JP2008189743A - Organic-inorganic hybrid transparent sealing material and method for producing the same - Google Patents

Organic-inorganic hybrid transparent sealing material and method for producing the same Download PDF

Info

Publication number
JP2008189743A
JP2008189743A JP2007023979A JP2007023979A JP2008189743A JP 2008189743 A JP2008189743 A JP 2008189743A JP 2007023979 A JP2007023979 A JP 2007023979A JP 2007023979 A JP2007023979 A JP 2007023979A JP 2008189743 A JP2008189743 A JP 2008189743A
Authority
JP
Japan
Prior art keywords
organic
sealing material
inorganic hybrid
group
transparent sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007023979A
Other languages
Japanese (ja)
Other versions
JP5109387B2 (en
Inventor
Minoru Kuniyoshi
稔 国吉
Yohei Sato
陽平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007023979A priority Critical patent/JP5109387B2/en
Publication of JP2008189743A publication Critical patent/JP2008189743A/en
Application granted granted Critical
Publication of JP5109387B2 publication Critical patent/JP5109387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent sealing material cured by the heat of ≤250°C, enabling the viscosity to be regulated, and having excellent ultraviolet transmissivity, low saturated water absorption, high heat resistance, high refractive index and little reduction of weight by heating. <P>SOLUTION: The organic-inorganic hybrid transparent sealing material is obtained by adding an organometallic compound as a curing agent to a material containing an organic substituent group and a siloxane bond, and curing the resultant product. The viscosity of the main ingredient before the curing can be increased to desired viscosity. The transparent sealing material after the curing has ≥85% transmittance at 350-900 nm wavelength in 1 mm thickness, and <0.3 wt.% saturated water absorption, and is not melted at ≤300°C. The transparent sealing material after the curing also has ≥1.4 refractive index, and exhibits ≥85% transmittance at 350-900 nm wave length in 1 mm thickness after heating at 150°C for ≥24 hr. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ゾルゲル法に用いられる原料を出発原料とする有機無機ハイブリッド透明封止材に関する。   The present invention relates to an organic-inorganic hybrid transparent sealing material that uses a raw material used in a sol-gel method as a starting material.

透明封止材は、バックライト、表示板、ディスプレイ、各種インジケーター等に使用されている発光ダイオード(LED)等の半導体発光素子の封止、太陽電池モジュールにおける太陽電池素子の封止、光通信用の受光部の封止等に使用されている。   Transparent sealing material is used for sealing semiconductor light emitting devices such as light emitting diodes (LEDs) used in backlights, display boards, displays, various indicators, etc., for sealing solar cell elements in solar cell modules, and for optical communication. It is used for sealing of the light receiving part.

透明封止材により、その装置の性能の劣化原因となる、外部からの物理的な衝撃、気体との接触または水分との接触等を抑制または、防ぐことができる。これらの装置では、封止材を様々な波長の光が高効率で透過しなければならないので、封止材の透過率は広い波長域で高いことが望ましい。しかし、透明封止材の使用環境の激化、例えば、高温雰囲気や光のハイパワー化等により、透明封止材自体が劣化しやすくなる。封止材が劣化し、透明度が落ちるとその装置の性能が下がる問題が発生する為、耐熱性や光透過性等のより優れた材料が必要になる。   The transparent sealing material can suppress or prevent physical impact from the outside, contact with gas, contact with moisture, and the like that cause deterioration of the performance of the apparatus. In these apparatuses, since light of various wavelengths must be transmitted through the sealing material with high efficiency, it is desirable that the transmittance of the sealing material is high in a wide wavelength region. However, the use of the transparent sealing material is intensified, for example, due to a high temperature atmosphere and high light power, the transparent sealing material itself tends to deteriorate. When the sealing material is deteriorated and the transparency is lowered, there arises a problem that the performance of the apparatus is lowered. Therefore, a material having better heat resistance and light transmittance is required.

透明封止材としては、透明性、耐熱性等の観点からオルガノポリシロキサンを主剤とし、これに硬化剤として熱等により反応活性となるシラン化合物、主剤中の有機成分を活性にする酸性化合物や塩化物を配合したものが使用されている。   As the transparent sealing material, from the viewpoint of transparency, heat resistance and the like, the main component is an organopolysiloxane, and the curing agent is a silane compound that becomes reactive by heat or the like, an acidic compound that activates an organic component in the main component, A compound containing chloride is used.

しかし、硬化後にシラン化合物が反応を完結せず、耐熱性の低い未反応基が残存しやすい。耐熱性の低い未反応基が残存すると、加熱により透明封止材の透明度が悪くなる。また、硬化剤として酸性化合物や塩化物を使用すると、金属配線や電極を腐食し、更に透明封止材の透明度が落ちる。   However, the silane compound does not complete the reaction after curing, and unreacted groups with low heat resistance tend to remain. If unreacted groups having low heat resistance remain, the transparency of the transparent sealing material is deteriorated by heating. In addition, when an acidic compound or chloride is used as the curing agent, the metal wiring or the electrode is corroded, and the transparency of the transparent sealing material is lowered.

その他の透明封止材としては、ビスフェノールA型エポキシ樹脂を主剤とし、これに硬化剤として酸無水物を配合したもの、酢酸ビニル含量の高いエチレン・酢酸ビニル共重合体やポリビニルブチラールが使用されており、これらの厳しい要求特性に応える為に、組成の改良、紫外線吸収剤や有機過酸化物等の添加が試みられた(例えば、特許文献1〜3)。また、耐熱性の高いシリコーンとブロック共重合させたエポキシ樹脂も開発された。
特開2006−066761号公報 特開2003−228076号公報 特開平10−253972号公報
As other transparent sealing materials, bisphenol A type epoxy resin is used as the main ingredient, an acid anhydride is blended as a curing agent, ethylene / vinyl acetate copolymer and polyvinyl butyral having a high vinyl acetate content are used. In order to meet these strict requirements, attempts have been made to improve the composition and add ultraviolet absorbers, organic peroxides, and the like (for example, Patent Documents 1 to 3). An epoxy resin block-copolymerized with high heat-resistant silicone has also been developed.
JP 2006-066761 A JP 2003-228076 A Japanese Patent Laid-Open No. 10-253972

バックライト、表示板、ディスプレイ、各種インジケーター等に使用されている発光ダイオード(LED)等の半導体発光素子、太陽電池モジュールにおける太陽電池素子や光通信用の受光部の劣化に大きな影響を与える透明封止材料の劣化は、熱や紫外線等によって起こる。それらの装置の使用温度の上昇、透明封止材を透過する光の短波長化、ハイパワー化により、透明封止材の劣化が加速される。   Transparent seals that have a major impact on the deterioration of semiconductor light emitting devices such as light emitting diodes (LEDs) used in backlights, display boards, displays, various indicators, etc., solar cell elements in solar cell modules and light receiving parts for optical communication Deterioration of the stop material is caused by heat or ultraviolet rays. Deterioration of the transparent sealing material is accelerated by increasing the operating temperature of these devices, shortening the wavelength of light transmitted through the transparent sealing material, and increasing the power.

透明封止材を劣化させる原因の一つである紫外線による劣化を防ぐには、紫外線吸収剤によって紫外線を熱エネルギーに変換して放出する方法と、紫外線を完全に透過させる方法が考えられる。前者の方法では、紫外線吸収剤がブリードアウトし蒸散する問題が考えられる。さらに熱エネルギーを効率よく放出する必要があるために、装置の構造設計が大きな制約を受ける。後者は紫外線の発光波長領域を吸収しない透明封止材料を用いる方法である。   In order to prevent deterioration due to ultraviolet rays, which is one of the causes of deterioration of the transparent sealing material, there are a method of converting ultraviolet rays into thermal energy by using an ultraviolet absorbent and a method of completely transmitting the ultraviolet rays. In the former method, there is a problem that the ultraviolet absorber bleeds out and evaporates. Furthermore, the structural design of the apparatus is greatly restricted because it is necessary to efficiently release thermal energy. The latter is a method using a transparent sealing material that does not absorb the emission wavelength region of ultraviolet rays.

シリコーン樹脂は、紫外域で高透過性を示す反面、接着性が低い、強度が低い、透湿性(吸水性)が高い、屈折率が低いという問題があるため、透明封止材として使用するには課題が多い。   Silicone resins exhibit high transparency in the ultraviolet region, but have low adhesiveness, low strength, high moisture permeability (water absorption), and low refractive index. There are many challenges.

紫外線透過性の高いシリコーン樹脂に接着性が高く、強度が高いエポキシ基を導入したエポキシシリコーンも開発されているが、透明封止材に求められる全ての物性を満足するには至っていない。   An epoxy silicone having an epoxy group introduced with an epoxy group having high adhesiveness and high adhesiveness to a silicone resin having high ultraviolet transmittance has been developed, but has not yet satisfied all physical properties required for a transparent sealing material.

すなわち、従来の透明樹脂では、厳しい耐UV性(高いUV透過性)や耐熱性を満足し、例えばLED用封止材に求められる耐水性(低吸水性)、高屈折率、接着性を同時に満たすものはなかった。   That is, the conventional transparent resin satisfies severe UV resistance (high UV transmission) and heat resistance, and at the same time, for example, water resistance (low water absorption), high refractive index, and adhesiveness required for LED sealing materials. There was nothing to satisfy.

本発明は、有機置換基とシロキサン結合を含む物質(以下、主剤と呼ぶ)に硬化剤として有機金属化合物を添加し、硬化することを特徴とする有機無機ハイブリッド透明封止材である。   The present invention is an organic-inorganic hybrid transparent encapsulant characterized by adding an organic metal compound as a curing agent to a substance containing an organic substituent and a siloxane bond (hereinafter referred to as a main agent) and curing.

また、有機置換基が芳香族または芳香族を含む炭化水素基から選ばれることを特徴とする上記の有機無機ハイブリッド透明封止材である。   The organic-inorganic hybrid transparent encapsulant is characterized in that the organic substituent is selected from an aromatic group or a hydrocarbon group containing an aromatic group.

また、有機置換基が飽和炭化水素基または不飽和炭化水素基から選ばれることを特徴とする上記の有機無機ハイブリッド透明封止材である。   The organic-inorganic hybrid transparent encapsulant is characterized in that the organic substituent is selected from a saturated hydrocarbon group or an unsaturated hydrocarbon group.

また、有機置換基がエポキシ基、メタクリロキシ基、アクリロキシ基等のヘテロ原子を持つ有機基から選ばれることを特徴とする上記の有機無機ハイブリッド透明封止材である。   The organic-inorganic hybrid transparent encapsulant is characterized in that the organic substituent is selected from organic groups having heteroatoms such as an epoxy group, a methacryloxy group, and an acryloxy group.

また、シロキサンネットワーク中に四官能基を含有することを特徴とする上記の有機無機ハイブリッド透明封止材である。   Moreover, it is said organic-inorganic hybrid transparent sealing material characterized by containing a tetrafunctional group in a siloxane network.

また、有機無機ハイブリッド物質を構成する元素のうち、炭素が18〜56%、水素が4〜7%、酸素が19〜36%、珪素が22〜42%であることを特徴とする上記の有機無機ハイブリッド透明封止材である。   Further, among the elements constituting the organic-inorganic hybrid material, carbon is 18 to 56%, hydrogen is 4 to 7%, oxygen is 19 to 36%, and silicon is 22 to 42%. It is an inorganic hybrid transparent encapsulant.

本発明により、これまで製作することが極めて難しいとされてきた、250℃以下の熱によって硬化し、粘度の制御ができ、紫外線透過性に優れ(波長350〜900nmにおける透過率が厚さ1mmで85%以上)、飽和吸水率が低く(23℃の水に浸漬させたときに0.3wt%未満)、耐熱性が高く(300℃以下で溶融せず、150℃で24時間加熱後の波長350〜900nmにおける透過率が、厚さ1mmで85%以上)、屈折率が高く(1.4以上)、10〜250℃で10分〜2週間加熱することで1時間当たりの重量減少率が1wt%以下になる透明封止材を製造することができる。   According to the present invention, it can be hardened by heat of 250 ° C. or less, which has been considered to be extremely difficult to produce so far, can control the viscosity, and has excellent ultraviolet transmittance (transmittance at a wavelength of 350 to 900 nm is 1 mm thick). 85% or more), low saturated water absorption (less than 0.3 wt% when immersed in water at 23 ° C), high heat resistance (not melted below 300 ° C, wavelength after heating at 150 ° C for 24 hours) The transmittance at 350 to 900 nm is 85% or more at a thickness of 1 mm), the refractive index is high (1.4 or more), and the weight reduction rate per hour is obtained by heating at 10 to 250 ° C. for 10 minutes to 2 weeks. A transparent sealing material that is 1 wt% or less can be produced.

本発明は、有機無機ハイブリッド透明封止材を製造する場合において、有機置換基とシロキサン結合を含む主剤に硬化剤として有機金属化合物を添加し、成型、硬化させることを特徴とする有機無機ハイブリッド透明封止材である。   The present invention relates to an organic-inorganic hybrid transparent material characterized by adding an organic metal compound as a curing agent to a main agent containing an organic substituent and a siloxane bond, and molding and curing the organic-inorganic hybrid transparent sealing material. It is a sealing material.

有機置換基として芳香族または芳香族を含む炭化水素基を含有することが好ましい。芳香族または芳香族を含む炭化水素基としてフェニル基、ナフチル基、ベンジル基、フェネチル基、ナフチルメチル基等があるが、特にフェニル基が好ましい。   It is preferable to contain an aromatic or aromatic hydrocarbon group as the organic substituent. Examples of the aromatic or aromatic hydrocarbon group include a phenyl group, a naphthyl group, a benzyl group, a phenethyl group, and a naphthylmethyl group, and a phenyl group is particularly preferable.

有機置換基として飽和炭化水素基または不飽和炭化水素基を含有することが好ましい。飽和炭化水素基としてメチル基、エチル基、(n−、i−)プロピル基、(n−、i−、s−、t−)ブチル基等があるが、特にメチル基が好ましい。また、不飽和炭化水素基としてビニル基、アリル基、(1−、i−)プロペニル基等があるが、特にビニル基が好ましい。   It is preferable to contain a saturated hydrocarbon group or an unsaturated hydrocarbon group as the organic substituent. Examples of the saturated hydrocarbon group include a methyl group, an ethyl group, an (n-, i-) propyl group, and an (n-, i-, s-, t-) butyl group, and a methyl group is particularly preferable. Further, examples of the unsaturated hydrocarbon group include a vinyl group, an allyl group, a (1-, i-) propenyl group, and the vinyl group is particularly preferable.

有機置換基としてエポキシ基、メタクリロキシ基、アクリロキシ基等のヘテロ原子を持つ有機基を含有することが好ましい。ヘテロ原子を持つ有機基としてエポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、イソシアネート基等があるが、特にエポキシ基が好ましい。   It is preferable to contain an organic group having a hetero atom such as an epoxy group, a methacryloxy group, or an acryloxy group as the organic substituent. Examples of the organic group having a hetero atom include an epoxy group, a methacryloxy group, an acryloxy group, an amino group, a ureido group, a chloropropyl group, a mercapto group, and an isocyanate group, and an epoxy group is particularly preferable.

シロキサンネットワーク中に四官能基を含有することが好ましい。四官能基を含有することで、有機無機ハイブリッド物質が緻密化し、硬度が向上する。   It is preferable to contain a tetrafunctional group in the siloxane network. By containing the tetrafunctional group, the organic-inorganic hybrid substance is densified and the hardness is improved.

有機無機ハイブリッド物質を構成する元素のうち、炭素が18〜56%、水素が4〜7%、酸素が19〜36%、珪素が22〜42%であることが好ましい。それぞれの元素の存在比を決定付ける理由は以下の通りである。   Among the elements constituting the organic-inorganic hybrid material, it is preferable that carbon is 18 to 56%, hydrogen is 4 to 7%, oxygen is 19 to 36%, and silicon is 22 to 42%. The reason for determining the abundance ratio of each element is as follows.

炭素が18%以下の場合、分相が起こりやすく、緻密化できないため、硬化体が脆くなるためである。炭素が56%以上の場合、分相が起こりやすく、熱軟化性の物質が得られるため、高温使用時に十分な強度を維持できないためである。   This is because when the carbon content is 18% or less, phase separation is likely to occur and densification cannot be performed, so that the cured body becomes brittle. This is because when the carbon content is 56% or more, phase separation is likely to occur, and a thermosoftening substance can be obtained, so that sufficient strength cannot be maintained during high temperature use.

水素が4%以下の場合、分相が起こりやすく、緻密化できないため、硬化体が脆くなるためである。また、熱や光によって物性が変化しやすい場合が多いからである。水素が7%以上の場合、系内に未反応のシラノール基やアルコキシ基が多数存在する可能性が高く、熱によって物性が変化しやすい場合が多いからである。   This is because when hydrogen is 4% or less, phase separation is likely to occur and densification cannot be achieved, and the cured body becomes brittle. In addition, physical properties are likely to change due to heat or light. When hydrogen is 7% or more, there is a high possibility that many unreacted silanol groups and alkoxy groups are present in the system, and physical properties are likely to change due to heat.

酸素が19%以下の場合、シロキサンネットワークの形成が不十分で強度等の物理的性質が低くなるためである。酸素が36%以上の場合、分相が起こりやすく、緻密化できないため、硬化体が脆くなるためである。   This is because when the oxygen content is 19% or less, the formation of a siloxane network is insufficient and physical properties such as strength are lowered. This is because when oxygen is 36% or more, phase separation is likely to occur and densification cannot be achieved, and the cured body becomes brittle.

珪素が22%以下の場合、シロキサンネットワークの形成が不十分で強度等の物理的性質が低くなるためである。珪素が42%以上の場合、分相が起こりやすく、緻密化できないため、硬化体が脆くなるためである。   This is because when the silicon content is 22% or less, the formation of a siloxane network is insufficient and physical properties such as strength are lowered. This is because when the silicon content is 42% or more, phase separation is likely to occur and densification cannot be performed, so that the cured body becomes brittle.

このように組成を調整することで、硬化前の有機無機ハイブリッド物質の粘度を所望の粘度まで上昇することが出来る。   By adjusting the composition in this way, the viscosity of the organic-inorganic hybrid substance before curing can be increased to a desired viscosity.

また、硬化後の透明封止材の、波長350〜900nmにおける透過率が厚さ1mmで85%以上であることが好ましい。透過率が85%以下の材料を例えば白色LEDの封止材に用いた場合、励起光強度が弱くなるため、LED素子からの光の取り出し効率が低くなるためである。さらに紫外域での透過率が低い、すなわち光吸収が大きい場合、封止材自体が励起光を吸収し封止材が劣化(黄変)するためである。また、例えば光通信用受光部の封止材に用いた場合、受光効率が低くなる為である。   Moreover, it is preferable that the transmittance | permeability in the wavelength of 350-900 nm of the transparent sealing material after hardening is 85% or more in thickness 1mm. This is because, when a material having a transmittance of 85% or less is used for, for example, a white LED sealing material, the excitation light intensity becomes weak, so that the light extraction efficiency from the LED element becomes low. Further, when the transmittance in the ultraviolet region is low, that is, when the light absorption is large, the sealing material itself absorbs the excitation light and the sealing material deteriorates (yellows). Further, for example, when used as a sealing material for a light receiving part for optical communication, the light receiving efficiency is lowered.

また、硬化後の透明封止材を23℃の純水に浸漬させたときの飽和吸水率が0.3wt%未満であることが好ましい。吸水による封止材の膨張を防止または低減する為である。また、素子内部の水による劣化を防止する為である。   Moreover, it is preferable that the saturated water absorption rate when the transparent sealing material after hardening is immersed in 23 degreeC pure water is less than 0.3 wt%. This is to prevent or reduce the expansion of the sealing material due to water absorption. Further, this is to prevent deterioration due to water inside the element.

また、硬化後の透明封止材が300℃以下で溶融しないことが好ましい。発熱に対し封止材の形状を維持するためである。   Moreover, it is preferable that the transparent sealing material after hardening does not fuse | melt at 300 degrees C or less. This is to maintain the shape of the sealing material against heat generation.

また、硬化後の透明封止材の屈折率が1.4以上であることが好ましい。屈折率が1.4以下の場合、例えばLED素子からの光の取り出し効率や光通信用の受光部に使用した場合の受光効率が低くなる為である。   Moreover, it is preferable that the refractive index of the transparent sealing material after hardening is 1.4 or more. This is because, when the refractive index is 1.4 or less, for example, the light extraction efficiency from the LED element and the light reception efficiency when used in a light receiving unit for optical communication are lowered.

また、硬化後の透明封止材を150℃で24時間以上加熱後の波長350〜900nmにおける透過率が、厚さ1mmで85%以上であることが好ましい。150℃で24時間以上加熱後の波長350〜900nmにおける透過率が厚さ1mmで85%以下の場合、例えばLED素子からの光の取り出し効率や光通信用の受光部に使用した場合の受光効率が低くなる為である。   Moreover, it is preferable that the transmittance | permeability in the wavelength of 350-900 nm after heating the transparent sealing material after hardening at 150 degreeC for 24 hours or more is 85% or more at 1 mm in thickness. When the transmittance at a wavelength of 350 to 900 nm after heating at 150 ° C. for 24 hours or more is 85% or less at a thickness of 1 mm, for example, the light extraction efficiency from an LED element or the light reception efficiency when used for a light receiving part for optical communication This is because of lowering.

また、有機無機ハイブリッド物質の原料のアルコキシシランのうち、芳香族または芳香族を含む炭化水素基を含有するアルコキシシランがモル比で90%以下、飽和炭化水素基を含有するアルコキシシランがモル比で10%以上、不飽和炭化水素基を含有するアルコキシシランがモル比で90%以下であることが好ましい。それぞれの組成を決定付ける理由は以下の通りである。   Of the alkoxysilanes used as raw materials for organic-inorganic hybrid materials, the alkoxysilanes containing aromatic or aromatic-containing hydrocarbon groups are 90% or less in molar ratio, and the alkoxysilanes containing saturated hydrocarbon groups are in molar ratio. It is preferable that the alkoxysilane containing 10% or more and an unsaturated hydrocarbon group is 90% or less by molar ratio. The reason for determining each composition is as follows.

芳香族または芳香族を含む炭化水素基を含有するアルコキシシランがモル比で90%以上の場合、硬化に長時間を要し、高温使用時に十分な強度を維持できないためである。また、硬化後に温度変化によってクラックが発生しやすいためである。   This is because when the alkoxysilane containing an aromatic or aromatic hydrocarbon group is 90% or more in terms of molar ratio, it takes a long time for curing, and sufficient strength cannot be maintained when used at high temperatures. Moreover, it is because a crack is easy to generate | occur | produce by temperature change after hardening.

飽和炭化水素基を含有するアルコキシシランがモル比で10%以下の場合、硬化後に温度変化によってクラックが発生しやすいためである。   This is because when the alkoxysilane containing a saturated hydrocarbon group is 10% or less in terms of molar ratio, cracks are likely to occur due to temperature changes after curing.

不飽和炭化水素基を含有するアルコキシシランがモル比で90%以上の場合、ゴム化しやすく、硬化後に発砲体となるためである。また、不飽和炭化水素基同士の架橋が熱または紫外光により不規則に起こり、物性が安定しないためである。   This is because when the alkoxysilane containing an unsaturated hydrocarbon group is 90% or more in molar ratio, it is easy to rubberize and become a foam after curing. Another reason is that crosslinking between unsaturated hydrocarbon groups occurs irregularly by heat or ultraviolet light, and the physical properties are not stable.

また、主剤の原料のアルコキシシランに対して、モル比で10倍以上の水、100倍以下のアルコール、1倍以下の酸性触媒を添加することが好ましい。それぞれの添加量を決定付ける理由は以下の通りである。   Moreover, it is preferable to add 10 times or more of water, 100 times or less of alcohol, and 1 time or less of acidic catalyst with respect to alkoxysilane as the raw material of the main agent. The reason for determining each addition amount is as follows.

水の添加量が10倍以下の場合、加水分解反応が十分に進行せずに、未反応のアルコキシ基が残留するためである。   This is because when the amount of water added is 10 times or less, the hydrolysis reaction does not proceed sufficiently and unreacted alkoxy groups remain.

アルコールの添加量が100倍以上の場合、合成時間が長時間となり、生産性等の産業上のメリットが小さいからである。アルコールとしてはメタノール、エタノール、1−プロパノ-ル、2−プロパノール、1−ブタノール、2−メチル−1−プロパノ-ル、2−ブタノール、1、1−ジメチル−1−エタノール等があるが、特にエタノールが好ましい。   This is because when the amount of alcohol added is 100 times or more, the synthesis time is long, and industrial advantages such as productivity are small. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 1,1-dimethyl-1-ethanol, etc. Ethanol is preferred.

酸性触媒の添加量が1倍以上の場合、分相しやすく、均一な硬化体が得られないためである。   This is because when the addition amount of the acidic catalyst is 1 or more, phase separation is easy and a uniform cured body cannot be obtained.

ゾル−ゲル法による有機無機ハイブリッド材料の合成では、酸性触媒が用いられる場合が多いが、得られた封止材中の触媒残渣により、例えばLED中の金属フレームが腐食したり、封止材自身が紫外光や熱により黄変したりするため、酸性触媒を用いて合成したときは、酸を除去する必要がある場合がある。   In the synthesis of the organic-inorganic hybrid material by the sol-gel method, an acidic catalyst is often used. However, for example, the metal frame in the LED is corroded by the catalyst residue in the obtained encapsulant, or the encapsulant itself. May be yellowed by ultraviolet light or heat, it may be necessary to remove the acid when synthesized using an acidic catalyst.

酸の除去は、分液操作で行った。原料のアルコキシシランをアルコール中で反応させた後に相容性の良好な非極性有機溶媒で希釈し、更に純水を混合して、激しく攪拌した後に水層を除去する。非極性有機溶媒は、減圧留去した。   The acid was removed by a liquid separation operation. The raw material alkoxysilane is reacted in alcohol and then diluted with a non-polar organic solvent having good compatibility. Further, pure water is mixed and vigorously stirred, and then the aqueous layer is removed. The nonpolar organic solvent was distilled off under reduced pressure.

酸性触媒としては、塩酸、硫酸、硝酸などの無機酸、酢酸、蟻酸、マレイン酸、フマル酸、プロピオン酸、アジピン酸、オレイン酸、ステアリン酸、リノール酸、安息香酸等の有機酸があるが、特に酢酸が望ましい。またその他の触媒としてナトリウムメチラートなどの金属アルコキシドが挙げられる。しかし、加水分解収率が低く、主剤にアルコキシドが残存しやすい。アルコキシドは耐熱性が低い為に、有機無機ハイブリッド材料の耐熱性を下げる原因になりやすい。   Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid, formic acid, maleic acid, fumaric acid, propionic acid, adipic acid, oleic acid, stearic acid, linoleic acid, and benzoic acid. Acetic acid is particularly desirable. Other catalysts include metal alkoxides such as sodium methylate. However, the hydrolysis yield is low, and alkoxide tends to remain in the main agent. Since the alkoxide has low heat resistance, it tends to reduce the heat resistance of the organic-inorganic hybrid material.

また、有機無機ハイブリッド物質の合成温度は50〜110℃で合成時間は10分〜1週間であることが好ましい。それぞれの合成条件を決定付ける理由は以下の通りである。   The synthesis temperature of the organic / inorganic hybrid material is preferably 50 to 110 ° C. and the synthesis time is preferably 10 minutes to 1 week. The reason for determining each synthesis condition is as follows.

有機無機ハイブリッド物質の合成温度が50℃以下の場合、合成時間が長時間となり、生産性等の産業上のメリットが小さいからである。有機無機ハイブリッド物質の合成温度が110℃以上の場合、混合溶液の沸騰や原料アルコキシシランの蒸発により、所望の組成の有機無機ハイブリッド物質が得られないためである。   This is because when the synthesis temperature of the organic-inorganic hybrid material is 50 ° C. or less, the synthesis time becomes long, and industrial merits such as productivity are small. This is because when the synthesis temperature of the organic-inorganic hybrid substance is 110 ° C. or higher, an organic-inorganic hybrid substance having a desired composition cannot be obtained due to boiling of the mixed solution or evaporation of the raw material alkoxysilane.

有機無機ハイブリッド物質の合成時間が10分以下の場合、加水分解・重縮合反応が十分に進行しないためである。有機無機ハイブリッド物質の合成時間が1週間以上の場合、合成時間が長時間となり、生産性等の産業上のメリットが小さいからである。なお、有機無機ハイブリッド物質の合成は開放系で行っても良いし、還流下で行っても良い。   This is because when the synthesis time of the organic-inorganic hybrid substance is 10 minutes or less, the hydrolysis / polycondensation reaction does not proceed sufficiently. This is because when the synthesis time of the organic-inorganic hybrid material is one week or longer, the synthesis time is long, and industrial advantages such as productivity are small. The synthesis of the organic / inorganic hybrid substance may be performed in an open system or under reflux.

また、20〜200℃で10分〜10時間減圧加熱して有機無機ハイブリッド物質を安定化することが好ましい。20℃以下で減圧加熱した場合、未反応シラノール基の縮合や系内に残留した水、触媒の蒸発が不十分で、安定化の効果が得られないためである。200℃以上で減圧加熱した場合、急激な縮合反応の進行により有機無機ハイブリッド物質の粘度が急激に増大し制御できないためである。10分未満の減圧加熱の場合、未反応シラノール基の縮合や系内に残留した水、触媒の蒸発が不十分で、安定化の効果が得られないためである。10時間以上の減圧加熱の場合、有機無機ハイブリッド物質の粘度が増大しすぎて制御が難しいためである。   Moreover, it is preferable to stabilize the organic-inorganic hybrid substance by heating under reduced pressure at 20 to 200 ° C. for 10 minutes to 10 hours. This is because when heated under a reduced pressure at 20 ° C. or less, condensation of unreacted silanol groups and evaporation of water and catalyst remaining in the system are insufficient, and a stabilization effect cannot be obtained. This is because, when heated under reduced pressure at 200 ° C. or higher, the viscosity of the organic-inorganic hybrid substance rapidly increases due to the rapid progress of the condensation reaction and cannot be controlled. This is because in the case of heating under reduced pressure for less than 10 minutes, condensation of unreacted silanol groups and evaporation of water and catalyst remaining in the system are insufficient, and a stabilization effect cannot be obtained. This is because in the case of heating under reduced pressure for 10 hours or more, the viscosity of the organic-inorganic hybrid substance increases excessively and is difficult to control.

また、硬化前の有機無機ハイブリッド物質を封止するときの粘度が塗布温度で10mPa・s〜200Pa・s以下が好ましい。10mPa・s以下の材料を用いた場合、パッケージの底からの封止材の染み出しが発生しやすい。200Pa・s以上の場合、封止の際に泡が発生しやすい。また、封止作業に時間がかかり生産効率が悪くなる。   Moreover, the viscosity when sealing the organic-inorganic hybrid substance before curing is preferably 10 mPa · s to 200 Pa · s or less at the coating temperature. When a material of 10 mPa · s or less is used, the sealing material tends to exude from the bottom of the package. In the case of 200 Pa · s or more, bubbles are likely to be generated during sealing. In addition, the sealing work takes time and the production efficiency is deteriorated.

また、硬化前の有機無機ハイブリッド物質の平均分子量が100〜100000であることが好ましい。有機無機ハイブリッド物質の平均分子量が100以下の場合、硬化時に低分子量成分の蒸発が起こりやすく、硬化後も未反応基が残存しやすいためである。また、有機無機ハイブリッド物質の平均分子量が100000以上の場合、高粘度となり硬化時に泡残りが起こりやすいためである。   Moreover, it is preferable that the average molecular weight of the organic inorganic hybrid substance before hardening is 100-100000. This is because when the average molecular weight of the organic-inorganic hybrid substance is 100 or less, low molecular weight components are likely to evaporate during curing, and unreacted groups are likely to remain after curing. In addition, when the average molecular weight of the organic-inorganic hybrid substance is 100,000 or more, the viscosity becomes high and bubbles remain easily during curing.

また、加熱に対して大きな体積収縮が起こらないことが好ましい。体積収縮によるクラックの発生を防止するためである。   Further, it is preferable that no large volume shrinkage occurs upon heating. This is to prevent cracks due to volume shrinkage.

硬化剤は有機アルミニウム化合物、有機スズ化合物、有機亜鉛化合物等の有機金属化合物が使用できる。これら金属アルコキシド、金属錯体、金属塩化物などの有機金属化合物としては、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン等の金属アルコキシドや、アルミニウムアセチルアセトネート、ジブチルスズジアセテート、ジブチルスズジラウレート、ジオクチルスズジラウレート、ビス(アセトキシジブチルスズ)オキサイド、ビス(ラウロキシジブチルスズ)オキサイド、ジイソプロポキシチタンビス(アセチルアセトナート)、チタンテトラ(アセチルアセトナート)、ジオクタノキシチタンジオクタネート、ジイソプロポキシチタンビス(エチルアセトアセテート)等の金属錯体や、塩化アルミニウム等の金属塩化物があるが、特にアルミニウムアセチルアセトネートが好ましい。有機金属化合物は単独で使用しても良いし、2種以上混合しても良い。   As the curing agent, organometallic compounds such as organoaluminum compounds, organotin compounds, and organozinc compounds can be used. Examples of organometallic compounds such as metal alkoxides, metal complexes, and metal chlorides include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane Metal alkoxides such as aluminum acetylacetonate, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, bis (acetoxydibutyltin) oxide, Metal complexes such as (lauroxydibutyltin) oxide, diisopropoxytitanium bis (acetylacetonate), titanium tetra (acetylacetonate), dioctanoxytitanium dioctanoate, diisopropoxytitanium bis (ethylacetoacetate), chloride Although there are metal chlorides such as aluminum, aluminum acetylacetonate is particularly preferable. An organometallic compound may be used independently and may mix 2 or more types.

硬化剤は50wt%以下添加することが好ましい。硬化剤が有機無機ハイブリッド物質の50wt%以上の場合、充分に硬化するまで長時間要するか、あるいは不透明になり、さらに着色しやすくなる為である。   It is preferable to add 50 wt% or less of the curing agent. This is because when the curing agent is 50 wt% or more of the organic-inorganic hybrid material, it takes a long time until it is fully cured, or it becomes opaque and further easily colored.

また、硬化剤と共に、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどの無機塩基、エチレンジアミン、トリエチルアミン、ピリジン、アンモニアなどの有機塩基、ナトリウムメチラートなどの金属アルコキシドを添加することで硬化が促進される。   In addition to hardeners, inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, organic bases such as ethylenediamine, triethylamine, pyridine, ammonia, metals such as sodium methylate Curing is accelerated by adding an alkoxide.

また、250℃以下の熱によって硬化することが好ましい。硬化温度が250℃以上の場合、急激な硬化反応により泡残りが起こりやすく、さらに着色しやすくなるためである。また、樹脂製LED用パッケージの場合、その樹脂の耐熱温度以下で硬化することが好ましい。   Moreover, it is preferable to harden | cure with the heat of 250 degrees C or less. This is because when the curing temperature is 250 ° C. or higher, bubbles are likely to remain due to an abrupt curing reaction, and coloration is further facilitated. Further, in the case of a resin LED package, it is preferable to cure at a temperature lower than the heat resistance temperature of the resin.

また、10〜250℃で10分〜2週間加熱することで1時間当たりの重量減少率が1wt%以下になったときを硬化の完了とすることが好ましい。1時間当たりの重量減少率が1wt%以上では、使用中に封止材が変形し、例えばLED用封止材として使用した場合、光の取り出し効率が減少する為である。   Further, it is preferable that the curing is completed when the weight reduction rate per hour becomes 1 wt% or less by heating at 10 to 250 ° C. for 10 minutes to 2 weeks. When the weight reduction rate per hour is 1 wt% or more, the sealing material is deformed during use. For example, when used as an LED sealing material, the light extraction efficiency decreases.

以下、実施例により説明する。   Hereinafter, an example explains.

室温で7.28mlのフェニルトリエトキシシラン(PhSi(OEt))、11.46mlのメチルトリエトキシシラン(MeSi(OEt))、10.72mlのジメチルジエトキシシラン(Me2Si(OEt)2)、54.06mlの水、42.67mlのエタノール、9μlの氷酢酸を混合した。混合溶液を100℃で1時間加熱した後、ジエチルエーテルで希釈し、純水で酢酸を抽出した。抽出後、ジエチルエーテルを留去し、安定化する為に40℃で減圧加熱を1時間行い、主剤を得た。 7.28 ml phenyltriethoxysilane (PhSi (OEt) 3 ), 11.46 ml methyltriethoxysilane (MeSi (OEt) 3 ), 10.72 ml dimethyldiethoxysilane (Me 2 Si (OEt) 2 ) at room temperature ), 54.06 ml water, 42.67 ml ethanol, 9 μl glacial acetic acid. The mixed solution was heated at 100 ° C. for 1 hour, diluted with diethyl ether, and acetic acid was extracted with pure water. After extraction, diethyl ether was distilled off, and heating was performed at 40 ° C. under reduced pressure for 1 hour to obtain a main agent.

25℃での主剤の粘度を、ブルックフィールド製RV型粘度計で測定したところ、361mPa・sであった。また、主剤の元素分析を行ったところ、炭素30%、水素6%、酸素27%、珪素37%であった。   The viscosity of the main agent at 25 ° C. was measured with a Brookfield RV viscometer, and found to be 361 mPa · s. Further, elemental analysis of the main component revealed that the carbon content was 30%, the hydrogen content was 6%, the oxygen content was 27%, and the silicon content was 37%.

この主剤に硬化剤としてアルミニウムアセチルアセトネートを主剤に対して0.1wt%添加し、25℃で保持したときの粘度の経時変化を図1に示す。また、100℃で20時間加熱して得られた硬化体を150℃、24時間加熱したときの波長350〜900nmにおける透過率を日立U4000形自記分光光度計で測定したところ、厚さ1mmで85%以上であった。透過率曲線を図2の実施例1に示す。   FIG. 1 shows the change over time in viscosity when 0.1 wt% of aluminum acetylacetonate as a curing agent is added to the main agent and the mixture is kept at 25 ° C. Moreover, when the transmittance | permeability in the wavelength of 350-900 nm when the hardened | cured material obtained by heating at 100 degreeC for 20 hours was heated at 150 degreeC for 24 hours was measured with Hitachi U4000 type self-recording spectrophotometer, it was 85 in 1mm in thickness. % Or more. The transmittance curve is shown in Example 1 of FIG.

さらに熱機械測定(TMA)により加熱時のサンプルの膨張・収縮量を測定し、硬化体の溶融挙動を調べた。理学電気工業株式会社製TMA8310を用いて5℃/minで昇温したTMA測定から、線膨張係数は1.7×10−4(1/K)であり、300℃以下では溶融しないことが確認された。このサンプルの温度−膨張率曲線を図3の実施例1に示す。さらに、このサンプルをJIS K 7209に準拠して23℃における飽和吸水率を測定したところ0.04wt%であった。 Furthermore, the amount of expansion / contraction of the sample during heating was measured by thermomechanical measurement (TMA), and the melting behavior of the cured body was examined. From the TMA measurement heated at 5 ° C./min using TMA8310 manufactured by Rigaku Denki Kogyo Co., Ltd., the linear expansion coefficient is 1.7 × 10 −4 (1 / K), and it is confirmed that it does not melt below 300 ° C. It was. The temperature-expansion coefficient curve of this sample is shown in Example 1 of FIG. Furthermore, when the saturated water absorption rate at 23 ° C. of this sample was measured according to JIS K 7209, it was 0.04 wt%.

室温で9.10mlのフェニルトリエトキシシラン(PhSi(OEt))、14.33mlのメチルトリエトキシシラン(MeSi(OEt))、13.40mlのジメチルジエトキシシラン(Me2Si(OEt)2)、54.06mlの水、42.67mlのエタノール、9μlの氷酢酸を混合した。混合溶液を100℃で2時間加熱した後、ジエチルエーテルで希釈し、純水で酢酸を抽出した。抽出後、ジエチルエーテルを留去し、安定化する為に40℃で減圧加熱を1時間行い、主剤を得た。 Phenyltriethoxysilane 9.10ml at room temperature (PhSi (OEt) 3), methyltriethoxysilane 14.33ml (MeSi (OEt) 3) , dimethyl diethoxy silane 13.40ml (Me 2 Si (OEt) 2 ), 54.06 ml water, 42.67 ml ethanol, 9 μl glacial acetic acid. The mixed solution was heated at 100 ° C. for 2 hours, diluted with diethyl ether, and acetic acid was extracted with pure water. After extraction, diethyl ether was distilled off, and heating was performed at 40 ° C. under reduced pressure for 1 hour to obtain a main agent.

25℃での主剤の粘度を、ブルックフィールド製RV型粘度計で測定したところ、978mPa・sであった。   It was 978 mPa * s when the viscosity of the main ingredient in 25 degreeC was measured with the Brookfield RV type | mold viscosity meter.

この主剤にアルミニウムアセチルアセトネートを主剤に対し0.1wt%添加すると、粘度は1053mPa・sになった。これを100℃で20時間加熱して硬化させた。   When 0.1 wt% of aluminum acetylacetonate was added to the main agent, the viscosity became 1053 mPa · s. This was cured by heating at 100 ° C. for 20 hours.

実施例1と同様に、硬化体の波長350〜900nmにおける透過率を測定したところ、厚さ1mmで85%以上であった。さらにTMA測定から、線膨張係数は1.5×10−4(1/K)であり、300℃以下では溶融しないことが確認された。さらに、このサンプルをJIS K 7209に準拠して23℃における飽和吸水率を実施例1と同様に測定したところ0.12wt%であった。 As in Example 1, the transmittance of the cured product at a wavelength of 350 to 900 nm was measured and found to be 85% or more at a thickness of 1 mm. Furthermore, from the TMA measurement, it was confirmed that the linear expansion coefficient was 1.5 × 10 −4 (1 / K), and it did not melt at 300 ° C. or lower. Furthermore, when the saturated water absorption rate at 23 ° C. of this sample was measured in the same manner as in Example 1 in accordance with JIS K 7209, it was 0.12 wt%.

実施例1と同様の原料及び同様の合成条件で合成して得た主剤に1.0wt%のアルミニウムアセチルアセトネートを添加し、30℃で30分間、減圧加熱し、さらに100℃で20時間加熱して硬化させた。硬化体は波長350nm〜900nmにおける透過率が85%以上であり、150℃で24時間加熱後も透過率曲線は変化しなかった。   1.0 wt% of aluminum acetylacetonate is added to the main material obtained by synthesizing under the same raw materials and the same synthesis conditions as in Example 1, heated under reduced pressure at 30 ° C. for 30 minutes, and further heated at 100 ° C. for 20 hours. And cured. The cured product had a transmittance of 85% or more at a wavelength of 350 nm to 900 nm, and the transmittance curve did not change even after heating at 150 ° C. for 24 hours.

実施例1と同様の原料及び同様の合成条件で合成して得た主剤に0.5wt%のビス(ラウロキシジブチルスズ)オキサイドを添加し、30℃で30分間、減圧加熱し、さらに100℃で20時間加熱して硬化させた。硬化体は波長350nm〜900nmにおける透過率が85%以上であり、150℃で24時間加熱後も透過率曲線は変化しなかった。   0.5 wt% of bis (lauroxydibutyltin) oxide is added to the base material obtained by synthesizing under the same raw materials and the same synthesis conditions as in Example 1, heated under reduced pressure at 30 ° C. for 30 minutes, and further at 100 ° C. Cured by heating for 20 hours. The cured product had a transmittance of 85% or more at a wavelength of 350 nm to 900 nm, and the transmittance curve did not change even after heating at 150 ° C. for 24 hours.

室温で5.45mlのフェニルトリエトキシシラン(PhSi(OEt))、11.46mlのメチルトリエトキシシラン(MeSi(OEt))、10.7mlのジメチルジエトキシシラン(Me2Si(OEt)2)、1.74mlの3−グリシドキシプロピルトリメトキシシラン、54.06mlの水、42.67mlのエタノール、9μlの氷酢酸を混合した。混合溶液を100℃で2時間加熱した後、ジエチルエーテルで希釈し、純水で酢酸を抽出した。抽出後、ジエチルエーテルを留去し、安定化する為に40℃で減圧加熱を1時間行い、主剤を得た。 5.45 ml phenyltriethoxysilane (PhSi (OEt) 3 ), 11.46 ml methyltriethoxysilane (MeSi (OEt) 3 ), 10.7 ml dimethyldiethoxysilane (Me 2 Si (OEt) 2 ) at room temperature. ) 1.74 ml 3-glycidoxypropyltrimethoxysilane, 54.06 ml water, 42.67 ml ethanol, 9 μl glacial acetic acid. The mixed solution was heated at 100 ° C. for 2 hours, diluted with diethyl ether, and acetic acid was extracted with pure water. After extraction, diethyl ether was distilled off, and heating was performed at 40 ° C. under reduced pressure for 1 hour to obtain a main agent.

25℃での主剤の粘度を、ブルックフィールド製RV型粘度計で測定したところ、677mPa・sであった。この主剤にアルミニウムアセチルアセトネートを主剤に対し1.0wt%添加すると粘度は723mPa・sになった。これを100℃で20時間加熱して硬化させた。   The viscosity of the main agent at 25 ° C. was 677 mPa · s as measured with a Brookfield RV viscometer. When 1.0 wt% of aluminum acetylacetonate was added to the main agent, the viscosity became 723 mPa · s. This was cured by heating at 100 ° C. for 20 hours.

実施例1と同様に、硬化体の波長350〜900nmにおける透過率を測定したところ、厚さ1mmで85%以上であった。さらにTMA測定から、線膨張係数は2.6×10−4(1/K)であり、300℃以下では溶融しないことが確認された。 As in Example 1, the transmittance of the cured product at a wavelength of 350 to 900 nm was measured and found to be 85% or more at a thickness of 1 mm. Furthermore, from the TMA measurement, it was confirmed that the linear expansion coefficient was 2.6 × 10 −4 (1 / K), and it did not melt at 300 ° C. or lower.

(比較例1)
室温で7.28mlのフェニルトリエトキシシラン(PhSi(OEt))、11.46mlのメチルトリエトキシシラン(MeSi(OEt))、10.72mlのジメチルジエトキシシラン(Me2Si(OEt)2)、10.8mlの水、42.67mlのエタノール、9μlの氷酢酸を混合した。混合溶液を100℃で1時間加熱した後、ジエチルエーテルで希釈し、純水で酢酸を抽出した。抽出後、ジエチルエーテルを留去し、安定化する為に40℃で減圧加熱を1時間行い、主剤を得た。
(Comparative Example 1)
7.28 ml phenyltriethoxysilane (PhSi (OEt) 3 ), 11.46 ml methyltriethoxysilane (MeSi (OEt) 3 ), 10.72 ml dimethyldiethoxysilane (Me 2 Si (OEt) 2 ) at room temperature ) 10.8 ml of water, 42.67 ml of ethanol, 9 μl of glacial acetic acid were mixed. The mixed solution was heated at 100 ° C. for 1 hour, diluted with diethyl ether, and acetic acid was extracted with pure water. After extraction, diethyl ether was distilled off, and heating was performed at 40 ° C. under reduced pressure for 1 hour to obtain a main agent.

この主剤に硬化剤として、アルミニウムアセチルアセトネートを主剤に対し、0.1wt%添加し、100℃で加熱して得られた硬化体を150℃で24時間加熱したところ黄変した。このサンプルの透過率曲線を図2の比較例1に示す。   As a curing agent, 0.1 wt% of aluminum acetylacetonate as a curing agent was added to the main agent, and the cured product obtained by heating at 100 ° C. was heated at 150 ° C. for 24 hours, and then turned yellow. The transmittance curve of this sample is shown in Comparative Example 1 in FIG.

(比較例2)
室温で9.10mlのフェニルトリエトキシシラン(PhSi(OEt))、14.33mlのメチルトリエトキシシラン(MeSi(OEt))、13.40mlのジメチルジエトキシシラン(Me2Si(OEt)2)、10.8mlの水、42.67mlのエタノール、9μlの氷酢酸を混合した。混合溶液を100℃で1時間加熱した後、ジエチルエーテルで希釈し、純水で酢酸を抽出した。抽出後、ジエチルエーテルを留去し、安定化する為に40℃で減圧加熱を1時間行い、主剤を得た。この主剤を硬化するため、150℃で加熱したところ、24時間後に黄変した。
(Comparative Example 2)
Phenyltriethoxysilane 9.10ml at room temperature (PhSi (OEt) 3), methyltriethoxysilane 14.33ml (MeSi (OEt) 3) , dimethyl diethoxy silane 13.40ml (Me 2 Si (OEt) 2 ) 10.8 ml of water, 42.67 ml of ethanol, 9 μl of glacial acetic acid were mixed. The mixed solution was heated at 100 ° C. for 1 hour, diluted with diethyl ether, and acetic acid was extracted with pure water. After extraction, diethyl ether was distilled off, and heating was performed at 40 ° C. under reduced pressure for 1 hour to obtain a main agent. When this main ingredient was cured, it was heated at 150 ° C. and yellowed after 24 hours.

(比較例3)
室温で1.0mlのフェニルトリエトキシシラン(PhSi(OEt))、1.0mlのメチルトリエトキシシラン(MeSi(OEt))、35mlのビニルトリエトキシシラン(ViSi(OEt))、35mlの水、35mlのエタノール、1mlの酢酸を混合し、実施例1と同様の条件で主剤を得た。しかし、この主剤がゴム化したため、例えばLEDパッケージへの封止を試みたところ塗布できなかった。
(Comparative Example 3)
1.0 ml phenyltriethoxysilane (PhSi (OEt) 3 ), 1.0 ml methyltriethoxysilane (MeSi (OEt) 3 ), 35 ml vinyltriethoxysilane (ViSi (OEt) 3 ), 35 ml at room temperature Water, 35 ml of ethanol, and 1 ml of acetic acid were mixed to obtain the main agent under the same conditions as in Example 1. However, since this main agent became rubber, for example, when sealing to an LED package was attempted, it could not be applied.

また、このゴム状物質を100℃で加熱すると硬化が急激に進行し発泡体となり、封止材として評価することができなかった。さらに、このサンプルをJIS K 7209に準拠して23℃における飽和吸水率を実施例1と同様に測定したところ水が物理吸着するため正確な吸水率を測定することができなかった。   Further, when this rubber-like substance was heated at 100 ° C., the curing proceeded rapidly to form a foam, and could not be evaluated as a sealing material. Furthermore, when the saturated water absorption rate at 23 ° C. of this sample was measured in the same manner as in Example 1 in accordance with JIS K 7209, water was physically adsorbed, so that an accurate water absorption rate could not be measured.

(比較例4)
室温で1.0mlのフェニルトリエトキシシラン(PhSi(OEt))、30.1mlのメチルトリエトキシシラン(MeSi(OEt))、35mlの水、35mlのエタノール、1mlの酢酸を混合し、実施例1と同様の条件で主剤を合成した。しかし、この主剤がゲル化したため塗布できなかった。また、このゲル状物質を130℃で加熱すると硬化が急激に進行し発泡体となり、封止材として評価することができなかった。
(Comparative Example 4)
Mix at room temperature with 1.0 ml phenyltriethoxysilane (PhSi (OEt) 3 ), 30.1 ml methyltriethoxysilane (MeSi (OEt) 3 ), 35 ml water, 35 ml ethanol, 1 ml acetic acid The main agent was synthesized under the same conditions as in Example 1. However, this main agent gelled and could not be applied. Moreover, when this gel-like substance was heated at 130 ° C., curing rapidly progressed to a foam, and could not be evaluated as a sealing material.

(比較例5)
実施例1と同様の原料及び同様の合成条件で合成して得た主剤にアセチルアセトンアルミニウムを60wt%添加し、25℃で減圧加熱し脱泡を試みたが、粘度が高すぎるため脱泡することができなかった。
(Comparative Example 5)
60 wt% of acetylacetone aluminum was added to the main material obtained by synthesizing under the same raw materials and the same synthesis conditions as in Example 1, and defoaming was attempted by heating under reduced pressure at 25 ° C. However, defoaming was caused because the viscosity was too high. I could not.

(比較例6)
室温で23.1mlのフェニルトリエトキシシラン(PhSi(OEt))、16.3mlのジフェニルジエトキシシラン(Ph2Si(OEt))、72.00mlの水、55.2mlのエタノール、1.2mlの氷酢酸を混合した。混合溶液を100℃で8時間加熱し、主剤得た。この主剤は、250℃で加熱すると硬化するが、72℃で軟化する。このサンプルの温度−膨張率曲線を図3の比較例6に示す。
(Comparative Example 6)
23.1 ml phenyltriethoxysilane (PhSi (OEt) 3 ), 16.3 ml diphenyldiethoxysilane (Ph 2 Si (OEt) 2 ), 72.00 ml water, 55.2 ml ethanol at room temperature. 2 ml of glacial acetic acid was mixed. The mixed solution was heated at 100 ° C. for 8 hours to obtain a main agent. This base cures when heated at 250 ° C., but softens at 72 ° C. The temperature-expansion coefficient curve of this sample is shown in Comparative Example 6 in FIG.

本発明は、バックライト、表示板、ディスプレイ、各種インジケーター等に使用されている発光ダイオード(LED)等の半導体発光素子の封止、太陽電池モジュールにおける太陽電池素子の封止、光通信用の受光部の封止等に使用することができる。また、PDPを始めとするディスプレイ部品の封着・被覆用材料、光スイッチや光結合器を始めとする光情報通信デバイス材料、光学機器材料、光機能性(非線形)光学材料、接着材料等、低融点ガラスが使われている分野、エポキシ等の有機材料が使われている分野に利用可能である。   The present invention relates to sealing of a semiconductor light emitting element such as a light emitting diode (LED) used in a backlight, a display panel, a display, various indicators, etc., sealing of a solar cell element in a solar cell module, and light reception for optical communication. It can be used for sealing parts. In addition, materials for sealing and covering display components such as PDP, optical information communication device materials such as optical switches and optical couplers, optical equipment materials, optical functional (non-linear) optical materials, adhesive materials, etc. It can be used in fields where low melting glass is used, and fields where organic materials such as epoxy are used.

本発明の実施例1で示した25℃で保持したときの粘度の経時変化である。It is a time-dependent change of a viscosity when hold | maintaining at 25 degreeC shown in Example 1 of this invention. 本発明の実施例1及び比較例1で示した波長350〜900nmにおける光透過率曲線である。It is a light transmittance curve in wavelength 350-900 nm shown in Example 1 and comparative example 1 of the present invention. 本発明の実施例1及び比較例6で示したTMA測定による温度−膨張率曲線である。It is a temperature-expansion coefficient curve by the TMA measurement shown in Example 1 and Comparative Example 6 of the present invention.

Claims (6)

有機置換基とシロキサン結合を含む物質に硬化剤として有機金属化合物を添加し、硬化することを特徴とする有機無機ハイブリッド透明封止材。 An organic-inorganic hybrid transparent encapsulant comprising an organic metal compound added as a curing agent to a substance containing an organic substituent and a siloxane bond, and cured. 有機置換基が芳香族または芳香族を含む炭化水素基から選ばれることを特徴とする請求項1に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to claim 1, wherein the organic substituent is selected from an aromatic group or a hydrocarbon group containing an aromatic group. 有機置換基が飽和炭化水素基または不飽和炭化水素基から選ばれることを特徴とする請求項1または2に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent encapsulant according to claim 1 or 2, wherein the organic substituent is selected from a saturated hydrocarbon group or an unsaturated hydrocarbon group. 有機置換基がエポキシ基、メタクリロキシ基、アクリロキシ基等のヘテロ原子を持つ有機基から選ばれることを特徴とする請求項1乃至3のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to any one of claims 1 to 3, wherein the organic substituent is selected from organic groups having heteroatoms such as an epoxy group, a methacryloxy group, and an acryloxy group. シロキサンネットワーク中に四官能基を含有することを特徴とする請求項1乃至4のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to any one of claims 1 to 4, wherein the siloxane network contains a tetrafunctional group. 有機無機ハイブリッド物質を構成する元素のうち、炭素が18〜56%、水素が4〜7%、酸素が19〜36%、珪素が22〜42%であることを特徴とする請求項1乃至5のいずれか1項に記載の有機無機ハイブリッド透明封止材。 6. The element constituting the organic-inorganic hybrid material, wherein carbon is 18 to 56%, hydrogen is 4 to 7%, oxygen is 19 to 36%, and silicon is 22 to 42%. The organic-inorganic hybrid transparent sealing material according to any one of the above.
JP2007023979A 2007-02-02 2007-02-02 Organic-inorganic hybrid transparent encapsulant and method for producing the same Expired - Fee Related JP5109387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023979A JP5109387B2 (en) 2007-02-02 2007-02-02 Organic-inorganic hybrid transparent encapsulant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023979A JP5109387B2 (en) 2007-02-02 2007-02-02 Organic-inorganic hybrid transparent encapsulant and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008189743A true JP2008189743A (en) 2008-08-21
JP5109387B2 JP5109387B2 (en) 2012-12-26

Family

ID=39750154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023979A Expired - Fee Related JP5109387B2 (en) 2007-02-02 2007-02-02 Organic-inorganic hybrid transparent encapsulant and method for producing the same

Country Status (1)

Country Link
JP (1) JP5109387B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110405A1 (en) * 2008-03-07 2009-09-11 セントラル硝子株式会社 Thermosetting organic-inorganic hybrid transparent material
WO2010053001A1 (en) * 2008-11-05 2010-05-14 セントラル硝子株式会社 Transparent heat-curable organic-inorganic hybrid material for sealing functional microparticles
WO2011019005A1 (en) * 2009-08-11 2011-02-17 セントラル硝子株式会社 Heat-resistant polysiloxane composition
US20110250441A1 (en) * 2008-12-19 2011-10-13 Sabine Amberg-Schwab High-barrier composites and method for the production thereof
WO2014091762A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Sealant for led device and led device using same
DE102020100105A1 (en) * 2020-01-06 2021-07-08 Volkswagen Aktiengesellschaft Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300417A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material
JP2006077234A (en) * 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Resin composition for sealing led device, and cured product of the composition
JP2006328315A (en) * 2005-05-30 2006-12-07 Shin Etsu Chem Co Ltd Resin composition for sealing optics-related device and its hardened product
JP2006336010A (en) * 2005-05-02 2006-12-14 Jsr Corp Siloxane-based condensate, method for producing the same and polysiloxane composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300417A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material
JP2006077234A (en) * 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Resin composition for sealing led device, and cured product of the composition
JP2006336010A (en) * 2005-05-02 2006-12-14 Jsr Corp Siloxane-based condensate, method for producing the same and polysiloxane composition
JP2006328315A (en) * 2005-05-30 2006-12-07 Shin Etsu Chem Co Ltd Resin composition for sealing optics-related device and its hardened product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110405A1 (en) * 2008-03-07 2009-09-11 セントラル硝子株式会社 Thermosetting organic-inorganic hybrid transparent material
WO2010053001A1 (en) * 2008-11-05 2010-05-14 セントラル硝子株式会社 Transparent heat-curable organic-inorganic hybrid material for sealing functional microparticles
US20110250441A1 (en) * 2008-12-19 2011-10-13 Sabine Amberg-Schwab High-barrier composites and method for the production thereof
WO2011019005A1 (en) * 2009-08-11 2011-02-17 セントラル硝子株式会社 Heat-resistant polysiloxane composition
WO2014091762A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Sealant for led device and led device using same
DE102020100105A1 (en) * 2020-01-06 2021-07-08 Volkswagen Aktiengesellschaft Heat exchanger

Also Published As

Publication number Publication date
JP5109387B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
EP2141188B1 (en) Silicon-containing compound, curable composition and cured product
KR101865150B1 (en) Silicon-containing curable composition and cured product of same
JP5492000B2 (en) Transparent siloxane resin composition for optics
JP5109387B2 (en) Organic-inorganic hybrid transparent encapsulant and method for producing the same
TWI538959B (en) Hardened resin composition and hardened product thereof
JP6567693B2 (en) Condensation reaction type silicone composition and cured product
JP2009221393A (en) White thermosetting silicone resin composition for forming optical semiconductor case and optical semiconductor case
WO2010090280A1 (en) Transparent sealing material composition and optical semiconductor element
KR20130094715A (en) Polysiloxane composition, hardened material and optical device
JP5569703B2 (en) Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent
JP2013159776A (en) Silicon-containing curable white resin composition, cured product thereof, and optical semiconductor package and reflecting material using the cured product
TW201538639A (en) Hybrid material for optoelectronic applications
CN102686633A (en) Epoxy resin composition
CN113337245A (en) Dealcoholized photovoltaic module sealant and preparation method thereof
JP2008133378A (en) Organic/inorganic hybrid-type transparent sealing material and method for producing the same
JP6022885B2 (en) Resin composition containing a surface-modified composite metal oxide
TW201809146A (en) Formulation containing a metal aprotic organosilanoxide compound
JP4385078B1 (en) Heat-curable resin composition for encapsulating optical semiconductor and optical semiconductor encapsulant using the same
CN106633079A (en) High refractive index silicon-zirconium hybrid resin and preparation method thereof
KR20160148449A (en) Curable resin composition, optical element and optical semiconductor device
TWI634160B (en) Organic-silicon metal composites, curable organopolysiloxane composition comprising thereof, and optical material comprising the composition
KR101552656B1 (en) Modified silicone resin composition
JP6041511B2 (en) Adhesive for LED elements
WO2009110405A1 (en) Thermosetting organic-inorganic hybrid transparent material
JP2009108109A (en) Thermosetting resin composition, cured product, and light emitting diode derived from them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees