JP2008186731A - Solid polymer electrolyte film - Google Patents

Solid polymer electrolyte film Download PDF

Info

Publication number
JP2008186731A
JP2008186731A JP2007019701A JP2007019701A JP2008186731A JP 2008186731 A JP2008186731 A JP 2008186731A JP 2007019701 A JP2007019701 A JP 2007019701A JP 2007019701 A JP2007019701 A JP 2007019701A JP 2008186731 A JP2008186731 A JP 2008186731A
Authority
JP
Japan
Prior art keywords
polymer
calcium phosphate
fine particles
electrolyte film
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007019701A
Other languages
Japanese (ja)
Inventor
Kazuyuki Fukuda
和幸 福田
Toshihiko Takagi
斗志彦 高木
Yoshiro Tazane
佳郎 田實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2007019701A priority Critical patent/JP2008186731A/en
Publication of JP2008186731A publication Critical patent/JP2008186731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a novel solid polymer electrolyte film capable of easily aiming at a thin film structure and enlarged design and having high ion conductivity in the vicinity of room temperature without losing a merit of a polymer compound (C) in spite of its processing. <P>SOLUTION: The solid polymer electrolyte film organized by fine particles (A) of calcium phosphate with an average particle size of 500 nm or below, electrolyte salt (B) and the polymer compound (C) with polyether at its side chain is provided. The polyether in the polymer compound is selected from a group of oxyethylene, oxypropylene, and oxytetramethylene in the solid polymer electrolyte film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、平均粒径が500nm以下のカチオン性のリン酸カルシウム微粒子(A)、電解質塩(B)、側鎖にポリエーテルを有する高分子化合物(C)とを複合化した、イオン導伝性に優れた高分子固体電解質フィルムに関する。   In the present invention, the cationic calcium phosphate fine particles (A) having an average particle size of 500 nm or less, the electrolyte salt (B), and the polymer compound (C) having a polyether in the side chain are combined to provide ion conductivity. The present invention relates to an excellent polymer solid electrolyte film.

イオン伝導体は、イオンを速く拡散させるために、電解質溶液や溶融塩のような液体状態である場合が多いため、電池やキャパシタなどには液状のイオン伝導体が通常用いられている。しかし、この場合、電池内部に液体を含むため、長時間使用した場合や電池自身が何らかの理由により加熱されたり、機器の故障で過充電されたり或いは物理的に破損したりした場合に、電解液が漏出する危険性があった。   Since the ion conductor is often in a liquid state such as an electrolyte solution or a molten salt in order to diffuse ions quickly, a liquid ion conductor is usually used for a battery or a capacitor. However, in this case, since the battery contains liquid, the electrolyte solution is used when used for a long time, or when the battery itself is heated for some reason, is overcharged due to equipment failure, or is physically damaged. There was a risk of leakage.

このため、電解液の外部への漏出を防止するため種々の試みがなされてきた。例えば電解液に高分子化合物を含有若しくは含浸させ、電解質自体をゲル状にする方法が考えられたが、比較的多くの有機溶媒を含有するため、高温域での形状安定性に不十分であり、液漏れや電池容器が圧力破壊する危険性があった。例えば特許文献1では、電解質にアミン成分化合物が導入されたカチオン性架橋高分子をゲル化剤として使用することが考えられたが、液漏れや電池への加工性の困難さなどの問題点を根本的に回避できるものではなかった。   For this reason, various attempts have been made to prevent leakage of the electrolyte to the outside. For example, a method has been considered in which a polymer compound is contained or impregnated in an electrolytic solution, and the electrolyte itself is gelled. However, since a relatively large amount of organic solvent is contained, shape stability at high temperatures is insufficient. There was a risk of liquid leakage and pressure breakdown of the battery container. For example, in Patent Document 1, it was considered to use a cationic cross-linked polymer in which an amine component compound is introduced into an electrolyte as a gelling agent. However, there are problems such as liquid leakage and difficulty in processing into a battery. It wasn't fundamentally avoidable.

そこで、液漏れを完全に防ぐことができ且つ、薄膜化や大面積化などを容易にするために、イオン伝導体が固体化した高分子固体電解質が考えられたが、イオンは電子と違って質量を持つため固体中を自由に移動することができず、イオン伝導性の高いものは得られなかった。1975年に、ポリエチレンオキシド(PEO)とアルカリ金属塩の錯体からなる高分子固体電解質が比較的高いイオン伝導性を示すことがWrightらにより初めて報告された(例えば、非特許文献1参照)。これは、高分子に固有の性質であるTg以上の温度で分子鎖が液体のように動きまわるが、巨視的には架橋構造により形状を保つことができる特長を利用したものである。次いで、1979年に ArmandらによりPEOとリチウム塩の複合体はリチウム二次電池に応用できることが提案され、エチレンカーボネートやプロピレンカーボネートなどの有機溶媒にLi塩を溶解した電解質では基本的に不可能な、液漏れや引火の危険性を完全に抑えることができる材料として注目を集め、それ以来PEO系の高分子を中心に数多くの研究が行われてきた。PEOを骨格とする高分子が多く用されてきた理由の1つは、Tgの低いPEOの分子鎖が熱運動でLiイオンを動かす媒体となる能力が高いためである(例えば、非特許文献2参照)。   Therefore, a polymer solid electrolyte in which the ion conductor is solidified has been considered in order to completely prevent liquid leakage and to facilitate thinning and area enlargement, but ions are different from electrons. Since it has mass, it could not move freely in the solid, and a product with high ion conductivity could not be obtained. In 1975, Wright et al. Reported for the first time that a polymer solid electrolyte composed of a complex of polyethylene oxide (PEO) and an alkali metal salt exhibits relatively high ionic conductivity (see, for example, Non-Patent Document 1). This utilizes the advantage that the molecular chain moves like a liquid at a temperature of Tg or higher, which is a property unique to polymers, but macroscopically maintains its shape by a crosslinked structure. Then, in 1979, Armand et al. Proposed that a composite of PEO and a lithium salt could be applied to a lithium secondary battery, which is basically impossible with an electrolyte in which a Li salt is dissolved in an organic solvent such as ethylene carbonate or propylene carbonate. Attention has been focused on as a material that can completely suppress the risk of liquid leakage and ignition. Since then, many studies have been conducted focusing on PEO polymers. One of the reasons why polymers having a PEO skeleton have been frequently used is because the molecular chain of PEO having a low Tg has a high ability to serve as a medium for moving Li ions by thermal motion (for example, Non-Patent Document 2). reference).

しかしながら、イオン伝導度には限界があり、現在最も高いイオン伝導度を示す、柔軟なPEOを側鎖や分岐構造に導入したポリマーにおいても、高温度領域では比較的高いイオン伝導度を示すが、室温では十分なイオン伝導度を示すものはない。他方、PEO分子鎖の運動性を上げると強度や加工性の低下を伴う。PEO系高分子固体電解質で問題になる強度や加工性の低下を改善するために無機微粒子を複合化させる技術(例えば、特許文献2参照)や、無機微粒子を複合化することでイオン伝導性を向上させる技術(例えば、非特許文献3参照)などが報告されているものの、これらの材料系においてもイオン伝導度は温度による依存性が高いことからPEOの熱運動に基づくイオンの移動メカニズムが支配的であることが推察され、強度や加工性を維持しながらイオン伝導度を向上するには限界がある。   However, there is a limit to the ionic conductivity, and even in a polymer in which a flexible PEO is introduced into a side chain or a branched structure, which shows the highest ionic conductivity, a relatively high ionic conductivity is exhibited in a high temperature region. Nothing shows sufficient ionic conductivity at room temperature. On the other hand, increasing the mobility of the PEO molecular chain is accompanied by a decrease in strength and workability. In order to improve the strength and workability degradation that are a problem in PEO polymer solid electrolytes, the technology of compounding inorganic fine particles (see, for example, Patent Document 2) and ion conductivity by compounding inorganic fine particles Although technology to improve (for example, see Non-Patent Document 3) has been reported, the ion transport mechanism based on the thermal motion of PEO is dominant because the ion conductivity is highly dependent on temperature in these material systems. Therefore, there is a limit to improving ion conductivity while maintaining strength and workability.

一方、ナノメートルサイズのカチオン性無機微粒子を複合化した高分子フィルムに電解質塩を固溶化したものがイオン導伝性を向上させる効果があり、さらに、その高分子固体電解質フィルムを延伸すると、その効果が増大することが報告されている(例えば、特許文献3参照)。しかしながら、その高分子固体電解質フィルムにおいては、延伸前のイオン導電性はそれほど高くなく、高分子固体電解質として用いる場合には、延伸によるイオン伝導度の向上が必要とされる。また、ポリエーテルにも適用できるとの記載があるものの、どのようなポリエーテルを用いれば良いかについては、全く開示されていない。   On the other hand, a polymer film in which nanometer-sized cationic inorganic fine particles are compounded with a solid electrolyte solution has an effect of improving ion conductivity, and further, when the polymer solid electrolyte film is stretched, It has been reported that the effect is increased (for example, see Patent Document 3). However, in the polymer solid electrolyte film, the ionic conductivity before stretching is not so high, and when used as a polymer solid electrolyte, it is necessary to improve the ionic conductivity by stretching. Further, although there is a description that it can be applied to a polyether, it is not disclosed at all what kind of polyether should be used.

ポリマーリチウム電池、植谷慶雄著、シーエムシー、1999年、P59-70Polymer lithium battery, written by Yoshio Uetani, CMC, 1999, P59-70 化学と教育、49巻(6)、334−337(2001)Chemistry and Education, 49 (6), 334-337 (2001) Nature、394巻、456−458(1998)Nature, 394, 456-458 (1998) 特開2001−335707号公報JP 2001-335707 A 特開平10−340618号公報Japanese Patent Laid-Open No. 10-340618 特開2004−339422号公報JP 2004-339422 A

本発明の目的は、薄膜化や大型化などが容易で、加工しても高分子化合物(C)の長所を失うことなく、室温付近でも高いイオン伝導度を有する新規な高分子固体電解質フィルムを、延伸処理を必要とすることなく、提供することにある。   An object of the present invention is to provide a novel polymer solid electrolyte film that has a high ionic conductivity even near room temperature without losing the advantages of the polymer compound (C) even when processed, which can be easily reduced in thickness and size. It is to provide without requiring a stretching treatment.

本発明者らは、リン酸カルシウム微粒子をナノメートルサイズで側鎖にポリエーテルを有する高分子化合物(C)と複合化した有機/無機複合フィルムを作製することにより、上記目的にかなう材料になることを見出し、本発明に至った。すなわち、本発明は、
『[1]平均粒径500nm以下のリン酸カルシウム微粒子(A)、電解質塩(B)、側鎖にポリエーテルを有する高分子化合物(C)からなることを特徴とする高分子固体電解質フィルム、
[2]ポリエーテルが、オキシエチレン、オキシプロピレン、オキシテトラメチレンからなる群より選ばれる[1]記載の高分子固体電解質フィルム。
[3]更に、高分子化合物(C)が、カルボキシル基を有する、[2]記載の高分子固体電解質フィルム、
[4]電解質塩(B)が、アルカリ金属塩、4級アンモニウム塩、4級ホスホニウム塩から選ばれる1種以上の塩である、[1]〜[3]のいずれかに記載の高分子固体電解質フィルム、
[5]電解質塩(B)がリチウム塩である、[4]記載の高分子固体電解質フィルム、
[6]未延伸である[1]〜[6]のいずれかに記載の高分子固体電解質フィルム』
を得ることにある。
The inventors of the present invention have prepared a material for the above purpose by preparing an organic / inorganic composite film in which calcium phosphate fine particles are combined with a polymer compound (C) having a polyether in the side chain with a nanometer size. The headline, the present invention has been reached. That is, the present invention
[[1] A polymer solid electrolyte film comprising calcium phosphate fine particles (A) having an average particle size of 500 nm or less, an electrolyte salt (B), and a polymer compound (C) having a polyether in the side chain,
[2] The polymer solid electrolyte film according to [1], wherein the polyether is selected from the group consisting of oxyethylene, oxypropylene, and oxytetramethylene.
[3] The polymer solid electrolyte film according to [2], wherein the polymer compound (C) further has a carboxyl group,
[4] The polymer solid according to any one of [1] to [3], wherein the electrolyte salt (B) is one or more salts selected from alkali metal salts, quaternary ammonium salts, and quaternary phosphonium salts. Electrolyte film,
[5] The solid polymer electrolyte film according to [4], wherein the electrolyte salt (B) is a lithium salt,
[6] The polymer solid electrolyte film according to any one of [1] to [6], which is unstretched]
There is in getting.

本発明は、ナノメートルサイズのリン酸カルシウム微粒子を側鎖にポリエーテルを有する高分子化合物に分散する手法を見出し、さらに電解質塩(B)を固溶化したものがイオン導伝性を向上させる効果があることを見出し本発明に至った。   The present invention finds a technique of dispersing nanometer-sized calcium phosphate fine particles in a polymer compound having a polyether in the side chain, and further, a solid solution of the electrolyte salt (B) has an effect of improving ion conductivity. As a result, the present invention was reached.

リン酸カルシウム微粒子(A)
本発明で使用されるリン酸カルシウム微粒子(A)は、カチオン性微粒子であることが好ましい。微粒子がカチオン性であることは、便宜的には電気泳動法を用いた分散系でのゼータ電位測定により確かめることができ、電気泳動法を用いた分散系でのゼータ電位測定により、プラスのゼータ電位を示す微粒子を意味する。カチオン性微粒子が、アニオン性の高分子化合物(C)やアニオン性の界面活性剤などの低分子化合物を吸着した場合には、マイナスのゼータ電位を示す場合があるが、本発明で規定されるカチオン性微粒子とは、そのような高分子化合物(C)や低分子化合物が粒子表面に吸着されない状態でプラスのゼータ電位を示す微粒子も含まれる。また、微粒子のゼータ電位は、溶媒の種類や溶液pHにも影響を受けるものがある。本発明で使用されるリン酸カルシウム微粒子は、pH2以下、好ましくはpH5以下、より好ましくはpH7以下の条件下でプラスのゼータ電位を示すものである。
Calcium phosphate fine particles (A)
The calcium phosphate fine particles (A) used in the present invention are preferably cationic fine particles. Conveniently, the microparticles can be confirmed by measuring the zeta potential in a dispersion using electrophoresis, and by measuring the zeta potential in a dispersion using electrophoresis. It means a fine particle exhibiting a potential. When the cationic fine particles adsorb a low molecular compound such as an anionic polymer compound (C) or an anionic surfactant, it may exhibit a negative zeta potential, but is defined by the present invention. The cationic fine particles also include fine particles exhibiting a positive zeta potential in a state where such a polymer compound (C) or low molecular compound is not adsorbed on the particle surface. Further, the zeta potential of the fine particles is also affected by the type of solvent and the solution pH. The calcium phosphate fine particles used in the present invention exhibit a positive zeta potential under conditions of pH 2 or lower, preferably pH 5 or lower, more preferably pH 7 or lower.

また、本発明で使用されるリン酸カルシウム微粒子(A)は、平均粒径が500nm以下、好ましくは250nm以下である。平均粒径が500nmを越えるとイオン導伝性の改善効果が十分ではないため適当ではない。また、粒子形状は、球形、針状、柱状、不定形等いかなる形状でもかまわない。粒径分布についても、平均粒径が500nm以下であれば特に制限はない。ここで用いる粒径とは、粒子の形状が針状や柱状などの球形以外場合には長軸の平均粒径を示す。   The calcium phosphate fine particles (A) used in the present invention have an average particle size of 500 nm or less, preferably 250 nm or less. If the average particle diameter exceeds 500 nm, the effect of improving the ion conductivity is not sufficient, which is not suitable. The particle shape may be any shape such as a spherical shape, a needle shape, a column shape, or an indefinite shape. The particle size distribution is not particularly limited as long as the average particle size is 500 nm or less. The particle size used here indicates the average particle size of the major axis when the particle shape is other than a spherical shape such as a needle shape or a column shape.

本発明で使用されるリン酸カルシウムは、リン酸に由来する部分とカルシウム原子の合計が50重量%以上含まれるものである。例としてはヒドロキシアパタイト、フッ素アパタイト、塩素アパタイト、炭酸含有アパタイト、マグネシウム含有アパタイト、鉄含有アパタイト等のアパタイト化合物、リン酸三カルシウム等が挙げられる。   The calcium phosphate used in the present invention includes a portion derived from phosphoric acid and a total of 50% by weight of calcium atoms. Examples include hydroxyapatite, fluorapatite, chlorapatite, carbonate-containing apatite, magnesium-containing apatite, iron-containing apatite and other apatite compounds, tricalcium phosphate and the like.

本発明で使用されるリン酸カルシウムに含まれるアパタイト化合物は、基本組成がMx(RO)y Xz で表される。Mサイトがカルシウムイオン(Ca2+)、RO サイトがリン酸イオン(PO 3−)、Xサイトが水酸イオン(OH)の場合には、x=10、y=6、z=2となり、一般的にヒドロキシアパタイト(HAp)と呼ばれる化合物である。M、RO 、Xの各サイトは種々のイオン等と置換が可能であり、また、空孔ともなり得るものである。置換量および空孔量はそのイオン等の種類により異なるが、リン酸に由来する部分とカルシウム原子の合計が50重量%以上含まれていれば他のイオン等と置換されていても、空孔であっても差し支えない。リン酸に由来する部分とカルシウム原子の合計が50重量%を下回るとリン酸カルシウムとしての特性が失われることがあるために好ましくない。
Mサイトは基本的にCa2+であるが、置換可能なイオン種の例として、H 、Na、K 、H 、Sr2+、Ba2+、Cd2+、Pb2+、Zn2+、Mg2+、Fe2+、Mn2+、Ni2+、Cu2+、Hg2+、Ra2+、Al3+、Fe3+、Y3+、Ce3+、Nd3+、La3+、Dy3+、Eu3+、Zr4+等があげられる。RO サイトは基本的にPO 3−であるが、置換可能なイオン種の例として、SO4 2−、CO3 2−、HPO 2−、PO2−、AsO 3−、VO 3−、CrO 3−、BO 3−、SiO 4−、GeO 4−、BO 5−、AlO 5−、H4 O 4−等があげられる。Xサイトに入るイオン種や分子の例として、OH、F 、Cl 、Br 、I 、O2−、CO 2−、HO等があげられる。
The basic composition of the apatite compound contained in the calcium phosphate used in the present invention is represented by Mx (RO 4 ) y Xz. When the M site is calcium ion (Ca 2+ ), the RO 4 site is phosphate ion (PO 4 3− ), and the X site is hydroxide ion (OH ), x = 10, y = 6, z = 2 It is a compound generally called hydroxyapatite (HAp). Each site of M, RO 4 , and X can be replaced with various ions and can also be vacancies. The amount of substitution and the amount of vacancies vary depending on the type of ion, etc., but if the total of the portion derived from phosphoric acid and the calcium atom is contained in an amount of 50% by weight or more, the vacancies are substituted even if other ions are substituted. It doesn't matter. If the total of the portion derived from phosphoric acid and the calcium atom is less than 50% by weight, the properties as calcium phosphate may be lost, which is not preferable.
The M site is basically Ca 2+ , but examples of ion species that can be substituted include H + , Na + , K + , H 3 O + , Sr 2+ , Ba 2+ , Cd 2+ , Pb 2+ , Zn 2+ , Mg 2+ , Fe 2+ , Mn 2+ , Ni 2+ , Cu 2+ , Hg 2+ , Ra 2+ , Al 3+ , Fe 3+ , Y 3+ , Ce 3+ , Nd 3+ , La 3+ , Dy 3+ , Eu 3+ , Zr 4+, etc. It is done. The RO 4 site is basically PO 4 3− , but examples of ion species that can be substituted include SO4 2− , CO3 2− , HPO 4 2− , PO 3 F 2− , AsO 4 3− , and VO 4. 3- , CrO 4 3− , BO 3 3− , SiO 4 4− , GeO 4 4− , BO 4 5− , AlO 4 5− , H4O 4 4− and the like. Examples of ionic species and molecules that enter the X site include OH , F , Cl , Br , I , O 2− , CO 3 2− , H 2 O, and the like.

本発明の高分子固体電解質中に含まれるリン酸カルシウムは、結晶構造についてはいかなるものでもよく、非晶質でもよい。さらに、リン酸カルシウムの形状についても特に制限はなく、球形、針状、柱状、不定形等いかなる形状でもかまわない。   The calcium phosphate contained in the polymer solid electrolyte of the present invention may have any crystal structure and may be amorphous. Further, the shape of the calcium phosphate is not particularly limited, and may be any shape such as a spherical shape, a needle shape, a column shape, or an indefinite shape.

電解質塩(B)
本発明で使用される電解質塩(B)は、高分子固体電解質中での解離定数が大きいことが望ましく、LiCFSO、LiN(CFSO、LiPF、LiClO、LiI、LiBF、LiSCN、LiAsF、LiCl、NaCFSO、NaPF、NaClO4、NaI、NaBF、NaAsF、KCFSO、KPF、KIなどのアルカリ金属塩、(CHNBFなどの4級アンモニウム塩、(CHPBFなどの4級ホスホニウム塩、その他AgClOなどの金属塩が例示される。なかでも、LiCFSO、LiN(CFSO、LiPF、LiClO、LiI、LiBF、LiSCN、LiAsF、LiClなどのリチウム塩は、高い伝導度を得やすく好ましい。
Electrolyte salt (B)
The electrolyte salt (B) used in the present invention preferably has a large dissociation constant in the polymer solid electrolyte, and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiPF 6 , LiClO 4 , LiI, LiBF 4 , LiSCN, LiAsF 6 , LiCl, NaCF 3 SO 3 , NaPF 6 , NaClO 4 , NaI, NaBF 4 , NaAsF 6 , KCF 3 SO 3 , KPF 6 , KI and other alkali metal salts, (CH 3 B 4 4 And quaternary ammonium salts such as (CH 3 ) 4 PBF 4 , and other metal salts such as AgClO 4 . Among them, lithium salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiPF 6 , LiClO 4 , LiI, LiBF 4 , LiSCN, LiAsF 6 , and LiCl are preferable because high conductivity is easily obtained.

ポリエーテル系高分子化合物(C)
本発明で使用される側鎖にポリエーテルを有する高分子化合物(C)は、電解質塩(B)を高濃度に固溶化できるものであれば特に制限はされない。ポリエーテルの例としては、オキシエチレン、オキシプロピレン、オキシテトラメチレンの単独重合体あるいは共重合体で、側鎖の末端がメトキシ基やエトキシ基などのアルコキシ基や水酸基になっているものが挙げられる。ポリエーテルは、リチウム塩を溶解する能力が高く、さらに、Tgが低いため、分子鎖が熱運動でLiイオンを動かす媒体となる能力が高いため好ましい。
Polyether polymer (C)
The polymer compound (C) having a polyether in the side chain used in the present invention is not particularly limited as long as it can dissolve the electrolyte salt (B) at a high concentration. Examples of polyethers include homopolymers or copolymers of oxyethylene, oxypropylene, and oxytetramethylene, whose side chain ends are alkoxy groups such as methoxy groups and ethoxy groups, and hydroxyl groups. . Polyethers are preferred because they have a high ability to dissolve lithium salts and a low Tg, so that the molecular chain has a high ability to serve as a medium for moving Li ions by thermal motion.

主鎖骨格としては、側鎖にポリエーテルを導入できれば特に制限はなく、ポリアクリレート、ポリメタクリレート、ポリビニル、ポリホスファゼン、ポリシロキサン、ポリウレタンなどが挙げられるが、ポリアクリレート、ポリメタクリレートが原料の入手し易さの点から好ましい。ポリエーテル成分としては、重量比で30%以上が好ましく、特に好ましくは50%以上含まれる高分子化合物が好ましい。分子量は固体電解質として形状を保持できる大きさであれば特に問題はない。   The main chain skeleton is not particularly limited as long as polyether can be introduced into the side chain, and examples thereof include polyacrylate, polymethacrylate, polyvinyl, polyphosphazene, polysiloxane, and polyurethane. Polyacrylate and polymethacrylate are available as raw materials. It is preferable from the viewpoint of ease. The polyether component is preferably 30% or more by weight, particularly preferably a polymer compound containing 50% or more. There is no particular problem as long as the molecular weight is large enough to maintain the shape as a solid electrolyte.

側鎖のポリエーテルの分子量は、好ましくは20000〜100、さらに好ましくは、10000〜200が好ましい。分子量が20000を超えるとイオン伝導度が低下するため好ましくなく、分子量が200より小さくなると電解質塩(B)の溶解度が低下するため好ましくない。ポリエーテル系高分子化合物(C)が、カルボキシル基を有すると、リン酸カルシウム微粒子を分散させ易いため好ましい。カルボキシル基は、ポリエーテル系高分子化合物中のどの部位にあっても特に問題はない。   The molecular weight of the side chain polyether is preferably 20000 to 100, and more preferably 10,000 to 200. If the molecular weight exceeds 20000, the ionic conductivity decreases, which is not preferable. If the molecular weight is less than 200, the solubility of the electrolyte salt (B) decreases, which is not preferable. It is preferable that the polyether polymer compound (C) has a carboxyl group because the calcium phosphate fine particles are easily dispersed. The carboxyl group is not particularly problematic at any site in the polyether polymer compound.

高分子化合物(C)とリン酸カルシウム微粒子(A)との複合化
前記リン酸カルシウム微粒子(A)と側鎖にポリエーテルを有する高分子化合物(C)とは複合化することができ、ここでの複合化とは、側鎖にポリエーテルを有する高分子化合物(C)にリン酸カルシウム微粒子(A)が均一に分散している状態をいう。複合化させることで高分子固体電解質フィルムとして好ましいものが得られる。尚、高分子化合物(C)は、本発明の目的を損なわない範囲で種々の添加剤等を含んでいても良い。
Compounding of the polymer compound (C) and the calcium phosphate fine particles (A) The calcium phosphate fine particles (A) and the polymer compound (C) having a polyether in the side chain can be compounded, and the compounding is performed here. The term “calcium phosphate fine particles (A)” is uniformly dispersed in the polymer compound (C) having a polyether in the side chain. By compounding, a preferable polymer solid electrolyte film can be obtained. The polymer compound (C) may contain various additives and the like as long as the object of the present invention is not impaired.

リン酸カルシウム微粒子(A)を側鎖にポリエーテルを有する高分子化合物(C)に均一に分散する方法として、側鎖にポリエーテルを有する高分子化合物(C)にリン酸カルシウム微粒子(A)を溶融混錬する方法や、ポリエーテル系高分子化合物(C)溶液中にリン酸カルシウム微粒子(A)を混合して機械的に撹拌する方法や、あるいは側鎖にポリエーテルを有する高分子化合物(C)存在下にリン酸カルシウム微粒子(A)を生成させる方法などがあり、用いる高分子化合物(C)の種類により適宜選択される。それらの中でも、側鎖にポリエーテルを有する高分子化合物(C)存在下にリン酸カルシウム微粒子(A)を生成させる方法が好ましい。更には、側鎖にポリエーテルを有する高分子高分子化合物(C)がカルボキシル基をも有することが好ましく、そうすることで側鎖にポリエーテルを有する高分子化合物(C)へのリン酸カルシウム微粒子(A)の分散性が更に優れる。   As a method of uniformly dispersing the calcium phosphate fine particles (A) in the polymer compound (C) having a polyether in the side chain, the calcium phosphate fine particles (A) are melt-kneaded in the polymer compound (C) having a polyether in the side chain. A method of mixing calcium phosphate fine particles (A) in a polyether polymer compound (C) solution and mechanically stirring, or in the presence of a polymer compound (C) having a polyether in the side chain. There are methods for producing calcium phosphate fine particles (A), and the method is appropriately selected depending on the type of polymer compound (C) used. Among these, a method of forming calcium phosphate fine particles (A) in the presence of the polymer compound (C) having a polyether in the side chain is preferable. Furthermore, it is preferable that the polymer compound (C) having a polyether in the side chain also has a carboxyl group, so that the calcium phosphate fine particles ( The dispersibility of A) is further improved.

リン酸カルシウム微粒子(A)の製造方法は側鎖にポリエーテルを有する高分子化合物(C)存在下に製造可能な方法であればいかなる製造方法でもかまわないが、所謂湿式法(液相法又は沈殿法ともいう)が好ましい。湿式法は、カルシウム化合物(懸濁)水溶液とリン酸あるいはリン酸塩水溶液を混合することによりリン酸カルシウム微粒子(A)を合成する方法であり、一般的には両液を同時滴下か、一方の溶液の中へ他方の溶液を滴下する方式がとられる。滴下時間については特に制限はないが、概ね5分〜24時間である。反応は滴下終了後、必要に応じて熟成させる。   The production method of the calcium phosphate fine particles (A) may be any production method as long as it can be produced in the presence of the polymer compound (C) having a polyether in the side chain, but a so-called wet method (liquid phase method or precipitation method). Also referred to as). The wet method is a method of synthesizing calcium phosphate fine particles (A) by mixing a calcium compound (suspension) aqueous solution and phosphoric acid or a phosphate aqueous solution. A method of dropping the other solution into is taken. Although there is no restriction | limiting in particular about dripping time, It is 5 minutes-about 24 hours in general. The reaction is aged as necessary after completion of the dropping.

側鎖にポリエーテルを有する高分子化合物(C)は、リン酸カルシウム微粒子(A)が生成される反応液中に存在させればよく、カルシウム化合物(懸濁)水溶液、リン酸あるいはリン酸塩水溶液いずれかに混合しておいてもよいし、両方に混合しておいてもよい。また、両者とは別に独立して反応器の中へ連続的あるいは断続的に添加してもよい。   The polymer compound (C) having a polyether in the side chain may be present in the reaction solution in which the calcium phosphate fine particles (A) are generated, and either a calcium compound (suspension) aqueous solution, phosphoric acid or a phosphate aqueous solution may be used. May be mixed, or both may be mixed. Moreover, you may add continuously or intermittently into a reactor separately from both.

カルシウム化合物(懸濁)水溶液の合成に用いるカルシウム塩としては、塩化カルシウム、硝酸カルシウム、酢酸カルシウム、水酸化カルシウム、炭酸カルシウム、硫酸カルシウム・2水和物等があげられる。リン酸塩としては、リン酸2水素アンモニウム、リン酸水素2アンモニウム、およびアンモニウム塩以外のこれらのナトリウム、カリウム塩等があげられる。目的とする化合物以外の、反応に伴ない副生する有機あるいは無機塩は、用途によっては除去する必要があり、その際は透析など既知の方法で脱塩する。リン酸カルシウムを目的化合物とする場合には、水酸化カルシウムとリン酸を原料にすれば副生塩は発生しないため特に好ましい。また、リン酸カルシウムの中でもアパタイト構造をとるものはその構造の柔軟さから前述のように各種イオンと置換できることが知られており、必要に応じてカルシウムおよびリン酸以外のイオン種を含む化合物を併用することもできる。通常は反応溶液を所定温度に保つことにより反応を行う。反応中同一温度に保つ必要はなく、反応の進行にともない適宜変えてよく、必要に応じて加熱あるいは冷却しながら行う。反応温度により生成するリン酸カルシウム粒子の大きさが変化するため、反応温度を変えることにより粒径を変えることができ、その結果分散水溶液から作製されるフィルムの透明性を加減することも可能である。反応温度は概ね5〜95℃の範囲にある。反応器内の雰囲気は特に限定はなく通常は空気中で行われるが、リン酸カルシウムの組成をコントロールするには窒素ガスのような不活性ガスで置換した方がよい。合成時間は特に限定はないが、滴下、熟成時間を合わせて概ね1〜120時間である。   Examples of the calcium salt used for the synthesis of the calcium compound (suspension) aqueous solution include calcium chloride, calcium nitrate, calcium acetate, calcium hydroxide, calcium carbonate, calcium sulfate dihydrate, and the like. Examples of the phosphate include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and sodium and potassium salts other than ammonium salts. Organic or inorganic salts that are by-produced during the reaction other than the target compound must be removed depending on the application, and in that case, they are desalted by a known method such as dialysis. When calcium phosphate is used as the target compound, it is particularly preferable that calcium hydroxide and phosphoric acid are used as raw materials because no by-product salt is generated. Also, among calcium phosphates, those having an apatite structure are known to be able to replace various ions as described above due to the flexibility of the structure, and if necessary, compounds containing ionic species other than calcium and phosphate are used in combination. You can also. Usually, the reaction is carried out by keeping the reaction solution at a predetermined temperature. It is not necessary to maintain the same temperature during the reaction, and it may be appropriately changed as the reaction proceeds, and is performed while heating or cooling as necessary. Since the size of the calcium phosphate particles produced varies depending on the reaction temperature, the particle size can be changed by changing the reaction temperature, and as a result, the transparency of the film produced from the aqueous dispersion can be adjusted. The reaction temperature is generally in the range of 5 to 95 ° C. The atmosphere in the reactor is not particularly limited and is usually carried out in air. However, in order to control the composition of calcium phosphate, it is better to substitute with an inert gas such as nitrogen gas. The synthesis time is not particularly limited, but is generally 1 to 120 hours including the dropping and aging time.

攪拌方法については、均一に混合される方法であれば特に制限はなく、例として回転による方法、超音波による方法等があげられる。攪拌羽根を用いたバッチ式の反応容器を用いる場合、攪拌羽根の形状や溶液粘度等に影響されるため一概にはいえないが、攪拌速度は概ね30〜10000rpmの範囲である。   The stirring method is not particularly limited as long as it is a uniformly mixed method, and examples thereof include a rotation method and an ultrasonic method. In the case of using a batch-type reaction vessel using a stirring blade, it is unclear because it is affected by the shape of the stirring blade, the solution viscosity, and the like, but the stirring speed is generally in the range of 30 to 10,000 rpm.

反応溶媒としては水を用いるが、メタノール、エタノール、イソプロパノール、アセトン、エチレングリコール、プロピレングリコール、グリセリン等の有機溶剤を併用してもよい。   Although water is used as the reaction solvent, an organic solvent such as methanol, ethanol, isopropanol, acetone, ethylene glycol, propylene glycol, or glycerin may be used in combination.

複合化する際の濃度は特に制限はないが、リン酸カルシウム微粒子(A)と側鎖にポリエーテルを有する高分子化合物(C)の固形分を合わせて反応溶液全体に対して概ね0.5〜60重量%の範囲であり、好ましくは1〜50重量%の範囲にある。50重量%を越えると反応溶液の粘度が高くなり、取り扱いが困難となる場合がある。リン酸カルシウム微粒子(A)は、反応時のpHにより生成するリン酸カルシウム微粒子(A)の種類が異なるため、特定の種を製造する場合にはpHを調整しながら行うこともある。pH調整はアンモニアガス、アンモニア水、水酸化ナトリウム、水酸化カリウム等により行うことができる。特に、(1)目的化合物がpH変化により溶解する場合、(2)カルボキシル基の解離状態変化により複合体が分離するような場合には厳密にpH調整を行う必要がある。例えば、ヒドロキシアパタイト(リン酸カルシウム)の場合には、反応後は(2)の理由からpH5以下にならないように適宜アルカリを添加して調整する。   The concentration at the time of complexing is not particularly limited, but the total solid content of the calcium phosphate fine particles (A) and the polymer compound (C) having a polyether in the side chain is approximately 0.5 to 60 with respect to the entire reaction solution. It is in the range of wt%, preferably in the range of 1-50 wt%. If it exceeds 50% by weight, the viscosity of the reaction solution becomes high and handling may be difficult. Since the type of calcium phosphate fine particles (A) produced by the calcium phosphate fine particles (A) varies depending on the pH at the time of reaction, when producing a specific species, the pH may be adjusted. The pH can be adjusted with ammonia gas, aqueous ammonia, sodium hydroxide, potassium hydroxide or the like. In particular, it is necessary to strictly adjust pH when (1) the target compound is dissolved by pH change, or (2) the complex is separated by change in the dissociation state of the carboxyl group. For example, in the case of hydroxyapatite (calcium phosphate), an alkali is appropriately added after the reaction so that the pH does not become 5 or less for the reason of (2).

かくして得られる側鎖にポリエーテルを有する高分子化合物(C)とリン酸カルシウム微粒子(A)とからなる分散水溶液は均一なエマルション溶液であり、長時間静置しておいても沈降、分離を起こさない安定な溶液である。ここで言う安定性に優れるものとは、製造後沈降あるいは分離する固形物重量が、1ケ月経過した時点で1重量%以下のもの、あるいは2000rpmで10分間遠心処理を行っても沈降や分離を起こさないものを言う。   The dispersion aqueous solution composed of the polymer compound (C) having a polyether in the side chain and the calcium phosphate fine particles (A) thus obtained is a uniform emulsion solution, and does not cause sedimentation or separation even after standing for a long time. It is a stable solution. The term "excellent in stability" as used herein means that the weight of solid matter that settles or separates after production is 1% by weight or less after one month has passed, or sedimentation or separation occurs even after centrifugation at 2000 rpm for 10 minutes. Say something that doesn't happen.

高分子固体電解質フィルム
本発明の高分子固体電解質フィルムは、平均粒径500nm以下のリン酸カルシウム微粒子(A)を高分子化合物(C)の中に分散させた基材に、電解質塩(B)を相溶させた構成になっている。すなわち、リン酸カルシウム微粒子(A)、電解質塩(B)及び高分子化合物(C)が複合化した状態になっている。リン酸カルシウム微粒子(A)と高分子化合物(C)の界面では、リン酸カルシウム微粒子(A)表面と電解質塩(B)のアニオンとの相互作用が向上するため、カチオンがフリーイオンとなって移動しやすくなっているものと考えられる。また、リン酸カルシウム微粒子(A)の粒径をナノサイズにして均一に分散させると、界面の比率が飛躍的に増大し、その結果界面の効果が強調されて大きなイオン導伝性が発現するものと考えられる。
Polymer Solid Electrolyte Film The polymer solid electrolyte film of the present invention comprises a base material in which calcium phosphate fine particles (A) having an average particle size of 500 nm or less are dispersed in a polymer compound (C), and an electrolyte salt (B) as a phase. It has a melted structure. That is, the calcium phosphate fine particles (A), the electrolyte salt (B), and the polymer compound (C) are in a composite state. At the interface between the calcium phosphate fine particles (A) and the polymer compound (C), the interaction between the surface of the calcium phosphate fine particles (A) and the anion of the electrolyte salt (B) is improved, so that the cations become free ions and easily move. It is thought that. Moreover, when the particle size of the calcium phosphate fine particles (A) is made nano-sized and uniformly dispersed, the ratio of the interface increases dramatically, and as a result, the effect of the interface is emphasized and a large ion conductivity is expressed. Conceivable.

リン酸カルシウム微粒子(A)と電解質塩(B)と高分子化合物(C)の比率は、高分子化合物(C)や電解質塩(B)の種類により異なるが、フィルムの強度に問題がない場合には、重量比でそれぞれ5〜45:10〜60:25〜85の範囲にある。高分子固体電解質中のリン酸カルシウム微粒子(A)の量は好ましくは5〜45重量%、より好ましくは10〜40重量%である。高分子固体電解質中の電解質塩(B)の量は好ましくは10〜60重量%、より好ましくは15〜60重量%である。一般には電解質塩(B)濃度が高くなるほどキャリヤ量が増えるため電導度が向上するが、高分子化合物(C)によっては電解質塩(B)が高分子の架橋点として作用して高分子化合物(C)の高分子鎖の柔軟性を失わせることがあり、その結果イオン移動度が低下するため、添加率には最適範囲が存在する。   The ratio of the calcium phosphate fine particles (A), the electrolyte salt (B), and the polymer compound (C) varies depending on the types of the polymer compound (C) and the electrolyte salt (B), but there is no problem in the strength of the film. The weight ratio is in the range of 5-45: 10-60: 25-85, respectively. The amount of the calcium phosphate fine particles (A) in the polymer solid electrolyte is preferably 5 to 45% by weight, more preferably 10 to 40% by weight. The amount of the electrolyte salt (B) in the polymer solid electrolyte is preferably 10 to 60% by weight, more preferably 15 to 60% by weight. In general, the higher the electrolyte salt (B) concentration, the greater the carrier amount and the higher the conductivity. However, depending on the polymer compound (C), the electrolyte salt (B) acts as a polymer cross-linking point, and the polymer compound ( Since the flexibility of the polymer chain of C) may be lost and, as a result, the ion mobility is lowered, there is an optimum range for the addition rate.

本発明の固体高分子電解質フィルムは、本発明の目的を損なわない範囲で、非水電解液電池に通常使用される溶媒や可塑剤を含んでいても良い。溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、γブチロラクトン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ビニレンカーボネート、プロピオン酸メチル、酢酸エチル、ジメトキシエタンなどが挙げられる。   The solid polymer electrolyte film of the present invention may contain a solvent or a plasticizer that is usually used in a non-aqueous electrolyte battery as long as the object of the present invention is not impaired. Examples of the solvent include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, vinylene carbonate, methyl propionate, ethyl acetate, dimethoxyethane, and the like.

本発明の高分子電解質フィルムは、リン酸カルシウム微粒子(A)と電解質塩(B)とポリエーテルを側鎖に有する高分子化合物(C)とを複合化したものであり、複合化したものが溶融状態の場合はそのまま押出し成形してフィルム状に加工することができる。また、ペレット状や粉末状に加工した後に、ホットプレス法などでフィルム状にすることもできる。溶媒中で複合化されるものは、キャスト法で作製し、ガラス、石英、金属、セラミックス、プラスチック、ゴム等の基板、ロール、ベルト等の上に上記の安定な分散液を塗布・製膜し、必要に応じて加熱、減圧、送気、赤外線照射、マイクロ波照射等の処理を行って溶剤を蒸発させることにより製造することができる。塗布方法は特に制限はなく、流し塗り法、浸漬法、スプレー法等があり、バーコーター、スピンコーター、ナイフコーター、ブレードコーター、カーテンコーター、グラビアコーター、スプレーコーター等の公知の塗工機を使用できる。塗布厚み(乾燥前の厚み)は概ね1μm〜10mmで、塗布法の選択により任意に厚みを設定できる。溶剤を蒸発させる温度は0〜200℃の温度範囲で行い、常圧あるいは減圧下に行う。その際に乾燥空気あるいは乾燥窒素を流通させて乾燥時間を短縮することができる。このフィルムを基材から剥がして使用する場合には、プラスチック製の基材を用いると離型性が良好であるが、その他の基材を用いる場合にも必要に応じて各素材に公知の離型剤を予め塗布するとよい。これらのフィルムを作製する過程では、水の混入を極力避けるために、乾燥雰囲気下に実施されることが望ましい。   The polymer electrolyte film of the present invention is a composite of calcium phosphate fine particles (A), an electrolyte salt (B), and a polymer compound (C) having a polyether in the side chain, and the composite is in a molten state. In this case, it can be extruded and processed into a film. Moreover, after processing into a pellet form or a powder form, it can also be made into a film form by a hot press method or the like. The compound to be compounded in a solvent is prepared by a casting method, and the above-mentioned stable dispersion is applied to a glass, quartz, metal, ceramics, plastic, rubber substrate, roll, belt, etc. and formed into a film. If necessary, it can be produced by evaporating the solvent by performing treatments such as heating, decompression, air supply, infrared irradiation and microwave irradiation. The coating method is not particularly limited, and there are a flow coating method, a dipping method, a spray method, etc., and a known coating machine such as a bar coater, a spin coater, a knife coater, a blade coater, a curtain coater, a gravure coater, or a spray coater is used. it can. The coating thickness (thickness before drying) is approximately 1 μm to 10 mm, and the thickness can be arbitrarily set by selecting a coating method. The temperature for evaporating the solvent is in the temperature range of 0 to 200 ° C., and is performed under normal pressure or reduced pressure. At that time, the drying time can be shortened by circulating dry air or dry nitrogen. When the film is peeled off from the base material, the release property is good when a plastic base material is used. However, when other base materials are used, a known release may be applied to each material as necessary. A mold may be applied in advance. In the process of producing these films, it is desirable to carry out in a dry atmosphere in order to avoid mixing water as much as possible.

本発明の高分子固体電解質フィルムは、電気化学デバイスに用いることができ、例えば、リチウムイオン電池、電気二重層キャパシター、燃料電池、二次電池電極用結着剤、色素増感型太陽電池、アクチュエーター、エクトロクロミック等が挙げられる。   The polymer solid electrolyte film of the present invention can be used in electrochemical devices, such as lithium ion batteries, electric double layer capacitors, fuel cells, binders for secondary battery electrodes, dye-sensitized solar cells, actuators. , Ectochromic and the like.

以下に、実施例で本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、以下の例において用いる%は特記のない限り重量基準を示す。測定した高分子電解質を構成するポリマーの種類、当該ポリマーに対するリン酸カルシウム濃度(%)、リチウムイオン原子と当該ポリマーのモル比、及び、高分子電解質のイオン伝道度(S/m)を示す。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Moreover,% used in the following examples indicates a weight basis unless otherwise specified. The type of polymer constituting the measured polymer electrolyte, the calcium phosphate concentration (%) with respect to the polymer, the molar ratio of lithium ion atoms to the polymer, and the ionic conductivity (S / m) of the polymer electrolyte are shown.

[イオン電導度測定]
電極として金を蒸着したガラス基板上にスピンキャストにより高分子固体電解質フィルムを作製し、その上に金を真空蒸着して電極とし、さらにその電極の外側にリング状に金を蒸着し、アースにつないで表面電流による影響を受けないようにした。内側の電極間に交流を印加して抵抗部分を測定する交流インピーダンス法を用いて伝導度の測定を行ない、コール・コールプロットの実数インピーダンス切片から計算して求めた。測定は電極を真空下に保持して、室温にて行った。
[Ion conductivity measurement]
A polymer solid electrolyte film is produced by spin casting on a glass substrate on which gold is deposited as an electrode, and gold is vacuum-deposited thereon to form an electrode. It was made not to be affected by the surface current. Conductivity was measured using an alternating current impedance method in which an alternating current was applied between the inner electrodes and the resistance portion was measured, and calculated from a real impedance intercept of the Cole-Cole plot. The measurement was performed at room temperature with the electrode held under vacuum.

[リン酸カルシウム粒子の粒径測定]
複合化した分散水溶液を適宜希釈し、コロジオン膜張銅メッシュ上で乾燥した試料を透過型電子顕微鏡により観察し、紡錘状粒子の長軸径を直接計測することにより求めた。
[Measurement of particle size of calcium phosphate particles]
The complex aqueous dispersion was appropriately diluted, and the sample dried on the collodion film-clad copper mesh was observed with a transmission electron microscope, and the major axis diameter of the spindle-shaped particles was directly measured.

[合成例1]
エチレンオキシドを側鎖に有するメタクリレートモノマーM-90G(新中村化学工業製)15g、アクリル酸0.2567g、トルエン85gを300mlの三口フラスコに入れ、良く混合した後、重合開始剤AIBN0.059gを加えた。この溶液に30分以上、窒素を通して、窒素置換した後に、オイルバスで70℃まで加温し、5時間重合を行った。ついで、80℃で1時間攪拌した後に、ヘキサンで再沈殿を行い高分子化合物を得た。得られた高分子化合物はエチレンオキシドを側鎖に有する高分子(EOMA−AA10)である。
[Synthesis Example 1]
15 g of a methacrylate monomer M-90G having a side chain of ethylene oxide (manufactured by Shin-Nakamura Chemical Co., Ltd.), 0.2567 g of acrylic acid and 85 g of toluene were placed in a 300 ml three-necked flask and mixed well, and then 0.059 g of polymerization initiator AIBN was added. This solution was purged with nitrogen for 30 minutes or more, and then heated to 70 ° C. in an oil bath and polymerized for 5 hours. Subsequently, after stirring at 80 ° C. for 1 hour, reprecipitation with hexane was performed to obtain a polymer compound. The obtained polymer compound is a polymer (EOMA-AA10) having ethylene oxide in the side chain.

[合成例2]
アクリル酸を0.5776gとした以外は合成例1と同様にして高分子化合物を得た。得られた高分子化合物はエチレンオキシドを側鎖に有する高分子(EOMA−AA20)である。
[Synthesis Example 2]
A polymer compound was obtained in the same manner as in Synthesis Example 1 except that 0.5776 g of acrylic acid was used. The obtained polymer compound is a polymer (EOMA-AA20) having ethylene oxide in the side chain.

[合成例3]
合成例1で得られたEOMA-AA10を予め蒸留水で溶解して得られたEOMA-AA10水溶液(17.68%)13.86g 、蒸留水43.12g、イソプロピルアルコール1.75gを300mlの三口フラスコに入れ、水酸化カルシウム0.774gを攪拌しながら加えて懸濁液とした。メカニカルスターラーで攪拌速度300rpmにて攪拌しながら、10.5%リン酸水溶液5.85g 、蒸留水4.65gを混合溶解した水溶液を、ミクロチューブポンプを用いて連続的に1時間かけて添加した。添加後さらに15分間攪拌を行ない、EOMA-AA10とリン酸カルシウム微粒子との分散水溶液(重量比70:30)を得た。得られた溶液は、沈降物の生成がほとんど認められず、数週間静置しても分離、沈降等の変化を起こさずに安定であった。反応液の固形分濃度は5.0%であった。リン酸カルシウム微粒子の粒径は50〜300nmであった。
[Synthesis Example 3]
13.86 g of EOMA-AA10 aqueous solution (17.68%) obtained by previously dissolving EOMA-AA10 obtained in Synthesis Example 1 with distilled water, 43.12 g of distilled water and 1.75 g of isopropyl alcohol were placed in a 300 ml three-necked flask, and water was added. 0.774 g of calcium oxide was added with stirring to form a suspension. While stirring with a mechanical stirrer at a stirring speed of 300 rpm, an aqueous solution obtained by mixing and dissolving 5.85 g of a 10.5% phosphoric acid aqueous solution and 4.65 g of distilled water was continuously added over 1 hour using a microtube pump. After the addition, the mixture was further stirred for 15 minutes to obtain a dispersed aqueous solution (weight ratio 70:30) of EOMA-AA10 and calcium phosphate fine particles. The resulting solution showed almost no sediment formation, and was stable without causing changes such as separation and sedimentation even after standing for several weeks. The solid content concentration of the reaction solution was 5.0%. The particle diameter of the calcium phosphate fine particles was 50 to 300 nm.

[合成例4]
「合成例1で得られたEOMA-AA10を予め蒸留水で溶解して得られたEOMA-AA10水溶液(17.68%)13.86g、蒸留水43.12g」を、「合成例2で得られたEOMA-AA20水溶液(12.10%)20.25g、蒸留水を36.73g」とした以外は合成例3と同様にして、EOMA-AA20とリン酸カルシウム微粒子との分散水溶液(重量比70:30)を得た。
得られた溶液は、沈降物の生成がほとんど認められず、数週間静置しても分離、沈降等の変化を起こさずに安定であった。反応液の固形分濃度は5.0%であった。リン酸カルシウム微粒子の粒径は30〜300nmであった。
[Synthesis Example 4]
"EOMA-AA10 aqueous solution (17.68%) 13.86 g obtained by dissolving EOMA-AA10 obtained in Synthesis Example 1 in advance with distilled water, 43.12 g distilled water" was obtained as "EOMA-AA10 obtained in Synthesis Example 2". A dispersion aqueous solution (weight ratio 70:30) of EOMA-AA20 and calcium phosphate fine particles was obtained in the same manner as in Synthesis Example 3 except that 20.25 g of AA20 aqueous solution (12.10%) and 36.73 g of distilled water were used.
The resulting solution showed almost no sediment formation, and was stable without causing changes such as separation and sedimentation even after standing for several weeks. The solid content concentration of the reaction solution was 5.0%. The particle diameter of the calcium phosphate fine particles was 30 to 300 nm.

[比較合成例1]
「合成例1で得られたEOMA-AA10を予め蒸留水で溶解して得られたEOMA-AA10水溶液(17.68%)13.86g、蒸留水43.12g」を、「予め蒸留水で溶解しておいた分子量60万のポリエチレンオキシド(Aldrich製)水溶液(10.00%)24.50g」とした以外は合成例3と同様にして、PEOとリン酸カルシウム微粒子との水溶液(重量比70:30)を得た。得られた溶液中で、PEOとリン酸カルシウム微粒子とが複合したものが沈殿していた。
[Comparative Synthesis Example 1]
“EOMA-AA10 aqueous solution (17.68%) 13.86 g obtained by dissolving EOMA-AA10 obtained in Synthesis Example 1 in advance with distilled water, 43.12 g distilled water” was “previously dissolved in distilled water. An aqueous solution (weight ratio 70:30) of PEO and calcium phosphate fine particles was obtained in the same manner as in Synthesis Example 3 except that the aqueous solution was a polyethylene oxide (manufactured by Aldrich) having a molecular weight of 600,000 (10.00%) 24.50 g. In the obtained solution, a composite of PEO and calcium phosphate fine particles was precipitated.

[実施例1]
合成例3で得られたEOMA-AA10とリン酸カルシウム微粒子との分散水溶液(重量比70:30)14.29gに、13.74%のLi N(SO2CF32水溶液1.518gを加え、室温で30分間攪拌した後、水溶液をシャーレに移し乾燥し、EOMA-AA10とリン酸カルシウム微粒子とLi N(SO2CF32からなる固形物を得た。この固形物を10%の濃度になるようにシクロペンタノンに溶解後、その溶液をスピンキャストすることにより、電極として金を蒸着したガラス基板上に高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Example 1]
To 14.29 g of an aqueous dispersion (weight ratio 70:30) of EOMA-AA10 obtained in Synthesis Example 3 and calcium phosphate fine particles, 1.518 g of a 13.74% Li N (SO 2 CF 3 ) 2 aqueous solution was added, After stirring at room temperature for 30 minutes, the aqueous solution was transferred to a petri dish and dried to obtain a solid material composed of EOMA-AA10, calcium phosphate fine particles and Li N (SO 2 CF 3 ) 2 . This solid material was dissolved in cyclopentanone to a concentration of 10%, and then the solution was spin cast to produce a solid polymer electrolyte film on a glass substrate on which gold was deposited as an electrode. Ionic conductivity was measured.

[実施例2]
13.74%のLi N(SO2CF32水溶液を3.038gとした以外は実施例1と同様にして、固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Example 2]
A solid electrolyte film was produced in the same manner as in Example 1 except that the amount of the 13.74% Li N (SO 2 CF 3 ) 2 aqueous solution was changed to 3.038 g, and the lithium ion conductivity of the film was measured.

[実施例3]
13.74%のLi N(SO2CF32水溶液を6.075gとした以外は実施例1と同様にして、高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Example 3]
A polymer solid electrolyte film was produced in the same manner as in Example 1 except that 6.075 g of the 13.74% Li N (SO 2 CF 3 ) 2 aqueous solution was used, and the lithium ion conductivity of the film was measured.

[実施例4]
合成例4で得られたEOMA-AA20とリン酸カルシウム微粒子(70:30)溶液14.29gに、13.74%のLi N(SO2CF32水溶液2.975gを加え、室温で30分間攪拌した後、水溶液をシャーレに移し乾燥し、EOMA-AA20とリン酸カルシウム微粒子とLi N(SO2CF32からなる固形物を得た。この固形物を10%の濃度になるようにシクロペンタノンに溶解後、その溶液をスピンキャストすることにより、電極として金を蒸着したガラス基板上に高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Example 4]
To 14.29 g of the EOMA-AA20 and calcium phosphate fine particle (70:30) solution obtained in Synthesis Example 4, 2.975 g of a 13.74% LiN (SO 2 CF 3 ) 2 aqueous solution was added, and the mixture was stirred at room temperature for 30 minutes. After that, the aqueous solution was transferred to a petri dish and dried to obtain a solid consisting of EOMA-AA20, calcium phosphate fine particles, and Li N (SO 2 CF 3 ) 2 . This solid material was dissolved in cyclopentanone to a concentration of 10%, and then the solution was spin cast to produce a solid polymer electrolyte film on a glass substrate on which gold was deposited as an electrode. Ionic conductivity was measured.

[実施例5]
13.74%のLi N(SO2CF32水溶液を5.950gとした以外は実施例4と同様にして、高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Example 5]
A polymer solid electrolyte film was prepared in the same manner as in Example 4 except that the amount of the 13.74% Li N (SO 2 CF 3 ) 2 aqueous solution was changed to 5.950 g, and the lithium ion conductivity of the film was measured.

[比較例1]
合成例1で得られたEOMA-AA10を5.0%の濃度になるよう水に溶解した。得られた5%水溶液5.00gに、5%のLi N(SO2CF32水溶液2.91gを加え、室温で30分間攪拌した後、水溶液をシャーレに移し乾燥し、EOMA-AA10とLi N(SO2CF32からなる固形物を得た。この固形物を10%の濃度になるようにシクロペンタノンに溶解後、その溶液をスピンキャストすることにより、電極として金を蒸着したガラス基板上に高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Comparative Example 1]
EOMA-AA10 obtained in Synthesis Example 1 was dissolved in water to a concentration of 5.0%. After adding 2.91 g of 5% Li N (SO 2 CF 3 ) 2 aqueous solution to 5.00 g of the obtained 5% aqueous solution and stirring at room temperature for 30 minutes, the aqueous solution was transferred to a petri dish and dried, and EOMA-AA10 and Li N A solid consisting of (SO 2 CF 3 ) 2 was obtained. This solid material was dissolved in cyclopentanone to a concentration of 10%, and then the solution was spin cast to produce a solid polymer electrolyte film on a glass substrate on which gold was deposited as an electrode. Ionic conductivity was measured.

[比較例2]
合成例3で得られたEOMA-AA10とリン酸カルシウム微粒子との分散水溶液(重量比70:30)をシャーレに移し乾燥し、EOMA-AA10とLi N(SO2CF32からなる固形物を得た。この固形物を10%の濃度になるようにシクロペンタノンに溶解後、その溶液をスピンキャストすることにより、電極として金を蒸着したガラス基板上に高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。しかしながら、伝導度が低く測定することはできなかった。
[Comparative Example 2]
The aqueous dispersion (weight ratio 70:30) of EOMA-AA10 and calcium phosphate fine particles obtained in Synthesis Example 3 is transferred to a petri dish and dried to obtain a solid material composed of EOMA-AA10 and Li N (SO 2 CF 3 ) 2. It was. This solid material was dissolved in cyclopentanone to a concentration of 10%, and then the solution was spin cast to produce a solid polymer electrolyte film on a glass substrate on which gold was deposited as an electrode. Ionic conductivity was measured. However, the conductivity was low and could not be measured.

[比較例3]
合成例1で得られたEOMA-AA10を10%の濃度になるようにシクロペンタノンに溶解後、その溶液をスピンキャストすることにより、電極として金を蒸着したガラス基板上に高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。しかしながら、伝導度が低く測定することはできなかった。
[Comparative Example 3]
After dissolving EOMA-AA10 obtained in Synthesis Example 1 in cyclopentanone to a concentration of 10%, the solution is spin-cast to form a polymer solid electrolyte film on a glass substrate on which gold is deposited as an electrode The lithium ion conductivity of the film was measured. However, the conductivity was low and could not be measured.

[比較例4]
分子量60万のポリエチレンオキシド(PEO、Aldrich製)水溶液(4.96%)3.735gに、20%のLi N(SO2CF32水溶液0.5053gを加え、室温で30分間攪拌した後、水溶液をシャーレに移し乾燥し、PEOとLi N(SO2CF32からなる固形物を得た。この固形物を10%の濃度になるようにシクロペンタノンに溶解後、その溶液をスピンキャストし、電極として金を蒸着したガラス基板上に高分子固体電解質フィルムを作製し、フィルムのリチウムイオン伝導度を測定した。
[Comparative Example 4]
0.5053 g of 20% Li N (SO 2 CF 3 ) 2 aqueous solution was added to 3.735 g of polyethylene oxide (PEO, Aldrich) aqueous solution (4.96%) having a molecular weight of 600,000 and stirred at room temperature for 30 minutes. Was transferred to a petri dish and dried to obtain a solid material composed of PEO and Li N (SO 2 CF 3 ) 2 . This solid is dissolved in cyclopentanone to a concentration of 10%, and then the solution is spin cast to produce a solid polymer electrolyte film on a glass substrate on which gold is deposited as an electrode. The degree was measured.

Figure 2008186731
Figure 2008186731

Claims (6)

平均粒径500nm以下のリン酸カルシウム微粒子(A)、電解質塩(B)、側鎖にポリエーテルを有する高分子化合物(C)からなることを特徴とする高分子固体電解質フィルム。 A polymer solid electrolyte film comprising calcium phosphate fine particles (A) having an average particle size of 500 nm or less, an electrolyte salt (B), and a polymer compound (C) having a polyether in a side chain. オキシエチレン、オキシプロピレン、オキシテトラメチレンからなる群より選ばれる請求項1記載の高分子固体電解質フィルム。 The polymer solid electrolyte film according to claim 1, which is selected from the group consisting of oxyethylene, oxypropylene, and oxytetramethylene. 更に、高分子化合物(C)が、カルボキシル基を有する、請求項2記載の高分子固体電解質フィルム。 The polymer solid electrolyte film according to claim 2, wherein the polymer compound (C) has a carboxyl group. 電解質塩(B)が、アルカリ金属塩、4級アンモニウム塩、4級ホスホニウム塩から選ばれる1種以上の塩である、請求項1〜3のいずれかに記載の高分子固体電解質フィルム。 The polymer solid electrolyte film according to any one of claims 1 to 3, wherein the electrolyte salt (B) is at least one salt selected from alkali metal salts, quaternary ammonium salts, and quaternary phosphonium salts. 電解質塩(B)がリチウム塩である、請求項4記載の高分子固体電解質フィルム。 The polymer solid electrolyte film according to claim 4, wherein the electrolyte salt (B) is a lithium salt. 未延伸である請求項1〜6のいずれかに記載の高分子固体電解質フィルム。 The polymer solid electrolyte film according to any one of claims 1 to 6, which is unstretched.
JP2007019701A 2007-01-30 2007-01-30 Solid polymer electrolyte film Pending JP2008186731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019701A JP2008186731A (en) 2007-01-30 2007-01-30 Solid polymer electrolyte film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019701A JP2008186731A (en) 2007-01-30 2007-01-30 Solid polymer electrolyte film

Publications (1)

Publication Number Publication Date
JP2008186731A true JP2008186731A (en) 2008-08-14

Family

ID=39729622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019701A Pending JP2008186731A (en) 2007-01-30 2007-01-30 Solid polymer electrolyte film

Country Status (1)

Country Link
JP (1) JP2008186731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172383A (en) * 2010-02-18 2011-09-01 Univ Of Fukui Polymer actuator and method of manufacturing the same
WO2012160763A1 (en) * 2011-05-23 2012-11-29 株式会社豊田自動織機 Lithium-ion rechargeable battery electrode and method for producing same, and lithium-ion rechargeable battery using said electrode
JP2015176663A (en) * 2014-03-13 2015-10-05 三菱マテリアル株式会社 Screening method for ionic compound imparting conductivity to resin compound
CN108933271A (en) * 2017-05-29 2018-12-04 松下知识产权经营株式会社 flow battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172383A (en) * 2010-02-18 2011-09-01 Univ Of Fukui Polymer actuator and method of manufacturing the same
WO2012160763A1 (en) * 2011-05-23 2012-11-29 株式会社豊田自動織機 Lithium-ion rechargeable battery electrode and method for producing same, and lithium-ion rechargeable battery using said electrode
JPWO2012160763A1 (en) * 2011-05-23 2014-07-31 株式会社豊田自動織機 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
JP5668845B2 (en) * 2011-05-23 2015-02-12 株式会社豊田自動織機 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
US9337477B2 (en) 2011-05-23 2016-05-10 Kabushiki Kaisha Toyota Jidoshokki Lithium secondary battery electrode including coated layer having acrylic copolymer chemically bonded to binder of active material layer and manufacturing process for the same
JP2015176663A (en) * 2014-03-13 2015-10-05 三菱マテリアル株式会社 Screening method for ionic compound imparting conductivity to resin compound
CN108933271A (en) * 2017-05-29 2018-12-04 松下知识产权经营株式会社 flow battery
JP2018200868A (en) * 2017-05-29 2018-12-20 パナソニックIpマネジメント株式会社 Flow battery

Similar Documents

Publication Publication Date Title
Liu et al. Filler‐integrated composite polymer electrolyte for solid‐state lithium batteries
Wang et al. Siloxane-based polymer electrolytes for solid-state lithium batteries
US20210043939A1 (en) Coating for li anode protection and battery comprising the same
Li et al. A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries
JP7189122B2 (en) Ion-conducting material and manufacturing method for electrochemical generator
JP2015531144A (en) Hybrid electrolyte
WO2016017525A1 (en) All-solid-state secondary cell, electrode sheet for cell, method for manufacturing electrode sheet for cell, solid electrolyte composition, method for manufacturing solid electrolyte composition, and method for manufacturing all-solid-state secondary cell
JP2018517246A (en) Negative electrode slurry for secondary battery for improving dispersibility and reducing resistance, and negative electrode including the same
DE102016208532A1 (en) A lithium ion conductive composite comprising at least one polymer and lithium ion conductive particles
JP2001519464A (en) Mixtures with specific plasticizers suitable as solid electrolytes or separators for electrochemical cells
Wu et al. Safety-reinforced plastic crystal composite polymer electrolyte by 3D MoS2-based nano-hybrid for Li-metal batteries
WO2016199723A1 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
Sung et al. Composite solid electrolyte comprising poly (propylene carbonate) and Li1. 5Al0. 5Ge1. 5 (PO4) 3 for long-life all-solid-state Li-ion batteries
Ahmad et al. Effect of LiBF4 Salt Concentration on the Properties of Plasticized MG49‐TiO2 Based Nanocomposite Polymer Electrolyte
KR20180056589A (en) Binder for power storage device electrode
JP2008186731A (en) Solid polymer electrolyte film
Hamrahjoo et al. Preparation of matrix-grafted graphene/poly (poly (ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries
CN109312030A (en) Cross-linked polymeric material
Swathi et al. Cross-linked polymer composite electrolyte incorporated with waste seashell based nanofiller for lithium metal batteries
JP4198524B2 (en) Polymer solid electrolyte film
JP7438207B2 (en) Slurry composition for batteries, and methods for producing electrodes, electrolyte sheets, and battery members
O'Reilly et al. Silica nanoparticles densely grafted with PEO for ionomer plasticization
Huang et al. Protonated chitosan nanostructures for enhancing ionic conductivity of solid-state electrolytes
WO2012144332A1 (en) Organic-inorganic composite gel, secondary battery electrolyte gel, and secondary battery, and manufacturing method therefor
EP4098675A1 (en) Binder composition for non-aqueous secondary battery and production method therefor, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery