JP2008185636A - Total reflection microscope - Google Patents

Total reflection microscope Download PDF

Info

Publication number
JP2008185636A
JP2008185636A JP2007016798A JP2007016798A JP2008185636A JP 2008185636 A JP2008185636 A JP 2008185636A JP 2007016798 A JP2007016798 A JP 2007016798A JP 2007016798 A JP2007016798 A JP 2007016798A JP 2008185636 A JP2008185636 A JP 2008185636A
Authority
JP
Japan
Prior art keywords
total reflection
illumination
light
optical system
reflection microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007016798A
Other languages
Japanese (ja)
Inventor
Takeshi Sudo
武司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007016798A priority Critical patent/JP2008185636A/en
Publication of JP2008185636A publication Critical patent/JP2008185636A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide total reflection fluorescent observation enabling correction of deviation in total reflection illumination caused by the chromatic aberration of an illumination optical system when multi-wavelength laser beams are used as illuminating light by using a single optical fiber. <P>SOLUTION: A total reflection microscope 1 is provided which performs total reflection illumination to a sample 41 through an objective 23 and the total reflection microscope 1 has: a light guiding optical system 5 guiding the illuminating light from a plurality of light sources 11 and 12 having different wavelength; an illumination optical system 7 condensing the illuminating light emitted from the light guiding optical system 5 on the total reflection illumination range of the pupil surface 25 of the objective 23; and correction means 43 and 45 correcting deviation in condensing light from the total reflection illumination range caused by the chromatic aberration of the illumination optical system 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の波長の光を照明光として用いる全反射顕微鏡に関する。   The present invention relates to a total reflection microscope that uses light of a plurality of wavelengths as illumination light.

近年、バイオ分野において蛍光観察や蛍光解析に全反射顕微鏡が多く用いられるようになっている。さらに、多波長の励起光を用いた全反射蛍光観察も行われるようになり、これに対応した全反射顕微鏡が提案されている(例えば、特許文献1参照)。
特開2001−272606号公報
In recent years, total reflection microscopes are often used for fluorescence observation and fluorescence analysis in the bio field. Furthermore, total reflection fluorescence observation using multi-wavelength excitation light is also performed, and a total reflection microscope corresponding to this is proposed (for example, see Patent Document 1).
JP 2001-272606 A

しかしながら、従来の多波長を用いる全反射顕微鏡において、単一の光ファイバーに複数の波長のレーザ光を導入して照明光学系に導いた場合、照明光学系が有する色収差のために一部の波長のレーザ光が全反射可能な範囲から逸脱してしまい、全反射照明観察が行えなくなるという問題がある。   However, in a conventional total reflection microscope using multiple wavelengths, when laser light having a plurality of wavelengths is introduced into a single optical fiber and led to the illumination optical system, some wavelengths are not allowed due to chromatic aberration of the illumination optical system. There is a problem that the laser beam deviates from the total reflection range, and the total reflection illumination observation cannot be performed.

上記課題を解決するため、本発明は、対物レンズを介して標本に全反射照明を行う全反射顕微鏡であって、異なる波長の複数の光源からの照明光を導く導光光学系と、前記導光光学系から射出した前記照明光を、前記対物レンズの瞳面の全反射照明範囲に集光させる照明光学系と、前記照明光学系の色収差による前記前記全反射照明範囲からの集光ずれを補正する補正手段と、を有することを特徴とする全反射顕微鏡を提供する。   In order to solve the above-described problems, the present invention provides a total reflection microscope that performs total reflection illumination on a specimen via an objective lens, the light guide optical system that guides illumination light from a plurality of light sources having different wavelengths, and the above-described light guide. An illumination optical system for condensing the illumination light emitted from the optical optical system on a total reflection illumination range of the pupil plane of the objective lens, and a light collection deviation from the total reflection illumination range due to chromatic aberration of the illumination optical system. And a correction means for correcting the total reflection microscope.

本発明によれば、単一の光ファイバーを用いて多波長のレーザ光を照明光とした場合の照明光学系の色収差による照明光の集光ずれを補正可能な全反射蛍光観察を提供することができる。   According to the present invention, it is possible to provide a total reflection fluorescence observation capable of correcting a deviation in the collection of illumination light due to chromatic aberration of an illumination optical system when a multi-wavelength laser beam is used as illumination light using a single optical fiber. it can.

以下、本発明の実施の形態にかかる全反射顕微鏡に関し図面を参照しつつ説明する。   Hereinafter, a total reflection microscope according to an embodiment of the present invention will be described with reference to the drawings.

図1は、実施の形態にかかる全反射顕微鏡の概略構成図を示す。図2は、対物レンズの瞳面における全反射照明範囲と複数の光源スポットの例を示す。   FIG. 1 is a schematic configuration diagram of a total reflection microscope according to an embodiment. FIG. 2 shows an example of the total reflection illumination range and a plurality of light source spots on the pupil plane of the objective lens.

図1、図2において、全反射顕微鏡1は、光源3と、光ファイバー5と、照明光学系7と、結像光学系9とから構成されている。   1 and 2, the total reflection microscope 1 includes a light source 3, an optical fiber 5, an illumination optical system 7, and an imaging optical system 9.

光源3は、波長の異なる複数のレーザ光源11、12と光ファイバー5の入射端面5aにレーザ光を集光するためのレンズ13、14及びミラー15、16からなる光学系から構成されている。   The light source 3 includes an optical system including a plurality of laser light sources 11 and 12 having different wavelengths and lenses 13 and 14 and mirrors 15 and 16 for condensing the laser light on the incident end surface 5 a of the optical fiber 5.

光ファイバー5の入射端面5aに集光された複数の波長のレーザ光は、光ファイバー5の射出端面5bから出射され照明光学系7に導入される。なお、光ファイバー5は、各波長で共用し小さな光源像と均一照明を得るため単一シングルファイバーを用いることが好ましい。   Laser beams of a plurality of wavelengths collected on the incident end face 5 a of the optical fiber 5 are emitted from the exit end face 5 b of the optical fiber 5 and introduced into the illumination optical system 7. The optical fiber 5 is preferably used for each wavelength and a single single fiber is used to obtain a small light source image and uniform illumination.

照明光学系7は、光ファイバー5の射出端面5bを焦点位置とするレンズL1で略平行な光にされレンズL2を介してダイクロイックミラー21に入射し、ダイクロイックミラー21で選択された光が対物レンズ23方向に反射される。また、ダイクロイックミラー21は、照明光の各波長に対応するダイクロイックミラー21を光軸に挿脱あるいは交換可能に構成されている。   The illumination optical system 7 is made substantially parallel light by a lens L1 having a focal position on the exit end face 5b of the optical fiber 5, and enters the dichroic mirror 21 through the lens L2, and the light selected by the dichroic mirror 21 is the objective lens 23. Reflected in the direction. The dichroic mirror 21 is configured so that the dichroic mirror 21 corresponding to each wavelength of illumination light can be inserted into and removed from the optical axis or exchanged.

レンズL2は、略平行にされた光を対物レンズ23の瞳面25上に集光する作用を有する。このレンズL2は、レンズL2を光軸方向に沿って移動させる移動手段43を有し、瞳面25に集光する光の合焦位置を光軸方向に移動することが可能である。   The lens L <b> 2 has a function of collecting the substantially parallel light on the pupil plane 25 of the objective lens 23. This lens L2 has a moving means 43 that moves the lens L2 along the optical axis direction, and can move the focusing position of the light condensed on the pupil plane 25 in the optical axis direction.

ダイクロイックミラー21は、ダイクロイックミラー21を光軸と照明光の中心位置とを結ぶ軸に対して遥動させる遥動手段45有し、瞳面25上での照明光の中心位置を半径方向に交差する方向に移動することが可能である。   The dichroic mirror 21 has a swing means 45 that swings the dichroic mirror 21 with respect to an axis connecting the optical axis and the center position of the illumination light, and intersects the center position of the illumination light on the pupil plane 25 in the radial direction. It is possible to move in the direction to do.

上記移動手段43、および遥動手段45は、顕微鏡の制御装置46により駆動の制御が行われる。なお、制御装置46は、前もって測定された照明光学系7の各波長に対する色収差情報と移動手段43の移動量と方向、遥動手段45の遥動量をテーブルに記憶しておき、選択された照明光の各波長に対応してテーブルを参照し移動手段43、遥動手段45を駆動するように構成することも可能である。このように構成することで、照明光の各波長に対応した最適な全反射照明状態を達成することができる。   The moving means 43 and the swing means 45 are controlled by a microscope control device 46. The controller 46 stores the chromatic aberration information for each wavelength of the illumination optical system 7 measured in advance, the moving amount and direction of the moving unit 43, and the moving amount of the moving unit 45 in a table, and selects the selected illumination. The moving means 43 and the swinging means 45 may be driven by referring to the table corresponding to each wavelength of light. By comprising in this way, the optimal total reflection illumination state corresponding to each wavelength of illumination light can be achieved.

光ファイバー5の射出端面5bは、対物レンズ23の瞳面25上の全反射照明範囲31内に光が集光される位置に光軸に垂直な面内で移動調整後固定されている。   The exit end face 5b of the optical fiber 5 is fixed after movement adjustment in a plane perpendicular to the optical axis at a position where light is condensed in the total reflection illumination range 31 on the pupil plane 25 of the objective lens 23.

対物レンズ23から射出した光は、標本41にカバーガラス42側から全反射角度で入射し、カバーガラス42と標本41との界面でエバネッセント波を発生し、このエバネッセント波で励起された蛍光が標本41から発生する。なお、蛍光は励起光に対し全方向に発光するため、励起光の入射角を同じにすれば方位角によらず同じ条件の照明を達成することができる。   The light emitted from the objective lens 23 is incident on the specimen 41 at the total reflection angle from the cover glass 42 side, generates an evanescent wave at the interface between the cover glass 42 and the specimen 41, and the fluorescence excited by this evanescent wave is the specimen. 41. Since fluorescence is emitted in all directions with respect to the excitation light, if the incident angle of the excitation light is the same, illumination under the same conditions can be achieved regardless of the azimuth angle.

標本41で発生した蛍光は、対物レンズ23で集光され、ダイクロイックミラー21を透過して結像レンズ26を介して不図示の光検出器で検出され、不図示の画像処理部で画像処理を施され不図示のモニタに表示される。このようにして、光源3からのレーザ光で励起された蛍光が観察可能な全反射顕微鏡1が構成されている。   Fluorescence generated in the specimen 41 is collected by the objective lens 23, transmitted through the dichroic mirror 21, detected by a photodetector (not shown) through the imaging lens 26, and image processing is performed by an image processor (not shown). Applied and displayed on a monitor (not shown). In this way, the total reflection microscope 1 that can observe the fluorescence excited by the laser light from the light source 3 is configured.

全反射顕微鏡1では高い解像度を得るために高NAの対物レンズ23が使用されている。例えば、NA1.40以上で倍率100程度の対物レンズ23が使用される。このような対物レンズ23の瞳面25において、全反射照明範囲31を見積もると、例えば倍率100倍(NA=1.45、f=2mm)の場合、瞳面25における全反射照明範囲31は、約0.14mmの幅となり狭い輪帯領域となる(図2参照)。標本41に対して全反射照明を行うためには、この狭い輪帯状の全反射照明範囲31内にレーザ光を集光させる必要がある。   The total reflection microscope 1 uses a high NA objective lens 23 in order to obtain a high resolution. For example, an objective lens 23 having an NA of 1.40 or more and a magnification of about 100 is used. When the total reflection illumination range 31 is estimated on the pupil plane 25 of the objective lens 23, for example, when the magnification is 100 times (NA = 1.45, f = 2 mm), the total reflection illumination range 31 on the pupil plane 25 is The width is about 0.14 mm and a narrow ring zone region (see FIG. 2). In order to perform total reflection illumination on the specimen 41, it is necessary to focus the laser beam in the narrow ring-shaped total reflection illumination range 31.

一方、照明光学系7には、色収差が存在し多波長光を照明光として使用する場合に、一部の波長の光が全反射照明範囲31からずれて集光される。例えば、対物レンズ23で、基準波長λ1の光の縦方向色収差(光軸に沿った方向でピントずれとなる)がほぼゼロで、波長λ2の光の縦方向色収差が光軸方向に1mm存在する場合、f=2mm、実視野0.25mmφの倍率100倍の対物レンズ23の場合、瞳面25位置では半径約0.06mmのボケが生じ、上記の輪帯幅0.14mmに対して無視できない量となる。   On the other hand, when chromatic aberration is present in the illumination optical system 7 and multi-wavelength light is used as illumination light, light having a part of the wavelength is collected with a deviation from the total reflection illumination range 31. For example, with the objective lens 23, the longitudinal chromatic aberration of the light with the reference wavelength λ1 (which is out of focus in the direction along the optical axis) is almost zero, and the longitudinal chromatic aberration of the light with the wavelength λ2 is 1 mm in the optical axis direction. In this case, in the case of the objective lens 23 having a magnification of 100 times with f = 2 mm and a real field of view of 0.25 mmφ, a blur with a radius of about 0.06 mm occurs at the position of the pupil plane 25 and cannot be ignored with respect to the above-described annular width of 0.14 mm. Amount.

また、照明光学系7は、横方向色収差(瞳面25で半径方向のずれとなる)を有し、これは基準波長λ1の光の集光中心に対して波長λ2の光の集光中心が半径方向にずれてしまう。図2は、上記集光状態を破線の円λ1、λ2で示している。   Further, the illumination optical system 7 has lateral chromatic aberration (which is a radial shift at the pupil plane 25), and this is because the light collection center of the light of wavelength λ2 is the light collection center of light of the reference wavelength λ1. It will shift in the radial direction. FIG. 2 shows the condensing state by broken-line circles λ1 and λ2.

このように、縦方向色収差と横方向色収差のために、波長λ2の光は全反射照明範囲31から一部が非全反射照明範囲32にはみ出てしまい、結果として多波長の全反射照明観察を不可能にしてしまう。   As described above, due to the longitudinal chromatic aberration and the lateral chromatic aberration, a part of the light having the wavelength λ2 protrudes from the total reflection illumination range 31 into the non-total reflection illumination range 32. As a result, the multi-wavelength total reflection illumination observation is performed. Make it impossible.

本実施の形態にかかる全反射顕微鏡1では、瞳面25上における、縦方向色収差による焦点ボケを補正するためのレンズL2の移動手段43と、横方向色収差による集光中心のずれを補正するためのダイクロイックミラー21の遥動手段45が配置されている。   In the total reflection microscope 1 according to the present embodiment, the moving means 43 of the lens L2 for correcting the focal blur due to the longitudinal chromatic aberration on the pupil plane 25 and the deviation of the condensing center due to the lateral chromatic aberration are corrected. The swaying means 45 of the dichroic mirror 21 is arranged.

縦方向色収差による焦点ボケは、図2の破線に示すように基準波長λ1の集光サイズに比べ波長λ2の集光サイズが大きくなり、一部が全反射照明範囲31から非全反射照明範囲32にはみ出してしまう。この際、波長λ2の光の集光サイズを小さくする方向(波長λ2の光が合焦する方向)にレンズL1を移動手段43で光軸に沿って移動させ、集光サイズが全反射照明範囲31内に全て入るようにする。このとき基準波長λ1の光は僅かに焦点ボケ状態となり集光サイズは僅かに大きくなるが、全反射照明範囲31から非全反射照明範囲32に一部がはみ出すことがない状態にする。   As shown by the broken line in FIG. 2, the focal blur due to the longitudinal chromatic aberration has a condensing size of the wavelength λ2 larger than the condensing size of the reference wavelength λ1, and a part thereof is from the total reflection illumination range 31 to the non-total reflection illumination range 32. It will stick out. At this time, the lens L1 is moved along the optical axis by the moving means 43 in the direction to reduce the light collection size of the light of wavelength λ2 (the direction in which the light of wavelength λ2 is focused), and the light collection size is within the total reflection illumination range. Enter everything in 31. At this time, the light having the reference wavelength λ1 is slightly out of focus and the light collection size is slightly increased. However, a part of the light from the total reflection illumination range 31 does not protrude into the non-total reflection illumination range 32.

さらに、横方向色収差による半径方向の集光中心のずれを補正するために、ダイクロイックミラー21を遥動手段45により遥動する。この遥動により、集光中心は、図2の破線に示す位置から実線で示す位置に、光軸と集光中心とを結ぶ半径方向に対してほぼ直交する周方向に集光中心を移動する。なお、図2において全反射照明範囲31のLとL1の長さを比較すると、それぞれの位置の動径のなす角度がθの場合、L1=L/sinθとなり、L1の方が僅かながら長くなるため、照明光の集光位置に対して余裕を持たせることができるという利点がある。   Further, the dichroic mirror 21 is swayed by the swaying means 45 in order to correct the deviation of the condensing center in the radial direction due to lateral chromatic aberration. Due to this swing, the condensing center moves from the position shown by the broken line in FIG. 2 to the position shown by the solid line in the circumferential direction substantially perpendicular to the radial direction connecting the optical axis and the condensing center. . In addition, when comparing the lengths of L and L1 in the total reflection illumination range 31 in FIG. 2, when the angle formed by the moving radius of each position is θ, L1 = L / sin θ, and L1 is slightly longer. Therefore, there is an advantage that a margin can be given to the condensing position of the illumination light.

この結果、照明光の集光位置は、図2の破線λ1、λ2で示す位置から実線λ1、λ2で示す位置に移動され、全反射照明範囲31に余裕を持って波長λ1、λ2の照明光を位置付けすることが可能になる。   As a result, the condensing position of the illumination light is moved from the position indicated by the broken lines λ1 and λ2 in FIG. 2 to the position indicated by the solid lines λ1 and λ2, and the illumination light having the wavelengths λ1 and λ2 with a margin in the total reflection illumination range 31. Can be positioned.

以上述べたように、本実施の形態にかかる全反射顕微鏡1は、全反射顕微鏡1の照明光学系7に存在する各波長に対する色収差を良好に補正し、各波長の集光位置を全反射照明範囲31内に正確に位置付けすることができ、多波長の照明光を用いた全反射照明観察が可能になる。   As described above, the total reflection microscope 1 according to the present embodiment corrects chromatic aberration for each wavelength existing in the illumination optical system 7 of the total reflection microscope 1 well, and the condensing position of each wavelength is totally reflected. It can be accurately positioned within the range 31, and total reflection illumination observation using multi-wavelength illumination light becomes possible.

なお、上記実施の形態の説明では、縦方向色収差と横方向色収差の両方の色収差の補正を行った場合について説明したが、どちらか一方の色収差補正で照明光の状態を補正できる場合は、一方の補正のみを行うことで上記効果を奏することは言うまでもない。また、上記説明では、波長を二波長(λ1、λ2)の場合について説明したが、三波長以上の場合にも適用できることは言うまでもない。   In the description of the above embodiment, the case where both the longitudinal chromatic aberration and the lateral chromatic aberration are corrected has been described. However, when one of the chromatic aberration corrections can correct the state of the illumination light, It goes without saying that the above-described effect can be obtained by performing only the correction of the above. In the above description, the case where the wavelength is two wavelengths (λ1, λ2) has been described.

なお、上述の実施の形態は例に過ぎず、上述の構成や形状に限定されるものではなく、本発明の範囲内において適宜修正、変更が可能である。   The above-described embodiment is merely an example, and is not limited to the above-described configuration and shape, and can be appropriately modified and changed within the scope of the present invention.

実施の形態にかかる全反射顕微鏡の概略構成図を示す。1 is a schematic configuration diagram of a total reflection microscope according to an embodiment. FIG. 対物レンズの瞳面における全反射照明範囲と複数の光源スポットの例を示す。An example of a total reflection illumination range and a plurality of light source spots on the pupil plane of the objective lens is shown.

符号の説明Explanation of symbols

1 全反射顕微鏡
3 光源
5 光ファイバー
7 照明光学系
9 結像光学系
11、12 レーザ光源
21 ダイクロイックミラー
23 対物レンズ
25 対物レンズの瞳面
43 移動手段
45 遥動手段
L1 レンズ
DESCRIPTION OF SYMBOLS 1 Total reflection microscope 3 Light source 5 Optical fiber 7 Illumination optical system 9 Imaging optical system 11, 12 Laser light source 21 Dichroic mirror 23 Objective lens 25 Pupil plane of objective lens 43 Moving means 45 Far-wing means L1 lens

Claims (4)

対物レンズを介して標本に全反射照明を行う全反射顕微鏡であって、
異なる波長の複数の光源からの照明光を導く導光光学系と、
前記導光光学系から射出した前記照明光を、前記対物レンズの瞳面の全反射照明範囲に集光させる照明光学系と、
前記照明光学系の色収差による前記全反射照明範囲からの集光ずれを補正する補正手段と、
を有することを特徴とする全反射顕微鏡。
A total reflection microscope that performs total reflection illumination on a specimen through an objective lens,
A light guiding optical system for guiding illumination light from a plurality of light sources of different wavelengths;
An illumination optical system for condensing the illumination light emitted from the light guide optical system in a total reflection illumination range of a pupil plane of the objective lens;
Correction means for correcting a light condensing shift from the total reflection illumination range due to chromatic aberration of the illumination optical system;
A total reflection microscope characterized by comprising:
前記補正手段は、前記照明光学系に配置された少なくとも一つのレンズを当該照明光学系の光軸に沿って移動させる移動手段を有することを特徴とする請求項1に記載の全反射顕微鏡。   The total reflection microscope according to claim 1, wherein the correction unit includes a moving unit that moves at least one lens disposed in the illumination optical system along an optical axis of the illumination optical system. 前記補正手段は、前記照明光学系に配置されたダイクロイックミラーを、前記ダイクロイックミラーのミラー面における当該照明光学系の光軸と前記照明光の中心位置を結ぶ軸を中心軸として遥動させる遥動手段を有することを特徴とする請求項1に記載の全反射顕微鏡。   The correction means swings the dichroic mirror arranged in the illumination optical system, with the axis connecting the optical axis of the illumination optical system and the center position of the illumination light on the mirror surface of the dichroic mirror as the center axis The total reflection microscope according to claim 1, further comprising means. 前記導光光学系は光ファイバーからなり、
前記光源はレーザ光源を含むことを特徴とする請求項1から3のいずれか一項に記載の全反射顕微鏡。
The light guide optical system comprises an optical fiber,
The total reflection microscope according to any one of claims 1 to 3, wherein the light source includes a laser light source.
JP2007016798A 2007-01-26 2007-01-26 Total reflection microscope Withdrawn JP2008185636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016798A JP2008185636A (en) 2007-01-26 2007-01-26 Total reflection microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016798A JP2008185636A (en) 2007-01-26 2007-01-26 Total reflection microscope

Publications (1)

Publication Number Publication Date
JP2008185636A true JP2008185636A (en) 2008-08-14

Family

ID=39728757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016798A Withdrawn JP2008185636A (en) 2007-01-26 2007-01-26 Total reflection microscope

Country Status (1)

Country Link
JP (1) JP2008185636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113305A (en) * 2008-11-10 2010-05-20 Nikon Corp Microscope
JP2015184167A (en) * 2014-03-25 2015-10-22 株式会社日立ハイテクサイエンス Icp emission spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113305A (en) * 2008-11-10 2010-05-20 Nikon Corp Microscope
JP2015184167A (en) * 2014-03-25 2015-10-22 株式会社日立ハイテクサイエンス Icp emission spectrophotometer

Similar Documents

Publication Publication Date Title
US20190258040A1 (en) Laser scan confocal microscope
JP5286774B2 (en) Microscope device and fluorescent cube used therefor
JP6196825B2 (en) Microscope system and method for measuring refractive index of sample
US9804029B2 (en) Microspectroscopy device
JP2007506955A (en) Scanning microscope with evanescent wave illumination
JP6203022B2 (en) Scanning microscope
JP2011118264A (en) Microscope device
JP2010091809A (en) Microscope apparatus
JP4818634B2 (en) Scanning fluorescence observation system
JP5461527B2 (en) Apparatus and method for evanescent illumination of sample
JP5495740B2 (en) Confocal scanning microscope
JPWO2009142312A1 (en) Microscope equipment
JP5623654B2 (en) Confocal laser scanning microscope
JP2008185636A (en) Total reflection microscope
JP2008052146A (en) Confocal type laser scanning fluorescence microscope
US9599803B2 (en) Beam combiner for combining two independently scanned illuminating beams of a light scanning microscope
JP4981460B2 (en) Laser microscope
JP6494223B2 (en) Multiphoton excitation observation system
US8108942B2 (en) Probe microscope
JP2005107302A (en) Microscopic focus maintenance device
JP5726656B2 (en) Disc scanning confocal observation device
JP2006171027A (en) Illuminating device for microscope and fluorescence microscope system
JP2010145586A (en) Microscope device and fluorescence cube
JP2006243273A (en) Automatic focusing microscope
JP2011209294A (en) Probe microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406