JP2008190212A - Tunnel work method - Google Patents

Tunnel work method Download PDF

Info

Publication number
JP2008190212A
JP2008190212A JP2007025557A JP2007025557A JP2008190212A JP 2008190212 A JP2008190212 A JP 2008190212A JP 2007025557 A JP2007025557 A JP 2007025557A JP 2007025557 A JP2007025557 A JP 2007025557A JP 2008190212 A JP2008190212 A JP 2008190212A
Authority
JP
Japan
Prior art keywords
power
generator
reactive power
load device
tunnel construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007025557A
Other languages
Japanese (ja)
Inventor
Toshiya Oe
敏也 大江
Yasutomi Toyoda
靖臣 豊田
Kazuya Oguri
和也 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishio Rent All Co Ltd
Energy Support Corp
Original Assignee
Nishio Rent All Co Ltd
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishio Rent All Co Ltd, Energy Support Corp filed Critical Nishio Rent All Co Ltd
Priority to JP2007025557A priority Critical patent/JP2008190212A/en
Publication of JP2008190212A publication Critical patent/JP2008190212A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunnel work method of suppressing the capacity of a selected power generator in use of such a power-operated equipment as an excavator, mucking machine, concrete spraying machine, and ventilation equipment with power supply from the generator. <P>SOLUTION: According to the tunnel work method, such power-operated equipments as the excavator 11, mucking machine 12, concrete spraying machine 13, and a dust collector 14 are used as a load equipment 1, and power is supplied from a generator 2. A power-factor control type reactive power compensating device 3 is connected in parallel with the load equipment 1 to a power circuit 4 connecting the generator 2 to the load equipment 1, and the load equipment 1 is operated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電力を発電機から供給し、掘削機、ずり出し機械、コンクリート吹付け機械及び換気設備等の電動機器を使用するトンネル工事方法に関する。   The present invention relates to a tunnel construction method in which electric power is supplied from a generator and electric devices such as an excavator, a sliding machine, a concrete spraying machine, and a ventilation facility are used.

トンネル工事では、掘削機、ずり出し機械、コンクリート吹付け機械、換気設備等の電動機器を用いて行う。詳しくは、掘削機が土を掘り分け石を削り、ずり出し機械によって掘り出した土砂を排出する(ずり出し)。直ちにコンクリート吹付け機械が掘削によって露出した壁面に対してコンクリートを吹き付け、同壁面を固定する。また、換気設備として集塵機が稼動される。これら電動機器は、誘導電動機を駆動源とする誘導性負荷であるとともに、起動や停止を繰り返しながら稼動される。   In tunnel construction, excavators, sliding machines, concrete spraying machines, and ventilation equipment are used. Specifically, the excavator excavates the soil, cuts the stones, and discharges the earth and sand excavated by the extruding machine. Immediately, the concrete spraying machine sprays concrete against the wall surface exposed by excavation and fixes the wall surface. In addition, a dust collector is operated as a ventilation facility. These electric devices are inductive loads using an induction motor as a drive source, and are operated while being repeatedly started and stopped.

なお、山岳地域等でのトンネル工事においては、商用電力系統から電力の供給を受けられないため、電力を発電機から供給する。   In tunnel construction in mountainous areas, etc., power cannot be supplied from the commercial power system, so power is supplied from the generator.

ところで、発電機は、誘導電動機等の始動容量の大きな負荷を掛けると、発電機からの電圧が急激に低下し、負荷が正常に動作しないおそれがある。このため、発電機の容量は、誘導電動機等の効率、力率、及び誘導電動機等の始動時における発電機出力の換算値を考慮して選定されている(例えば、社団法人 日本内燃力発電設備協会規格NEGA D 201等による)。ところが、起動や停止を繰り返しながら電動機器が稼動されるトンネル工事においては、常に複数の負荷機器が不特定かつ不定時間に起動するため、これら負荷機器の起動時には無効電力が発生し易かった。このため、発電機容量の選択にあたっては、複数の誘導電動機の起動時における電力回路の電圧低下が他の稼動状態(定常運転状態)の負荷機器へ与える影響を考慮し、負荷機器の稼動状態における発電機出力よりもかなり大きなものを選定せざるをえなかった。また、発電機の容量の大型化は、燃料費の増加にも繋がる。   By the way, when a load with a large starting capacity such as an induction motor is applied to the generator, the voltage from the generator may drop rapidly, and the load may not operate normally. For this reason, the capacity of the generator is selected in consideration of the efficiency of the induction motor, the power factor, and the converted value of the generator output at the start of the induction motor (for example, Japan Internal Power Generation Equipment Association standard NEGA D 201 etc.). However, in tunnel construction in which an electric device is operated while being repeatedly started and stopped, a plurality of load devices are always started indefinitely and indefinitely, so that reactive power is likely to be generated when these load devices are started. For this reason, when selecting the generator capacity, considering the influence of the voltage drop in the power circuit when starting up multiple induction motors on the load equipment in other operating states (steady operation state), I had to select something significantly larger than the generator output. In addition, an increase in the capacity of the generator leads to an increase in fuel costs.

この発明は、こうした実情に鑑みてなされたものであり、その目的は、電力を発電機から供給し、掘削機、ずり出し機械、コンクリート吹付け機械及び換気設備等の電動機器を使用するトンネル工事方法において、選択する発電機の容量を抑制することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide tunnel construction in which electric power is supplied from a generator and electric devices such as an excavator, a sliding machine, a concrete spraying machine, and a ventilation facility are used. The method consists in suppressing the capacity of the generator to be selected.

以下、上記目的を達成するための手段及びその作用効果について説明する。
請求項1に記載の発明は、掘削機、ずり出し機械、コンクリート吹付け機械及び換気設備等の電動機器を負荷機器として使用するとともに、電力を発電機から供給するトンネル工事方法において、前記発電機と前記負荷機器との間を接続する電力回路に、力率制御方式の無効電力補償装置を同負荷機器と並列となるように接続して、同負荷機器を稼動させることをその要旨としている。
Hereinafter, means for achieving the above-described object and its operation and effects will be described.
The invention according to claim 1 is a tunnel construction method in which an electric device such as an excavator, a sliding machine, a concrete spraying machine, and a ventilation facility is used as a load device, and electric power is supplied from the generator. The reactive power compensator of the power factor control method is connected in parallel with the load device to the power circuit connecting the load device and the load device, and the gist thereof is operated.

同構成によれば、掘削機、ずり出し機械、コンクリート吹付け機械及び換気設備等の電動機器を負荷機器として使用するトンネル工事では、起動や停止を繰り返しながら稼動されるが、電力回路に力率制御方式の無効電力補償装置を負荷機器と並列に設けたことにより、各機器の始動による電力回路における電圧低下を緩和することができ、発電機における無効電力を減少することができる。その結果、負荷機器の起動時における電力回路に及ぼす電圧低下を抑えることができ、発電機の容量を選択するにあたり、負荷機器の起動時における電圧低下を考慮することなく負荷機器の稼働状態における発電機出力の換算値を元に発電機の容量を選択できるため、選択する発電機の容量を従来の発電機の容量よりも抑制することができるようになる。また、選択する発電機の容量を抑制することにより、設備の小型化が図れるばかりか消費燃料の量を抑制できるため、トンネル工事に掛かる費用を抑制することができる。   According to this configuration, in tunnel construction that uses electric equipment such as excavators, slide-out machines, concrete spraying machines, and ventilation equipment as load equipment, it is operated while being repeatedly started and stopped. By providing the reactive power compensator of the control method in parallel with the load device, the voltage drop in the power circuit due to the start of each device can be alleviated, and the reactive power in the generator can be reduced. As a result, the voltage drop on the power circuit at the start-up of the load device can be suppressed, and power generation in the operating state of the load device can be performed without considering the voltage drop at the start-up of the load device when selecting the capacity of the generator. Since the capacity of the generator can be selected based on the converted value of the machine output, the capacity of the generator to be selected can be suppressed from the capacity of the conventional generator. Further, by suppressing the capacity of the generator to be selected, not only can the equipment be reduced in size, but also the amount of fuel consumed can be reduced, so that the cost for tunnel construction can be reduced.

上記無効電力補償装置は、連系リアクトルと波形成形回路との直列回路を備えてなる。
請求項3に記載の発明は、請求項1又は2に記載のトンネル工事方法において、前記無効電力補償装置は、前記負荷機器に近接して設置されることをその要旨としている。
The reactive power compensator includes a series circuit of a connected reactor and a waveform shaping circuit.
The invention according to claim 3 is the tunnel construction method according to claim 1 or 2, wherein the reactive power compensator is installed close to the load device.

同構成によれば、無効電力補償装置を負荷機器に近接して設置するため、負荷機器による電力回路の電圧低下に対してより速く応答することができ、発電機における無効電力を減少することができる。   According to this configuration, since the reactive power compensator is installed close to the load device, it is possible to respond more quickly to the voltage drop of the power circuit by the load device, and to reduce the reactive power in the generator. it can.

本発明によれば、電力を発電機から供給し、掘削機、ずり出し機械、コンクリート吹付け機械及び換気設備等の電動機器を使用するトンネル工事方法において、選択する発電機の容量を抑制することができる。   According to the present invention, the capacity of a generator to be selected is suppressed in a tunnel construction method in which electric power is supplied from a generator and electric devices such as an excavator, a sliding machine, a concrete spraying machine, and a ventilation facility are used. Can do.

以下、本発明の一実施形態について図1及び図2を参照して説明する。図1は、トンネル工事に用いる機器等の構成を示す概略構成図である。
同図1に示されるように、本実施形態のトンネル工事では、掘削機11、ずり出し機械12、コンクリート吹付け機械13、換気設備としての集塵機14等の負荷機器1を用いて行う。詳しくは、掘削機11が土を掘り分け石を削り、ずり出し機械12によって掘り出した土砂を排出する(ずり出し)。そして、コンクリート吹付け機械13が掘削によって露出した壁面に対してコンクリートを吹き付け、同壁面を固定する。また、集塵機14を稼動し、トンネル内の換気を行う。これら掘削機11、ずり出し機械12、コンクリート吹付け機械13、換気設備としての集塵機14等の負荷機器1は、誘導電動機を駆動源とする誘導性負荷であるとともに、起動や停止を繰り返しながら稼動される。なお、これら掘削機11、ずり出し機械12、コンクリート吹付け機械13、換気設備としての集塵機14以外にも必要に応じて他の電動機器が負荷機器1として追加される。発電機2からの電力回路4の末端に負荷機器1が接続され、発電機2によって負荷機器1への電力供給が行われる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic configuration diagram showing the configuration of equipment and the like used for tunnel construction.
As shown in FIG. 1, the tunnel construction of the present embodiment is performed using a load device 1 such as an excavator 11, a sliding machine 12, a concrete spraying machine 13, and a dust collector 14 as a ventilation facility. Specifically, the excavator 11 digs up the soil, cuts the stone, and discharges the earth and sand excavated by the scraping machine 12 (squeezing out). And the concrete spraying machine 13 sprays concrete with respect to the wall surface exposed by excavation, and fixes the same wall surface. The dust collector 14 is operated to ventilate the tunnel. The load machine 1 such as the excavator 11, the sliding machine 12, the concrete spraying machine 13, and the dust collector 14 as a ventilation facility is an inductive load that uses an induction motor as a drive source and operates while being repeatedly started and stopped. Is done. In addition to the excavator 11, the sliding machine 12, the concrete spraying machine 13, and the dust collector 14 as a ventilation facility, another electric device is added as the load device 1 as necessary. The load device 1 is connected to the end of the power circuit 4 from the generator 2, and power is supplied to the load device 1 by the generator 2.

発電機2と負荷機器1との間には、無効電力補償装置(SVG:Static Var Generator)3が負荷機器1と並列接続して設けられている。無効電力補償装置3は、インバータ回路33とコンデンサ34とからなる波形成形回路32が連系リアクトル31を介して電力回路4に接続される直列回路を備えてなる。また、無効電力補償装置3は、電力回路4の電圧及び電流を演算し、波形成形回路32を制御する制御回路30を備えている。具体的には、接続点Pより負荷機器1側に電流検出用の変流器CTが取り付けられている。更に接続点Pより負荷機器1側における電力回路4の電圧を測定するための変圧器PTが接続されている。制御回路30は、変流器CTにより検出された電流と、変圧器PTにより検出された電圧とから電力回路4の力率を算出し、所定の力率になるように波形成形回路32を制御し、電力回路4の無効電力を打ち消すように電力回路4へ無効電力を注入し、力率を一定に制御する。   A reactive power compensator (SVG: Static Var Generator) 3 is provided in parallel with the load device 1 between the generator 2 and the load device 1. The reactive power compensator 3 includes a series circuit in which a waveform shaping circuit 32 including an inverter circuit 33 and a capacitor 34 is connected to the power circuit 4 via the interconnection reactor 31. The reactive power compensator 3 includes a control circuit 30 that calculates the voltage and current of the power circuit 4 and controls the waveform shaping circuit 32. Specifically, a current detection current transformer CT is attached to the load device 1 side from the connection point P. Further, a transformer PT for measuring the voltage of the power circuit 4 on the load device 1 side from the connection point P is connected. The control circuit 30 calculates the power factor of the power circuit 4 from the current detected by the current transformer CT and the voltage detected by the transformer PT, and controls the waveform shaping circuit 32 so as to be a predetermined power factor. Then, the reactive power is injected into the power circuit 4 so as to cancel the reactive power of the power circuit 4, and the power factor is controlled to be constant.

ここで、無効電力補償装置3が電圧一定制御ではなく、力率一定制御を選定していることについて説明する。通常、発電機2は自動電圧制御機能を有しており、無効電力補償装置3が電圧一定制御で無効電力補償を行うと、発電機2と無効電力補償装置3とが互いに電圧を制御しようとし、無効電力補償装置3による無効電力補償を行えなくなるおそれがあるため、無効電力補償装置3は力率一定制御を選定している。   Here, it will be described that the reactive power compensator 3 selects not the constant voltage control but the constant power factor control. Normally, the generator 2 has an automatic voltage control function, and when the reactive power compensator 3 performs reactive power compensation with constant voltage control, the generator 2 and the reactive power compensator 3 try to control the voltage with each other. Since reactive power compensation by the reactive power compensation device 3 may not be performed, the reactive power compensation device 3 selects constant power factor control.

次に、前述のように構成された無効電力補償装置3の動作態様について説明する。
無効電力補償装置3は、インバータ回路33の出力電圧を電力回路4の電圧の位相と同期させ、大きさを変化させる。これにより、電力回路4の電圧から90度遅れ・進みの電流が連系リアクトルに流れる。この結果、無効電力補償装置3は、電力回路4側から見ると、可変の進相コンデンサや分路リアクトルが接続されているように動作する。
Next, an operation mode of the reactive power compensator 3 configured as described above will be described.
The reactive power compensator 3 synchronizes the output voltage of the inverter circuit 33 with the phase of the voltage of the power circuit 4 and changes the magnitude. As a result, a 90-degree delayed / advanced current flows from the voltage of the power circuit 4 to the interconnection reactor. As a result, the reactive power compensator 3 operates as if a variable phase advance capacitor and a shunt reactor are connected when viewed from the power circuit 4 side.

無効電力補償装置3は、出力する無効電力を変化させることにより電力回路4の電圧を調整する。すなわち、負荷機器1の変動により電力回路4の電圧が低下した場合は、電力回路4から見て進相コンデンサと同様な動作を行い、電圧を上げる。この結果、図2に示されるように、電力回路4における無効電力補償装置3の接続点Pより発電機2側の無効電力を減少させる。また、電力回路4の電圧が上昇した場合は、電力回路4から見て分路リアクトルと同様な動作を行い、電圧を下げる。これにより、発電機2における力率が改善され、給電効率が上昇する。また、負荷機器1によって発生する無効電力を高速で打ち消すため、負荷機器1によって発生する電圧変動を緩和する。   The reactive power compensator 3 adjusts the voltage of the power circuit 4 by changing the reactive power to be output. That is, when the voltage of the power circuit 4 decreases due to fluctuations in the load device 1, an operation similar to that of the phase advance capacitor is performed as viewed from the power circuit 4 to increase the voltage. As a result, as shown in FIG. 2, the reactive power on the generator 2 side is reduced from the connection point P of the reactive power compensator 3 in the power circuit 4. Further, when the voltage of the power circuit 4 rises, the same operation as that of the shunt reactor is performed as seen from the power circuit 4, and the voltage is lowered. Thereby, the power factor in the generator 2 is improved and the power supply efficiency is increased. Moreover, in order to cancel the reactive power generated by the load device 1 at high speed, the voltage fluctuation generated by the load device 1 is reduced.

次に、前述のように構成されたトンネル工事方法の動作態様について説明する。
トンネルの掘削が始まると、上記の負荷機器1である掘削機11、ずり出し機械12、及びコンクリート吹付け機械13は、起動や停止を繰り返しながら稼動される。具体的には、掘削機11は地盤の硬さによって切羽の回転速度に変化が生じる。また、コンクリート吹付け機械13はコンクリートを吹き付ける時と、行わない時でコンプレッサの駆動が大きく異なる。そして、各機器の起動のたびに、電力回路4において電圧低下が発生するが、無効電力補償装置3によって速やかに無効電力を補償することによって、電力回路4の電圧変動を緩和する。
Next, an operation mode of the tunnel construction method configured as described above will be described.
When the excavation of the tunnel starts, the excavator 11, the sliding machine 12, and the concrete spraying machine 13, which are the load devices 1, are operated while being repeatedly started and stopped. Specifically, the excavator 11 changes in the rotational speed of the face depending on the hardness of the ground. Moreover, the concrete spraying machine 13 greatly differs in the driving of the compressor when concrete is sprayed and when it is not performed. Each time the device is activated, a voltage drop occurs in the power circuit 4, but the reactive power compensation device 3 quickly compensates the reactive power, thereby relaxing the voltage fluctuation of the power circuit 4.

以上、説明した実施形態によれば、以下の作用効果を奏することができる。
(1)掘削機11、ずり出し機械12、コンクリート吹付け機械13及び集塵機14等の電動機器を負荷機器1として使用するトンネル工事では、起動や停止を繰り返しながら稼動されるが、電力回路4に力率制御方式の無効電力補償装置3を負荷機器1と並列に設けた。これにより、各機器の始動による電力回路4における電圧低下を緩和することができ、発電機2における無効電力を減少することができる。その結果、負荷機器1の起動時における電力回路4に及ぼす電圧低下を抑えることができ、発電機2の容量を選択するにあたり、負荷機器1の起動時における電圧低下を考慮することなく負荷機器1の稼働状態における発電機2の出力の換算値を元に発電機2の容量を選択できるため、選択する発電機2の容量を従来の発電機の容量よりも抑制することができるようになる。また、選択する発電機2の容量を抑制することにより、設備の小型化が図れるばかりか消費燃料の量を抑制できるため、トンネル工事に掛かる費用を抑制することができる。
As described above, according to the embodiment described above, the following effects can be obtained.
(1) In tunnel construction in which an electric device such as the excavator 11, the sliding machine 12, the concrete spraying machine 13, and the dust collector 14 is used as the load device 1, it is operated while being repeatedly started and stopped. A power factor control type reactive power compensator 3 is provided in parallel with the load device 1. Thereby, the voltage drop in the power circuit 4 due to the start of each device can be alleviated, and the reactive power in the generator 2 can be reduced. As a result, it is possible to suppress a voltage drop on the power circuit 4 when the load device 1 is started, and the load device 1 can be selected without considering the voltage drop when the load device 1 is started when selecting the capacity of the generator 2. Since the capacity | capacitance of the generator 2 can be selected based on the conversion value of the output of the generator 2 in this operating state, the capacity | capacitance of the generator 2 to select can be suppressed rather than the capacity | capacitance of the conventional generator. Further, by suppressing the capacity of the generator 2 to be selected, not only can the equipment be reduced in size, but also the amount of fuel consumption can be suppressed, so that the cost for tunnel construction can be suppressed.

(2)さらに、インバータ回路によって出力を調整するため応答速度が速く、急峻な電圧低下の補償ができるとともに、周期的に発生する出力変動の激しい負荷機器に対して電圧変動に伴うフリッカを補償することができる。   (2) Furthermore, since the output is adjusted by the inverter circuit, the response speed is fast, and it is possible to compensate for a steep voltage drop, and to compensate for flicker caused by voltage fluctuations for periodically generated load equipment with severe output fluctuations. be able to.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。
・上記構成において、無効電力補償装置3をトンネル内部に移動体、例えばトラック等に載せて移動させ、負荷機器1に近接して設けるようにしてもよい。同構成によれば、無効電力補償装置3を負荷機器1に近接して設置するため、負荷機器1による電圧低下に対して速く応答することができ、発電機2における無効電力を減少することができる。
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
In the above configuration, the reactive power compensator 3 may be moved inside a tunnel by moving it on a moving body, such as a truck, and provided close to the load device 1. According to this configuration, since the reactive power compensator 3 is installed close to the load device 1, it is possible to respond quickly to a voltage drop caused by the load device 1, and to reduce the reactive power in the generator 2. it can.

・上記実施形態では、本発明を山岳トンネル工事方法に適用したが、これに限らず他のトンネル工事方法、例えばシールド工法等に適用してもよい。   In the above embodiment, the present invention is applied to the mountain tunnel construction method. However, the present invention is not limited to this, and may be applied to other tunnel construction methods such as a shield method.

トンネル工事に用いる機器の概略構成図。The schematic block diagram of the apparatus used for tunnel construction. 本発明による無効電力補償を示す図。The figure which shows the reactive power compensation by this invention.

符号の説明Explanation of symbols

1…負荷機器、2…発電機、3…無効電力補償装置、4…電力回路、11…掘削機、12…ずり出し機械、13…コンクリート吹付け機械、14…集塵機、30…制御回路、31…連系リアクトル、32…波形成形回路、33…インバータ回路、34…コンデンサ、CT…変流器、PT…変圧器、P…接続点。   DESCRIPTION OF SYMBOLS 1 ... Load apparatus, 2 ... Generator, 3 ... Reactive power compensator, 4 ... Power circuit, 11 ... Excavator, 12 ... Extruding machine, 13 ... Concrete spraying machine, 14 ... Dust collector, 30 ... Control circuit, 31 ... interconnected reactor, 32 ... waveform shaping circuit, 33 ... inverter circuit, 34 ... capacitor, CT ... current transformer, PT ... transformer, P ... connection point.

Claims (3)

掘削機、ずり出し機械、コンクリート吹付け機械及び換気設備等の電動機器を負荷機器として使用するとともに、電力を発電機から供給するトンネル工事方法において、
前記発電機と前記負荷機器との間を接続する電力回路に、力率制御方式の無効電力補償装置を同負荷機器と並列となるように接続して、同負荷機器を稼動させる
ことを特徴とするトンネル工事方法。
In the tunnel construction method of using electric equipment such as excavators, sliding machines, concrete spraying machines and ventilation equipment as load equipment and supplying power from the generator,
A power circuit connecting the generator and the load device is connected to a power factor control reactive power compensator in parallel with the load device, and the load device is operated. Tunnel construction method.
請求項1に記載のトンネル工事方法において、
前記無効電力補償装置は、連系リアクトルと波形成形回路との直列回路を備えてなる
ことを特徴とするトンネル工事方法。
In the tunnel construction method according to claim 1,
The reactive power compensator includes a series circuit of a connected reactor and a waveform shaping circuit.
請求項1又は2に記載のトンネル工事方法において、
前記無効電力補償装置は、前記負荷機器に近接して設置される
ことを特徴とするトンネル工事方法。
In the tunnel construction method according to claim 1 or 2,
The reactive power compensator is installed close to the load device. A tunnel construction method, wherein:
JP2007025557A 2007-02-05 2007-02-05 Tunnel work method Pending JP2008190212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025557A JP2008190212A (en) 2007-02-05 2007-02-05 Tunnel work method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025557A JP2008190212A (en) 2007-02-05 2007-02-05 Tunnel work method

Publications (1)

Publication Number Publication Date
JP2008190212A true JP2008190212A (en) 2008-08-21

Family

ID=39750553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025557A Pending JP2008190212A (en) 2007-02-05 2007-02-05 Tunnel work method

Country Status (1)

Country Link
JP (1) JP2008190212A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080393A1 (en) * 2009-12-28 2011-07-07 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply
JP2013231285A (en) * 2012-04-27 2013-11-14 Kajima Corp Used electric power suppression method of tunnel construction system
US8714286B2 (en) 2009-12-28 2014-05-06 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply
JP2016123263A (en) * 2014-12-22 2016-07-07 サンドヴィック マイニング アンド コンストラクション オーワイ Digging vehicle and energy supply method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206842A (en) * 1988-02-12 1989-08-21 Fuji Electric Co Ltd Compensator for reactive power
JP2000139028A (en) * 1998-11-04 2000-05-16 Ngk Insulators Ltd Controlling reactive power compensating device
JP2000270479A (en) * 1999-03-19 2000-09-29 Ngk Insulators Ltd Operation control method for reactive power compensator
JP2000270480A (en) * 1999-03-19 2000-09-29 Ngk Insulators Ltd Operation control method for reactive power compensator
JP2001268797A (en) * 2000-03-22 2001-09-28 Ngk Insulators Ltd Energy-saving operating method of reactive power compensating equipment
JP2003032893A (en) * 2001-07-12 2003-01-31 Ngk Insulators Ltd Method of controlling operation of reactive power compensator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206842A (en) * 1988-02-12 1989-08-21 Fuji Electric Co Ltd Compensator for reactive power
JP2000139028A (en) * 1998-11-04 2000-05-16 Ngk Insulators Ltd Controlling reactive power compensating device
JP2000270479A (en) * 1999-03-19 2000-09-29 Ngk Insulators Ltd Operation control method for reactive power compensator
JP2000270480A (en) * 1999-03-19 2000-09-29 Ngk Insulators Ltd Operation control method for reactive power compensator
JP2001268797A (en) * 2000-03-22 2001-09-28 Ngk Insulators Ltd Energy-saving operating method of reactive power compensating equipment
JP2003032893A (en) * 2001-07-12 2003-01-31 Ngk Insulators Ltd Method of controlling operation of reactive power compensator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080393A1 (en) * 2009-12-28 2011-07-07 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply
AU2010338146B2 (en) * 2009-12-28 2013-11-07 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply
RU2509664C1 (en) * 2009-12-28 2014-03-20 Сандвик Майнинг Энд Констракшн Ой Mining vehicle and method of its power supply
US8714286B2 (en) 2009-12-28 2014-05-06 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply
RU2514867C2 (en) * 2009-12-28 2014-05-10 Сандвик Майнинг Энд Констракшн Ой Mining vehicle and method of its power supply
US8955657B2 (en) 2009-12-28 2015-02-17 Sandvik Mining And Construction Oy Mining vehicle and method for its energy supply
EP2519419A4 (en) * 2009-12-28 2016-05-11 Sandvik Mining & Constr Oy Mining vehicle and method for its energy supply
JP2013231285A (en) * 2012-04-27 2013-11-14 Kajima Corp Used electric power suppression method of tunnel construction system
JP2016123263A (en) * 2014-12-22 2016-07-07 サンドヴィック マイニング アンド コンストラクション オーワイ Digging vehicle and energy supply method thereof

Similar Documents

Publication Publication Date Title
JP6127123B2 (en) Mining vehicle and its energy supply method
CN102712265B (en) Mining vehicle and method for its energy supply
RU2509664C1 (en) Mining vehicle and method of its power supply
EP2126268B1 (en) Rig engine control
RU2522985C2 (en) Method for mine vehicle use, mine device, drilling rig for mine rocks and mine vehicle
JP2008190212A (en) Tunnel work method
CN109843631B (en) Power supply system and method for DC motor driving hydraulic pump
US10954755B2 (en) Downhole high-impedance alternator
JP2015110890A (en) Mining vehicle and method for its energy supply
JP5933020B2 (en) Mining vehicle
JP2009114653A (en) Electrically-driven construction machinery
US20120187754A1 (en) Hybrid electric shovel
CN106464184B (en) Current distribution system for minimizing torque ripple and electric current and method
CN111075355A (en) Intelligent horizontal directional drilling machine
CN211573390U (en) Intelligent horizontal directional drilling machine
AU2015371343B2 (en) Mining vehicle and method for its energy supply
KR20180110800A (en) Energy-revival type hydraulic aparatus and construction equipment using the same
JP5922983B2 (en) Method for reducing power consumption in tunnel construction systems
KR100332537B1 (en) Power Supplying Method for Cavern Construction
SU771835A1 (en) Method and device for control of dc electric drive
CA2825420A1 (en) Hybrid electric shovel
KR20120111005A (en) Hybrid excavator
JP2002147173A (en) Cutter rotation controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004