JP2008182170A - Solder-plated wire for solar cell and manufacturing method thereof, and solar cell - Google Patents

Solder-plated wire for solar cell and manufacturing method thereof, and solar cell Download PDF

Info

Publication number
JP2008182170A
JP2008182170A JP2007071754A JP2007071754A JP2008182170A JP 2008182170 A JP2008182170 A JP 2008182170A JP 2007071754 A JP2007071754 A JP 2007071754A JP 2007071754 A JP2007071754 A JP 2007071754A JP 2008182170 A JP2008182170 A JP 2008182170A
Authority
JP
Japan
Prior art keywords
solder
wire
copper
solar cell
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007071754A
Other languages
Japanese (ja)
Inventor
Masayoshi Aoyama
正義 青山
Hirohisa Endo
裕寿 遠藤
Hiroshi Okikawa
寛 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007071754A priority Critical patent/JP2008182170A/en
Publication of JP2008182170A publication Critical patent/JP2008182170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solder-plated wire for a solar cell that has a strength lower by 0.2% as compared with a conventional solder-plated wire for a solar cell with tough-pitch copper (TPC) or oxygen-free copper (OFC) as a conductive material, to provide a method of manufacturing the solder-plated wire for a solar cell, and to provide the solar cell. <P>SOLUTION: In the solder-plated wire 2 for a solar cell, the surface of a conductor 3 of which a section is formed in a flat-square shape is covered with solder plating 4 partially or wholly for joint to the solar cell 1. In this case, the conductor 3 is made of copper, and a copper material that is an inevitable impurity. The copper contains a sulfur affinity metal of one kind or not less than one kind selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, or Ni and has oxygen content not exceeding 10 massppm at the remaining section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽電池用接続リード線及びその製造方法に係り、特に、太陽電池のシリコンセルとはんだ接続するのに好適な太陽電池用はんだめっき線及びその製造方法並びに太陽電池に関するものである。   The present invention relates to a solar cell connection lead wire and a manufacturing method thereof, and more particularly to a solar cell solder plating wire suitable for solder connection with a silicon cell of a solar cell, a manufacturing method thereof, and a solar cell.

一般的な太陽電池セルは、受光面を持ち、かつ平板形状をしており、その受光面(上面)と相対する面(下面)とにそれぞれ電極が形成された構造を有している。複数の太陽電池セルを接続するための接続用リード線は、平角状の銅箔などからなり、図1に示すように、太陽電池用はんだめっき線2の一方端が太陽電池セル1の受光面(上面)に、その他方端が太陽電池セル1の受光面と相対する面(下面)に、ハンダなどを用いて接続され、通常、複数の太陽電池セル1が直列に接続されている。図2に示すように、この太陽電池用はんだめっき線2は、平角導体3の表面に、太陽電池セルとの接続のためのはんだめっき4が形成されている。   A general solar battery cell has a light receiving surface and a flat plate shape, and has a structure in which electrodes are formed on a surface (lower surface) opposite to the light receiving surface (upper surface). The connection lead wire for connecting a plurality of solar cells is made of a rectangular copper foil or the like. As shown in FIG. 1, one end of the solar cell solder-plated wire 2 is the light receiving surface of the solar cell 1. The other end is connected to the (upper surface) to the surface (lower surface) facing the light receiving surface of the solar battery cell 1 using solder or the like, and usually a plurality of solar battery cells 1 are connected in series. As shown in FIG. 2, the solder plating wire 2 for a solar battery has a solder plating 4 for connection with a solar battery cell formed on the surface of a flat conductor 3.

ところで、太陽電池を構成する部材のうち、シリコン結晶ウェハ(太陽電池セル)が材料コストの大半を占めていることから、製造コストの低減を図るべくシリコン結晶ウェハの薄板化が進んでいる。しかし、シリコン結晶ウェハを薄板化すると、図3(a)に示す太陽電池用はんだめっき線2のはんだ接合時における加熱プロセスや、太陽電池使用時における温度変化により、図3(b)に示すように、太陽電池用はんだめっき線2をはんだ接続した太陽電池セル1全体が反って、破損したりするおそれがある。   By the way, since the silicon crystal wafer (solar cell) occupies most of the material cost among the members constituting the solar cell, the silicon crystal wafer is being made thinner in order to reduce the manufacturing cost. However, when the silicon crystal wafer is thinned, as shown in FIG. 3B, due to the heating process at the time of solder joining of the solar cell solder-plated wire 2 shown in FIG. In addition, the entire solar battery cell 1 to which the solar cell solder-plated wire 2 is soldered may be warped and damaged.

このような太陽電池セルの反りおよび破損を防止するため、近年では、シリコン結晶ウェハとの熱膨張係数の差が小さい導電性材料を、接続用リード線として用いるようになってきている。このような材料としては、銅層とコバール層と銅層を備えた3層クラッド材、又は銅層とインバー層と銅層を備えた3層クラッド材があり、さらにそれらの外周を略全体にわたってはんだめっきした材料が知られている(例えば、特許文献1)。   In order to prevent such warpage and damage of the solar battery cell, in recent years, a conductive material having a small difference in thermal expansion coefficient from that of a silicon crystal wafer has been used as a connecting lead wire. As such a material, there are a three-layer clad material provided with a copper layer, a kovar layer, and a copper layer, or a three-layer clad material provided with a copper layer, an invar layer, and a copper layer, and the outer periphery thereof is substantially entirely covered. A solder-plated material is known (for example, Patent Document 1).

しかしながら、前記特許文献1に記載された3層クラッド材を接続用リード線として使用する場合には、太陽電池セルに生じる熱応力を軽減することができるものの、体積抵抗率が比較的高いコバール層やインバー層を中間層として使用するため、平均の電気抵抗が高くなり、太陽電池の発電効率が低下するという問題がある。   However, when the three-layer clad material described in Patent Document 1 is used as a connecting lead wire, the thermal stress generated in the solar cell can be reduced, but the Kovar layer having a relatively high volume resistivity. In addition, since the invar layer is used as an intermediate layer, there is a problem that the average electric resistance is increased and the power generation efficiency of the solar cell is lowered.

このような事情に鑑み、体積抵抗率が2.3μΩ・cm以下で、かつ耐力が19.6〜85MPaであり、酸素含有量が20ppm以下の純銅からなる焼鈍材で構成された芯材の表面に、溶融はんだめっき層を備えた太陽電池用電極線材が検討されている(例えば、特許文献2)。   In view of such circumstances, the surface of the core made of an annealed material made of pure copper having a volume resistivity of 2.3 μΩ · cm or less, a proof stress of 19.6 to 85 MPa, and an oxygen content of 20 ppm or less. In addition, an electrode wire for a solar cell provided with a molten solder plating layer has been studied (for example, Patent Document 2).

太陽電池用接続リード線のCuの種類として、タフピッチ銅、無酸素銅、高純度銅(純度99.9999%以上)などが考えられるが、発明者らの検討によると、導体の引張り試験における0.2%耐力を最も小さくするためには、純度が高いCuが有利であることがわかっており、その候補としては、無酸素銅、高純度銅(純度99.9999%以上)が挙げられる(特許文献3)。   As a kind of Cu of the connection lead wire for solar cell, tough pitch copper, oxygen-free copper, high-purity copper (purity 99.9999% or more), etc. can be considered. It is known that Cu having high purity is advantageous in order to minimize the 2% proof stress, and examples of the candidate include oxygen-free copper and high-purity copper (purity of 99.9999% or more) ( Patent Document 3).

特開2006−73706号公報JP 2006-73706 A 国際公開第2005/114751号パンフレットInternational Publication No. 2005/114751 Pamphlet 特開2006−276709号公報JP 2006-276709 A

しかしながら、太陽電池用接続リード線の材料として無酸素銅(OFC)を使用する場合には、軟化焼鈍を施すことによりリード線自身の0.2%耐力値を低下させるとしても限界があり、製造コスト低減とあいまって、今後更にシリコン結晶ウェハの薄型化が進行し、厚さ180μm以下の太陽電池セルが汎用される傾向にあり、シリコン結晶ウェハの反り低減の観点から、タフピッチ銅(TPC)および無酸素銅(OFC)よりも更に0.2%耐力値の低い太陽電池用接続リード線が要求されている。   However, when oxygen-free copper (OFC) is used as a material for connecting lead wires for solar cells, there is a limit even if the 0.2% proof stress value of the lead wire itself is lowered by softening annealing. Coupled with cost reduction, silicon crystal wafers are becoming thinner and solar cells with a thickness of 180 μm or less tend to be widely used. From the viewpoint of reducing warpage of silicon crystal wafers, tough pitch copper (TPC) and There is a demand for a solar cell connection lead having a 0.2% yield strength lower than that of oxygen-free copper (OFC).

本発明の目的は、タフピッチ銅(TPC)を導体材料とした従来の太陽電池用はんだめっき線よりも0.2%耐力が低く、無酸素銅(OFC)を導体材料とした従来の太陽電池用はんだめっき線よりも低い0.2%耐力を備え、かつ低コストである太陽電池用はんだめっき線及びその製造方法並びに太陽電池を提供することにある。   An object of the present invention is 0.2% lower in proof stress than a conventional solder-plated wire for solar cells using tough pitch copper (TPC) as a conductive material, and for conventional solar cells using oxygen-free copper (OFC) as a conductive material. An object of the present invention is to provide a solar cell solder-plated wire having a 0.2% proof stress lower than that of a solder-plated wire and a low cost, a method for producing the same, and a solar cell.

上記の目的を達成するために、請求項1の発明は、太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にはんだめっきが被覆された太陽電池用はんだめっき線において、
上記導体を、Nb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属を含有し、残部が酸素含有量10massppm以下の銅及び不可避的不純物である銅材で構成したことを特徴とする太陽電池用はんだめっき線である。
In order to achieve the above object, the invention of claim 1 is a solar battery solder in which a solder plating is coated on a part or all of the surface of a conductor having a rectangular cross section so as to be joined to a solar battery cell. In plated wire,
The conductor contains one or more sulfur-affinity metals selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, Ni or misch metal, and the balance is oxygen content of 10 massppm or less It is the solder plating wire for solar cells characterized by comprising the copper of this and the copper material which is an unavoidable impurity.

請求項2の発明は、上記導体が、上記硫黄親和性金属を0.0007〜0.04質量%含有する請求項1記載の太陽電池用はんだめっき線である。   The invention according to claim 2 is the solder plated wire for a solar cell according to claim 1, wherein the conductor contains 0.0007 to 0.04 mass% of the sulfur affinity metal.

請求項3の発明は、上記導体の結晶粒径が270μm以下である請求項1又は2記載の太陽電池用はんだめっき線である。   The invention according to claim 3 is the solder plated wire for a solar cell according to claim 1 or 2, wherein the conductor has a crystal grain size of 270 µm or less.

請求項4の発明は、請求項1から3いずれかに記載の太陽電池用はんだめっき線と、太陽電池セルをはんだ接続したことを特徴とする太陽電池である。   A fourth aspect of the present invention is a solar battery characterized in that the solar cell solder-plated wire according to any one of the first to third aspects and a solar battery cell are solder-connected.

請求項5の発明は、連続鋳造圧延装置を用いて、銅溶湯から太陽電池用はんだめっき線を製造する方法であって、
上記連続鋳造圧延装置の溶湯貯溜手段に貯溜され、酸素含有量が10massppm以下の銅溶湯にNb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属の割合を0.0007〜0.04質量%に調整し、その銅溶湯を用いて荒引き材を製造した後、その荒引き材に減面率30%以上の冷間伸線加工を施し、その冷間加工材に190〜750℃で熱処理を施すことを特徴とする太陽電池用はんだめっき線の製造方法である。
The invention of claim 5 is a method of producing a solar cell solder-plated wire from a molten copper using a continuous casting and rolling apparatus,
One type selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, Ni or misch metal in the molten copper storage means of the continuous casting and rolling device and having an oxygen content of 10 massppm or less After adjusting the ratio of two or more kinds of sulfur-affinity metals to 0.0007 to 0.04% by mass and manufacturing a roughing material using the molten copper, the surface reduction rate of the roughing material is 30% or more. A method for producing a solder-plated wire for a solar cell, wherein the cold-drawn material is subjected to a heat treatment at 190 to 750 ° C.

請求項6の発明は、上記冷間加工材に、400〜750℃で熱処理を施す請求項5記載の太陽電池用はんだめっき線の製造方法である。   Invention of Claim 6 is a manufacturing method of the solder plating wire for solar cells of Claim 5 which heat-processes at 400-750 degreeC to the said cold work material.

請求項7の発明は、上記熱処理を、ヒータによるバッチ式加熱方式もしくは通電加熱方式により行う請求項5又は6記載の太陽電池用はんだめっき線の製造方法である。   The invention according to claim 7 is the method for producing a solder-plated wire for a solar cell according to claim 5 or 6, wherein the heat treatment is performed by a batch-type heating method or a current heating method using a heater.

本発明の太陽電池用はんだめっき線によれば、タフピッチ銅(TPC)または無酸素銅(OFC)を導体材料とした従来の太陽電池用はんだめっき線よりも0.2%耐力が低い太陽電池用はんだめっき線を実現でき、シリコン基板の反りを低減できる。   According to the solder plated wire for solar cell of the present invention, 0.2% proof stress is lower than the conventional solder plated wire for solar cell using tough pitch copper (TPC) or oxygen-free copper (OFC) as a conductive material. Solder plated wire can be realized, and warpage of the silicon substrate can be reduced.

以下、本発明の実施の形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(太陽電池用はんだめっき線)
本発明の好適一実施の形態に係る太陽電池用はんだめっき線は、図3に示すように、導体3の表面全体に、はんだめっき4を施したものである。この導体3は、Nb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属を含有し、残部が酸素含有量10massppm以下の銅及び不可避的不純物である銅材で構成されるものである。導体3は、硫黄親和性金属を0.0007〜0.04質量%の割合で含有する。
(Solder plating wire for solar cells)
The solar cell solder-plated wire according to a preferred embodiment of the present invention is obtained by applying solder plating 4 to the entire surface of the conductor 3, as shown in FIG. This conductor 3 contains one or two or more sulfur-affinity metals selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, Ni or misch metal, and the balance is 10 massppm in oxygen content. It consists of the following copper and copper materials that are inevitable impurities. The conductor 3 contains a sulfur affinity metal in a proportion of 0.0007 to 0.04 mass%.

導体3の結晶粒径は21〜270μm、導体3の0.2%耐力は21〜60MPaとされる。また、この導体3にはんだめっき4を被覆した太陽電池用はんだめっき線2全体の0.2%耐力は、41〜80MPaとされる。この導体3は、Nb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属を含有し、残部が酸素含有量10massppm以下の銅及び不可避的不純物である銅材で構成されるものである。導体3は、硫黄親和性金属を0.0007〜0.04質量%の割合で含有する。   The crystal grain size of the conductor 3 is 21 to 270 μm, and the 0.2% proof stress of the conductor 3 is 21 to 60 MPa. Further, the 0.2% proof stress of the entire solar cell solder-plated wire 2 in which the conductor 3 is coated with the solder plating 4 is set to 41 to 80 MPa. This conductor 3 contains one or two or more sulfur-affinity metals selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, Ni or misch metal, and the balance is 10 massppm in oxygen content. It consists of the following copper and copper materials that are inevitable impurities. The conductor 3 contains a sulfur affinity metal in a proportion of 0.0007 to 0.04 mass%.

導体3の被覆に用いるはんだめっき4は、環境面から、好ましくは鉛フリー品とされ、Sn系はんだ、あるいは第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1質量%以上含むSn系合金はんだが挙げられる。このSn系はんだ、あるいはSn系合金はんだは、それぞれ、第3成分として1000massppm以下の微量元素を含んでいてもよい。また、はんだめっき4の被覆は、導体3の一部、例えば、導体の上下面のみであってもよい。   The solder plating 4 used for covering the conductor 3 is preferably a lead-free product from an environmental point of view, and is selected from Sn-based solder or Pb, In, Bi, Sb, Ag, Zn, Ni, Cu as the second component. An Sn-based alloy solder containing 0.1% by mass or more of at least one element. Each of the Sn-based solder or the Sn-based alloy solder may contain a trace element of 1000 massppm or less as a third component. Further, the coating of the solder plating 4 may be a part of the conductor 3, for example, only the upper and lower surfaces of the conductor.

本実施の形態に係る太陽電池用はんだめっき線2における導体3の酸素含有量は、特に限定するものではないが、10massppm以下の範囲が想定される。   The oxygen content of the conductor 3 in the solar cell solder-plated wire 2 according to the present embodiment is not particularly limited, but a range of 10 mass ppm or less is assumed.

この太陽電池用はんだめっき線2を、図1に示した太陽電池セル1(太陽電池モジュール)におけるシリコンセル面の所定の接点領域(例えば、Agメッキ領域)に接続することで、太陽電池アセンブリが得られる。   By connecting this solar cell solder plating wire 2 to a predetermined contact region (for example, an Ag plating region) on the silicon cell surface in the solar cell 1 (solar cell module) shown in FIG. can get.

(太陽電池用はんだめっき線の製造方法)
本実施の形態に係る太陽電池用はんだめっき線2の製造方法の一例を以下に示す。
(Method for manufacturing solder-plated wire for solar cells)
An example of the manufacturing method of the solar cell solder plated wire 2 according to the present embodiment will be described below.

まず、連続鋳造圧延装置の溶湯貯溜手段において、酸素含有量が10massppm以下の無酸素銅を溶解すると共に、その銅溶湯に硫黄親和性金属を0.0007〜0.05質量%の割合で添加する。硫黄親和性金属は全て銅溶湯の中に残留するものではなく、最終的に銅溶湯中に含まれる硫黄親和性金属の割合は0.0007〜0.04質量%となる。この銅溶湯を用いて、銅の荒引き材を連続的に製造する。また、この荒引き材に、減面率30%以上の冷間伸線加工を施して断面形状が平角状の導体3が作製する。その後、平角状の導体3に熱処理を施す。この加工と熱処理によって、導体3を構成する銅の結晶の平均粒径が22〜270μmに、導体3の0.2%耐力が21〜60MPaに調整される。熱処理としては、例えば、190〜750℃の温度範囲で5〜200分、好ましくは400〜750℃の温度範囲で5〜200分加熱する。   First, in a molten metal storage means of a continuous casting and rolling apparatus, oxygen-free copper having an oxygen content of 10 mass ppm or less is dissolved, and a sulfur-affinity metal is added to the molten copper at a ratio of 0.0007 to 0.05 mass%. . Not all sulfur-affinity metals remain in the molten copper, and the final ratio of sulfur-affinity metals contained in the molten copper is 0.0007 to 0.04 mass%. A copper roughening material is continuously produced using this molten copper. Further, this roughing material is subjected to cold drawing with a reduction in area of 30% or more to produce a conductor 3 having a flat cross section. Thereafter, the flat rectangular conductor 3 is subjected to heat treatment. By this processing and heat treatment, the average grain size of the copper crystals constituting the conductor 3 is adjusted to 22 to 270 μm, and the 0.2% proof stress of the conductor 3 is adjusted to 21 to 60 MPa. As heat processing, it heats for 5 to 200 minutes in the temperature range of 190-750 degreeC, for example, Preferably it is 5-200 minutes in the temperature range of 400-750 degreeC.

熱処理後、導体3の表面にはんだめっき4を被覆し、本実施の形態に係る太陽電池用はんだめっき線2が得られる。はんだめっき4は、太陽電池用はんだめっき線2の0.2%耐力が41〜80MPaとなるように、めっきの種類及びめっきの厚さが調整される。   After the heat treatment, the surface of the conductor 3 is covered with the solder plating 4 to obtain the solar cell solder plating wire 2 according to the present embodiment. The kind of plating and the thickness of plating are adjusted so that the 0.2% yield strength of the solder plating wire 2 for solar cells may be 41-80 MPa.

ここで、導体3の0.2%耐力を低減するための熱処理方法としては、ヒータによるバッチ式加熱方式、若しくは通電加熱方式(例えば、通電アニーラ)などが適用可能である。安定した熱処理が必要な場合には、導体3をコイル状に巻き付けた後、炉に入れ、バッチ式で加熱する方式が、連続で長尺にわたって熱処理する場合には通電加熱方式が望ましい。また、酸化を防止する観点から、水素還元雰囲気の炉を用いて熱処理を行ってもよい。   Here, as a heat treatment method for reducing the 0.2% proof stress of the conductor 3, a batch-type heating method using a heater or an energization heating method (for example, an energization annealer) can be applied. When stable heat treatment is required, a method of winding the conductor 3 in a coil shape and then placing it in a furnace and heating in a batch method is preferable, and an electric heating method is desirable when heat-treating continuously over a long length. Further, from the viewpoint of preventing oxidation, heat treatment may be performed using a furnace in a hydrogen reducing atmosphere.

連続鋳造圧延法としては、例えば、SCR、ヘズレータイプ、アプキャスト法などが適用可能である。   As the continuous casting and rolling method, for example, SCR, Hesley type, Upcast method and the like can be applied.

冷間減面加工時の減面率を30%以上、好ましくは28〜99.9%と規定したのは、減面率が25%未満だと、加工時に荒引き線に十分な歪みを発生させることができず、荒引き線内部の転位を十分に増大、成長させることができないためである。その結果、銅材に固溶しているSやPbなどを十分に析出させることができなくなり、ひいては、銅材の軟化温度を十分に低下させることができなくなる。   The area reduction rate during cold area reduction is defined as 30% or more, preferably 28-99.9%. If the area reduction ratio is less than 25%, sufficient distortion occurs in the roughing line during machining. This is because the dislocation within the roughing line cannot be sufficiently increased and grown. As a result, S, Pb, etc., dissolved in the copper material cannot be sufficiently precipitated, and as a result, the softening temperature of the copper material cannot be sufficiently lowered.

なお、減面率は以下の式(1)により求める。
減面率=[1−(減面加工後の線材断面積/減面加工前の線材断面積)]×100‥(1)
The area reduction rate is obtained by the following equation (1).
Area reduction ratio = [1− (wire cross-sectional area after surface reduction processing / wire cross-sectional area before surface reduction processing)] × 100 (1)

次に、本実施の形態に係る太陽電池用はんだめっき線2の作用を説明する。   Next, the effect | action of the solder plating wire 2 for solar cells which concerns on this Embodiment is demonstrated.

(硫黄親和性金属の含有量)
本実施の形態において、導体3に占める硫黄親和性金属の含有量を0.0007〜0.04質量%、好ましくは0.001〜0.04質量%と規定したのは、含有量が0.0007質量%未満であると、硫黄親和性金属と銅母材に固溶しているSが十分に反応しないためである。一方、含有量が0.04質量%を超えると、導体3に固溶する硫黄親和性金属の固溶量が多くなりすぎて、銅の結晶成長を妨げ、導体3の結晶粒径が20μm未満となるためである。
(Sulfur affinity metal content)
In the present embodiment, the sulfur-affinity metal content in the conductor 3 is defined as 0.0007 to 0.04 mass%, preferably 0.001 to 0.04 mass%. This is because, if it is less than 0007% by mass, the sulfur-soluble metal and S dissolved in the copper base material do not sufficiently react. On the other hand, if the content exceeds 0.04% by mass, the solid solution amount of the sulfur-affinity metal dissolved in the conductor 3 becomes too large, preventing copper crystal growth, and the crystal grain size of the conductor 3 is less than 20 μm. It is because it becomes.

通常の無酸素銅にはSが固溶しており、このSが無酸素銅材の軟らかさを阻害する要因であった。そこで、本実施の形態の太陽電池用はんだめっき線2では、導体3の構成材として、酸素含有量が10ppm以下の銅母材(無酸素銅材)に、Nb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属を0.0007〜0.04質量%の割合で含有させたものを採用している。   S is dissolved in ordinary oxygen-free copper, and this S is a factor that hinders the softness of the oxygen-free copper material. Therefore, in the solar cell solder plated wire 2 of the present embodiment, as a constituent material of the conductor 3, a copper base material (oxygen-free copper material) having an oxygen content of 10 ppm or less is added to Nb, Ti, Zr, V, Ta. , Fe, Ca, Mg, Ni, or misch metal, one or two or more sulfur-affinity metals containing 0.0007 to 0.04 mass% are used.

(硫黄親和性金属の添加と軟化特性との関係)
この硫黄親和性金属(例えば、Ti)が酸素含有量10massppm以下の銅溶湯中に固溶しているSと反応することで、Sが硫化物(例えば、TiS)として析出し、銅溶湯のS固溶量が減少する。このため、銅のマトリクスからSを析出させることができ、軟化特性の点において、本来の無酸素銅以上の0.2%耐力が得られることとなる。
(Relationship between sulfur-affinity metal addition and softening properties)
This sulfur-affinity metal (for example, Ti) reacts with S dissolved in a copper melt having an oxygen content of 10 mass ppm or less, so that S precipitates as a sulfide (for example, TiS), and S of the copper melt The amount of solid solution decreases. For this reason, S can be deposited from a copper matrix, and in terms of softening characteristics, a 0.2% yield strength higher than that of the original oxygen-free copper can be obtained.

また、硫黄親和性金属を含む銅溶湯を用いて前述した荒引き線を製造する際、銅のマトリクス(結晶粒)の周囲には、Sの化合物である硫化物が析出することになるが、これら硫化物は微小の化合物であり、夫々間隔をもって析出されるため、銅の結晶成長を妨げるおそれはない。よって、荒引き線の結晶粒を大きく成長させることができ、降伏応力が低い荒引き線、すなわち導体3を得ることができる。   In addition, when the above-described rough drawn wire is produced using a molten copper containing a sulfur-affinity metal, sulfide that is a compound of S is deposited around the copper matrix (crystal grains). Since these sulfides are fine compounds and are deposited at intervals, there is no possibility of hindering copper crystal growth. Therefore, the crystal grain of the rough drawing line can be grown greatly, and the rough drawing line having a low yield stress, that is, the conductor 3 can be obtained.

(導体の結晶粒径)
0.2%耐力は導体3の結晶粒径との相関が大きいことが知られており、一方で粒界が少ないほど、すなわち結晶粒径が大きいほど変形抵抗は小さい。他方で結晶粒径は一定条件範囲に入っている必要がある。ここで言う結晶粒径とは、導体3の結晶粒径を平均化したものである。
(Crystal grain size of conductor)
It is known that the 0.2% proof stress has a large correlation with the crystal grain size of the conductor 3, while the smaller the grain boundary, that is, the larger the crystal grain size, the smaller the deformation resistance. On the other hand, the crystal grain size needs to be within a certain range. The crystal grain size referred to here is an average of the crystal grain size of the conductor 3.

導体3の結晶粒径が270μm超だと、導体3が脆くなるため耐クラック性が落ちる。そのため、導体3の結晶粒径が270μm超だと、太陽電池パネルなどへ組み込む成形加工の際、太陽電池用はんだめっき線2、例えばはんだ被覆導体平角線に亀裂が発生したり、長期信頼性が不十分になるといった不具合の原因になる。また、導体3の結晶粒径が20μm以下だと、耐クラック性は問題はないが、導体3の軟質性が失われるため、シリコンセル(太陽電池セル1)の反りが大きくなる。従って、導体3の結晶粒径としては21〜270μmの範囲が好ましい。   When the crystal grain size of the conductor 3 exceeds 270 μm, the conductor 3 becomes brittle, so that the crack resistance is lowered. Therefore, if the crystal grain size of the conductor 3 exceeds 270 μm, cracks may occur in the solar cell solder-plated wire 2, for example, the solder-coated conductor flat wire, or the long-term reliability may be increased during the molding process incorporated into the solar cell panel. This may cause problems such as insufficiency. If the crystal grain size of the conductor 3 is 20 μm or less, crack resistance is not a problem, but the flexibility of the conductor 3 is lost, so that the warp of the silicon cell (solar cell 1) increases. Therefore, the crystal grain size of the conductor 3 is preferably in the range of 21 to 270 μm.

以上より、本実施の形態に係る太陽電池用はんだめっき線2によれば、タフピッチ銅(TPC)又は無酸素銅(OFC)を導体材料とした従来の太陽電池用はんだめっき線よりも0.2%耐力が低くなり、加熱を必要とする配線工程及び太陽電池使用時における温度変化に起因した熱膨張・収縮率の差異による歪の影響を最小限に抑えることが可能となる。   As mentioned above, according to the solder plating wire 2 for solar cells which concerns on this Embodiment, it is 0.2 from the solder plating wire for conventional solar cells which used tough pitch copper (TPC) or oxygen-free copper (OFC) as a conductor material. % Proof stress becomes low, and it becomes possible to minimize the influence of strain due to the difference in thermal expansion / contraction rate due to temperature change during use of a wiring process requiring heating and a solar cell.

また、本実施の形態に係る太陽電池用はんだめっき線2の製造方法によれば、導体3の原材料として、高純度銅(6N)などを使用することなく、酸素含有量10massppm以下の無酸素銅を使用するため、導体3の製造工程を、高純度銅(6N)などを使用する場合に比べて簡素化でき、かつ低コスト化を実現できる。   Moreover, according to the manufacturing method of the solder plating wire 2 for solar cells which concerns on this Embodiment, without using high purity copper (6N) etc. as a raw material of the conductor 3, oxygen-free copper with an oxygen content of 10 massppm or less Therefore, the manufacturing process of the conductor 3 can be simplified as compared with the case where high purity copper (6N) or the like is used, and the cost can be reduced.

さらに、太陽電池用はんだめっき線のはんだめっき4のはんだ組成については、これまで導体にCuを用いたものでは、シリコンセルとの熱膨張整合を考慮して低温接続が可能なものが求められていたが、本実施の形態に係る太陽電池用はんだめっき線2においては、前述した銅材で構成される導体3を用いることで、シリコンセルの反りが小さくなることから、接続温度が高いSn−Ag−Cu系の組成のはんだを用いることが可能となる。   Furthermore, as for the solder composition of the solder plating wire 4 of the solar cell solder plating wire, it has been required to use Cu as the conductor so that it can be connected at low temperature in consideration of thermal expansion matching with the silicon cell. However, in the solar cell solder-plated wire 2 according to the present embodiment, the use of the conductor 3 made of the above-described copper material reduces the warpage of the silicon cell, so that the connection temperature is high. It is possible to use a solder having an Ag-Cu composition.

さらに、導体の被覆に用いるはんだは、Sn−Ag−Cu系の組成のはんだに限られず、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1種の元素を0.1wt%以上含むSn系合金はんだであればいずれでも良く、第3成分として1000ppm以下の微量元素を含んでいるものを用いてもよい。   Furthermore, the solder used for covering the conductor is not limited to a Sn—Ag—Cu-based solder, and at least one selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. Any Sn-based alloy solder containing 0.1 wt% or more of the above element may be used, and a solder containing a trace element of 1000 ppm or less as the third component may be used.

また、本発明に係る太陽電池セル接続用配線導体およびはんだめっき線は、セルとの接続がなされた複数箇所に変形しやすい加工部を含んでいても良く、加工方法としてエッチング、プレス、曲げ成形のうちのいずれか、あるいは、複数を併用してもよい。さらに、その加工は素材線材、素材線材を圧延成形した圧延線材、板状素材にスリットをいれた箔状線材のいずれに施してもよい。   Moreover, the wiring conductor for connecting solar cells and the solder plating wire according to the present invention may include a deformed portion that is easily deformed at a plurality of locations connected to the cell, and etching, pressing, and bending as processing methods. Any one or a plurality of them may be used in combination. Further, the processing may be applied to any of a material wire, a rolled wire obtained by rolling the material wire, and a foil-like wire obtained by slitting a plate material.

(実施例1、試料1)
シャフト炉と連結したSCR方式の連続鋳造圧延装置を用い、無酸素銅(酸素濃度9ppm)を主成分とする直径φ8mmの荒引き線を製造した。荒引き線の構成材は、無酸素銅溶湯に硫黄親和性金属としてNbを0.006質量%(mass%)添加したものである。この荒引き線をφ2.6mmまで伸線した後に600℃×1hr熱処理し、それを91%の加工度で冷間減面加工し、直径φ0.8mmの銅線を作製した。これを圧延して平角銅線(厚さ0.16mm、幅2.0mm)を作製し、500℃×1hrの軟化焼鈍処理を施し、その後、150mmに切断して芯材(導体)とした。
この芯材を溶融はんだめっき浴(Sn−3wt%Ag−0.5wt%Cu系の鉛フリーはんだ)に浸漬して速やかに引き上げ、芯材の表面に溶融はんだめっき層(厚さ0.03mm)を形成し、はんだ被覆銅平角線(太陽電池用はんだめっき線)を作製した。
(実施例2、試料2)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%添加したこと以外は、実施例1と同様である。
(実施例3、試料3)
荒引き線の構成材を、無酸素銅溶湯にNbを0.04質量%添加したこと以外は、実施例1と同様である。
(実施例4、試料4)
荒引き線の構成材を、無酸素銅溶湯にTiを0.003質量%添加したこと以外は、実施例1と同様である。
(実施例5、試料5)
荒引き線の構成材を、無酸素銅溶湯にFeを0.003質量%添加したこと以外は、実施例1と同様である。
(実施例6、試料6)
荒引き線の構成材を、無酸素銅溶湯にMgを0.003質量%添加したこと以外は、実施例1と同様である。
(実施例7、試料7)
荒引き線の構成材を、無酸素銅溶湯にZrを0.003質量%添加したこと以外は、実施例1と同様である。
(実施例8、試料8)
荒引き線の構成材を、無酸素銅溶湯にTaを0.04質量%添加したこと以外は、実施例1と同様である。
(実施例9、試料9)
荒引き線の構成材を、無酸素銅溶湯にTaを0.006質量%添加したこと以外は、実施例1と同様である。
(実施例10、試料10)
荒引き線の構成材を、無酸素銅溶湯にNiを0.005質量%添加したこと以外は、実施例1と同様である。
(実施例11、試料11)
荒引き線の構成材を、無酸素銅溶湯にNiを0.01質量%添加したこと以外は、実施例1と同様である。
(実施例12、試料12)
荒引き線の構成材を、無酸素銅溶湯にNiを0.01質量%とTiを0.001質量%添加したこと以外は、実施例1と同様である。
(実施例13、試料13)
荒引き線の構成材を、無酸素銅溶湯にNiを0.01質量%とMnを0.001質量%添加したこと以外は、実施例1と同様である。
(実施例14、試料14)
荒引き線の構成材を、無酸素銅溶湯にNiを0.01質量%とCaを0.0005質量%添加したこと以外は、実施例1と同様である。
(実施例15、試料15)
荒引き線の構成材を、無酸素銅溶湯にNiを0.01質量%とVを0.001質量%添加したこと以外は、実施例1と同様である。
(実施例16、試料16)
荒引き線の構成材を、無酸素銅溶湯にNiを0.012質量%とTiを0.003質量%添加したこと以外は、実施例1と同様である。
(実施例17、試料17)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とZrを0.006質量%添加したこと以外は、実施例1と同様である。
(実施例18、試料18)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とHfを0.01質量%添加したこと以外は、実施例1と同様である。
(実施例19、試料19)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とVを0.03質量%添加したこと以外は、実施例1と同様である。
(実施例20、試料20)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とTaを0.02質量%添加したこと以外は、実施例1と同様である。
(実施例21、試料21)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とFeを0.003質量%添加したこと以外は、実施例1と同様である。
(実施例22、試料22)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とBを0.002質量%添加したこと以外は、実施例1と同様である。
(実施例23、試料23)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とCaを0.002質量%添加したこと以外は、実施例1と同様である。
(実施例24、試料24)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とMgを0.002質量%添加したこと以外は、実施例1と同様である。
(実施例25、試料25)
荒引き線の構成材を、無酸素銅溶湯にNbを0.012質量%とMM(ミッシュメタル)を0.002質量%添加したこと以外は、実施例1と同様である。
(従来例1、試料26)
荒引き線の構成材を、タフピッチ銅溶湯に硫黄親和性金属を添加していないこと以外は、実施例1と同様である。
(従来例2、試料27)
荒引き線の構成材を、無酸素銅(OFC)の溶湯を採用した点、および硫黄親和性金属を添加していない点を除いて、実施例1と同様である。
(比較例1、試料28)
荒引き線の構成材を、無酸素銅溶湯にTiを0.0003質量%添加したこと以外は、実施例1と同様である。
(比較例2、試料29)
荒引き線の構成材を、無酸素銅溶湯にTiを0.06質量%添加したこと以外は、実施例1と同様である。
(比較例3、試料30)
荒引き線の構成材を、無酸素銅溶湯にNbを0.06質量%添加したこと以外は、実施例1と同様である。
(比較例4、試料31)
荒引き線の構成材を、無酸素銅溶湯にNbを0.0005質量%添加したこと以外は、実施例1と同様である。
(比較例5、試料32)
荒引き線の構成材を、無酸素銅溶湯にNiを0.0005質量%添加したこと以外は、実施例1と同様である。
(比較例6、試料33)
荒引き線の構成材を、無酸素銅溶湯にNiを0.05質量%添加したこと以外は、実施例1と同様である。
(Example 1, Sample 1)
Using an SCR-type continuous casting and rolling apparatus connected to a shaft furnace, a rough drawn wire having a diameter of φ8 mm mainly containing oxygen-free copper (oxygen concentration 9 ppm) was produced. The constituent material of the rough drawn wire is obtained by adding 0.006 mass% (mass%) of Nb as a sulfur-affinity metal to an oxygen-free molten copper. The rough drawn wire was drawn to φ2.6 mm and then heat-treated at 600 ° C. for 1 hr, and cold-reduced at a workability of 91% to produce a copper wire having a diameter of φ0.8 mm. This was rolled to produce a flat copper wire (thickness 0.16 mm, width 2.0 mm), subjected to a softening annealing treatment at 500 ° C. × 1 hr, and then cut to 150 mm to obtain a core material (conductor).
This core material is immersed in a molten solder plating bath (Sn-3 wt% Ag-0.5 wt% Cu-based lead-free solder) and quickly pulled up, and a molten solder plating layer (thickness 0.03 mm) is formed on the surface of the core material. Was formed, and a solder-coated copper rectangular wire (solder-plated wire for solar cell) was produced.
(Example 2, sample 2)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012% by mass of Nb is added to the oxygen-free molten copper.
(Example 3, Sample 3)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.04% by mass of Nb is added to the oxygen-free molten copper.
(Example 4, sample 4)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.003% by mass of Ti is added to the oxygen-free molten copper.
(Example 5, sample 5)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.003% by mass of Fe is added to the oxygen-free molten copper.
(Example 6, sample 6)
The constituent material of the rough drawing wire is the same as that in Example 1 except that 0.003% by mass of Mg is added to the oxygen-free molten copper.
(Example 7, Sample 7)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.003% by mass of Zr is added to the oxygen-free molten copper.
(Example 8, sample 8)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.04% by mass of Ta is added to the oxygen-free molten copper.
(Example 9, sample 9)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.006% by mass of Ta is added to the oxygen-free molten copper.
(Example 10, sample 10)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.005 mass% of Ni is added to the oxygen-free molten copper.
(Example 11, sample 11)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.01% by mass of Ni is added to the oxygen-free molten copper.
(Example 12, sample 12)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.01 mass% of Ni and 0.001 mass% of Ti are added to the oxygen-free molten copper.
(Example 13, sample 13)
The constituent material of the rough wire was the same as that of Example 1 except that 0.01 mass% of Ni and 0.001 mass% of Mn were added to the oxygen-free copper melt.
(Example 14, sample 14)
The constituent material of the rough wire is the same as that of Example 1 except that 0.01 mass% of Ni and 0.0005 mass% of Ca are added to the oxygen-free molten copper.
(Example 15, sample 15)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.01 mass% of Ni and 0.001 mass% of V are added to the oxygen-free molten copper.
(Example 16, sample 16)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012 mass% of Ni and 0.003 mass% of Ti are added to the oxygen-free molten copper.
(Example 17, sample 17)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012 mass% of Nb and 0.006 mass% of Zr are added to the oxygen-free copper melt.
(Example 18, sample 18)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012 mass% of Nb and 0.01 mass% of Hf are added to the oxygen-free copper melt.
(Example 19, sample 19)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012 mass% of Nb and 0.03% by mass of V are added to the oxygen-free molten copper.
(Example 20, sample 20)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012% by mass of Nb and 0.02% by mass of Ta are added to the oxygen-free molten copper.
(Example 21, Sample 21)
The constituent material of the rough wire was the same as that of Example 1 except that 0.012 mass% of Nb and 0.003 mass% of Fe were added to the oxygen-free molten copper.
(Example 22, sample 22)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.012 mass% of Nb and 0.002 mass% of B are added to the oxygen-free molten copper.
(Example 23, sample 23)
The constituent material of the rough wire was the same as that of Example 1 except that 0.012 mass% of Nb and 0.002 mass% of Ca were added to the oxygen-free molten copper.
(Example 24, sample 24)
The constituent material of the rough drawn wire is the same as that of Example 1 except that 0.012 mass% of Nb and 0.002 mass% of Mg are added to the oxygen-free copper melt.
(Example 25, sample 25)
The constituent material of the rough drawn wire is the same as that of Example 1 except that 0.012 mass% of Nb and 0.002 mass% of MM (Misch metal) are added to the oxygen-free copper melt.
(Conventional example 1, sample 26)
The constituent material of the rough drawn wire is the same as that of Example 1 except that no sulfur-affinity metal is added to the tough pitch copper melt.
(Conventional example 2, sample 27)
The constituent material of the rough drawing wire is the same as that of Example 1 except that a melt of oxygen-free copper (OFC) is used and a sulfur-affinity metal is not added.
(Comparative Example 1, Sample 28)
The constituent material of the rough drawn wire is the same as that of Example 1 except that 0.0003 mass% of Ti is added to the oxygen-free molten copper.
(Comparative Example 2, Sample 29)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.06% by mass of Ti is added to the oxygen-free molten copper.
(Comparative Example 3, Sample 30)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.06% by mass of Nb is added to the oxygen-free molten copper.
(Comparative Example 4, Sample 31)
The constituent material of the rough drawn wire is the same as that of Example 1 except that 0.0005 mass% of Nb is added to the oxygen-free molten copper.
(Comparative Example 5, Sample 32)
The constituent material of the rough drawing wire is the same as that of Example 1 except that 0.0005 mass% of Ni is added to the oxygen-free molten copper.
(Comparative Example 6, Sample 33)
The constituent material of the rough drawn wire is the same as that of Example 1 except that 0.05 mass% of Ni is added to the oxygen-free molten copper.

(評価方法)
上述した各はんだ被覆Cu平角線を縦150mm×横150mm、厚さ200μmのシリコンセルにはんだ接続したものの耐クラックとシリコンセルの反りを調べた。
(Evaluation methods)
Each solder-coated Cu rectangular wire was solder-connected to a silicon cell having a length of 150 mm × width of 150 mm and a thickness of 200 μm, and the crack resistance and warpage of the silicon cell were examined.

実施例1〜実施例25、従来例1、2と、比較例1〜比較例6の各はんだ被覆Cu平角線の0.2%耐力(MPa)、結晶粒径、シリコン基板の反りの発生を測定した結果を表1に示す。   Example 1 to Example 25, Conventional Examples 1 and 2, and Comparative Example 1 to Comparative Example 6 of 0.2% proof stress (MPa), crystal grain size, and silicon substrate warpage of each Cu-coated square wire. The measured results are shown in Table 1.

表1において、シリコン基板の反りの発生の欄における評価印の×は、2.1mmを超える反りが発生した場合を、○は反りが2.1mm以下であった場合を意味する。   In Table 1, “x” of the evaluation mark in the column of warpage occurrence of the silicon substrate indicates a case where warpage exceeding 2.1 mm occurs, and “◯” indicates a case where warpage is 2.1 mm or less.

また、はんだ被覆Cu平角線の0.2%耐力σは、導体に0.2%の歪を与える引張試験における荷重(外力)Fを、はんだを除く導体の断面積Aで除算して求めている。式で示せば、次の通りである。   The 0.2% yield strength σ of the solder-coated Cu rectangular wire is obtained by dividing the load (external force) F in a tensile test that gives a strain of 0.2% to the conductor by the cross-sectional area A of the conductor excluding the solder. Yes. This can be expressed by the following formula.

σ=F/A
さらに、ここで言う結晶粒径とは、はんだ被覆Cu平角線の断面において、結晶粒の大きい方から例えば10個選び、それらの結晶粒の粒径を平均化したものである。
σ = F / A
Further, the crystal grain size referred to here is, for example, 10 grains selected from the larger crystal grains in the cross section of the solder-coated Cu rectangular wire, and the grain diameters of those crystal grains are averaged.

Figure 2008182170
Figure 2008182170

表1によると、実施例1〜実施例25の太陽電池用はんだめっき線(試料1〜試料25)は、いずれもめっき前のCu芯材の0.2%耐力が47MPa以下、めっき後のはんだ被覆Cu平角線の0.2%耐力が67MPa以下、かつ、結晶粒径は26μm以上であった。これらは、いずれもタフピッチ銅の特性(試料26)、めっき前のCu芯材の0.2%耐力:70MPa、めっき後のはんだ被覆Cu平角線の0.2%耐力:90MPa、結晶粒径:18μm)及び無酸素銅の特性(試料27、めっき前のCu芯材の0.2%耐力:50MPa、めっき後のはんだ被覆Cu平角線の0.2%耐力:70MPa、結晶粒径:25μm)よりも優れており、200μmの薄型シリコン基板にはんだ接続した際のシリコン基板の反り量は、許容範囲内(2.1mm以下)であった。   According to Table 1, the solder plating wires for solar cells of Examples 1 to 25 (Sample 1 to Sample 25) all have a 0.2% proof stress of the Cu core material before plating of 47 MPa or less, and the solder after plating. The 0.2% yield strength of the coated Cu rectangular wire was 67 MPa or less, and the crystal grain size was 26 μm or more. These are all tough pitch copper characteristics (sample 26), 0.2% proof stress of Cu core material before plating: 70 MPa, 0.2% proof stress of solder-coated Cu rectangular wire after plating: 90 MPa, crystal grain size: 18 μm) and characteristics of oxygen-free copper (Sample 27, 0.2% proof stress of Cu core material before plating: 50 MPa, 0.2% proof stress of solder-coated Cu rectangular wire after plating: 70 MPa, crystal grain size: 25 μm) The amount of warpage of the silicon substrate when soldered to a 200 μm thin silicon substrate was within an allowable range (2.1 mm or less).

一方、比較例2、5の太陽電池用はんだめっき線(試料29、32)は、いずれもめっき前のCu芯材の0.2%耐力が70MPa以上であり、めっき後のはんだ被覆Cu平角線の0.2%耐力が90MPa以上であり、かつ、結晶粒径は20μm以下であるため、タフピッチ銅の特性(試料26)及び無酸素銅の特性(試料27)よりも劣っており、シリコン基板の反り量は、許容範囲(2.1mm)を超えていた。   On the other hand, in the solder plating wires for solar cells of Comparative Examples 2 and 5 (samples 29 and 32), the 0.2% proof stress of the Cu core material before plating is 70 MPa or more, and the solder-coated Cu rectangular wire after plating. The 0.2% proof stress is 90 MPa or more and the crystal grain size is 20 μm or less, which is inferior to the characteristics of tough pitch copper (sample 26) and oxygen-free copper (sample 27). The amount of warping exceeded the allowable range (2.1 mm).

また、比較例3、4の太陽電池用はんだめっき線(試料30、31)は、めっき前のCu芯材の0.2%耐力が71、73MPaであり、めっき後のはんだ被覆Cu平角線の0.2%耐力が91、93MPaであり、結晶粒径が17、20μmであるため、タフピッチ銅の特性(試料26)とほぼ同等であり、シリコン基板の反り量は、許容範囲(2.1mm)を超えていた。   Moreover, the solder plating wires for solar cells of Comparative Examples 3 and 4 (samples 30 and 31) have a 0.2% proof stress of 71 and 73 MPa of the Cu core material before plating, and are solder-coated Cu rectangular wires after plating. Since the 0.2% proof stress is 91, 93 MPa and the crystal grain size is 17, 20 μm, it is almost the same as the characteristics of tough pitch copper (sample 26), and the warpage amount of the silicon substrate is within an allowable range (2.1 mm ).

また、比較例1、6の太陽電池用はんだめっき線(試料28、33)は、結晶粒径が18μmであり、試料26よりは良好な結果が得られたが、めっき前のCu芯材の0.2%耐力が70MPaを超え、めっき後のはんだ被覆Cu平角線の0.2%耐力が90MPaを超えているため、試料26よりも劣っており、シリコン基板の反り量は、許容範囲を超えていた。   Moreover, the solder plating wires for solar cells (samples 28 and 33) of Comparative Examples 1 and 6 had a crystal grain size of 18 μm, and a better result than that of sample 26 was obtained. The 0.2% yield strength exceeds 70 MPa, and the 0.2% yield strength of the solder-coated Cu rectangular wire after plating exceeds 90 MPa, which is inferior to that of the sample 26. The warpage amount of the silicon substrate is within an allowable range. It was over.

次に、本発明品である実施例1の太陽電池用はんだめっき線(試料1)の熱処理条件(温度、時間)を変化させた場合の、結晶粒径、0.2%耐力(MPa)、耐クラック、シリコン基板の反りを調べた。その結果を表2に示す。   Next, the crystal grain size, 0.2% proof stress (MPa), when the heat treatment conditions (temperature, time) of the solder plated wire for solar cells (sample 1) of Example 1 which is the present invention product are changed, The crack resistance and warpage of the silicon substrate were examined. The results are shown in Table 2.

ここで言う「耐クラック」とは、シリコン基板に接続した後における太陽電池用はんだめっき線に生じる破断を意味する。表2において、耐クラックの欄における評価印の○、×は、それぞれ太陽電池用はんだめっき線に亀裂が生じなかったこと、亀裂が生じたことを意味する。また、表2において、シリコンセルの反りの欄における評価印の○、×は、表1と同様の基準によるものである。   The term “crack-proof” as used herein means a break that occurs in a solar cell solder-plated wire after being connected to a silicon substrate. In Table 2, “◯” and “x” of the evaluation mark in the column of crack resistance mean that no crack occurred in the solder plating wire for solar cell and that a crack occurred. In Table 2, the evaluation marks O and X in the warp column of the silicon cell are based on the same criteria as in Table 1.

Figure 2008182170
Figure 2008182170

表2に示すように、熱処理条件を800℃で60分とした場合、結晶粒径が310μmとなり、変形が簡単に進んでしまい、耐クラックが悪くなるため、大きな伸びを与える前に材料に亀裂が生じてしまい、脆い材料であることが確認された。   As shown in Table 2, when the heat treatment condition is 800 ° C. for 60 minutes, the crystal grain size becomes 310 μm, the deformation progresses easily, and the crack resistance deteriorates. It was confirmed that the material was brittle.

一方、熱処理条件を180℃で60分とした場合、結晶粒径が20μm、めっき前のCu芯材の0.2%耐力が70MPa、めっき後のはんだ被覆Cu平角線の0.2%耐力が90MPaであり、表1に示した試料26と同等又は試料27より劣る結果となり、シリコン基板の反り量は、許容範囲(2.1mm)を超えていた。   On the other hand, when the heat treatment condition is 180 ° C. for 60 minutes, the crystal grain size is 20 μm, the 0.2% proof stress of the Cu core material before plating is 70 MPa, and the 0.2% proof stress of the solder-coated Cu rectangular wire after plating is The result was 90 MPa, which was the same as or inferior to the sample 27 shown in Table 1, and the warpage amount of the silicon substrate exceeded the allowable range (2.1 mm).

以上の結果から、熱処理条件を750℃(×30分〜90分)〜190℃(×60分)とした場合に、試料26よりも優れた特性を得ることができ、太陽電池用はんだめっき線にクラックが生じることもなく、シリコン基板の反り量は、許容範囲内(2.1mm以下)となった。より良好な熱処理条件は、熱処理条件を750℃(×5〜200分)〜400℃(×5〜200分)とした場合であり、この時に、表1に示した試料27よりも優れた特性を得ることができ、太陽電池用はんだめっき線にクラックが生じることもなく、シリコン基板の反り量は、許容範囲内となった。   From the above results, when the heat treatment conditions are 750 ° C. (× 30 to 90 minutes) to 190 ° C. (× 60 minutes), characteristics superior to those of the sample 26 can be obtained, and the solder plated wire for solar cells Thus, the amount of warpage of the silicon substrate was within an allowable range (2.1 mm or less). Better heat treatment conditions are when the heat treatment conditions are 750 ° C. (× 5 to 200 minutes) to 400 ° C. (× 5 to 200 minutes). At this time, characteristics superior to the sample 27 shown in Table 1 are obtained. The crack amount of the silicon substrate was not allowed to crack, and the warpage amount of the silicon substrate was within the allowable range.

太陽電池セルへのはんだめっき平角線の接続状態を示す図である。It is a figure which shows the connection state of the solder plating rectangular wire to a photovoltaic cell. 一般的な太陽電池用はんだめっき線の横断面図である。It is a cross-sectional view of a general solder plating wire for solar cells. Siセルと太陽電池用はんだめっき線の接続状態を示す図であり、(a)ははんだ接続前の状態、(b)ははんだ接続後に反りが発生した状態を示している。It is a figure which shows the connection state of the Si cell and the solder plating wire for solar cells, (a) has shown the state before solder connection, (b) has shown the state which the curvature generate | occur | produced after solder connection.

符号の説明Explanation of symbols

1 太陽電池セル(Siセル)
2 太陽電池用はんだめっき線(はんだめっき平角線)
3 導体
4 はんだめっき
1 Solar cell (Si cell)
2 Solder-plated wire for solar cells (Solder-plated flat wire)
3 Conductor 4 Solder plating

Claims (7)

太陽電池セルに接合すべく、断面平角状に形成された導体の表面の一部又は全部にはんだめっきが被覆された太陽電池用はんだめっき線において、
上記導体を、Nb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属を含有し、残部が酸素含有量10massppm以下の銅及び不可避的不純物である銅材で構成したことを特徴とする太陽電池用はんだめっき線。
In a solder plating wire for a solar battery in which a part or all of the surface of a conductor formed in a rectangular cross section is coated with a solder plating to be joined to a solar battery cell,
The conductor contains one or more sulfur-affinity metals selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, Ni or misch metal, and the balance is oxygen content of 10 massppm or less A solder-plated wire for solar cells, characterized in that it is made of copper and copper material which is an inevitable impurity.
上記導体が、上記硫黄親和性金属を0.0007〜0.04質量%含有する請求項1記載の太陽電池用はんだめっき線。   The solder plating wire for solar cells according to claim 1, wherein the conductor contains 0.0007 to 0.04 mass% of the sulfur affinity metal. 上記導体の結晶粒径が270μm以下である請求項1又は2記載の太陽電池用はんだめっき線。   The solder-plated wire for a solar cell according to claim 1 or 2, wherein the conductor has a crystal grain size of 270 µm or less. 請求項1から3いずれかに記載の太陽電池用はんだめっき線と、太陽電池セルをはんだ接続したことを特徴とする太陽電池。   A solar battery comprising the solar battery solder-plated wire according to claim 1 and a solar battery cell connected by soldering. 連続鋳造圧延装置を用いて、銅溶湯から伸線材を作製して太陽電池用はんだめっき線を製造する方法であって、
上記連続鋳造圧延装置の溶湯貯溜手段に貯溜され、酸素含有量が10massppm以下の銅溶湯にNb、Ti、Zr、V、Ta、Fe、Ca、Mg、Ni又はミッシュメタルから選択される1種又は2種以上の硫黄親和性金属の割合を0.0007〜0.04質量%に調整し、その銅溶湯を用いて荒引き材を製造した後、その荒引き材に減面率30%以上の冷間伸線加工を施し、その冷間加工材に190〜750℃で熱処理を施すことを特徴とする太陽電池用はんだめっき線の製造方法。
A method for producing a solder-plated wire for a solar cell by producing a wire drawing material from a molten copper using a continuous casting and rolling device,
One type selected from Nb, Ti, Zr, V, Ta, Fe, Ca, Mg, Ni or misch metal in the molten copper storage means of the continuous casting and rolling device and having an oxygen content of 10 massppm or less After adjusting the ratio of two or more kinds of sulfur-affinity metals to 0.0007 to 0.04% by mass and manufacturing a roughing material using the molten copper, the surface reduction rate of the roughing material is 30% or more. A method for producing a solder-plated wire for a solar cell, comprising performing cold wire drawing and heat-treating the cold-worked material at 190 to 750 ° C.
上記冷間加工材に、400〜750℃で熱処理を施す請求項5記載の太陽電池用はんだめっき線の製造方法。   The manufacturing method of the solder plating wire for solar cells of Claim 5 which heat-processes at 400-750 degreeC to the said cold work material. 上記熱処理を、ヒータによるバッチ式加熱方式もしくは通電加熱方式により行う請求項5又は6記載の太陽電池用はんだめっき線の製造方法。   The manufacturing method of the solder plating wire for solar cells of Claim 5 or 6 which performs the said heat processing by the batch type heating system or electric current heating system with a heater.
JP2007071754A 2006-12-28 2007-03-20 Solder-plated wire for solar cell and manufacturing method thereof, and solar cell Pending JP2008182170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071754A JP2008182170A (en) 2006-12-28 2007-03-20 Solder-plated wire for solar cell and manufacturing method thereof, and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006355214 2006-12-28
JP2007071754A JP2008182170A (en) 2006-12-28 2007-03-20 Solder-plated wire for solar cell and manufacturing method thereof, and solar cell

Publications (1)

Publication Number Publication Date
JP2008182170A true JP2008182170A (en) 2008-08-07

Family

ID=39725817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071754A Pending JP2008182170A (en) 2006-12-28 2007-03-20 Solder-plated wire for solar cell and manufacturing method thereof, and solar cell

Country Status (1)

Country Link
JP (1) JP2008182170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073445A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Electrical conductor, its manufacturing method, and inter-connector for current collection
JP2011065936A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Conductor for flexible flat cable, method of manufacturing the same, and flexible flat cable employing the same
JP2012089692A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Bus bar for solar cell and method of manufacturing the same
JP2012109548A (en) * 2010-10-20 2012-06-07 Hitachi Cable Ltd Conductor for solar cell and method for manufacturing the same
JP2013211266A (en) * 2012-02-29 2013-10-10 Nippon Steel & Sumitomo Metal Tape-like conductive material, interconnector for solar cell, and solar cell module
CN103035338B (en) * 2011-08-17 2016-08-24 日立金属株式会社 The manufacture method that fusion welding plating is twisted thread

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139662A (en) * 1983-01-31 1984-08-10 Mitsubishi Metal Corp Alloy thin wire for wire bonding of semiconductor device
JPS6148544A (en) * 1984-08-16 1986-03-10 Sumitomo Metal Mining Co Ltd High-conductivity copper alloy and low softening temperature
JPH01264110A (en) * 1988-04-13 1989-10-20 Hitachi Cable Ltd Insulating coated conductor excellent in flexibility
JPH0456754A (en) * 1990-06-22 1992-02-24 Hitachi Cable Ltd Flexible oxygen-free copper rolled foil and flexible printed board and tab tape carrier using the foil
JPH10219374A (en) * 1997-02-10 1998-08-18 Kobe Steel Ltd High strength copper alloy excellent in shearing property
JP2004060018A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Copper foil for electronic part
JP2006054355A (en) * 2004-08-13 2006-02-23 Hitachi Cable Ltd Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell
JP2006274384A (en) * 2005-03-30 2006-10-12 Hitachi Cable Ltd Method for producing copper material and the copper material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139662A (en) * 1983-01-31 1984-08-10 Mitsubishi Metal Corp Alloy thin wire for wire bonding of semiconductor device
JPS6148544A (en) * 1984-08-16 1986-03-10 Sumitomo Metal Mining Co Ltd High-conductivity copper alloy and low softening temperature
JPH01264110A (en) * 1988-04-13 1989-10-20 Hitachi Cable Ltd Insulating coated conductor excellent in flexibility
JPH0456754A (en) * 1990-06-22 1992-02-24 Hitachi Cable Ltd Flexible oxygen-free copper rolled foil and flexible printed board and tab tape carrier using the foil
JPH10219374A (en) * 1997-02-10 1998-08-18 Kobe Steel Ltd High strength copper alloy excellent in shearing property
JP2004060018A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Copper foil for electronic part
JP2006054355A (en) * 2004-08-13 2006-02-23 Hitachi Cable Ltd Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell
JP2006274384A (en) * 2005-03-30 2006-10-12 Hitachi Cable Ltd Method for producing copper material and the copper material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012018186; 日本伸銅協会伸銅品データブック編集委員会: 伸銅品データブック , 19970801, 88-89ページ, 日本伸銅協会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073445A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Electrical conductor, its manufacturing method, and inter-connector for current collection
JP2011065936A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Conductor for flexible flat cable, method of manufacturing the same, and flexible flat cable employing the same
JP2012089692A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Bus bar for solar cell and method of manufacturing the same
JP2012109548A (en) * 2010-10-20 2012-06-07 Hitachi Cable Ltd Conductor for solar cell and method for manufacturing the same
CN103035338B (en) * 2011-08-17 2016-08-24 日立金属株式会社 The manufacture method that fusion welding plating is twisted thread
JP2013211266A (en) * 2012-02-29 2013-10-10 Nippon Steel & Sumitomo Metal Tape-like conductive material, interconnector for solar cell, and solar cell module

Similar Documents

Publication Publication Date Title
JP2008182171A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
CN100447268C (en) Copper alloy material and method of making same
EP1758175B1 (en) Electrode wire for solar battery
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP4725688B2 (en) Material for interconnector for solar cell and interconnector for solar cell
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP2007141930A (en) Electrode wire for solar battery and its manufacturing method
JP5073386B2 (en) ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
JP5038765B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP2008182170A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
JP2013057121A (en) Method of manufacturing soft dilute copper alloy material
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP5446188B2 (en) Interconnector for semiconductor wire mounting and interconnector for solar cell
JP5544718B2 (en) INTERCONNECTOR MATERIAL FOR SOLAR CELL, ITS MANUFACTURING METHOD, AND INTERCONNECTOR FOR SOLAR CELL
JP2013049893A (en) Conductor for solar cell interconnector, and solar cell interconnector
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP2006190574A (en) Rectangular conductor and lead wire
JP2016204680A (en) Method for manufacturing solder plating copper wire, apparatus for manufacturing solder plating copper wire, and solder plating copper wire obtained by apparatus and method for manufacturing solder plating copper wire
JP2016169414A (en) Metal wire for solar cell wire and solar cell module
WO2023106241A1 (en) Copper-based wire rod, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813