lattice number n × n. It has an optical lens. The transmission / reception means 24 is arranged so that the number of optical lenses in the movement direction of the movement means 13 is n and the focal lengths thereof are all different. On the other hand, there is no restriction on the arrangement of the optical lenses in the direction perpendicular to the moving direction. Such a transmission / reception means 24 includes, for example, a single lens or a plurality of lenses, an aspherical lens, a Fresnel lens, and the like arranged in a lattice shape, and the focal length thereof is monotonous along the moving direction of the moving means 13. It is arranged to be longer, that is, gradually longer in steps.

集光手段7a、7b、7c、7dは、検査対象4における各検査部位の反射光線をそれぞれ集光等させるものである。このうち、集光手段7cは、各反射光線を取り出すための光学素子であり、集光手段7aと同様に、例えば、ハーフミラー、ビームスプリッタ、ビームサンプラー等で構成される。また、集光手段7dは、格子数n×nの格子状に並べられた光学レンズを有してなり、集光手段7bと同様に、例えば、単一レンズや複数枚で構成されるレンズ、非球面レンズ、フレネルレンズ等を格子状に並べて構成される。   The condensing means 7 a, 7 b, 7 c, and 7 d condense the reflected light rays of the respective inspection parts in the inspection object 4. Among these, the condensing means 7c is an optical element for taking out each reflected light beam, and is comprised by a half mirror, a beam splitter, a beam sampler etc. similarly to the condensing means 7a. Further, the condensing unit 7d includes optical lenses arranged in a lattice shape having a lattice number n × n, and similarly to the condensing unit 7b, for example, a single lens or a plurality of lenses, Aspherical lenses, Fresnel lenses, etc. are arranged in a lattice pattern.

集光径観測手段19は、集光手段7bの焦点位置に設置され、集光された各反射光線の波長を選択して他の反射光線との干渉を波長によって避け、各反射光線の集光径を撮像するものである。また、伝送手段20は、集光径観測手段19により観測された観測画像を伝送するものである。   The condensing diameter observing means 19 is installed at the focal position of the condensing means 7b, selects the wavelength of each reflected light beam collected, avoids interference with other reflected light beams, and condenses each reflected light beam. The diameter is imaged. The transmission means 20 transmits the observation image observed by the focused diameter observation means 19.

表面高さ演算手段25は、共焦点の原理により、反射光線の集光径が検査部位へ集光した光線の集光径と同一であることから、移動手段13により送受信手段24を検査対象4の表面の検査部位に沿って平行に移動させ、反射光線の集光径が送受信手段24の光学レンズによる焦点の集光径と一致する場合、その光学レンズの焦点距離が検査部位の表面高さとなるとして、各検査部位の表面高さを求めるものである。この表面高さ演算手段25は、移動手段13が出力する位置信号と集光径観測手段19が出力する観測画像とを取り込み、各検査部位の表面高さを演算して記憶する装置である。装置内部には、送受信手段24を構成する各光学レンズの焦点距離と、各焦点距離における集光径が予め記憶されている。表面高さ演算手段25は、例えば、位置信号や観測画像の電気信号を取り込むための入力インタフェースを備えたPC(パーソナルコンピュータ)で構成される。PCは、デスクトップPC,ラップトップPC,ノートPC等の汎用PCが適用可能である。   The surface height calculator 25 uses the confocal principle to make the condensing diameter of the reflected light beam the same as the condensing diameter of the light beam condensed on the examination site. When the converging diameter of the reflected light beam coincides with the condensing diameter of the focal point by the optical lens of the transmission / reception means 24, the focal length of the optical lens is equal to the surface height of the inspecting part. As it is, the surface height of each examination site is obtained. The surface height calculating means 25 is a device that takes in the position signal output from the moving means 13 and the observation image output from the focused diameter observation means 19 and calculates and stores the surface height of each examination site. Inside the apparatus, the focal length of each optical lens constituting the transmission / reception means 24 and the condensing diameter at each focal length are stored in advance. The surface height calculation means 25 is constituted by, for example, a PC (personal computer) provided with an input interface for taking in position signals and electric signals of observation images. As the PC, a general-purpose PC such as a desktop PC, a laptop PC, or a notebook PC can be applied.

回折光観測手段26は、集光手段7dの焦点位置に設置され、集光された反射光線の内で任意の一つの波長を選択して他の反射光線との干渉を波長によって回避し、その波長の反射光線及びその回折光を撮像するものである。この回折光観測手段26は、反射光線において、第1波長選択手段3の各格子で選択される波長の中から任意の一つの波長だけを選択し、その波長の光線及びその回折光を撮像するように、一様な波長選択素子を受光面に取り付けた撮像素子で構成される。撮像素子の観測画像は、電気信号に変換されて出力される。波長選択素子は、干渉フィルタ、色ガラスフィルタ等であり、撮像素子は、CCDやCMOS等で構成される。   The diffracted light observation means 26 is installed at the focal position of the light collecting means 7d, selects one arbitrary wavelength among the collected reflected light rays, and avoids interference with other reflected light rays according to the wavelength. The reflected light of the wavelength and its diffracted light are imaged. The diffracted light observing means 26 selects only one arbitrary wavelength from the wavelengths selected by the respective gratings of the first wavelength selecting means 3 in the reflected light, and images the light of that wavelength and the diffracted light. As described above, the image pickup element is configured by attaching a uniform wavelength selection element to the light receiving surface. The observation image of the image sensor is converted into an electrical signal and output. The wavelength selection element is an interference filter, a color glass filter, or the like, and the imaging element is constituted by a CCD, a CMOS, or the like.

表面欠陥判定手段27は、回折光観測手段26が撮像した上記回折光の回折像28(図7)に基づき、後述の如く、検査対象4における表面欠陥の有無及びその位置を判定するものである。この表面欠陥判定手段27は、移動手段13が出力する位置信号と回折光観測手段26が出力する観測画像を取り込み、観測画像から表面欠陥の有無および位置を判定して記憶する装置であり、例えば、位置信号や観測画像の電気信号を取り込むための入力インタフェースを備えたPC(パーソナルコンピュータ)で構成される。PCは、デスクトップPC,ラップトップPC,ノートPC等の汎用PCが適用可能である。   The surface defect determination means 27 determines the presence and position of a surface defect in the inspection object 4 based on the diffraction image 28 (FIG. 7) of the diffracted light imaged by the diffracted light observation means 26, as will be described later. . The surface defect determination unit 27 is a device that takes in the position signal output from the moving unit 13 and the observation image output from the diffracted light observation unit 26, and determines and stores the presence and position of the surface defect from the observation image. A PC (personal computer) equipped with an input interface for taking in position signals and electrical signals of observation images. As the PC, a general-purpose PC such as a desktop PC, a laptop PC, or a notebook PC can be applied.

次に、本表面形状測定装置13Aの作用を説明する。   Next, the operation of the surface shape measuring apparatus 13A will be described.

光源1からの広帯域波長の光線は、伝送手段2及び第1波長選択手段3によって第1の実施形態と同様の作用を受け、波長がそれぞれ異なる光線数n×nの光線になり、送受信手段24によって検査対象4に集光される。この検査対象4の各検査部位からの反射光線は、送受信手段24で受光され、集光手段7aにより分岐される。   The broadband wavelength light from the light source 1 is subjected to the same action as in the first embodiment by the transmission means 2 and the first wavelength selection means 3, and becomes a light having a number of light beams of n × n, and the transmission / reception means 24. Is collected on the inspection object 4. The reflected light from each inspection site of the inspection object 4 is received by the transmission / reception means 24 and branched by the condensing means 7a.

集光手段7aを通った反射光線は、集光手段7cで反射された後、格子数n×nの集光手段7dにより回折光観測手段26に集光される。回折光観測手段26は、光線数n×nの反射光線の内から任意の一つの反射光線だけを選択し、その反射光線及びその回折光を撮像する。撮像された反射光線の集光像は、回折光観測手段26が集光手段7dの焦点に設置されているため、検査対象4へ集光した同じ波長の光線と共焦点の関係になる。   The reflected light beam that has passed through the condensing means 7a is reflected by the condensing means 7c, and then condensed by the diffracted light observation means 26 by the condensing means 7d having the number of lattices n × n. The diffracted light observing means 26 selects only one arbitrary reflected light from the reflected light of the number of light rays n × n, and images the reflected light and the diffracted light. Since the diffracted light observation unit 26 is placed at the focal point of the condensing unit 7d, the condensed image of the reflected light beam that has been imaged has a confocal relationship with the light beam having the same wavelength collected on the inspection target 4.

ここで、この波長の光線が集光される検査部位において、その集光径以下の開口幅の表面欠陥が存在した場合、その表面欠陥により回折光が発生する。例えば、図7に示すように、この回折光の回折像28が、回折光観測手段26において撮像される。上記表面欠陥が存在しない場合は、共焦点の関係から検査部位へ集光した光線の集光像29だけが撮像される。そこで、表面欠陥判定手段27において、回折像28の有無を識別することにより、表面欠陥の有無を判定することができる。また、このときの移動手段13の位置信号から表面欠陥の位置が検出される。   Here, when a surface defect having an opening width equal to or smaller than the condensing diameter is present in the inspection site where the light beam having this wavelength is condensed, diffracted light is generated by the surface defect. For example, as shown in FIG. 7, the diffracted light diffracted image 28 is picked up by the diffracted light observation means 26. When the surface defect does not exist, only the condensed image 29 of the light beam condensed on the inspection site is captured due to the confocal relationship. Therefore, the presence or absence of the surface defect can be determined by identifying the presence or absence of the diffraction image 28 in the surface defect determination means 27. Further, the position of the surface defect is detected from the position signal of the moving means 13 at this time.

他方、集光手段7aで反射した反射光線は、格子数n×nの集光手段7bにより集光径観測手段19に集光される。集光径観測手段19は、集光手段7bの焦点に設置されているため、集光径観測手段19へ集光される各反射光線は、検査部位に集光したそれぞれの光線と共焦点の関係になる。この集光径観測手段19では、第1波長選択手段3で選択された光線と同じ波長の反射光線が撮像されるため、反射光線は光線数n×nであり、それぞれの波長が異なるため、隣り合う領域や隔たった領域の反射光線が干渉して撮像されることがない。   On the other hand, the reflected light beam reflected by the condensing means 7a is condensed on the condensing diameter observation means 19 by the condensing means 7b having the number of lattices n × n. Since the condensing diameter observation means 19 is installed at the focal point of the condensing means 7b, each reflected light beam condensed on the condensing diameter observation means 19 is confocal with each light ray condensed on the examination site. Become a relationship. In this condensing diameter observing means 19, since the reflected light having the same wavelength as the light selected by the first wavelength selecting means 3 is imaged, the reflected light is the number of light rays n × n, and the respective wavelengths are different. The reflected light rays from adjacent areas or separated areas do not interfere and image.

ここで、移動手段13により送受信手段24を移動させると、検査部位に対し、送受信手段24における焦点距離が異なるn個の光学レンズからの光線が順次集光することになる。このため、表面高さと一致する焦点距離の光学レンズが送受信手段24の中に存在すると、その光学レンズにおいては、検査部位へ集光される光線の集光径が、その光学レンズの焦点における集光径と一致する。   Here, when the transmitting / receiving unit 24 is moved by the moving unit 13, the light beams from the n optical lenses having different focal lengths in the transmitting / receiving unit 24 are sequentially collected on the examination site. For this reason, when an optical lens having a focal length that matches the surface height is present in the transmission / reception means 24, the condensing diameter of the light beam condensed on the examination site in the optical lens is the concentration at the focal point of the optical lens. It matches the light diameter.

そこで、共焦点の原理により、検査部位へ集光される光線の集光径が、集光径観測手段19へ集光される反射光線の集光径と同一であることから、表面高さ演算手段25において、n×nの各検査部位に対し、移動手段13を移動してそれぞれn個の光学レンズの反射光線の集光径を計測し、それぞれの検査部位において、反射光線の集光径がその光学レンズの焦点での集光径と一致する光学レンズの焦点距離を求めることにより、その光学レンズの焦点距離から表面高さを効率的に求めることが可能となる。   Therefore, according to the principle of confocal, the condensing diameter of the light beam condensed on the examination site is the same as the condensing diameter of the reflected light beam condensed on the condensing diameter observation means 19, so that the surface height calculation is performed. In the means 25, the moving means 13 is moved with respect to each of the n × n inspection parts to measure the condensed light diameters of the reflected light beams of the n optical lenses. By obtaining the focal length of the optical lens that matches the condensing diameter at the focal point of the optical lens, the surface height can be efficiently obtained from the focal length of the optical lens.

従って、本実施形態の表面形状測定装置13Aによれば、前記第1の実施の形態の効果(1)と同様な効果を奏するほか、次の効果(5)及び(6)を奏する。   Therefore, according to the surface shape measuring apparatus 13A of the present embodiment, the following effects (5) and (6) are obtained in addition to the same effects as the effect (1) of the first embodiment.

(5)伝送手段2により分割された複数の各光線の波長を第1波長選択手段3により異ならせ、この波長がそれぞれ異なる複数の光線を検査対象4へ照射することにより、検査対象4の複数の検査部位からの反射光線が互いに干渉することが防止される。そして、これらの反射光線のうち、回折光観測手段26により一つの反射光線だけが選択され、この反射光線の集光像28と共に、その反射光線の回折光による回折像29が回折光観測手段26により撮像される。従って、この回折像29を用いて表面欠陥判定手段27により、検査対象4の表面欠陥の有無及びその位置を判定することができる。   (5) The first wavelength selection unit 3 changes the wavelengths of the plurality of light beams divided by the transmission unit 2 and irradiates the inspection target 4 with a plurality of light beams having different wavelengths. It is possible to prevent the reflected light rays from the inspection sites from interfering with each other. Of these reflected light rays, only one reflected light beam is selected by the diffracted light observation means 26, and a diffracted image 29 by the diffracted light of the reflected light is combined with a condensed image 28 of the reflected light. Is imaged. Therefore, the presence / absence and position of the surface defect of the inspection object 4 can be determined by the surface defect determination means 27 using the diffraction image 29.

(6)送受信手段24を焦点方向に機械走査する場合、走査に時間がかかる、可動部分の消耗による精度低下や故障、交換が必要などの問題があるが、検査対象4へ集光する光線の焦点距離が全て異なる光学レンズが移動手段13の移動方向に沿って複数配置され、移動手段13の移動によって検査部位に対し焦点距離が変わる送受信手段24を用いることで、送受信手段24の焦点方向への機械走査が不要となる。このように機械走査が無いため、検査時間を短縮でき、また高信頼性と長寿命化を実現できる。   (6) When the transmission / reception means 24 is mechanically scanned in the focal direction, it takes time to scan, and there are problems such as deterioration of accuracy due to wear of movable parts, failure, and replacement. A plurality of optical lenses having different focal lengths are arranged along the moving direction of the moving unit 13, and by using the transmitting / receiving unit 24 whose focal length changes with respect to the examination site by the movement of the moving unit 13, the focal point of the transmitting / receiving unit 24 is changed. No mechanical scanning is required. Since there is no mechanical scanning in this way, the inspection time can be shortened, and high reliability and long life can be realized.

〔D〕第4の実施の形態(図8)
図8は、本発明に係る表面形状測定装置の第4の実施の形態を示す構成図である。この第4の実施の形態において、前記第1の実施の形態と同様な部分は同一の符合を付し、詳細な説明を省略する。
[D] Fourth embodiment (FIG. 8)
FIG. 8 is a block diagram showing a fourth embodiment of the surface shape measuring apparatus according to the present invention. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の表面形状測定装置14Aは、検査対象の複数の検査部位における表面高さを共焦点法によって一括して測定し、広範囲の表面高さを効率的に測定するものであり、光源1A、伝送手段2、時間差生成手段30、送受信手段31、集光手段7a、7b、開口手段8、伝送手段9、波長測定手段32及び表面高さ演算手段33を有して構成される。   The surface shape measuring device 14A of the present embodiment measures the surface height at a plurality of inspection sites to be inspected collectively by the confocal method, and efficiently measures a wide range of surface heights. 1A, transmission means 2, time difference generation means 30, transmission / reception means 31, condensing means 7a, 7b, aperture means 8, transmission means 9, wavelength measurement means 32, and surface height calculation means 33.

光源1Aは、広帯域波長のパルス光線を発するものである。また、伝送手段2は、検査対象4の複数の検査部位を一括して測定するため、光源1Aからのパルス光線を伝送して複数(n×n)のパルス光線に分割するものである。   The light source 1A emits a pulsed light beam having a broad wavelength. Further, the transmission means 2 transmits the pulsed light from the light source 1A and divides it into a plurality (n × n) of pulsed light in order to collectively measure a plurality of inspection sites of the inspection object 4.

時間差生成手段30は、複数に分割されたパルス光線のそれぞれに異なる時間差を持たせ、各パルス光線の時間が異なるようにして、光線間の干渉を回避する干渉回避手段である。この時間差生成手段30は、伝播媒体の屈折率や伝播距離などを各光線で変えることにより、光線数n×nに分割された各パルス光線のそれぞれに異なる伝播時間差を持たせ、各パルス光線の時間が異なるようにして光線間の干渉を避ける光学素子または光学系である。この時間差生成手段30は、例えば、屈折率がそれぞれ異なる格子数n×nの格子状の光学レンズ、長さがそれぞれ異なる本数n×nの光ファイバ、または複数枚のミラーの間隔を伝播距離としてミラー間隔がそれぞれ異なる個数n×nの光学系など、で構成される。各パルス光線の時間がそれぞれ異なるように、伝播媒体の屈折率や伝播距離が調整される。   The time difference generating means 30 is an interference avoiding means for avoiding interference between light beams by giving each of the pulse light beams divided into a plurality of different time differences so that the time of each pulse light beam is different. This time difference generating means 30 changes the refractive index of the propagation medium, the propagation distance, etc. for each light beam, thereby giving each pulse light beam divided into the number of light rays n × n to have a different propagation time difference. It is an optical element or an optical system that avoids interference between light beams at different times. For example, the time difference generating unit 30 uses a grating-like optical lens having a different number of gratings n × n having a different refractive index, an optical fiber having a number n × n having different lengths, or an interval between a plurality of mirrors as a propagation distance. The optical system is composed of a number n × n of optical systems having different mirror intervals. The refractive index and propagation distance of the propagation medium are adjusted so that the time of each pulse beam is different.

送受信手段31は、光線の波長によって焦点距離を異ならせる光学レンズを複数有し、時間が異なる各光線を検査対象4の各検査部位に集光し、時間がそれぞれ異なる各反射光線を受光するものである。この送受信手段31は、光線の波長によって焦点距離が異なり、時間が異なる各光線を検査対象4の各検査部位に集光し、時間がそれぞれ異なる各反射光線を受光するため、格子数n×nの格子状に並べられた色収差を有する複数の光学レンズを有してなり、各光学レンズの色収差により光線の波長によって焦点距離を異ならせる。   The transmission / reception means 31 has a plurality of optical lenses that vary the focal length depending on the wavelength of the light beam, condenses each light beam having a different time on each inspection site of the inspection object 4, and receives each reflected light beam having a different time. It is. Since this transmission / reception means 31 condenses each light beam having a different focal length and a different time depending on the wavelength of the light beam on each inspection site of the inspection object 4 and receives each reflected light beam having a different time, the number of lattices n × n A plurality of optical lenses having chromatic aberration arranged in a lattice shape, and the focal length is varied depending on the wavelength of the light beam by the chromatic aberration of each optical lens.

集光手段7a、7bは、各検査部位からのそれぞれの反射光線をそれぞれ集光させるものである。また、開口手段8は、集光手段7bの焦点位置に設置され、集光された各反射光線を通過させるものである。更に、伝送手段9は、開口手段8を通過した各反射光線を伝送するものである。   The condensing means 7a and 7b condense the respective reflected light rays from the respective examination sites. Moreover, the opening means 8 is installed in the focus position of the condensing means 7b, and lets each reflected light ray condensed pass. Further, the transmission means 9 transmits each reflected light beam that has passed through the opening means 8.

波長測定手段32は、伝送手段9による伝送後の反射光線の波長を計測するものである。この波長測定手段32は、反射光線を受光してその反射光線の波長を測定する装置であり、波長値に関する信号を出力する。この波長測定手段32は、例えば、分光器や波長計等で構成される。   The wavelength measuring means 32 measures the wavelength of the reflected light after transmission by the transmission means 9. The wavelength measuring means 32 is a device that receives the reflected light and measures the wavelength of the reflected light, and outputs a signal relating to the wavelength value. The wavelength measuring means 32 is composed of, for example, a spectroscope or a wavelength meter.

表面高さ演算手段33は、焦点距離が検査部位の位置に一致する波長の光線の集光径が最小になるため、共焦点の原理により、開口手段8を通過する反射光線の集光径が、焦点距離が検査部位の位置に一致する波長で最小となり、その光量が最大となり、その波長の焦点距離が表面高さになるとして、各検査部位の表面高さを求めるものである。この表面高さ演算手段33は、波長測定手段32が出力する波長値に関する信号を取り込み、各検査部位の表面高さを演算して記憶する装置である。装置内部には、送受信手段31における波長と焦点距離の関係が予め記憶されている。表面高さ演算手段33は、例えば、波長値に関する信号を取り込むための入力インタフェースを備えたPC(パーソナルコンピュータ)で構成される。PCは、デスクトップPC,ラップトップPC,ノートPC等の汎用PCが適用可能である。   In the surface height calculation means 33, since the condensed diameter of the light beam having a wavelength whose focal length matches the position of the examination site is minimized, the condensed light diameter of the reflected light beam passing through the aperture means 8 is reduced according to the confocal principle. The surface height of each inspection region is obtained on the assumption that the focal length is minimum at the wavelength matching the position of the inspection region, the light quantity is maximum, and the focal length of the wavelength is the surface height. The surface height calculating means 33 is a device that takes in a signal relating to the wavelength value output from the wavelength measuring means 32 and calculates and stores the surface height of each examination site. In the apparatus, the relationship between the wavelength and the focal length in the transmission / reception means 31 is stored in advance. The surface height calculation means 33 is constituted by, for example, a PC (personal computer) provided with an input interface for capturing a signal relating to a wavelength value. As the PC, a general-purpose PC such as a desktop PC, a laptop PC, or a notebook PC can be applied.

次に、本表面形状測定装置14Aの作用を説明する。   Next, the operation of the surface shape measuring apparatus 14A will be described.

光源1Aからの広帯域波長のパルス光線は、伝送手段2によって伝送されると共に、光線数n×nの光線に分割られ、さらに時間差生成手段30により、時間がそれぞれ異なる光線数n×nのパルス光線になる。   A pulsed beam having a wide-band wavelength from the light source 1A is transmitted by the transmission means 2 and is divided into light beams having a number of light beams n × n. become.

時間が異なる各パルス光線は、集光手段7aを通った後、送受信手段31によって検査対象4のn×nの検査部位にそれぞれ順次集光される。この場合、各パルス光線には、異なる波長が含まれるため、波長によって異なる焦点距離が存在する。各検査部位からの反射パルス光線は時間がそれぞれ異なるが、送受信手段31で受光され、集光手段7aで反射し、格子数n×nの集光手段7bにより開口手段8の各開口に集光される。   Each pulse light beam having a different time passes through the light condensing means 7a, and then is sequentially condensed by the transmission / reception means 31 onto the n × n inspection sites of the inspection object 4. In this case, since each pulse light beam includes a different wavelength, there are different focal lengths depending on the wavelength. Although the reflected pulse rays from the respective examination parts are different in time, they are received by the transmission / reception means 31, reflected by the condensing means 7 a, and condensed on each opening of the opening means 8 by the condensing means 7 b having the lattice number n × n. Is done.

開口手段8に集光される反射光線の集光径は、共焦点の関係より、検査部位へ集光した光線の集光径と同一となるため、検査部位へ集光した光線の焦点距離と検査部位の位置が一致する波長の反射光線の集光径が最小となり、開口を通過する光量は、この波長において最大となる。   The condensing diameter of the reflected light beam collected on the aperture means 8 is the same as the condensing diameter of the light beam condensed on the examination site because of the confocal relationship. The collection diameter of the reflected light beam having the wavelength at which the position of the examination site matches is minimized, and the amount of light passing through the opening is maximized at this wavelength.

波長測定手段32では、各反射パルス光線の時間が異なるため、開口を通過して伝送手段8により次々と伝送される反射パルス光線を順次受光し、その波長を順次測定する。反射パルス光線は、光線数n×nであるが、時間がそれぞれ異なるため、波長測定手段32では異なる時間に受光することになり、隣り合う反射光線や隔たった反射光線が干渉して検出されることがない。これにより、波長測定手段32では、それぞれの反射パルス光線の波長だけを検出でき、光量が最大の波長における焦点距離が、その検査部位の表面高さを表わすことになる。   Since the time of each reflected pulse beam is different in the wavelength measuring unit 32, the reflected pulse beam sequentially transmitted by the transmission unit 8 after passing through the aperture is sequentially received, and the wavelength thereof is sequentially measured. The number of reflected pulse rays is nxn, but the time is different, so the wavelength measuring means 32 receives light at different times, and adjacent reflected rays or separated reflected rays interfere and are detected. There is nothing. Thereby, the wavelength measuring means 32 can detect only the wavelength of each reflected pulse light beam, and the focal length at the wavelength with the maximum light amount represents the surface height of the inspection site.

そこで、表面高さ演算手段33によって、時間が異なるため順次伝送される反射パルス光線に対し、その波長における焦点距離を順次求めることにより、各反射光線が干渉することなく、n×nの検査部位の表面高さを順次求め、広範囲の表面高さを一括して測定する。   Thus, the surface height calculation means 33 sequentially obtains the focal length at the wavelength of the reflected pulse light beam that is sequentially transmitted because the time is different, so that each of the reflected light beams does not interfere with each other, and n × n inspection sites are obtained. The surface height of each is sequentially obtained, and a wide range of surface heights are measured at once.

従って、本実施形態の表面形状測定装置14Aによれば、次の効果(7)及び(8)を奏する。   Therefore, according to the surface shape measuring apparatus 14A of the present embodiment, the following effects (7) and (8) are achieved.

(7)検査対象4における複数の検査部位の表面高さ(表面形状)を、共焦点法を用いて一括して測定する場合、伝送手段2により分割された複数のパルス光線の時間を時間差生成手段30により異ならせ、この時間がそれぞれ異なるパルス光線を検査対象4へ照射することにより、検査対象4の各検査部位からの各反射光線の時間がそれぞれ異なり、このため、これらの各反射光線が互いに干渉することを確実に防止できる。この結果、検査対象4の複数の検査部位の表面高さを一括して測定でき、検査対象4の表面形状(表面高さ)を広範囲に効率的に測定することができる。   (7) When measuring the surface height (surface shape) of a plurality of inspection sites in the inspection object 4 in a lump using the confocal method, the time difference generation of the time of the plurality of pulse rays divided by the transmission means 2 By varying the means 30 and irradiating the inspection object 4 with pulsed light beams having different times, the time of each reflected light beam from each inspection site of the inspection object 4 is different. Interference with each other can be reliably prevented. As a result, the surface heights of a plurality of inspection parts of the inspection object 4 can be collectively measured, and the surface shape (surface height) of the inspection object 4 can be efficiently measured over a wide range.

(8)送受信手段31を焦点方向に機械走査する場合、走査に時間がかかる、可動部分の消耗による精度低下や故障、交換が必要などの問題があるが、光線の波長によって焦点距離を異ならせる送受信手段31を用いることで、送受信手段31の焦点方向への機械走査が不要となる。このように機械走査が無いため、検査時間を短縮でき、また高信頼性と長寿命化を実現できる。   (8) When the transmission / reception means 31 is mechanically scanned in the focal direction, it takes time to scan, and there are problems such as degradation in accuracy due to wear of movable parts, failure, and replacement, but the focal length varies depending on the wavelength of the light beam. By using the transmission / reception means 31, mechanical scanning in the focal direction of the transmission / reception means 31 becomes unnecessary. Since there is no mechanical scanning in this way, the inspection time can be shortened, and high reliability and long life can be realized.

〔E〕第5の実施の形態(図9)
図9は、本発明に係る表面形状測定装置の第5の実施の形態を示す構成図である。この第5の実施の形態において、前記第1の実施の形態と同様な部分は同一の符合を付し、詳細な説明を省略する。
[E] Fifth embodiment (FIG. 9)
FIG. 9 is a block diagram showing a fifth embodiment of the surface shape measuring apparatus according to the present invention. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の表面形状測定装置15Aは、検査対象の複数の検査部位における表面高さを共焦点法によって一括して測定し、広範囲の表面高さを効率的に測定するものであり、光源34、伝送手段2、第1波長選択手段3、送受信手段5、焦点方向走査手段6、集光手段7a、7b、非線形結晶35、伝送手段9、第2波長選択手段10、光検出器11及び表面高さ演算手段12を有して構成される。   The surface shape measuring device 15A of the present embodiment measures the surface height at a plurality of inspection sites to be inspected collectively by the confocal method, and efficiently measures a wide range of surface heights. 34, transmission means 2, first wavelength selection means 3, transmission / reception means 5, focal direction scanning means 6, condensing means 7a, 7b, nonlinear crystal 35, transmission means 9, second wavelength selection means 10, photodetector 11 and The surface height calculating means 12 is provided.

光源34は、超短パルス光を発光するものである。この超短パルス光を発する光源34は、フェムト秒からピコ秒程度のパルス時間幅のパルス光線を発する光源で構成される。このような光源は、例えば、チタンサファイア結晶を用いた超短パルスレーザなど、既に普及している。   The light source 34 emits ultrashort pulse light. The light source 34 that emits the ultrashort pulse light is a light source that emits a pulse beam having a pulse time width of about femtosecond to picosecond. Such a light source is already widely used, for example, an ultrashort pulse laser using a titanium sapphire crystal.

伝送手段2は、検査対象4の複数の検査部位を一括して測定するため、光源からの光線を伝送して複数の光線に分割するものである。また、第1波長選択手段3は、複数に分割された各光線の波長が異なるように各光線の波長を選択して、光線間の干渉を回避する干渉回避手段である。更に、送受信手段5は、第1波長選択手段3により波長選択された各光線を検査対象4の各検査部位に集光し、それぞれの反射光線を受光するものである。   The transmission means 2 transmits a light beam from a light source and divides it into a plurality of light beams in order to collectively measure a plurality of inspection sites of the inspection object 4. The first wavelength selecting means 3 is an interference avoiding means for selecting the wavelengths of the light beams so that the wavelengths of the light beams divided into a plurality are different to avoid interference between the light beams. Further, the transmission / reception means 5 collects each light beam selected by the first wavelength selection means 3 at each inspection site of the inspection object 4 and receives each reflected light beam.

焦点方向走査手段6は、共焦点法によって各検査部位の表面高さを求めるため、送受信手段5をその焦点方向に走査するものである。また、集光手段7a、7bは、送受信手段5を走査して得られた各検査部位の反射光線をそれぞれ集光させるものである。   The focal direction scanning means 6 scans the transmission / reception means 5 in the focal direction in order to obtain the surface height of each examination site by the confocal method. The condensing means 7a and 7b condense the reflected light beams of the respective examination sites obtained by scanning the transmitting / receiving means 5.

非線形結晶35は、集光手段7bの焦点位置に設置され、集光される各反射光線によって非線形強度の光をそれぞれ発生するものである。この非線形結晶35は、超短パルス光が集光されることによって非線形強度の光を発する結晶であり、例えば、LBO結晶(LiB)、BBO結晶(β−BaB)等が挙げられる。なお、非線形結晶35は、異なる非線形結晶を格子状に配置して構成する必要はなく、単一の一様な非線形結晶で構成することができる。この非線形結晶35は、集光される光の強度の2次または3次に比例する非線形強度の光を発する。超短パルス光は高ピーク強度であるため、この超短パルス光を非線形結晶35に集光することにより、非線形効果が大きな非線形強度の光を発生させることができる。 The nonlinear crystal 35 is installed at the focal position of the condensing means 7b, and generates nonlinear intensity light by each reflected light beam that is condensed. The non-linear crystal 35 is a crystal that emits non-linear intensity light when ultrashort pulse light is collected. For example, an LBO crystal (LiB 3 O 5 ), a BBO crystal (β-BaB 2 O 4 ), and the like. Can be mentioned. The nonlinear crystal 35 does not need to be configured by disposing different nonlinear crystals in a lattice pattern, and can be configured by a single uniform nonlinear crystal. The nonlinear crystal 35 emits light having a nonlinear intensity proportional to the second or third order of the intensity of the collected light. Since the ultrashort pulsed light has a high peak intensity, by condensing the ultrashort pulsed light on the nonlinear crystal 35, it is possible to generate nonlinear intensity light having a large nonlinear effect.

伝送手段9は、非線形結晶35からの非線形強度の各光を伝送するものである。また、第2波長選択手段10は、伝送手段9による伝送後の非線形強度の各光の波長を選択して、他の非線形強度の光との干渉を波長によって回避するものである。   The transmission means 9 transmits each light of nonlinear intensity from the nonlinear crystal 35. The second wavelength selection means 10 selects the wavelength of each non-linear intensity light after transmission by the transmission means 9 and avoids interference with other non-linear intensity light depending on the wavelength.

光検出器11は、第2波長選択手段10による波長選択後の非線形強度の各光の強度が、非線形結晶35に集光される各反射光線の強度の2次または3次に比例して非線形にそれぞれ変わることから、非線形強度の各光の光量を検出するものである。   The photodetector 11 is nonlinear in proportion to the second or third order of the intensity of each reflected light beam collected by the nonlinear crystal 35, with the intensity of each nonlinear intensity after wavelength selection by the second wavelength selection means 10. Therefore, the amount of light of each nonlinear intensity is detected.

表面高さ演算手段12は、共焦点の原理により、反射光線の集光径が、送受信手段6を焦点方向に走査して検査部位の位置が送受信手段5の焦点と一致した場合に最小となり、この時、非線形強度の光の強度が非線形で最大となるため、光検出器11の検出光量が最大となる送受信手段5の位置が検査部位の表面高さになるとして、各検査部位の表面高さを求めるものである。   The surface height calculation means 12 has a minimum condensing diameter of the reflected light when the transmission / reception means 6 is scanned in the focal direction and the position of the examination site coincides with the focus of the transmission / reception means 5 by the principle of confocal, At this time, since the intensity of the non-linear light intensity is non-linear and maximum, the position of the transmitting / receiving means 5 at which the light quantity detected by the photodetector 11 is maximum becomes the surface height of each inspection region. It is a thing to ask for.

次に、本表面形状測定装置15Aの作用を説明する。   Next, the operation of the surface shape measuring apparatus 15A will be described.

光源34からの超短パルス光線は、伝送手段2及び第1波長選択手段3によって第1の実施形態と同様の作用を受け、波長がそれぞれ異なる光線数n×nの光線になり、送受信手段5によって検査対象4に集光される。各検査部位からの反射光線は、送受信手段5で受光され、集光手段7a、7bにより非線形結晶35にそれぞれ集光される。   The ultrashort pulse light from the light source 34 is subjected to the same action as that of the first embodiment by the transmission means 2 and the first wavelength selection means 3, and becomes a light ray having a number of light rays n × n different from each other. Is collected on the inspection object 4. The reflected light from each examination site is received by the transmission / reception means 5 and condensed on the nonlinear crystal 35 by the light collection means 7a and 7b.

共焦点の原理により、非線形結晶35に集光された反射光線の集光径が、検査部位へ集光した光線の集光径と同一になることから、各反射光線の集光径は、各検査部位へ集光される各光線の焦点が検査部位とそれぞれ一致した場合に最小となる。このとき、各反射光線により非線形結晶35のそれぞれの部位に発生する非線形強度の光は、集光される反射光線の強度の2次または3次に比例して強度が非線形に大きくなるため、その強度が最大となる。   Because of the confocal principle, the condensing diameter of the reflected light beam collected on the nonlinear crystal 35 is the same as the condensing diameter of the light beam condensed on the examination site. This is minimized when the focal point of each light beam focused on the examination region is coincident with the examination region. At this time, the non-linear intensity light generated in each part of the non-linear crystal 35 by each reflected light beam increases nonlinearly in proportion to the second or third order of the intensity of the reflected light beam. Strength is maximized.

この際、非線形強度の光は、非線形結晶35により波長が変換されているが、集光される反射光線が高ピーク強度であることから非線形効果が大きく、その強度が、集光される光の強度の2次または3次に比例して非線形に大きくなるため、最大強度の検出が容易になっている。   At this time, the wavelength of the non-linear intensity light is converted by the non-linear crystal 35, but the non-linear effect is large because the reflected light beam to be collected has a high peak intensity, and the intensity of the light beam is reduced. Since the intensity increases nonlinearly in proportion to the second or third order of the intensity, the maximum intensity can be easily detected.

また、開口手段8(図1)を用いた場合には、集光される各反射光線の光軸を開口位置にそれぞれ合わせる必要が生じる場合があるが、非線形結晶35は単一の一様な結晶で構成されているので、各反射光線の光軸を合わせる必要がない。   In addition, when the aperture means 8 (FIG. 1) is used, it may be necessary to adjust the optical axis of each reflected light beam to be focused at the aperture position, but the nonlinear crystal 35 is a single uniform crystal. Since it is composed of crystals, it is not necessary to match the optical axes of the reflected rays.

光電変換器数n×nの光検出器11では、非線形結晶35により波長変換された波長を第2波長選択手段10によって波長選択し、非線形強度の光をそれぞれ受光する。尚、非線形結晶35による変換波長は、反射光線の波長からわかるため、第2波長選択手段10の各格子の選択波長は、各反射光線の波長に基づき予め設定される。   In the photodetector 11 having the number of photoelectric converters n × n, the wavelength converted by the nonlinear crystal 35 is wavelength-selected by the second wavelength selection unit 10 and light of nonlinear intensity is received. Since the conversion wavelength by the nonlinear crystal 35 is known from the wavelength of the reflected light, the selection wavelength of each grating of the second wavelength selection means 10 is set in advance based on the wavelength of each reflected light.

非線形強度の光は、光線数n×nであるが、波長がそれぞれ異なるため、光検出器11では隣り合う非線形強度の光や隔たった非線形強度の光が干渉して検出されることがない。これにより、光検出器11の各光電変換器では、それぞれの非線形強度の光の光量だけを検出でき、共焦点の関係から、非線形強度の光の強度が最大となる場合の送受信手段5の位置が、その検査部位の表面高さを表わすことになる。   The non-linear intensity light has the number of rays n × n, but since the wavelengths are different from each other, adjacent non-linear intensity light and separated non-linear intensity light are not detected by interference in the photodetector 11. Thereby, each photoelectric converter of the photodetector 11 can detect only the light amount of each nonlinear intensity light, and the position of the transmission / reception means 5 when the intensity of the nonlinear intensity light is maximized from the confocal relationship. Represents the surface height of the inspection site.

非線形強度の光は、その強度が非線形に変化するため、光検出器11の各光電変換器における最大光量の検出が容易になる。そこで、表面高さ演算手段12によって、非線形強度の各光の光量が最大となる場合の送受信手段5の位置をそれぞれ求めることにより、非線形強度の各光が干渉することなく、検査対象4のn×nの検査部位における表面高さを容易に一括して求め、広範囲の表面高さを効率的に測定することが可能となる。   Since the intensity of the non-linear intensity light changes non-linearly, it becomes easy to detect the maximum light intensity in each photoelectric converter of the photodetector 11. Therefore, the surface height calculation unit 12 obtains the position of the transmission / reception unit 5 when the amount of light of each non-linear intensity is maximized, so that the n of the inspection object 4 does not interfere with each other. It is possible to easily obtain the surface height at the inspection site of xn at a time and efficiently measure a wide range of surface heights.

従って、本実施形態の表面形状測定装置15Aによれば、次の効果(9)及び(10)を奏する。   Therefore, according to the surface shape measuring apparatus 15A of the present embodiment, the following effects (9) and (10) are achieved.

(9)非線形結晶35が、超短パルス光を用いることにより、集光される反射光線の強度の2次または3次に比例する非線形強度の光を発生することから、その最大強度から、共焦点の原理により各検査部位の表面高さを容易に一括して測定でき、検査対象4の広範囲の表面形状(表面高さ)を効率的且つ容易に測定することができる。   (9) Since the nonlinear crystal 35 generates light having a nonlinear intensity proportional to the second order or the third order of the intensity of the reflected reflected light by using the ultrashort pulse light, the maximum intensity is shared. The surface height of each inspection site can be easily and collectively measured by the focus principle, and a wide range of surface shapes (surface height) of the inspection object 4 can be measured efficiently and easily.

(10)開口手段8(図1)を用いた場合には、集光される各反射光線の光軸を開口位置にそれぞれ合わせる必要が生じる場合があるが、非線形結晶35の場合には、単一の一様な結晶で構成されているので、集光手段7bからの各反射光線の光軸を合わせる必要がなく、測定を容易化できる。   (10) When the aperture means 8 (FIG. 1) is used, it may be necessary to adjust the optical axis of each reflected light beam to be focused on the aperture position. Since it is composed of one uniform crystal, it is not necessary to match the optical axes of the reflected light beams from the light collecting means 7b, and the measurement can be facilitated.

以上、本発明を上記各実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on said each embodiment, this invention is not limited to this.

例えば、第2の実施の形態の表面形状測定装置12A及び第3の実施の形態の表面形状測定装置13Aにおいて、干渉回避手段は、複数に分割された各光線の波長が異なるように波長選択する第1波長選択手段3の場合を述べたが、光線として光源1Aからのパルス光線を用い、複数の分割されたパルス光線の時間が異なるようにして各パルス光線間の干渉を回避する時間差生成手段であってもよい。   For example, in the surface shape measuring apparatus 12A according to the second embodiment and the surface shape measuring apparatus 13A according to the third embodiment, the interference avoidance unit selects the wavelengths so that the wavelengths of the light beams divided into a plurality are different. Although the case of the first wavelength selecting means 3 has been described, the time difference generating means for avoiding interference between the pulse light beams by using the pulse light beam from the light source 1A as the light beam and making the times of the plurality of divided pulse light beams different. It may be.

また、第1の実施の形態の表面形状測定装置11Aにおける送受信手段5の複数の光学レンズ、第3の実施の形態の表面形状測定装置13Aにおける送受信手段24の複数の光学レンズ、第4の実施の形態の表面形状測定装置14Aにおける送受信手段31の複数の光学レンズ、第5の実施の形態の表面形状測定装置15Aにおける送受信手段5の複数の光学レンズを、第2の実施の形態の表面形状測定装置12Aにおける送受信手段18の複数の円筒形光学素子41を用いて構成し、検査対象4へ線形状の光線を集光させてもよい。この場合、第1、第4の実施の形態において、開口手段8の開口は最小幅のスリット形状に形成される。   Also, a plurality of optical lenses of the transmission / reception means 5 in the surface shape measurement apparatus 11A of the first embodiment, a plurality of optical lenses of the transmission / reception means 24 in the surface shape measurement apparatus 13A of the third embodiment, a fourth implementation. A plurality of optical lenses of the transmission / reception means 31 in the surface shape measuring device 14A of the form of FIG. 5, a plurality of optical lenses of the transmission / reception means 5 in the surface shape measurement apparatus 15A of the fifth embodiment, and the surface shape of the second embodiment. It may be configured by using a plurality of cylindrical optical elements 41 of the transmission / reception means 18 in the measurement apparatus 12 </ b> A, and the linear light beam may be condensed on the inspection object 4. In this case, in the first and fourth embodiments, the opening of the opening means 8 is formed in a slit shape having the minimum width.

更に、第3の実施の形態の表面形状測定装置13Aにおいて、回折光観測手段26、表面欠陥判定手段27、集光手段7c及び7dを用いて、検査対象の表面欠陥を検出するものを述べたが、これらを第1の実施の形態の表面形状測定装置11A、第2の実施の形態の表面形状測定装置12A、第5の実施の形態の表面形状測定装置15Aにそれぞれ適用してもよい。   Furthermore, in the surface shape measuring apparatus 13A of the third embodiment, the apparatus for detecting surface defects to be inspected using the diffracted light observation means 26, the surface defect determination means 27, and the light focusing means 7c and 7d has been described. However, these may be applied to the surface shape measuring device 11A of the first embodiment, the surface shape measuring device 12A of the second embodiment, and the surface shape measuring device 15A of the fifth embodiment, respectively.

また、第1の実施の形態の表面形状測定装置11Aにおける移動手段13及び繋ぎ合せ演算手段14を、第2の実施の形態の表面形状測定装置12A、第3の実施の形態の表面形状測定装置13A、第4の実施の形態の表面形状測定装置14A、第5の実施の形態の表面形状測定装置15Aにそれぞれ適用して、検査領域15及び16に重複部分17を持たせ、この重複部分17を繋ぎ合せるようにして、広範囲の測定を実施してもよい。   Further, the moving means 13 and the splicing calculation means 14 in the surface shape measuring apparatus 11A of the first embodiment are replaced with the surface shape measuring apparatus 12A of the second embodiment and the surface shape measuring apparatus of the third embodiment. 13A, the surface shape measuring device 14A according to the fourth embodiment and the surface shape measuring device 15A according to the fifth embodiment are applied to the inspection regions 15 and 16, respectively. A wide range of measurements may be performed in such a way that

本発明に係る表面形状測定装置の第1の実施の形態を示す構成図。The block diagram which shows 1st Embodiment of the surface shape measuring apparatus which concerns on this invention. 図1の表面形状測定装置による検査領域を示す図。The figure which shows the test | inspection area | region by the surface shape measuring apparatus of FIG. 本発明に係る表面形状測定装置の第2の実施の形態を示す構成図。The block diagram which shows 2nd Embodiment of the surface shape measuring apparatus which concerns on this invention. 図3の表面形状測定装置における送受信手段を示す斜視図。The perspective view which shows the transmission / reception means in the surface shape measuring apparatus of FIG. 図4の送受信手段により検査対象へ集光される光線を示す図。The figure which shows the light ray condensed on a test object by the transmission / reception means of FIG. 本発明に係る表面形状測定装置の第3の実施の形態を示す構成図。The block diagram which shows 3rd Embodiment of the surface shape measuring apparatus which concerns on this invention. 図6の表面形状測定装置における回折光観測手段により観測される反射光線の集光像と回折像を示す図。The figure which shows the condensing image and diffraction image of the reflected light beam observed by the diffracted light observation means in the surface shape measuring apparatus of FIG. 本発明に係る表面形状測定装置の第4の実施の形態を示す構成図。The block diagram which shows 4th Embodiment of the surface shape measuring apparatus which concerns on this invention. 本発明に係る表面形状測定装置の第5の実施の形態を示す構成図。The block diagram which shows 5th Embodiment of the surface shape measuring apparatus which concerns on this invention. 従来の表面形状測定装置(共焦点顕微鏡)を示す構成図。The block diagram which shows the conventional surface shape measuring apparatus (confocal microscope).

符号の説明Explanation of symbols

1 光源
1A 光源
2 伝送手段
3 第1波長選択手段
4 検査対象
4A 検査部位
5、18、24、31 送受信手段
6 焦点方向走査手段
7a、7b、7c、7d 集光手段
8 開口手段
9、20 伝送手段
10 第2波長選択手段
11 光検出器
11A 表面形状測定装置
12、21、25、33 表面高さ演算手段
12A、13A、14A、15A 表面形状測定装置
13 移動手段
14 繋ぎ合せ演算手段
15、16 検査領域
17 重複部分
19 集光径観測手段
22 線形状光線
23A 集光効果のある方向
23B 集光効果のない線方向
26 回折光観測手段
27 表面欠陥判定手段
30 時間差生成手段
32 波長測定手段
34 超短パルス光の光源
35 非線形結晶
41 円筒形光学素子
42 波長の異なる領域
DESCRIPTION OF SYMBOLS 1 Light source 1A Light source 2 Transmission means 3 1st wavelength selection means 4 Inspection object 4A Inspection site | part 5, 18, 24, 31 Transmission / reception means 6 Focus direction scanning means 7a, 7b, 7c, 7d Condensing means 8 Aperture means 9, 20 Transmission Means 10 Second wavelength selection means 11 Photodetector 11A Surface shape measuring device 12, 21, 25, 33 Surface height calculating means 12A, 13A, 14A, 15A Surface shape measuring device 13 Moving means 14 Splicing calculating means 15, 16 Inspection area 17 Overlapping portion 19 Condensed diameter observation means 22 Linear beam 23A Condensing effect direction 23B Condensing effect line direction 26 Diffracted light observation means 27 Surface defect determination means 30 Time difference generation means 32 Wavelength measurement means 34 Short pulse light source 35 Non-linear crystal 41 Cylindrical optical element 42 Regions with different wavelengths

Claims (12)

広帯域波長の光線を発する光源と、
この光源からの光線を伝送して複数の光線に分割する伝送手段と、
複数に分割された各光線の波長が異なるように各光線の波長を選択する第1波長選択手段と、
波長選択された各光線を検査対象の各検査部位に集光し、各検査部位からの反射光線を受光する送受信手段と、
この送受信手段をその焦点方向に走査する焦点方向走査手段と、
上記送受信手段を走査して得られた各検査部位の反射光線をそれぞれ集光させる集光手段と、
この集光手段の焦点位置に設置され、集光された各反射光線を通過させる開口手段と、
この開口手段を通過した各反射光線の波長を選択して他の反射光線との干渉を波長によって回避する第2波長選択手段と、
波長選択後の反射光線が前記開口手段を通過した反射光線を表わし、この開口手段を通過する反射光線の光量がその集光径で変わることから、波長選択後の各反射光線の光量を検出する光検出器と、
共焦点の原理により、検査部位の位置が前記送受信手段の焦点と一致した場合に反射光線の集光径が最小となり、前記開口手段を通過する光量が最大となるため、前記光検出器による検出光量が最大となる前記送受信手段の位置を表面高さとして、各検査部位の表面高さを求める表面高さ演算手段と、を有することを特徴とする表面形状測定装置。
A light source that emits light of a broadband wavelength;
A transmission means for transmitting a light beam from the light source and dividing it into a plurality of light beams;
First wavelength selecting means for selecting the wavelength of each light beam so that the wavelength of each light beam divided into a plurality is different;
Transmitting and receiving means for condensing each wavelength-selected light beam on each inspection site to be inspected and receiving reflected light from each inspection site;
A focal direction scanning means for scanning the transmission / reception means in the focal direction;
Condensing means for condensing each reflected light beam of each examination site obtained by scanning the transmission / reception means;
An opening means that is installed at the focal position of the light collecting means and passes the collected reflected light rays;
Second wavelength selection means for selecting the wavelength of each reflected light beam that has passed through the aperture means and avoiding interference with other reflected light beams according to the wavelength;
The reflected light beam after the wavelength selection represents the reflected light beam that has passed through the aperture means, and the amount of the reflected light beam that passes through the aperture means varies depending on the light collection diameter, so the light amount of each reflected light beam after the wavelength selection is detected. A photodetector;
According to the principle of confocal, when the position of the examination site coincides with the focal point of the transmission / reception means, the condensed light diameter of reflected light is minimized, and the amount of light passing through the aperture means is maximized. A surface shape measuring device, comprising: a surface height calculating means for determining a surface height of each examination site, wherein the position of the transmitting / receiving means that maximizes the amount of light is used as the surface height.
広帯域波長の光線を発する光源と、
この光源からの光線を伝送して複数の光線に分割する伝送手段と、
複数に分割された各光線間の干渉を回避する干渉回避手段と、
焦点距離が外的作用により変更可能とされ、干渉が回避された各光線を検査対象の各検査部位に集光し、各検査部位からの反射光線を受光する送受信手段と、
この送受信手段にて得られた各検査部位からの反射光線をそれぞれ集光させる集光手段と、
この集光手段の焦点位置に設置され、集光された各反射光線どうしの干渉を回避し、各反射光線の集光径を撮像する集光径観測手段と、
共焦点の原理により、反射光線の集光径が最小となるときの前記送受信手段の焦点距離が検査部位の表面高さとなることから、反射光線の集光径が最小になるときの外的作用の付与量を検出し、予め把握している上記付与量と上記焦点距離との関係から各検査部位の表面高さを求める表面高さ演算手段と、を有することを特徴とする表面形状測定装置。
A light source that emits light of a broadband wavelength;
A transmission means for transmitting a light beam from the light source and dividing it into a plurality of light beams;
Interference avoidance means for avoiding interference between each of the divided light beams;
Transmission / reception means for condensing each light beam whose focal length can be changed by an external action and avoiding interference on each inspection region to be inspected, and receiving reflected light from each inspection region;
Condensing means for condensing each reflected light beam from each inspection site obtained by the transmitting / receiving means,
A condensing diameter observing means that is installed at the focal position of the condensing means, avoids interference between the collected reflected rays, and images the condensed diameter of each reflected ray;
Due to the principle of confocal, the focal length of the transmitting / receiving means when the condensed light beam diameter becomes the minimum is the surface height of the examination site, so that the external action when the condensed light beam diameter is minimized And a surface height calculation means for detecting a surface height of each examination part from a relationship between the application amount and the focal length, which is grasped in advance, and having a surface height calculating means. .
前記送信手段は、外的作用としての電圧、圧力、熱等の付与により焦点距離が変更され、
また、前記表面高さ演算手段は、共焦点の原理により、反射光線の集光径が最小となるときの上記送受信手段の焦点距離が検査部位の表面高さとなることから、反射光線の集光径が最小となるときの電圧、圧力、熱等の付与量を検出し、予め把握している上記付与量と焦点距離との関係から各検査部位の表面高さを求めることを特徴とする請求項2に記載の表面形状測定装置。
The transmission means has a focal length changed by applying voltage, pressure, heat or the like as an external action,
Further, the surface height calculation means, based on the principle of confocal, the focal length of the transmission / reception means when the reflected light collecting diameter is minimized is the surface height of the examination site, so that the reflected light is condensed. The amount of application of voltage, pressure, heat, etc. when the diameter is minimized is detected, and the surface height of each examination site is obtained from the relationship between the amount of application and the focal length that are grasped in advance. Item 3. The surface shape measuring device according to Item 2.
広帯域波長の光線を発する光源と、
この光源からの光線を伝送して複数の光線に分割する伝送手段と、
複数に分割された各光線間の干渉を回避する干渉回避手段と、
焦点距離がそれぞれ異なる光学系を移動手段による移動方向に沿って複数配置して構成され、干渉が回避された各光線を検査対象の各検査部位に集光し、各検査部位からの反射光線を受光する送受信手段と、
この送受信手段にて得られた各検査部位からの反射光線をそれぞれ集光させる集光手段と、
この集光手段の焦点位置に設置され、集光された各反射光線どうしの干渉を回避し、各反射光線の集光径を撮像する集光径観測手段と、
共焦点の原理により、反射光線の集光径が検査部位へ集光した光線の集光径と同一であることから、前記移動手段により前記送受信手段を検査対象の表面に沿って平行に移動させ、反射光線の集光径が前記送受信手段の一つの光学系による焦点の集光径と一致する場合、その光学系の焦点距離が検査部位の表面高さになるとして、これらの各検査部位の表面高さを求める表面高さ演算手段と、を有することを特徴とする表面形状測定装置。
A light source that emits light of a broadband wavelength;
A transmission means for transmitting a light beam from the light source and dividing it into a plurality of light beams;
Interference avoidance means for avoiding interference between each of the divided light beams;
A plurality of optical systems having different focal lengths are arranged along the moving direction of the moving means, and each light beam from which interference is avoided is condensed on each inspection site to be inspected, and the reflected light beam from each inspection site is reflected. Transmitting and receiving means for receiving light; and
Condensing means for condensing each reflected light beam from each inspection site obtained by the transmitting / receiving means,
A condensing diameter observing means that is installed at the focal position of the condensing means, avoids interference between the collected reflected rays, and images the condensed diameter of each reflected ray;
Because of the confocal principle, the collected light diameter of the reflected light is the same as the condensed light diameter of the light focused on the examination site, so that the transmitting / receiving means is moved in parallel along the surface of the inspection object by the moving means. In the case where the collection diameter of the reflected light coincides with the collection diameter of the focal point by one optical system of the transmission / reception means, the focal length of the optical system is assumed to be the surface height of the examination part. A surface height calculating means for determining the surface height.
広帯域波長の光線を発する光源と、
この光源からの光線を伝送して複数の光線に分割する伝送手段と、
複数に分割された各光線間の干渉を回避する干渉回避手段と、
光線の波長によって焦点距離を異ならせる光学系を複数有し、干渉が回避された各光線を検査対象の各検査部位に集光し、各検査部位からの反射光線を受光する送受信手段と、
この送受信手段にて得られた各検査部位からの反射光線をそれぞれ集光させる集光手段と、
この集光手段の焦点位置に設置され、集光された各反射光線を通過させる開口手段と、
この開口手段を通過した各検査部位からの反射光線の波長を計測する波長計測手段と、
焦点距離と検査部位が一致する波長の光線の集光径が最小となるため、共焦点の原理により、反射光線の集光径が最小でその光量が最大となる波長の焦点距離が表面高さになるとして、これらの各検査部位の表面高さを求める表面高さ演算手段と、を有することを特徴とする表面形状測定装置。
A light source that emits light of a broadband wavelength;
A transmission means for transmitting a light beam from the light source and dividing it into a plurality of light beams;
Interference avoidance means for avoiding interference between each of the divided light beams;
A plurality of optical systems that vary the focal length depending on the wavelength of the light beam, and condensing each light beam from which interference has been avoided on each inspection site to be inspected, and receiving and receiving reflected light from each inspection site;
Condensing means for condensing each reflected light beam from each inspection site obtained by the transmitting / receiving means,
An opening means that is installed at the focal position of the light collecting means and passes the collected reflected light rays;
Wavelength measuring means for measuring the wavelength of the reflected light from each inspection site that has passed through the opening means;
Because the focal length of the light beam with the wavelength that matches the focal length and the inspection site is minimized, the focal length of the wavelength that minimizes the condensed light beam diameter and maximizes the amount of light is determined by the surface height. And a surface height calculating means for determining the surface height of each of these inspection sites.
前記干渉回避手段は、複数に分割された各光線の波長が異なるように各光線の波長を選択して、これら各光線間の干渉を回避する波長選択手段であることを特徴とする請求項2乃至4のいずれかに記載の表面形状測定装置。 The interference avoiding means is a wavelength selecting means for selecting the wavelength of each light beam so that the wavelengths of the light beams divided into a plurality are different and avoiding interference between these light beams. The surface shape measuring apparatus in any one of thru | or 4. 前記光源は広帯域波長のパルス光線を発し、また、前記干渉回避手段は、複数に分割されたパルス光線のそれぞれに異なる時間差を持たせ、各パルス光線の時間が異なるようにして各光線間の干渉を回避する時間差生成手段であることを特徴とする請求項2乃至5のいずれかに記載の表面形状測定装置。 The light source emits a pulse light beam having a broad wavelength, and the interference avoiding means has a different time difference for each of the pulse light beams divided into a plurality of times so that the time of each pulse light beam is different so that the interference between the light beams is different. The surface shape measuring device according to claim 2, wherein the surface shape measuring device is a time difference generating means for avoiding the above. 超短パルス光を発する光源と、
この光源からの光線を伝送して複数の光線に分割する伝送手段と、
複数に分割された各光線の波長が異なるように各光線の波長を選択する第1波長選択手段と、
波長選択された各光線を検査対象の各検査部位に集光し、各検査部位からの反射光線を受光する送受信手段と、
この送受信手段をその焦点方向に走査する焦点方向走査手段と、
上記送受信手段を走査して得られた各検査部位の反射光線をそれぞれ集光させる集光手段と、
この集光手段の焦点位置に設置され、集光された各反射光線によって非線形強度の光をそれぞれ発生する非線形光学結晶と、
非線形強度の各光の波長を選択して他の非線形強度の光との干渉を波長によって回避する第2波長選択手段と、
波長選択後の非線形強度の各光の強度が、前記非線形光学結晶に集光される各反射光線の強度の2次または3次に比例して非線形に変わることから、非線形強度の各光の光量を検出する光検出器と、
共焦点の原理により、反射光線の集光径が、前記送受信手段を焦点方向に走査して検査部位の位置が上記送受信手段の焦点と一致した場合に最小となり、このとき、非線形強度の光の強度が非線形で最大となるため、前記光検出器による検出光量が最大となる前記送受信手段の位置が表面高さになるとして、各検査部位の表面高さを求める表面高さ演算手段と、を有することを特徴とする表面形状測定装置。
A light source that emits ultrashort pulse light;
A transmission means for transmitting a light beam from the light source and dividing it into a plurality of light beams;
First wavelength selecting means for selecting the wavelength of each light beam so that the wavelength of each light beam divided into a plurality is different;
Transmitting and receiving means for condensing each wavelength-selected light beam on each inspection site to be inspected and receiving reflected light from each inspection site;
A focal direction scanning means for scanning the transmission / reception means in the focal direction;
Condensing means for condensing each reflected light beam of each examination site obtained by scanning the transmission / reception means;
A non-linear optical crystal that is installed at the focal position of the condensing means and generates light of non-linear intensity by each reflected light beam collected;
Second wavelength selecting means for selecting a wavelength of each light having a non-linear intensity and avoiding interference with other light having a non-linear intensity by the wavelength;
Since the intensity of each non-linear intensity light after wavelength selection changes non-linearly in proportion to the second or third order of the intensity of each reflected light beam condensed on the non-linear optical crystal, the light quantity of each non-linear intensity light A photodetector to detect
Due to the principle of confocal, the condensed diameter of the reflected light beam is minimized when the transmitting / receiving means is scanned in the focal direction and the position of the examination site coincides with the focal point of the transmitting / receiving means. Since the intensity is non-linear and maximum, the position of the transmission / reception means that maximizes the amount of light detected by the photodetector is the surface height, and the surface height calculation means for determining the surface height of each examination site, A surface shape measuring apparatus comprising:
前記送受信手段が複数の円筒形光学素子で構成され、検査対象へ線形状の光線を集光して、集光効果のない線方向に波長の異なる複数の領域を空間的に連続させることを特徴とする請求項1乃至8のいずれかに記載の表面形状測定装置。 The transmitting / receiving means is composed of a plurality of cylindrical optical elements, condenses a linear light beam on an inspection object, and spatially continues a plurality of regions having different wavelengths in a linear direction without a condensing effect. The surface shape measuring device according to any one of claims 1 to 8. 前記集光手段の焦点位置に設置され、集光された反射光線の内で任意の一つの波長を選択して他の反射光線との干渉を波長によって回避し、その波長の反射光線及びその回折光を撮像する回折光観測手段と、上記回折光に基づき検査対象における表面欠陥の有無およびその位置を判定する表面欠陥判定手段と、を有することを特徴とする請求項1乃至6のいずれか、請求項8または請求項9に記載の表面形状測定装置。 Installed at the focal point of the condensing means, an arbitrary one wavelength is selected from the collected reflected rays, and interference with other reflected rays is avoided by the wavelength. The diffracted light observation means for imaging light, and the surface defect determination means for determining the presence or absence and the position of the surface defect in the inspection object based on the diffracted light, The surface shape measuring apparatus according to claim 8 or 9. 前記送受信手段を検査対象の表面と平行に移動させて当該検査対象の表面高さを測定する場合、この検査対象の検査領域を重複させて測定結果の重複部分を繋ぎ合せ、広範囲の表面高さを求める繋ぎ合せ演算手段を有することを特徴とする請求項1乃至10のいずれかに記載の表面形状測定装置。 When measuring the surface height of the inspection object by moving the transmitting / receiving means parallel to the surface of the inspection object, overlapping the inspection areas of the inspection object and joining the overlapping portions of the measurement results, a wide range of surface heights The surface shape measuring device according to claim 1, further comprising a joining calculation means for obtaining the value. 光源からの光を複数に分割して検査対象の各検査部位へ集光し、これらの検査部位からの各反射光線を受光し、各反射光線の集光径または光量から共焦点の原理により上記検査対象の表面高さを測定するに際し、上述の分割された複数の光線の波長を異ならせ、または分割された複数のパルス光線のそれぞれに異なる時間差を持たせて、これらの光線間の干渉を回避することを特徴とする表面形状測定方法。 The light from the light source is divided into a plurality of parts and condensed on each inspection part to be inspected, and each reflected light beam from these inspection parts is received. When measuring the surface height of the object to be inspected, the wavelength of the plurality of divided light beams described above is made different, or each of the plurality of divided pulse light beams has a different time difference, so that interference between these light beams is reduced. A surface shape measuring method characterized by avoiding.
JP2007028762A 2007-02-08 2007-02-08 Instrument for measuring surface shape, and method Pending JP2008191122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028762A JP2008191122A (en) 2007-02-08 2007-02-08 Instrument for measuring surface shape, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028762A JP2008191122A (en) 2007-02-08 2007-02-08 Instrument for measuring surface shape, and method

Publications (1)

Publication Number Publication Date
JP2008191122A true JP2008191122A (en) 2008-08-21

Family

ID=39751344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028762A Pending JP2008191122A (en) 2007-02-08 2007-02-08 Instrument for measuring surface shape, and method

Country Status (1)

Country Link
JP (1) JP2008191122A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526977A (en) * 2009-05-15 2012-11-01 デグデント・ゲーエムベーハー Method and measuring apparatus for measuring an object three-dimensionally
JP2014534420A (en) * 2011-12-27 2014-12-18 コー・ヤング・テクノロジー・インコーポレーテッド Method for generating height information of substrate inspection apparatus
JP2015094887A (en) * 2013-11-13 2015-05-18 シチズンホールディングス株式会社 Confocal microscope
JP2018519524A (en) * 2015-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring height on a semiconductor wafer
JP2020190478A (en) * 2019-05-22 2020-11-26 京立電機株式会社 Method for inspecting flange back of lens interchangeable camera or imaging device position

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526977A (en) * 2009-05-15 2012-11-01 デグデント・ゲーエムベーハー Method and measuring apparatus for measuring an object three-dimensionally
JP2014534420A (en) * 2011-12-27 2014-12-18 コー・ヤング・テクノロジー・インコーポレーテッド Method for generating height information of substrate inspection apparatus
US9115984B2 (en) 2011-12-27 2015-08-25 Koh Young Technology Inc. Method of generating height information in circuit board inspection apparatus
JP2015094887A (en) * 2013-11-13 2015-05-18 シチズンホールディングス株式会社 Confocal microscope
JP2018519524A (en) * 2015-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring height on a semiconductor wafer
JP2020190478A (en) * 2019-05-22 2020-11-26 京立電機株式会社 Method for inspecting flange back of lens interchangeable camera or imaging device position
JP7181602B2 (en) 2019-05-22 2022-12-01 京立電機株式会社 Inspection method for flange focal length or image sensor position of interchangeable lens camera

Similar Documents

Publication Publication Date Title
JP5092104B2 (en) Spectrometer and spectroscopic method
CN103961059B (en) Optical tomographic observation device, optical tomographic observation method and optical observation head unit
US9804029B2 (en) Microspectroscopy device
WO2015135415A1 (en) Method and apparatus for measuring light-splitting pupil laser differential motion confocal brillouin-raman spectrums
US9816868B2 (en) Device for measuring temperature distribution
JP2012132741A (en) Time-resolved fluorescence measuring device and method
JP2012237647A (en) Multifocal confocal raman spectroscopic microscope
JP2012008261A (en) Image generation apparatus
WO2017154895A1 (en) Measuring device, observing device and measuring method
JP2008191122A (en) Instrument for measuring surface shape, and method
JP2011017552A (en) Device for detecting multipoint displacement
CN111156926A (en) Four-dimensional hyperspectral detection system
TW201425863A (en) Curvature measurement system and method thereof
JP2008026049A (en) Flange focal distance measuring instrument
JP6142996B2 (en) Via shape measuring device and via inspection device
KR20170141943A (en) Rapid optical inspection method of semiconductor
JP2020086204A (en) Optical image measurement device and optical image measurement method
JP5190603B2 (en) Optical microscope and observation method
JP2011021902A (en) Probe microscope
JP4834363B2 (en) Surface inspection device
JP6872450B2 (en) Laser displacement meter and laser ultrasonic inspection equipment using it
JP2005017127A (en) Interferometer and shape measuring system
JP2004354346A (en) Measuring device
JP4690841B2 (en) Surface inspection device
TWI405957B (en) Image spectrometer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426