JP2008190019A - Method for collecting lead from cement production process, and collecting apparatus therefor - Google Patents

Method for collecting lead from cement production process, and collecting apparatus therefor Download PDF

Info

Publication number
JP2008190019A
JP2008190019A JP2007027972A JP2007027972A JP2008190019A JP 2008190019 A JP2008190019 A JP 2008190019A JP 2007027972 A JP2007027972 A JP 2007027972A JP 2007027972 A JP2007027972 A JP 2007027972A JP 2008190019 A JP2008190019 A JP 2008190019A
Authority
JP
Japan
Prior art keywords
lead
cement
furnace
chlorination
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007027972A
Other languages
Japanese (ja)
Inventor
Soichiro Okamura
聰一郎 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007027972A priority Critical patent/JP2008190019A/en
Publication of JP2008190019A publication Critical patent/JP2008190019A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently decrease a lead content in cement without affecting the quality of the cement. <P>SOLUTION: The lead-collecting apparatus comprises: a chlorination-volatilizing furnace 2 which is installed adjacent to a cement-firing facility, and chlorinates and volatilizes lead contained in a charged lead-containing raw material (M) and the like; and a lead-collecting means 3 for collecting the lead from an exhaust gas of the furnace 2. The method for efficiently collecting lead from a cement production process includes: making the chlorination-volatilizing furnace 2 volatilize the lead in the lead-containing cement raw material (M) by using chlorine contained in a chlorination source (C); and making the lead-collecting means 3 collect the volatilized lead. The lead-collecting means 3 may have a dust-collecting means for collecting dust in the exhaust gas of the chlorination-volatilizing furnace 2. A heat source for the chlorination-volatilizing furnace 2 may be supplied by extracting the exhaust gas of the cement-firing facility from the cement-firing facility and introducing the gas into the chlorination-volatilizing furnace 2, or by sending one part of a raw material discharged from a cyclone 12 in the lowest stage of a pre-heater to a chlorination-volatilizing furnace 42. Burnt ash of municipal waste can be effectively used as a chlorination source (C) for the chlorination-volatilizing furnaces 2 and 42. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セメント製造工程からの鉛回収方法及び回収装置に関し、特に、セメントの品質に影響を与えることなく、セメントの鉛含有率をより効率よく低下させることのできる方法及び装置に関する。   The present invention relates to a method and an apparatus for recovering lead from a cement manufacturing process, and more particularly, to a method and an apparatus that can reduce the lead content of cement more efficiently without affecting the quality of cement.

従来、セメント中の鉛(Pb)は固定化されるため、土壌への溶出はないと考えられてきた。しかし、近年のセメント製造工程におけるリサイクル資源の活用量の増加に伴い、セメント中の鉛の量も増加し、これまでの含有量を大幅に上回りつつある。濃度増加に伴い土壌への溶出の可能性もあるため、セメント中の鉛濃度をこれまでの含有量程度まで低減する必要がある。   Conventionally, since lead (Pb) in cement is immobilized, it has been considered that there is no elution into soil. However, as the amount of recycled resources used in the cement manufacturing process has increased in recent years, the amount of lead in cement has also increased, and the content has been greatly exceeded. Since there is a possibility of elution into the soil as the concentration increases, it is necessary to reduce the lead concentration in the cement to the level of the conventional content.

そこで、セメント中の鉛濃度を低減する技術として、例えば、特許文献1には、セメント製造工程に供給される廃棄物中の塩素分及び鉛分を効果的に分離除去するため、廃棄物の水洗工程と、濾別した固形分のアルカリ溶出工程と、この濾液から鉛を沈澱させて分離する脱鉛工程と、脱鉛した濾液からカルシウムを沈澱させて分離する脱カルシウム工程と、この濾液を加熱して塩化物を析出させて分離回収する塩分回収工程とを有する廃棄物の処理方法が開示されている。   Therefore, as a technique for reducing the lead concentration in cement, for example, Patent Document 1 discloses that waste water is washed in order to effectively separate and remove chlorine and lead in waste supplied to the cement manufacturing process. A step of alkali elution of the filtered solid content, a deleading step of precipitating and separating lead from the filtrate, a decalcifying step of precipitating and separating calcium from the deleaded filtrate, and heating the filtrate Thus, a waste processing method including a salt recovery step of separating and recovering chloride by precipitation is disclosed.

また、特許文献2には、飛灰等の廃棄物から鉛等を分別して除去するにあたって、カルシウムイオンを含む溶液を混合してスラリーを得た後、固液分離して、亜鉛を含む固形分と、鉛を含む水溶液とを得る工程と、鉛を含む水溶液に硫化剤を添加した後、固液分離して、硫化鉛と、カルシウムイオンを含む溶液とを得る工程を含む廃棄物の処理方法が記載されている。   Further, in Patent Document 2, in separating and removing lead and the like from waste such as fly ash, a solution containing calcium ions is mixed to obtain a slurry, followed by solid-liquid separation and solid content containing zinc. And a method for treating waste including a step of obtaining an aqueous solution containing lead, and a step of adding a sulfurizing agent to the aqueous solution containing lead, followed by solid-liquid separation to obtain a solution containing lead sulfide and calcium ions Is described.

しかし、上記特許文献に記載の従来技術においては、塩素バイパスダスト等に含まれる鉛分を除去しているが、塩素バイパスダストから系外に除去される鉛の割合は、全体の30%程度に過ぎず、たとえ、塩素バイパスダスト中の鉛を100%除去したとしても、残りの70%程度は、依然としてセメントキルンから排出されるクリンカに取り込まれるため、セメントの鉛含有率を低下させるのは容易ではない。そこで、セメントキルン内の鉛の揮発を促進し、塩素バイパスダスト等の中への鉛の濃縮率を高めることが重要である。   However, in the prior art described in the above-mentioned patent document, lead contained in chlorine bypass dust is removed, but the proportion of lead removed from the chlorine bypass dust to the outside of the system is about 30% of the total. However, even if 100% of lead in chlorine bypass dust is removed, the remaining 70% is still taken up by the clinker discharged from the cement kiln, so it is easy to reduce the lead content of cement. is not. Therefore, it is important to promote the volatilization of lead in the cement kiln and increase the concentration ratio of lead into chlorine bypass dust.

鉛の揮発を促進する技術として、塩化揮発法と還元揮発法が知られている。塩化揮発法は、鉛を塩化すると揮発しやすくなる性質を利用したものであり、原料等に含まれる鉛を塩化物(PbCl2)にして揮発させる。一方、還元揮発法は、炉内を還元雰囲気に調整し、酸化鉛(PbO)を還元して鉛(Pb)を揮発させる。 As a technique for promoting the volatilization of lead, a chlorination volatilization method and a reduction volatilization method are known. The chlorination volatilization method utilizes the property of volatilizing easily when lead is chlorinated, and volatilizes lead contained in raw materials and the like as chloride (PbCl 2 ). On the other hand, the reduction volatilization method adjusts the inside of the furnace to a reducing atmosphere, reduces lead oxide (PbO), and volatilizes lead (Pb).

そして、塩化揮発法を利用した技術として、特許文献3に、重金属含有廃棄物及び塩素含有廃棄物を経済的に処理して大部分の重金属を効率的に回収するとともに、回収困難な残留重金属分を高度に不溶安定化させるため、重金属含有廃棄物と塩素含有廃棄物とを混合し、混合物中の塩素含有量が混合物重量基準で2%以上となるように調節し、750℃以上の温度で高熱処理することにより、大部分の重金属を塩化揮発させて回収し、残留重金属分は不溶安定化させる重金属含有廃棄物の処理方法が提案されている。   As a technique using the chlorination volatilization method, Patent Document 3 discloses that the heavy metal-containing waste and the chlorine-containing waste are economically processed to recover most of the heavy metals efficiently, and the residual heavy metal content that is difficult to recover is also disclosed. In order to stabilize the water insoluble, the heavy metal-containing waste and the chlorine-containing waste are mixed, adjusted so that the chlorine content in the mixture is 2% or more based on the weight of the mixture, and at a temperature of 750 ° C. or higher. There has been proposed a method for treating heavy metal-containing wastes in which most heavy metals are recovered by volatilizing and recovering a high heat treatment, and residual heavy metals are insoluble and stabilized.

また、同じく塩化揮発法を利用した技術として、特許文献4には、重金属で汚染された土壌から高い除去率で重金属を除去することができるとともに、処理後に得られる固体分をセメント原料等として用いるため、鉛等の重金属を含む土壌に対して、該土壌中のCa/Siのモル比が0.1以上となる量のカルシウム源(例えば、消石灰)、及び塩素源(例えば、塩化カルシウム)を添加して成分調整された土壌を得る工程と、成分調整された土壌を800〜1400℃の温度及び2〜10%の水分含有率の条件下で加熱して、重金属を塩化揮発させるとともに、重金属が除去され、かつ塩素の含有率の低い焼成物を得る工程とからなる土壌の処理方法が開示され、得られた焼成物は、セメント原料等として用いられる。   Similarly, as a technique utilizing the chlorination volatilization method, Patent Document 4 can remove heavy metals from soil contaminated with heavy metals at a high removal rate, and use a solid content obtained after the treatment as a cement raw material or the like. Therefore, with respect to the soil containing heavy metals such as lead, a calcium source (for example, slaked lime) and a chlorine source (for example, calcium chloride) in such an amount that the Ca / Si molar ratio in the soil is 0.1 or more. The step of adding the component-adjusted soil by adding and heating the component-adjusted soil under conditions of a temperature of 800 to 1400 ° C. and a moisture content of 2 to 10% to volatilize and volatilize the heavy metal, Is removed, and a method for treating soil comprising a step of obtaining a fired product having a low chlorine content is disclosed, and the obtained fired product is used as a cement raw material or the like.

しかし、上記特許文献等に記載の塩化揮発法の場合には、塩素がセメント製造工程やセメントの品質に悪影響を及ぼすため、セメント焼成に適用するのは技術的に困難な状況にあった。一方、前記還元揮発法の場合には、残渣中の残留金属の問題により、炉内の温度を1300℃程度として滞留時間を数時間とかなり長くする必要があり、低濃度の鉛や亜鉛等の処理には、処理コストの面で問題があった。   However, in the case of the chlorination volatilization method described in the above-mentioned patent documents and the like, since chlorine adversely affects the cement manufacturing process and cement quality, it was technically difficult to apply to cement firing. On the other hand, in the case of the reduction volatilization method, due to the problem of residual metal in the residue, it is necessary to set the temperature in the furnace to about 1300 ° C. and to keep the residence time as long as several hours. The processing has a problem in terms of processing cost.

そこで、本出願人は、特願2006−288848(以下、「先願」という)において、セメントの品質に影響を与えずに、セメントの鉛含有率を効率よく低下させることのできる方法を提案した。   Therefore, the present applicant has proposed a method in Japanese Patent Application No. 2006-288848 (hereinafter referred to as “prior application”) that can efficiently reduce the lead content of cement without affecting the quality of the cement. .

この方法を実施するための装置の一つとして、図5に示すように、セメントキルン50の窯尻50a側(仮焼炉52及び最下段サイクロン53が備えられている端部側)に、粉状又はスラリー状の燃料又は可燃物を含む原料(以下、適宜「燃料等」という)Fをセメントキルン50内に噴射するためのノズル51を備える装置が提案されている。   As one of the apparatuses for carrying out this method, as shown in FIG. 5, a powder is placed on the kiln bottom 50a side of the cement kiln 50 (the end side where the calcining furnace 52 and the lowermost cyclone 53 are provided). There has been proposed an apparatus including a nozzle 51 for injecting a raw material (hereinafter referred to as “fuel or the like” as appropriate) F containing a fuel or a combustible material in the form of a slurry or slurry into the cement kiln 50.

このノズル51には、燃料等Fの供給装置(不図示)と、ノズル51に供給された燃料等Fをセメントキルン50内に噴射するための噴射装置(不図示)が備えられ、ノズル51に供給された燃料等Fをセメントキルン50の奥まで供給することができる。   The nozzle 51 is provided with a fuel supply device (not shown) for supplying fuel etc. and an injection device (not shown) for injecting the fuel etc. F supplied to the nozzle 51 into the cement kiln 50. The supplied fuel F or the like can be supplied to the back of the cement kiln 50.

一方、セメントキルン50には、図6に示すように、塩素バイパス設備が備えられ、セメントキルン50の窯尻から最下段サイクロンに至るまでのキルン排ガス流路からの抽気ガスは、プローブ61において冷却ファン62からの冷風によって冷却された後、分級機63に導入され、粗粉ダストと、微粉ダスト及びガスとに分離される。粗粉ダストは、セメントキルン系に戻され、塩化カリウム(KCl)等を含む微粉ダスト(塩素バイパスダスト)は、集塵機64で回収される。尚、集塵機64から排出された排ガスは、排気ファン65を経て大気へ放出される。   On the other hand, as shown in FIG. 6, the cement kiln 50 is provided with a chlorine bypass facility, and the extracted gas from the kiln exhaust gas flow path from the bottom of the cement kiln 50 to the lowest cyclone is cooled by the probe 61. After being cooled by the cold air from the fan 62, it is introduced into the classifier 63 and separated into coarse dust, fine dust and gas. Coarse powder dust is returned to the cement kiln system, and fine powder dust (chlorine bypass dust) containing potassium chloride (KCl) and the like is collected by the dust collector 64. The exhaust gas discharged from the dust collector 64 is released to the atmosphere through the exhaust fan 65.

上記システムを用い、まず、図5において、ノズル51を用いて燃料等Fを、セメントキルン50の内径(相対向する耐火物表面間の距離)をD、セメントキルン50の窯尻50a側から長手方向にセメントキルン内部に向かう距離をLとした場合に、L/Dが0以上12以下の領域に噴射する。この領域は、セメントキルン50内の原料温度が800〜1100℃の領域であり、ノズル51から燃料等Fを噴射してこの領域を還元雰囲気にすると、鉛の揮発率が大幅に上昇する。   Using the above system, first, in FIG. 5, using the nozzle 51, the fuel F, the inside diameter of the cement kiln 50 (the distance between the refractory surfaces facing each other) is D, and the cement kiln 50 is long from the kiln bottom 50 a side. When the distance toward the inside of the cement kiln in the direction is L, the L / D is injected into an area of 0 or more and 12 or less. This region is a region where the temperature of the raw material in the cement kiln 50 is 800 to 1100 ° C. When fuel or the like F is injected from the nozzle 51 to make this region a reducing atmosphere, the volatilization rate of lead greatly increases.

セメントキルン50で揮発した鉛を含むガスは、図6において、プローブ61によって抽気されて冷却された後、分級機63に導入され、粗粉ダストと、微粉ダスト及びガスとに分離され、微粉ダストが集塵機64で回収される。この微粉ダストには、セメントキルン50内で鉛がより多く揮発した分、従来よりも鉛が多く濃縮されている。そこで、この鉛を回収することにより、セメントキルン50で製造されるセメントの鉛含有率を低下させることができる。   In FIG. 6, the gas containing lead volatilized in the cement kiln 50 is extracted by the probe 61 and cooled, and then introduced into the classifier 63 to be separated into coarse dust, fine dust and gas, and fine dust. Is collected by the dust collector 64. In this fine dust, the amount of lead more volatilized in the cement kiln 50 is concentrated in the amount of lead than in the past. Therefore, by collecting this lead, the lead content of the cement manufactured by the cement kiln 50 can be reduced.

特開2003−1218号公報JP 2003-1218 A 特開2003−201524号公報JP 2003-201524 A 特開平8−182983号公報JP-A-8-182983 特開2004−306012号公報JP 2004-306002 A

上記のように、先願に記載の方法によって、セメントの鉛含有率を従来より低下させることは可能であるが、将来セメント焼成設備に供給される原料の鉛濃度が増加したり、鉛を多く含有する廃棄物のセメント製造工程での処理量が増加する場合等に備え、セメントの鉛含有率をより効率よく低下させることのできる技術が求められていた。   As described above, it is possible to lower the lead content of the cement by the method described in the prior application, but the lead concentration of the raw material to be supplied to the cement firing equipment in the future will increase or lead will be increased. In preparation for the case where the amount of waste contained in the cement manufacturing process increases, a technique capable of more efficiently reducing the lead content of cement has been demanded.

そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、セメントの品質に影響を与えることなく、セメントの鉛含有率をより効率よく低下させることを目的とする。   Then, this invention is made | formed in view of the problem in the said prior art, Comprising: It aims at reducing the lead content of a cement more efficiently, without affecting the quality of a cement.

上記目的を達成するため、本発明は、セメント製造工程からの鉛回収方法であってセメント焼成設備に塩化揮発炉を付設し、該炉内を、アルカリに対する塩素の量がモル比で1を超えるように維持しながら、該炉内に鉛含有原料を投入し、該鉛含有原料に含まれる鉛を塩化揮発させ、該炉の排ガスから鉛を回収することを特徴とする。   In order to achieve the above object, the present invention is a method for recovering lead from a cement production process, wherein a chlorination volatilization furnace is attached to a cement firing facility, and the amount of chlorine with respect to alkali exceeds 1 in the furnace. In this manner, the lead-containing raw material is charged into the furnace, lead contained in the lead-containing raw material is chlorinated, and lead is recovered from the exhaust gas of the furnace.

そして、本発明によれば、塩化揮発炉を利用して鉛含有原料中の鉛を塩化揮発させ、揮発した鉛を塩化揮発炉の排ガスから回収することにより、セメント製造工程から効率よく鉛を回収することができ、これによって、該セメント製造工程で製造されるセメントの鉛含有率を低減することができる。さらに、この方法によれば、塩素が鉛とともに除去されるため、セメントの品質に影響を与えることもない。   And according to the present invention, the lead in the lead-containing raw material is chlorinated by using a chlorination volatilization furnace, and the volatilized lead is recovered from the exhaust gas of the chlorination volatilization furnace, thereby efficiently recovering lead from the cement manufacturing process. This can reduce the lead content of the cement produced in the cement production process. Furthermore, according to this method, chlorine is removed together with lead, so that the cement quality is not affected.

前記セメント製造工程からの鉛回収方法において、前記排ガス中のダストを集塵することができ、集塵したダストから鉛を回収することができる。   In the lead recovery method from the cement manufacturing process, dust in the exhaust gas can be collected, and lead can be recovered from the collected dust.

前記セメント製造工程からの鉛回収方法において、前記集塵を行う前に前記排ガスに大気を混入することにより、該排ガスの温度を低下させ、鉛を凝固させて回収することができる。   In the method for recovering lead from the cement manufacturing process, air is mixed into the exhaust gas before the dust collection, so that the temperature of the exhaust gas can be lowered and lead can be solidified and recovered.

前記塩化揮発炉の炉内温度を800℃以上1300℃以下とすることができ、これによって、鉛含有原料から鉛を塩化鉛(PbCl2)として効率よく回収することができる。 The furnace temperature of the chlorination volatilization furnace can be set to 800 ° C. or more and 1300 ° C. or less, whereby lead can be efficiently recovered as lead chloride (PbCl 2 ) from the lead-containing raw material.

前記セメント製造工程からの鉛回収方法において、前記セメント焼成設備から、温度が800℃以上の原料の一部を、該塩化揮発炉に供給することができる。これにより、最下段サイクロンから排出された原料を熱源として利用しながら、該原料に含まれる鉛を同時に塩化揮発炉で揮発させ、効率よく鉛を回収することができる。   In the method for recovering lead from the cement production process, a part of the raw material having a temperature of 800 ° C. or higher can be supplied from the cement firing facility to the chlorination volatilization furnace. Thereby, while using the raw material discharged | emitted from the lowest cyclone as a heat source, the lead contained in this raw material can be volatilized at the same time by a chlorination volatilization furnace, and lead can be collect | recovered efficiently.

ここで、鉛を揮発させるには、数分(10分以下)程度の時間を必要とする。このため、セメントキルンの付設炉として常識的な設備規模に留めるには、前記セメント製造工程からの鉛回収方法において、前記原料の一部を、前記セメント焼成設備に付設したセメントキルンに投入する原料量の10質量%以下とすることが望ましい。   Here, in order to volatilize lead, time of about several minutes (10 minutes or less) is required. For this reason, in order to keep a common facility scale as an attachment furnace for a cement kiln, in the lead recovery method from the cement manufacturing process, a part of the raw material is charged into the cement kiln attached to the cement firing facility. The amount is desirably 10% by mass or less.

また、少量で効率よく鉛をセメントキルンから除去するためには、前記原料に含まれる鉛の濃度を先願の手法を組み入れることにより、1000ppm以上とすることが望ましい。   Further, in order to efficiently remove lead from the cement kiln with a small amount, it is desirable that the concentration of lead contained in the raw material is 1000 ppm or more by incorporating the technique of the prior application.

前記セメント焼成設備に付設した塩素バイパスシステムによって回収したダストを水洗脱塩処理して生成した脱塩ケーキ又は/及び重金属スラッジを、前記塩化揮発炉へ投入することができる。これによって、セメントキルンと塩化揮発炉とで鉛回収に関するカスケードシステムを形成することができ、塩化揮発炉単体での鉛揮発率及び鉛回収率を高く設定しなくとも、セメントキルンとの組み合わせで高い鉛回収率を達成することができるとともに、塩化揮発炉での残渣処理に関する問題を軽減することができる。   The desalted cake and / or heavy metal sludge produced by washing and desalting the dust collected by the chlorine bypass system attached to the cement firing facility can be put into the chlorination volatilization furnace. As a result, a cascade system related to lead recovery can be formed between the cement kiln and the chlorination volatilization furnace, and it is high in combination with the cement kiln without setting the lead volatilization rate and lead recovery rate of the chlorination volatilization furnace alone. A lead recovery rate can be achieved, and problems associated with residue processing in a chlorination volatilization furnace can be reduced.

前記セメント製造工程からの鉛回収方法において、前記塩化揮発炉から排出される残渣を、前記セメント焼成設備に付設したセメントキルンへ投入することができ、塩化揮発炉の残渣を系外に排出することなく、セメント製造工程において処理することができる。   In the lead recovery method from the cement manufacturing process, the residue discharged from the chlorination volatile furnace can be put into a cement kiln attached to the cement firing facility, and the chlorination volatile furnace residue is discharged out of the system. And can be processed in the cement manufacturing process.

前記塩化揮発炉の塩素源として、カルシウム塩を含む都市ごみ焼却灰を使用することができる。これにより、カルシウム塩を含む都市ごみ焼却灰を処理しながら、セメント製造工程で製造されるセメントの鉛含有率を低減することができる。   Municipal waste incineration ash containing calcium salt can be used as a chlorine source for the chlorination volatilization furnace. Thereby, the lead content rate of the cement manufactured at a cement manufacturing process can be reduced, processing the municipal waste incineration ash containing a calcium salt.

前記セメント製造工程からの鉛回収方法において、前記塩化揮発炉の熱源として、前記セメント焼成設備のキルン入口からプレヒータ出口までの領域から、該セメント焼成設備の排ガスの一部を抽気し、該塩化揮発炉に導入することができる。これにより、鉛含有率の高い廃棄物等をセメント原料として有効利用する際などにおいて、該廃棄物等を直接塩化揮発炉に投入して該廃棄物等に含まれる鉛を揮発させ、効率よく鉛を回収することができる。   In the method of recovering lead from the cement manufacturing process, as a heat source of the chlorination volatilization furnace, a part of the exhaust gas of the cement firing facility is extracted from the region from the kiln entrance to the preheater exit of the cement firing facility, Can be introduced into the furnace. As a result, when effectively using wastes with high lead content as cement raw materials, the wastes etc. are directly put into a chlorination volatilization furnace to volatilize the lead contained in the wastes etc. Can be recovered.

また、本発明は、セメント製造工程からの鉛回収装置であって、セメント焼成設備に付設され、投入された鉛含有原料中の鉛を塩化揮発させる塩化揮発炉と、該炉の排ガスから鉛を回収する鉛回収手段とを備えることを特徴とする。本発明によれば、上述のように、セメントの品質に影響を与えることなく、セメント製造工程から効率よく鉛を回収し、セメントの鉛含有率を低減することができる。   The present invention also relates to an apparatus for recovering lead from a cement manufacturing process, which is attached to a cement firing facility and chlorinates and volatilizes lead in the lead-containing raw material that has been input, and leads from the exhaust gas of the furnace. And lead recovery means for recovery. According to the present invention, as described above, it is possible to efficiently recover lead from the cement manufacturing process and reduce the lead content of the cement without affecting the quality of the cement.

前記セメント製造工程からの鉛回収装置において、前記鉛回収手段は、前記塩化揮発炉の排ガス中のダストを集塵する集塵手段を備えることができ、集塵したダストから鉛を回収することができる。   In the lead recovery apparatus from the cement manufacturing process, the lead recovery means can include dust collection means for collecting dust in the exhaust gas of the chlorination volatile furnace, and can collect lead from the collected dust. it can.

前記セメント製造工程からの鉛回収装置において、前記塩化揮発炉の熱源として、前記セメント焼成設備の排ガスを抽気し、該塩化揮発炉に導入する排ガス導入手段を備えてもよく、前記セメント焼成設備から、温度が800℃以上の原料の一部を、該塩化揮発炉に供給する原料供給手段を備えるように構成することもできる。   In the lead recovery apparatus from the cement manufacturing process, the heat source of the chlorination volatilization furnace may be provided with exhaust gas introduction means for extracting the exhaust gas of the cement calcination facility and introducing it into the chlorination volatilization furnace. In addition, a part of the raw material having a temperature of 800 ° C. or higher can be provided with raw material supply means for supplying the raw material to the chlorination volatilization furnace.

以上のように、本発明にかかるセメント製造工程からの鉛回収方法及び回収装置によれば、セメントの品質に影響を与えずに、セメントの鉛含有率を効率よく低下させることが可能となる。   As described above, according to the lead recovery method and recovery device from the cement manufacturing process according to the present invention, it is possible to efficiently reduce the lead content of cement without affecting the quality of cement.

図1は、本発明にかかるセメント焼成設備からの鉛回収装置の第1の実施の形態を示し、この装置は、粉状又はスラリー状の燃料又は可燃物を含む原料(以下、「燃料等」という)F1をセメントキルン10内に噴射するためのノズル1と、塩素バイパスダストを水洗脱塩処理することにより生成した脱塩ケーキ等を塩化揮発する塩化揮発炉2と、この塩化揮発炉2からの排ガスに含まれる鉛及びダストを回収する乾式の回収設備3とを備える。塩化揮発炉2及び回収設備3を備えた点が本発明の特徴である。   FIG. 1 shows a first embodiment of an apparatus for recovering lead from cement burning equipment according to the present invention. This apparatus is a powdery or slurry fuel or a raw material containing a combustible material (hereinafter referred to as “fuel etc.”). Nozzle 1 for injecting F1 into the cement kiln 10, a chlorination volatilization furnace 2 for chlorinating and desalting the desalted cake produced by washing and desalting the chlorine bypass dust, and the chlorination volatilization furnace 2 And a dry-type recovery facility 3 that recovers lead and dust contained in the exhaust gas. The point provided with the chlorination volatilization furnace 2 and the recovery equipment 3 is a feature of the present invention.

塩化揮発炉2は、この炉2に供給される水洗脱塩設備4からの脱塩ケーキ及び重金属スラッジに含まれる鉛を塩化揮発させるために設けられ、これら脱塩ケーキ及び重金属スラッジに加え、直接供給される鉛含有セメント原料Mを、プレヒータから熱源として供給される燃焼ガス、直接供給される燃料等F2及び直接供給される塩化源Cで塩化揮発して鉛を揮発させる。ここで、鉛含有セメント原料Mは、焼却灰及び汚染土壌等であり、塩化源Cには、カルシウム塩を含む都市ごみ焼却灰を用いることができる。   The chlorination volatilization furnace 2 is provided to volatilize lead contained in the desalted cake and heavy metal sludge from the water washing and desalination equipment 4 supplied to the furnace 2, and in addition to the desalted cake and heavy metal sludge, The lead-containing cement raw material M that is directly supplied is chlorinated and volatilized by the combustion gas supplied as a heat source from the preheater, the directly supplied fuel F2 and the like and the directly supplied chlorination source C to volatilize lead. Here, the lead-containing cement raw material M is incineration ash, contaminated soil, and the like, and the municipal waste incineration ash containing calcium salt can be used as the chlorination source C.

一方、セメントキルン10には、図2に示すように、塩素バイパス設備が備えられ、セメントキルン10の窯尻10a(図1参照)から最下段サイクロン12に至るまでのキルン排ガス流路からの抽気ガスは、プローブ31において冷却ファン32からの冷風によって冷却された後、分級機33に導入され、粗粉ダストと、微粉ダスト及びガスとに分離される。粗粉ダストは、セメントキルン系に戻され、塩化カリウム(KCl)等を含む微粉ダスト(塩素バイパスダスト)は、集塵機34で回収される。集塵機34からの排ガスは、排気ファン35を経て大気へ放出され、微粉ダストは、溶解槽36に供給される。溶解槽36において、微粉ダストは、温水と混合されてスラリーとなり、微粉ダストに含まれる水溶性の塩素が水に溶解する。このスラリーは、固液分離機37によって固液分離され、塩素分を含むろ液と、脱塩ケーキと重金属スラッジとに分離される。   On the other hand, as shown in FIG. 2, the cement kiln 10 is provided with a chlorine bypass facility, and extracted from the kiln exhaust gas passage from the kiln bottom 10 a (see FIG. 1) of the cement kiln 10 to the lowermost cyclone 12. The gas is cooled by the cool air from the cooling fan 32 in the probe 31 and then introduced into the classifier 33 to be separated into coarse dust, fine dust and gas. The coarse dust is returned to the cement kiln system, and the fine dust (chlorine bypass dust) containing potassium chloride (KCl) and the like is collected by the dust collector 34. The exhaust gas from the dust collector 34 is discharged to the atmosphere through the exhaust fan 35, and the fine dust is supplied to the dissolution tank 36. In the dissolution tank 36, the fine dust is mixed with warm water to form a slurry, and water-soluble chlorine contained in the fine dust is dissolved in water. This slurry is solid-liquid separated by a solid-liquid separator 37 and separated into a filtrate containing chlorine, desalted cake and heavy metal sludge.

次に、上記構成を有する回収装置を用いた本発明にかかるセメント製造工程からの鉛回収方法について説明する。   Next, a method for recovering lead from a cement manufacturing process according to the present invention using the recovery apparatus having the above-described configuration will be described.

図1において、ノズル1を用いてセメントキルン10内に燃料等F1を供給し、セメントキルン10の窯尻10a側を還元雰囲気にし、鉛の揮発率を上昇させる。セメントキルン10で揮発した鉛を含むガスは、図2に示した塩素バイパス設備において、微粉ダスト(塩素バイパスダスト)に鉛が濃縮され、微粉ダストを温水と混合してスラリーを固液分離した脱塩ケーキと重金属スラッジに鉛が濃縮される。   In FIG. 1, the fuel 1 or the like F <b> 1 is supplied into the cement kiln 10 using the nozzle 1, and the kiln bottom 10 a side of the cement kiln 10 is placed in a reducing atmosphere to increase the volatility of lead. The gas containing lead volatilized in the cement kiln 10 is concentrated in the dust bypass (chlorine bypass dust) in the chlorine bypass facility shown in FIG. 2, and the slurry is solid-liquid separated by mixing the dust dust with warm water. Lead is concentrated in salt cake and heavy metal sludge.

図1に示すように、上記鉛が濃縮された脱塩ケーキ及び重金属スラッジと、鉛含有セメント原料Mと、燃料等F2と、塩化源Cとを塩化揮発炉2に供給するとともに、熱源として、セメントキルン10の窯尻10aからプレヒータ出口までの領域から燃焼ガスを導入する。すると、塩化揮発炉2において、脱塩ケーキ及び重金属スラッジ並びに鉛含有セメント原料M等に含まれる鉛化合物が、塩化源Cとして投入した都市ごみ中の塩化カルシウム(CaCl2)と反応し、塩化鉛(PbCl2)として揮発する。 As shown in FIG. 1, the desalted cake and heavy metal sludge enriched with lead, the lead-containing cement raw material M, the fuel F2, and the chlorination source C are supplied to the chlorination volatilization furnace 2, and as a heat source, Combustion gas is introduced from the region from the kiln bottom 10a of the cement kiln 10 to the preheater outlet. Then, in the chlorination volatilization furnace 2, the lead compound contained in the desalted cake, heavy metal sludge, lead-containing cement raw material M, etc. reacts with calcium chloride (CaCl 2 ) in municipal waste introduced as the chlorination source C, leading to lead chloride. Volatilizes as (PbCl 2 ).

ここで、図3に示すように、800℃〜1300℃において塩化鉛の揮発率が上昇するため、塩化揮発炉2内の温度をこの温度範囲に調節する。尚、このときに生成される酸化カルシウム(CaO)は、セメント原料として利用することができる。また、この際、酸化鉛(PbO)の揮発率も、同図に示すように温度上昇とともに上昇するため、鉛全体としての揮発率は実線で示すように推移する。   Here, as shown in FIG. 3, since the volatilization rate of lead chloride rises at 800 ° C. to 1300 ° C., the temperature in the chlorination volatilization furnace 2 is adjusted to this temperature range. In addition, the calcium oxide (CaO) produced | generated at this time can be utilized as a cement raw material. At this time, the volatilization rate of lead oxide (PbO) also increases as the temperature rises as shown in the figure, so that the volatilization rate of lead as a whole changes as shown by a solid line.

次に、塩化揮発炉2からの揮発した鉛を含む排ガスを回収設備3に供給し、回収設備3の前段で大気を供給して排ガス温度を低下させることにより、排ガスに含まれる鉛を凝縮させ、ヒュームとして回収する。   Next, exhaust gas containing volatilized lead from the chlorination volatilization furnace 2 is supplied to the recovery facility 3, and the air contained in the exhaust gas is reduced by supplying air to the front stage of the recovery facility 3 to lower the exhaust gas temperature. Collect as a fume.

本実施の形態においては、鉛含有セメント原料Mを直接塩化揮発炉2に投入し、塩化揮発炉2において塩化源Cに含まれる塩素を利用して鉛の揮発率を上昇させるため、鉛含有セメント原料Mの鉛含有率が比較的高い場合に、より効果的に鉛を回収することができる。また、セメントキルン10内の還元雰囲気下で原料を焼成することによって、塩素バイパスダストに鉛が濃縮され、鉛が濃縮された脱塩ケーキ及び重金属スラッジを塩化揮発炉2に投入して再度鉛を揮発させるカスケードシステムを構成しているため、より効率的に鉛を回収することができる。   In the present embodiment, the lead-containing cement raw material M is directly charged into the chlorination volatilization furnace 2 and the volatilization rate of lead is increased by using chlorine contained in the chlorination source C in the chlorination volatilization furnace 2. When the lead content of the raw material M is relatively high, lead can be recovered more effectively. Also, by firing the raw material in a reducing atmosphere in the cement kiln 10, lead is concentrated in the chlorine bypass dust, and the lead-concentrated desalted cake and heavy metal sludge are put into the chlorination volatilization furnace 2 to re-lead. Since a volatilizing cascade system is configured, lead can be recovered more efficiently.

次に、本発明にかかるセメント焼成設備からの鉛回収装置の第2の実施の形態について、図4を参照しながら説明する。   Next, a second embodiment of a lead recovery apparatus for cement firing equipment according to the present invention will be described with reference to FIG.

この装置は、燃料等F1をセメントキルン10内に噴射するためのノズル1と、塩素バイパスダストを水洗脱塩処理することにより生成した脱塩ケーキ等を塩化揮発する塩化揮発炉42と、この塩化揮発炉42からの排ガスに含まれる鉛及びダスト等を回収する乾式の回収設備3とを備える。尚、塩化揮発炉42以外は、上記第1の実施の形態と同様の構成であるので説明を省略する。   This apparatus includes a nozzle 1 for injecting fuel or the like F1 into the cement kiln 10, a chlorination and volatilization furnace 42 for chlorinating and desalting a desalted cake or the like produced by washing and desalinating chlorine bypass dust. And a dry recovery facility 3 that recovers lead, dust, and the like contained in the exhaust gas from the chlorination volatilization furnace 42. Since the configuration other than the chlorination volatilization furnace 42 is the same as that of the first embodiment, description thereof is omitted.

塩化揮発炉42は、この炉42に供給される水洗脱塩設備4からの脱塩ケーキ及び重金属スラッジに含まれる鉛を塩化揮発させるために設けられ、これら脱塩ケーキ及び重金属スラッジに加え、直接供給される鉛含有セメント原料Mと、プレヒータの最下段サイクロン12から熱源及び鉛除去対象物質として供給される原料(以下、「ボトム原料」という)とを、直接供給される燃料等F2、並びに直接供給される塩化源Cとで塩化揮発して鉛を揮発させる。ここで、塩化揮発炉42に供給されるボトム原料は、セメントキルン10に供給されるボトム原料の10質量%以下とする。   The chlorination volatilization furnace 42 is provided to volatilize lead contained in the desalted cake and heavy metal sludge from the water washing and desalination equipment 4 supplied to the furnace 42, and in addition to the desalted cake and heavy metal sludge, Directly supplied lead-containing cement raw material M, raw material (hereinafter referred to as “bottom raw material”) supplied as heat source and lead removal target material from the lowermost cyclone 12 of the preheater, fuel etc. F2 supplied directly, and It volatilizes and volatilizes lead with the directly supplied chloride source C. Here, the bottom raw material supplied to the chlorination volatilization furnace 42 is 10 mass% or less of the bottom raw material supplied to the cement kiln 10.

本実施の形態では、最下段サイクロン12からのボトム原料を塩化揮発炉42に導入しているため、鉛含有セメント原料Mのみならず、ボトム原料に含まれる鉛を揮発させることができ、ボトム原料を熱源として利用しながら、該原料に含まれる鉛を同時に塩化揮発炉42で揮発させ、効率よく鉛を回収することができる。ここで、特にボトム原料に含まれる鉛の濃度が1000ppm以上と高い場合に、鉛回収効率が上昇し好ましい。   In this embodiment, since the bottom raw material from the lowermost cyclone 12 is introduced into the chlorination volatilization furnace 42, not only the lead-containing cement raw material M but also the lead contained in the bottom raw material can be volatilized. As a heat source, lead contained in the raw material is simultaneously volatilized in the chlorination volatilization furnace 42, and lead can be efficiently recovered. Here, particularly when the concentration of lead contained in the bottom raw material is as high as 1000 ppm or more, the lead recovery efficiency is increased, which is preferable.

尚、上記実施の形態においては、図1に示した塩化揮発炉2の熱源として、プレヒータからの燃焼ガスを、図4に示した塩化揮発炉42の熱源として、最下段サイクロン12からのボトム原料を利用する場合について説明したが、プレヒータからの燃焼ガスとボトム原料の両方を塩化揮発炉の熱源として利用してもよい。また、ボトム原料でなくとも、セメント焼成設備に沈降室等を新設し、温度が800℃以上の原料の一部を塩化揮発炉42に供給することもできる。   In the above embodiment, the bottom raw material from the lowermost cyclone 12 is used as the heat source of the chlorination volatilization furnace 2 shown in FIG. 1 and the combustion gas from the preheater is used as the heat source of the chlorination volatilization furnace 42 shown in FIG. However, both the combustion gas from the preheater and the bottom raw material may be used as a heat source for the chlorination volatilization furnace. Moreover, even if it is not a bottom raw material, a sedimentation chamber etc. can be newly installed in a cement baking equipment, and a part of raw material whose temperature is 800 degreeC or more can also be supplied to the chlorination volatilization furnace 42. FIG.

さらに、上記実施の形態においては、セメントキルン10内に還元雰囲気を形成するとともに、塩化揮発炉2、42を設けて塩化揮発を行う場合について説明したが、必ずしもセメントキルン10内に還元雰囲気を形成する必要はなく、塩化揮発炉2、42における塩化揮発のみによって鉛を回収してもよい。   Furthermore, in the above-described embodiment, the case where the reducing atmosphere is formed in the cement kiln 10 and the chlorination volatilization furnaces 2 and 42 are provided to perform chlorination volatilization has been described. However, the reduction atmosphere is not necessarily formed in the cement kiln 10. The lead may be recovered only by chlorination in the chlorination volatilization furnaces 2 and 42.

また、上記実施の形態においては、塩化揮発炉2、42からの排ガスに含まれる鉛及びダストを回収する回収設備3が乾式の場合について説明したが、この回収設備3として湿式集塵機を利用し、鉛を水溶物として回収してもよい。   Moreover, in the said embodiment, although the case where the collection | recovery equipment 3 which collect | recovers the lead and dust contained in the waste gas from the chlorination volatilization furnaces 2 and 42 was a dry type was demonstrated, a wet dust collector was utilized as this collection | recovery equipment 3, Lead may be recovered as an aqueous solution.

本発明にかかるセメント製造工程からの鉛回収装置の第1の実施の形態を示すフローチャートである。It is a flowchart which shows 1st Embodiment of the lead recovery apparatus from the cement manufacturing process concerning this invention. 図1の鉛回収装置とともに用いられる塩素バイパス設備を示すフローチャートである。It is a flowchart which shows the chlorine bypass equipment used with the lead recovery apparatus of FIG. 塩化揮発炉内の温度と鉛の揮発率の関係を示すグラフである。It is a graph which shows the relationship between the temperature in a chlorination volatilization furnace, and the volatilization rate of lead. 本発明にかかるセメント製造工程からの鉛回収装置の第2の実施の形態を示すフローチャートである。It is a flowchart which shows 2nd Embodiment of the lead recovery apparatus from the cement manufacturing process concerning this invention. 従来のセメント製造工程からの鉛回収装置の実施の形態を示すフローチャートである。It is a flowchart which shows embodiment of the lead collection | recovery apparatus from the conventional cement manufacturing process. 図5の鉛回収装置とともに用いられる塩素バイパス設備を示すフローチャートである。It is a flowchart which shows the chlorine bypass equipment used with the lead recovery apparatus of FIG.

符号の説明Explanation of symbols

1 ノズル
2 塩化揮発炉
3 回収設備
4 水洗脱塩設備
10 セメントキルン
10a 窯尻
12 最下段サイクロン
31 プローブ
32 冷却ファン
33 分級機
34 集塵機
35 排気ファン
36 溶解槽
37 固液分離器
42 塩化揮発炉
DESCRIPTION OF SYMBOLS 1 Nozzle 2 Chlorination volatilization furnace 3 Recovery equipment 4 Water washing desalination equipment 10 Cement kiln 10a Kiln bottom 12 Bottom cyclone 31 Probe 32 Cooling fan 33 Classifier 34 Dust collector 35 Exhaust fan 36 Dissolution tank 37 Solid-liquid separator 42 Chloride volatilization furnace

Claims (15)

セメント焼成設備に塩化揮発炉を付設し、
該炉内を、アルカリに対する塩素の量がモル比で1を超えるように維持しながら、該炉内に鉛含有原料を投入し、
該鉛含有原料に含まれる鉛を塩化揮発させ、
該炉の排ガスから鉛を回収することを特徴とするセメント製造工程からの鉛回収方法。
A chlorination furnace is attached to the cement firing facility,
While maintaining the furnace so that the amount of chlorine relative to alkali exceeds 1 in molar ratio, lead-containing raw material is charged into the furnace,
Volatilizes lead contained in the lead-containing raw material,
A method for recovering lead from a cement manufacturing process, wherein the lead is recovered from exhaust gas from the furnace.
前記排ガス中のダストを集塵することにより、前記鉛を回収することを特徴とする請求項1に記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement manufacturing process according to claim 1, wherein the lead is recovered by collecting dust in the exhaust gas. 前記集塵を行う前に前記排ガスに大気を混入することにより、該排ガスの温度を低下させることを特徴とする請求項2に記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement manufacturing process according to claim 2, wherein the temperature of the exhaust gas is reduced by mixing air into the exhaust gas before the dust collection. 前記塩化揮発炉の炉内温度を800℃以上1300℃以下とすることを特徴とする請求項1、2又は3に記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement production process according to claim 1, 2 or 3, wherein the furnace temperature of the chlorination volatilization furnace is 800 ° C or higher and 1300 ° C or lower. 前記セメント焼成設備から、温度が800℃以上の原料の一部を、該塩化揮発炉に供給することを特徴とする請求項1乃至4のいずれかに記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement production process according to any one of claims 1 to 4, wherein a part of the raw material having a temperature of 800 ° C or higher is supplied to the chlorination volatilization furnace from the cement firing facility. 前記原料の一部に含まれる鉛の濃度を1000ppm以上とすることを特徴とする請求項5に記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement production process according to claim 5, wherein the concentration of lead contained in a part of the raw material is 1000 ppm or more. 前記原料の一部を、前記セメント焼成設備に付設したセメントキルンに投入される原料量の10質量%以下とすることを特徴とする請求項5又は6に記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement manufacturing process according to claim 5 or 6, wherein a part of the raw material is 10% by mass or less of the amount of the raw material put into a cement kiln attached to the cement firing facility. . 前記セメント焼成設備に付設した塩素バイパスシステムによって回収したダストを水洗脱塩処理して生成した脱塩ケーキ又は/及び重金属スラッジを、前記塩化揮発炉へ投入することを特徴とする請求項1乃至7のいずれかに記載のセメント製造工程からの鉛回収方法。   The desalted cake and / or heavy metal sludge produced by washing and desalting the dust collected by the chlorine bypass system attached to the cement firing facility is put into the chlorination volatilization furnace. A method for recovering lead from a cement production process according to any one of claims 7 to 10. 前記塩化揮発炉から排出される残渣を、前記セメント焼成設備に付設したセメントキルンへ投入することを特徴とする請求項1乃至8のいずれかに記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement production process according to any one of claims 1 to 8, wherein the residue discharged from the chlorination volatilization furnace is put into a cement kiln attached to the cement firing facility. 前記塩化揮発炉の塩素源として、カルシウム塩を含む都市ごみ焼却灰を使用することを特徴とする請求項1乃至9のいずれかに記載のセメント製造工程からの鉛回収方法。   The method for recovering lead from a cement manufacturing process according to any one of claims 1 to 9, wherein municipal waste incineration ash containing calcium salt is used as a chlorine source of the chlorination volatilization furnace. 前記塩化揮発炉の熱源として、前記セメント焼成設備の排ガスの一部を抽気し、該塩化揮発炉に導入することを特徴とする請求項1乃至10のいずれかに記載のセメント製造工程からの鉛回収方法。   The lead from the cement manufacturing process according to any one of claims 1 to 10, wherein a part of the exhaust gas from the cement firing facility is extracted as a heat source for the chlorination volatilization furnace and introduced into the chlorination volatilization furnace. Collection method. セメント焼成設備に付設され、投入された鉛含有原料中の鉛を塩化揮発させる塩化揮発炉と、
該炉の排ガスから鉛を回収する鉛回収手段とを備えることを特徴とするセメント製造工程からの鉛回収装置。
A chlorination and volatilization furnace attached to the cement firing facility and chlorinating lead in the lead-containing raw material charged;
An apparatus for recovering lead from a cement manufacturing process, comprising: a means for recovering lead from the exhaust gas of the furnace.
前記鉛回収手段は、前記塩化揮発炉の排ガス中のダストを集塵する集塵手段を備えることを特徴とする請求項12に記載のセメント製造工程からの鉛回収装置。   The lead recovery device from a cement manufacturing process according to claim 12, wherein the lead recovery means includes dust collection means for collecting dust in the exhaust gas of the chlorination volatilization furnace. 前記塩化揮発炉の熱源として、前記セメント焼成設備の排ガスを抽気し、該塩化揮発炉に導入する排ガス導入手段を備えることを特徴とする請求項12又は13に記載のセメント製造工程からの鉛回収装置。   14. The recovery of lead from a cement manufacturing process according to claim 12, comprising exhaust gas introduction means for extracting an exhaust gas from the cement burning facility and introducing the exhaust gas into the chloride volatilization furnace as a heat source for the chloride volatilization furnace. apparatus. 前記セメント焼成設備から、温度が800℃以上の原料の一部を、該塩化揮発炉に供給する原料供給手段を備えることを特徴とする請求項12、13又は14に記載のセメント製造工程からの鉛回収装置。   From the cement manufacturing process according to claim 12, 13 or 14, further comprising a raw material supply means for supplying a part of the raw material having a temperature of 800 ° C or higher to the chlorination volatilization furnace from the cement baking equipment. Lead recovery device.
JP2007027972A 2007-02-07 2007-02-07 Method for collecting lead from cement production process, and collecting apparatus therefor Withdrawn JP2008190019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027972A JP2008190019A (en) 2007-02-07 2007-02-07 Method for collecting lead from cement production process, and collecting apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027972A JP2008190019A (en) 2007-02-07 2007-02-07 Method for collecting lead from cement production process, and collecting apparatus therefor

Publications (1)

Publication Number Publication Date
JP2008190019A true JP2008190019A (en) 2008-08-21

Family

ID=39750384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027972A Withdrawn JP2008190019A (en) 2007-02-07 2007-02-07 Method for collecting lead from cement production process, and collecting apparatus therefor

Country Status (1)

Country Link
JP (1) JP2008190019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055703A1 (en) * 2008-11-12 2010-05-20 太平洋セメント株式会社 Industrial salt, and apparatus and process for producing industrial salt
JP5497219B1 (en) * 2013-03-08 2014-05-21 太平洋セメント株式会社 Method for recovering valuable metals in waste
JP2014106017A (en) * 2012-11-26 2014-06-09 Taiheiyo Cement Corp Removing method of radioactive cesium and calcined object manufacturing method
CN113088707A (en) * 2021-03-29 2021-07-09 攀钢集团攀枝花钢铁研究院有限公司 Method for recovering zinc, indium and lead in blast furnace cloth bag ash
JP2021147294A (en) * 2020-03-23 2021-09-27 住友大阪セメント株式会社 Processing method of chlorine bypass dust, manufacturing method of cement admixture, manufacturing method of cement composition, manufacturing method of cement hardened body, processing apparatus of chlorine bypass dust, and manufacturing apparatus of cement admixture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055703A1 (en) * 2008-11-12 2010-05-20 太平洋セメント株式会社 Industrial salt, and apparatus and process for producing industrial salt
CN102216218A (en) * 2008-11-12 2011-10-12 太平洋水泥株式会社 Industrial salt, and apparatus and process for producing industrial salt
JP5566904B2 (en) * 2008-11-12 2014-08-06 太平洋セメント株式会社 Industrial salt, industrial salt production apparatus and production method
US8808651B2 (en) 2008-11-12 2014-08-19 Taiheiyo Cement Corporation Industrial salt and apparatus and process for producing industrial salt
KR101552650B1 (en) 2008-11-12 2015-09-11 다이헤이요 세멘토 가부시키가이샤 Industrial salt, and apparatus and process for producing industrial salt
JP2014106017A (en) * 2012-11-26 2014-06-09 Taiheiyo Cement Corp Removing method of radioactive cesium and calcined object manufacturing method
JP5497219B1 (en) * 2013-03-08 2014-05-21 太平洋セメント株式会社 Method for recovering valuable metals in waste
JP2021147294A (en) * 2020-03-23 2021-09-27 住友大阪セメント株式会社 Processing method of chlorine bypass dust, manufacturing method of cement admixture, manufacturing method of cement composition, manufacturing method of cement hardened body, processing apparatus of chlorine bypass dust, and manufacturing apparatus of cement admixture
JP7352867B2 (en) 2020-03-23 2023-09-29 住友大阪セメント株式会社 Method for processing chlorine bypass dust, method for producing cement admixture, method for producing cement composition, method for producing hardened cement, apparatus for processing chlorine bypass dust, and apparatus for producing cement admixture
CN113088707A (en) * 2021-03-29 2021-07-09 攀钢集团攀枝花钢铁研究院有限公司 Method for recovering zinc, indium and lead in blast furnace cloth bag ash

Similar Documents

Publication Publication Date Title
JP2008143728A (en) Method and device for recovering lead from cement production process
JP2008190019A (en) Method for collecting lead from cement production process, and collecting apparatus therefor
JP2020532425A (en) Methods for refining waste materials or industrial by-products containing chlorine
JP5826487B2 (en) Cement manufacturing method
JPWO2008050678A1 (en) Method for removing lead from cement firing furnace
JP4948429B2 (en) Processing system for combustible waste containing metals and chlorine
JP5686470B2 (en) Silver and lead recovery methods
JP2004211114A (en) Method of producing rubidium
JP2003225633A (en) Method of treating chloride-containing dust
JP6327943B2 (en) Method for recovering valuable metals in waste
JP6864648B2 (en) Raw material recovery method for valuable metal refining
JP2002284550A (en) Treatment method of gas emissions from cement production
JP5131764B2 (en) Method for recovering thallium from cement manufacturing process
JP4949713B2 (en) Method for firing heavy metal-containing raw materials
JP4393915B2 (en) Method for treating substances containing zinc, lead and chlorine
JP4579178B2 (en) Methods for removing and recovering heavy metals from the cement manufacturing process
JP2013014789A (en) Method for treating flue cinder
JP2007238357A (en) Method of removing lead from cement firing apparatus
JP5028742B2 (en) Dust disposal method
JP2008230942A (en) Method for treating cement kiln combustion gas extracted dust
JP2000016844A (en) Pyrolysis of dioxin and device therefor
JP4108818B2 (en) Treatment method for waste containing heavy metals
JP5247553B2 (en) How to recover lead in cement kilns.
JP2003286050A (en) Treatment method for dust in kiln exhaust gas
JP2010235334A (en) Method for making mercury soluble in water

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511