JP2008180601A - Substrate end face inspection device - Google Patents

Substrate end face inspection device Download PDF

Info

Publication number
JP2008180601A
JP2008180601A JP2007014249A JP2007014249A JP2008180601A JP 2008180601 A JP2008180601 A JP 2008180601A JP 2007014249 A JP2007014249 A JP 2007014249A JP 2007014249 A JP2007014249 A JP 2007014249A JP 2008180601 A JP2008180601 A JP 2008180601A
Authority
JP
Japan
Prior art keywords
optical system
light
substrate
bevel
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007014249A
Other languages
Japanese (ja)
Inventor
Daisaku Mochida
大作 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007014249A priority Critical patent/JP2008180601A/en
Publication of JP2008180601A publication Critical patent/JP2008180601A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate end face inspection device capable of efficiently detecting a polishing mark generated in an end part of the substrate. <P>SOLUTION: Illuminating light emitted from an illuminating optical system 1 diagonally illuminates a bevel part 3 of a wafer 2. On the other hand, an imaging optical system 4 disposed vertically above the bevel part 3 receives diffraction light generated by a polishing mark on the bevel part 3 and forms the image on an imaging area of an imaging device 5. An optical axis of the imaging optical system 4 is set in a vertical direction. An optical axis of the illuminating optical system 1 is inclined at an angle of only β from the vertical direction. Thus, light specularly reflected from the bevel 3 cannot enter an object lens of the imaging optical system 4. Hence, the diffraction light generated by the polishing mark in the bevel part 3 enters the object lens of the imaging optical system 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は基板端面検査装置に関するものである。   The present invention relates to a substrate end face inspection apparatus.

これまでウエハの検査は、表、裏面の傷やゴミ、クラックの有無、膜ムラ等を検出することが主流であり、端面部は比較的軽視されがちであった。しかし近年端面部の欠陥が歩留に大きく影響することが認識され始め、ウエハ端面を検査する要求が高まっている。具体的にはウエハ端面に欠陥がある場合、チップの製造プロセスに中に最悪ウエハが割れることがある。この場合そのウエハ上の全チップが不良となるだけでなく、製造装置、検査装置の汚染をも引き起こすことになり、製造プロセスそのものに大きな影響を与えることになる。   Until now, the inspection of wafers has mainly been to detect scratches and dust on the front and back surfaces, the presence or absence of cracks, film unevenness, and the like, and the end surface has tended to be relatively neglected. However, in recent years, it has begun to be recognized that defects at the end face greatly affect the yield, and the demand for inspecting the wafer end face has increased. Specifically, when there is a defect on the wafer end face, the worst wafer may break during the chip manufacturing process. In this case, not only all the chips on the wafer become defective, but also the manufacturing apparatus and the inspection apparatus are contaminated, which greatly affects the manufacturing process itself.

ウエハ端面部は側面に向かって傾斜したベベル部、側面のアペックス部からなり、欠陥としては膜のエッジカット不良やクラック、傷などがある。   The wafer end surface portion is composed of a bevel portion inclined toward the side surface and an apex portion on the side surface, and defects include defective edge cut of the film, cracks, and scratches.

従来のウエハ検査装置には顕微鏡が用いられているが、これらの顕微鏡は、照明光学系の光軸と撮像光学系の光軸を途中で同一とし、共通の対物レンズを介して、ウエハの被検査部を落射照明し、被検査部からの正反射光を撮像光学系で撮像するようになっている。このような、ウエハ検査装置は、ウエハの表、裏面を検査するためには有効であるが、ベベル部を検査する場合には、正反射光が対物レンズに入射することができない。よって、観察される画像は図5に示すようになり、表裏面21の画像は明るく見えるがベベル部22の画像が暗くなってしまい、その結果ベベル部の検査ができないという問題があった。   In conventional wafer inspection apparatuses, microscopes are used. These microscopes have the optical axis of the illumination optical system and the optical axis of the imaging optical system in the middle, and are covered with a wafer through a common objective lens. The inspection part is incidentally illuminated, and the regular reflection light from the part to be inspected is imaged by the imaging optical system. Such a wafer inspection apparatus is effective for inspecting the front and back surfaces of a wafer, but when inspecting a bevel portion, regular reflection light cannot enter the objective lens. Therefore, the observed image is as shown in FIG. 5, and the image of the front and back surfaces 21 appears bright, but the image of the bevel portion 22 becomes dark. As a result, there is a problem that the bevel portion cannot be inspected.

この問題を解決するために、例えばWO2003/028089号公報(特許文献1)に記載されるようなウエハの端面検査装置が提案されている。この装置は顕微鏡対物レンズや落射テレセントリック照明結像光学系を用いて、ウエハ端面部の画像を取得し、画像から欠陥を検出するものである。
WO2003/028089
In order to solve this problem, for example, a wafer end face inspection apparatus as described in WO2003 / 028089 (Patent Document 1) has been proposed. This apparatus uses a microscope objective lens and an epi-illumination telecentric illumination imaging optical system to acquire an image of the wafer end face and detect defects from the image.
WO2003 / 028089

しかしながら、特許文献1には、欠陥を検出する最適な照明条件等についてはふれられておらず、どのような欠陥を検出できるのか不明瞭な点がある。またウエハのベベル部は状態を整えるために切削等の処理が行われることがある。このときベベルに切削痕(研磨痕)が残ればここにゴミが溜まりこれが内部の基板に影響を及ぼす可能性があるため、このような切削痕の検出も必要とされている。しかし一般にこのような傷は1μm以下と非常に小さく、通常の低倍顕微鏡測定では検出できないものもある。   However, Patent Document 1 does not mention the optimal illumination conditions for detecting defects, and it is unclear what defects can be detected. In addition, processing such as cutting may be performed to adjust the bevel portion of the wafer. At this time, if a cutting mark (polishing mark) remains on the bevel, dust accumulates here, which may affect the internal substrate. Therefore, detection of such a cutting mark is also required. However, in general, such scratches are very small, 1 μm or less, and there are some that cannot be detected by ordinary low-magnification microscopic measurement.

また高倍顕微鏡では検出することは可能であるが、視野範囲、焦点深度が非常に狭くなるなど測定に大きな制限がついてしまう。SEMを用いても研磨痕の測定は可能であるが、基板を小さくカットするなど測定が大掛かりなものになってしまう。   Although it can be detected with a high-magnification microscope, the measurement is severely limited, such as a very narrow field of view and depth of focus. Although it is possible to measure polishing marks using SEM, the measurement becomes large, such as cutting the substrate into small pieces.

本発明はこのような事情に鑑みてなされたもので、基板端部に発生する研磨痕を、効率良く検出することができる基板端面検査装置を提供することを課題とする。   This invention is made | formed in view of such a situation, and makes it a subject to provide the board | substrate end surface inspection apparatus which can detect the grinding | polishing trace which generate | occur | produces in a board | substrate edge part efficiently.

前記課題を解決するための第1の手段は、基板の端面を検査する基板端面検査装置であって、前記端面を照明する照明光学系と、前記端面からの光を受光する受光光学系とを有し、前記受光光学系は、前記端面からの光のうち回折光のみを受光する位置に配置されてなる基板端面検査装置である。   A first means for solving the above problem is a substrate end surface inspection apparatus that inspects an end surface of a substrate, and includes an illumination optical system that illuminates the end surface, and a light receiving optical system that receives light from the end surface. And the light receiving optical system is a substrate end surface inspection device arranged at a position for receiving only the diffracted light out of the light from the end surface.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記受光光学系は、その光軸が前記基板の面に対して垂直になるように、前記基板上方に配置され、前記照明光学系の光軸は、前記受光光学系の光軸に対して、略10〜20°傾斜して配置されてなるものである。   The second means for solving the problem is the first means, wherein the light receiving optical system is disposed above the substrate so that its optical axis is perpendicular to the surface of the substrate. The optical axis of the illumination optical system is arranged with an inclination of approximately 10 to 20 ° with respect to the optical axis of the light receiving optical system.

前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段であって、前記回折光の強度及び波長から前記端面に存在する欠陥の大きさを導き出す処理装置を備えたものである。   A third means for solving the problem is the first means or the second means, comprising a processing device for deriving the size of a defect existing on the end face from the intensity and wavelength of the diffracted light. It is a thing.

本発明によれば、基板端部に発生する研磨痕を、効率良く検出することができる基板端面検査装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate end surface inspection apparatus which can detect efficiently the grinding | polishing trace which generate | occur | produces in a board | substrate edge part can be provided.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態であるウエハ端面検査装置の照明光学系と撮像光学系の配置の概要を示す図である。照明光学系1から放出された照明光は、水平なホルダー(図示せず)上に保持されたウエハ2のベベル部3を斜め照明する。一方、ベベル部3の鉛直方向上方には、撮像光学系4が設けられており、ベベル部3の研磨痕により発生する回折光を受け、その像を撮像装置5の撮像面上に結像するようになっている。撮像光学系4の光軸は鉛直方向の向きとされている。ホルダーの回転によりウエハの回転位置を任意に変え、被検査位置を変えることができる。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of the arrangement of an illumination optical system and an imaging optical system of a wafer end surface inspection apparatus according to an embodiment of the present invention. The illumination light emitted from the illumination optical system 1 obliquely illuminates the bevel portion 3 of the wafer 2 held on a horizontal holder (not shown). On the other hand, an imaging optical system 4 is provided above the bevel portion 3 in the vertical direction, receives diffracted light generated by the polishing marks on the bevel portion 3, and forms an image on the imaging surface of the imaging device 5. It is like that. The optical axis of the imaging optical system 4 is oriented in the vertical direction. The rotation position of the wafer can be arbitrarily changed by rotating the holder, and the inspection position can be changed.

照明光学系1の光軸は、鉛直方向からθだけ傾いており、この結果ベベル部3での正反射光は撮像光学系4の対物レンズに入射することができない。そして、前述のように、ベベル部3の研磨痕により発生する回折光が撮像光学系4の対物レンズに入射するようになっている。検証を行った結果、研磨痕は正反射光ではほとんど見えず、回折光でよく見えることが判明した。   The optical axis of the illumination optical system 1 is inclined by θ from the vertical direction. As a result, the specularly reflected light from the bevel part 3 cannot enter the objective lens of the imaging optical system 4. As described above, the diffracted light generated by the polishing marks on the bevel portion 3 enters the objective lens of the imaging optical system 4. As a result of the verification, it was found that the polishing marks were hardly visible with specular reflection light, but were clearly visible with diffracted light.

照明光学系1の鉛直方向からの角度θを、ベベル部3からの正反射光と回折光が共に撮像光学系4の対物レンズに入射するように設定すると、撮像される像に正反射光が結像する明るい場所と正反射光が結像しない暗い場所ができてしまい、正反射光が入射する明るい場所では、正反射光がノイズとなって、回折光により形成される像を観測することができない。つまり照明光学系1は、正反射光成分が撮像光学系4の対物レンズに入射できず、回折光のみ撮像光学系4の対物レンズに入射するような配置にすることが必要である。ベベル部3上の正反射光成分の位置は照明光学系とベベルの相対角度、及び照明NAよって変化するが、通常のウエハの場合、照明光学系を図1に示すような配置とし、θを10〜20°にすることで、正反射光成分が撮像光学系4の対物レンズに入射できず、回折光のみ撮像光学系4の対物レンズに入射するような配置にすることができ、最適に研磨痕を検出できることが判明した。さらに照明光学系1は照明NAをある程度確保することで、幅広いサイズの研磨痕検出が可能となることに加えて、ベベル部3の傾斜変化にも対応することが可能となる。照明光学系1の照明NAをあまり大きく取れない場合は、ベベル部3の傾斜変化に対応するため照明光学系1の配置角度を調整する機構を備えていることが望ましい。   When the angle θ from the vertical direction of the illumination optical system 1 is set so that both the specularly reflected light and the diffracted light from the bevel unit 3 are incident on the objective lens of the image pickup optical system 4, the specularly reflected light is reflected on the image to be picked up. In a bright place where the image is formed and a dark place where the specularly reflected light is not imaged, and in a bright place where the specularly reflected light is incident, the specularly reflected light becomes noise and the image formed by the diffracted light is observed. I can't. That is, the illumination optical system 1 needs to be arranged so that the specularly reflected light component cannot enter the objective lens of the imaging optical system 4 and only the diffracted light enters the objective lens of the imaging optical system 4. The position of the specularly reflected light component on the bevel unit 3 varies depending on the relative angle between the illumination optical system and the bevel and the illumination NA. However, in the case of a normal wafer, the illumination optical system is arranged as shown in FIG. By setting the angle to 10 to 20 °, it is possible to arrange so that the specularly reflected light component cannot be incident on the objective lens of the imaging optical system 4 and only the diffracted light is incident on the objective lens of the imaging optical system 4. It has been found that polishing marks can be detected. Furthermore, the illumination optical system 1 can secure a certain amount of illumination NA, thereby enabling detection of a wide range of polishing marks, and in addition to responding to changes in the inclination of the bevel portion 3. In the case where the illumination NA of the illumination optical system 1 is not so large, it is desirable to provide a mechanism for adjusting the arrangement angle of the illumination optical system 1 in order to cope with the change in the inclination of the bevel portion 3.

次に撮像光学系4について述べる。ベベル部3は図1に示したとおり傾斜しており、鉛直方向からベベル全面を見るためには深い焦点深度が必要である。焦点深度は幅で200μm程度あることが望ましい。これを達成するには撮像光学系4の対物レンズのNAは0.05程度となり、低倍率のテレセントリック対物レンズがふさわしい。低倍率の対物レンズを使用することで、一度に検査できる領域が広くなるというメリットもある。   Next, the imaging optical system 4 will be described. The bevel portion 3 is inclined as shown in FIG. 1, and a deep depth of focus is required to see the entire bevel from the vertical direction. The depth of focus is preferably about 200 μm in width. In order to achieve this, the NA of the objective lens of the imaging optical system 4 is about 0.05, and a low-magnification telecentric objective lens is suitable. By using a low-magnification objective lens, there is also an advantage that a region that can be inspected at a time is widened.

このようなウエハ端面検査装置により観察される画像の概念図を図2に示す。正反射光が入射しないので、表裏面21の画像、ベベル部22の画像とも暗くなっているが、回折光により結像される研磨痕の像23が、明るく観察される。   A conceptual diagram of an image observed by such a wafer end surface inspection apparatus is shown in FIG. Since the specularly reflected light does not enter, both the image of the front and back surfaces 21 and the image of the bevel portion 22 are dark, but the polishing mark image 23 formed by the diffracted light is observed brightly.

以下、具体例をあげて説明する。照明光学系1の照明NAを0.17(角度10°)で、配置をθ=15°とする。つまり照明の角度は鉛直から5〜25°までを満たしているとする。撮像光学系4の対物レンズのNAを0.04(角度2.3°)、ベベル部3の傾斜を30°とする。連続する研磨痕のピッチを1μm(研磨痕のサイズは0.5μm、一般に研磨痕のサイズとは、研磨痕のピッチの1/2を言う)としたとき、回折光の様子をシミュレーションした結果を図3に示す。図3は2次の回折光について示したもので、角度は鉛直から時計回り方向を正にとってある。つまり図1の入射角θは図3において負の角度となる。図3において、中央のハッチをかけた矩形部分が観察可能範囲であり、横方向の幅は照明光学系1のNAで決定され、縦方向の幅は撮像光学系4のNAで決定される。   Hereinafter, a specific example will be described. The illumination NA of the illumination optical system 1 is 0.17 (angle 10 °), and the arrangement is θ = 15 °. In other words, it is assumed that the illumination angle satisfies 5 to 25 ° from the vertical. The NA of the objective lens of the imaging optical system 4 is 0.04 (angle 2.3 °), and the inclination of the bevel portion 3 is 30 °. The result of simulating the state of diffracted light when the pitch of continuous polishing marks is 1 μm (the size of the polishing marks is 0.5 μm, and generally the size of the polishing marks is 1/2 of the pitch of the polishing marks). 3 shows. FIG. 3 shows the second-order diffracted light, and the angle is positive from the vertical to the clockwise direction. That is, the incident angle θ in FIG. 1 is a negative angle in FIG. In FIG. 3, the hatched rectangular portion at the center is the observable range, the horizontal width is determined by the NA of the illumination optical system 1, and the vertical width is determined by the NA of the imaging optical system 4.

図3を見ると例えば照明光の入射角θを−10°としてベベル部3を照明すると、赤の回折光は−13°、黄の回折光は−2°、青の回折光は10°の方向に出射することが分かる。撮像光学系4の対物レンズは角度±2.3°の光を拾うことができるため、先の回折光(θ=−10°の場合)では黄色に近い光が対物レンズに入射し、撮像装置5の撮像面上に結像されることになる。照明光学系は角度−5〜−25°まで満たした光でベベルを照明するため、図3で、中央のハッチをかけた矩形部分の領域の光が全て4の撮像面上の結像に寄与することになる。つまり照明NAが大きいと幅広い回折光を発生できることになり、幅広い研磨痕のサイズに対応することが可能となる。   Referring to FIG. 3, for example, when the incident angle θ of the illumination light is set to −10 ° and the bevel portion 3 is illuminated, the red diffracted light is −13 °, the yellow diffracted light is −2 °, and the blue diffracted light is 10 °. It can be seen that the light is emitted in the direction. Since the objective lens of the imaging optical system 4 can pick up light having an angle of ± 2.3 °, near yellow light enters the objective lens in the previous diffracted light (when θ = −10 °), and the imaging device 5 An image is formed on the imaging surface. Since the illumination optical system illuminates the bevel with light satisfying an angle of −5 to −25 °, in FIG. 3, all the light in the rectangular area with the central hatch contributes to the image formation on the four imaging surfaces. Will do. That is, when the illumination NA is large, a wide range of diffracted light can be generated, and a wide range of polishing marks can be handled.

このとき、ハーフピッチが0.5μmの研磨痕に対して、入射角度−25°の角度で入射した照明光から発生した回折光のうち赤の光が、入射角度−5°の角度で入射した照明光から発生した回折光のうち青と黄の間、すなわち緑の光が対物レンズに入射することになり、これらの光が重なり合って結局白っぽい光が撮像光学系4の撮像面上に結像される。つまりハーフピッチ0.5μmの研磨痕は白っぽい光として検出できることが分かる。回折光として3次光まで考えると表1の範囲にある研磨痕を検出することが可能である。

Figure 2008180601
At this time, the illumination in which the red light of the diffracted light generated from the illumination light incident at an incident angle of −25 ° is incident at an incident angle of −5 ° with respect to the polishing mark having a half pitch of 0.5 μm. Of the diffracted light generated from the light, between blue and yellow, that is, green light is incident on the objective lens. The That is, it can be seen that a polishing mark having a half pitch of 0.5 μm can be detected as whitish light. Considering up to third-order light as diffracted light, it is possible to detect a polishing mark in the range of Table 1.
Figure 2008180601

撮像光学系4の対物レンズは先に述べたとおり焦点深度を稼ぐためにNA0.05程度のものを使用することが望ましいが、開口数が小さくなると解像力が落ちるというデメリットがある。例えばNA0.05ではエアリーディスクの半径は波長d線において7μmとなり、本来この程度の傷しか検出できない。しかし上記のとおり回折光を利用することで、これよりも一桁小さい研磨痕の検出が可能となる。   As described above, it is desirable to use an objective lens of the imaging optical system 4 having an NA of about 0.05 to increase the depth of focus, but there is a demerit that the resolving power decreases as the numerical aperture decreases. For example, with NA of 0.05, the radius of the Airy disk is 7 μm at the wavelength d line, and only this level of scratch can be detected. However, by using diffracted light as described above, it is possible to detect polishing marks that are an order of magnitude smaller than this.

次に本発明の応用について説明する。先に述べた具体例では照明光として、入射角に広がりのある光(NAの大きな光)を用いたため、様々な色の回折光が重なり合って研磨痕は白っぽく検出される。これに対し、本応用例では照明光学系は照明NAをできるだけ絞ってベベル部3を照明する。このときベベル部3の研磨痕はそのサイズに応じた色と強度を示すことになる。撮影画像からこの強度と色を検出することで、研磨痕のサイズを推定することが可能である。まず強度を検出することで回折光の次数を推定することができる。照明光学系1の配置角度は既知であり、ベベル部3の傾斜角を事前に測定しておくことで、先の図3と同等のシミュレーションを行うことができる。これにより所定の入射角における回折光が検出した色に近くなるような研磨痕のピッチを求めることが可能である。例えば照明光の入射角度を15°とし、ベベル部3の傾斜が30°のウエハを測定した結果、回折次数が2次と思われる赤い研磨痕を検出したとする。この様子をシミュレーションした結果を図4に示す。図4においては、照明光学系1の照明NAが絞られているので、中央のハッチをかけた矩形部分の領域の横幅が狭くなり、検出される回折光が色づいて見えるようになる。   Next, application of the present invention will be described. In the specific example described above, light having a wide incident angle (light having a large NA) is used as illumination light, so that diffracted light of various colors overlap and the polishing mark is detected whitish. On the other hand, in this application example, the illumination optical system illuminates the bevel portion 3 with the illumination NA reduced as much as possible. At this time, the polishing mark on the bevel portion 3 shows a color and strength corresponding to the size. By detecting the intensity and color from the photographed image, it is possible to estimate the size of the polishing mark. First, the order of the diffracted light can be estimated by detecting the intensity. The arrangement angle of the illumination optical system 1 is known, and a simulation equivalent to the previous FIG. 3 can be performed by measuring the inclination angle of the bevel portion 3 in advance. Thereby, it is possible to obtain the pitch of the polishing marks so that the diffracted light at a predetermined incident angle is close to the detected color. For example, it is assumed that a red polishing mark that has a diffraction order of second order is detected as a result of measuring a wafer having an incident angle of illumination light of 15 ° and a bevel portion 3 having an inclination of 30 °. The result of simulating this situation is shown in FIG. In FIG. 4, since the illumination NA of the illumination optical system 1 is narrowed, the lateral width of the rectangular portion with the central hatching is narrowed, and the detected diffracted light appears to be colored.

図4の場合、中央のハッチをかけた矩形部分の領域に入る光は赤色である。予め定められた、色と研磨痕ピッチとの関係から、この場合2次回折光に対応する研磨痕のピッチは1.1μmであることが分かる。つまり研磨痕のサイズはハーフピッチ0.6μm程度であると予想される。この応用例を用いることで、取得した研磨痕のデータから研磨痕のサイズを推定することが可能である。すなわち、予め観測される色と研磨痕のサイズの関係を各回折光の次数ごとに求めておき、観察の結果、回折光の強さで回折光の次数を決定し、決定された回折光について、色と研磨痕のサイズの関係を利用して、研磨痕のサイズを求める。   In the case of FIG. 4, the light entering the area of the rectangular portion with the central hatch is red. From the predetermined relationship between color and polishing mark pitch, it can be seen that the pitch of the polishing mark corresponding to the second-order diffracted light in this case is 1.1 μm. That is, the size of the polishing marks is expected to be about 0.6 μm half pitch. By using this application example, it is possible to estimate the size of the polishing mark from the acquired polishing mark data. That is, the relationship between the color observed in advance and the size of the polishing mark is obtained for each order of each diffracted light, and as a result of the observation, the order of the diffracted light is determined based on the intensity of the diffracted light. The size of the polishing mark is obtained using the relationship between the color and the size of the polishing mark.

本発明の実施の形態であるウエハ検査装置の照明光学系と撮像光学系の配置の概要を示す図である。It is a figure which shows the outline | summary of arrangement | positioning of the illumination optical system and imaging optical system of the wafer inspection apparatus which is embodiment of this invention. 本発明の実施の形態であるウエハ検査装置を用いてウエハのベベル部を検査した場合の、撮影画像を示す模式図である。It is a schematic diagram which shows a picked-up image at the time of test | inspecting the bevel part of a wafer using the wafer inspection apparatus which is embodiment of this invention. 照明NAがある程度大きい場合の回折光のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the diffracted light in case illumination NA is large to some extent. 照明NAが小さい場合の回折光のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the diffracted light in case illumination NA is small. 従来のウエハ検査装置を用いてウエハのベベル部を検査した場合の撮像画面を示す模式図である。It is a schematic diagram which shows the imaging screen at the time of test | inspecting the bevel part of a wafer using the conventional wafer inspection apparatus.

符号の説明Explanation of symbols

1…照明光学系、2…ウエハ、3…ベベル部、4…撮像光学系、5…撮像装置 DESCRIPTION OF SYMBOLS 1 ... Illumination optical system, 2 ... Wafer, 3 ... Bevel part, 4 ... Imaging optical system, 5 ... Imaging apparatus

Claims (3)

基板の端面を検査する基板端面検査装置であって、
前記端面を照明する照明光学系と、
前記端面からの光を受光する受光光学系とを有し、
前記受光光学系は、前記端面からの光のうち回折光のみを受光する位置に配置されてなる基板端面検査装置。
A substrate end surface inspection apparatus for inspecting an end surface of a substrate,
An illumination optical system for illuminating the end face;
A light receiving optical system for receiving light from the end face;
The light receiving optical system is a substrate end surface inspection device arranged at a position for receiving only diffracted light out of light from the end surface.
請求項1に記載の基板端面検査装置であって、
前記受光光学系は、その光軸が前記基板の面に対して垂直になるように、前記基板上方に配置され、
前記照明光学系の光軸は、前記受光光学系の光軸に対して、略10〜20°傾斜して配置されてなる基板端面検査装置。
It is a board | substrate end surface inspection apparatus of Claim 1, Comprising:
The light receiving optical system is disposed above the substrate so that its optical axis is perpendicular to the surface of the substrate,
The substrate end surface inspection apparatus in which the optical axis of the illumination optical system is arranged to be inclined by approximately 10 to 20 ° with respect to the optical axis of the light receiving optical system.
請求項1又は請求項2に記載の基板端面検査装置であって、前記回折光の強度及び波長から前記端面に存在する欠陥の大きさを導き出す処理装置を備えた基板端面検査装置。   3. The substrate end surface inspection apparatus according to claim 1, further comprising a processing device for deriving a size of a defect existing on the end surface from the intensity and wavelength of the diffracted light.
JP2007014249A 2007-01-24 2007-01-24 Substrate end face inspection device Pending JP2008180601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014249A JP2008180601A (en) 2007-01-24 2007-01-24 Substrate end face inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014249A JP2008180601A (en) 2007-01-24 2007-01-24 Substrate end face inspection device

Publications (1)

Publication Number Publication Date
JP2008180601A true JP2008180601A (en) 2008-08-07

Family

ID=39724611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014249A Pending JP2008180601A (en) 2007-01-24 2007-01-24 Substrate end face inspection device

Country Status (1)

Country Link
JP (1) JP2008180601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024067A1 (en) * 2008-08-29 2010-03-04 株式会社 日立ハイテクノロジーズ Defect inspection method, and defect inspection device
CN115791807A (en) * 2023-01-09 2023-03-14 苏州高视半导体技术有限公司 Device for detecting wafer defects

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024067A1 (en) * 2008-08-29 2010-03-04 株式会社 日立ハイテクノロジーズ Defect inspection method, and defect inspection device
JP2010054395A (en) * 2008-08-29 2010-03-11 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
CN115791807A (en) * 2023-01-09 2023-03-14 苏州高视半导体技术有限公司 Device for detecting wafer defects
CN115791807B (en) * 2023-01-09 2023-05-30 苏州高视半导体技术有限公司 Device for detecting wafer defect

Similar Documents

Publication Publication Date Title
TWI648534B (en) Inspection method for back surface of epitaxial wafer, inspection device for back surface of epitaxial wafer, lift pin management method for epitaxial growth device, and manufacturing method for epitaxial wafer
JPWO2008139735A1 (en) Surface inspection apparatus and surface inspection method
CN101680848B (en) Inspection device and inspection method
TWI713638B (en) Method for detecting defects and associated device
TWI639052B (en) Defect inspecting method, sorting method and producing method for photomask blank
KR102038478B1 (en) Wafer inspection method and wafer inspection apparatus
JP2020025126A (en) Imaging system
JP2012159487A (en) Foreign matter inspection device and foreign matter inspection method for flat plate glass
KR102066520B1 (en) Epitaxial wafer backside inspection apparatus and epitaxial wafer backside inspection method using the same
JP2007147433A (en) Flaw inspection method of ceramic plate and flaw inspection device therefor
JP2009042202A (en) Wafer inspection equipment and wafer inspection method
JP2011117928A (en) Apparatus and method for inspecting internal defect of substrate
KR100851212B1 (en) Method of inspecting surface defect on semiconductor and afm therefor
JP2009025003A (en) Surface state inspection device
JP2008180601A (en) Substrate end face inspection device
EP3821235A1 (en) Optical inspection device and method
JP2011203201A (en) Metal defect detection method
JP5868203B2 (en) Inspection device
JP3078784B2 (en) Defect inspection equipment
KR101885614B1 (en) Wafer inspection method and wafer inspection apparatus
JP5803788B2 (en) Metal defect detection method
JP2008277596A (en) Surface scratch defect inspection apparatus
JP2010190740A (en) Substrate inspection device, method, and program
JP2000028535A (en) Defect inspecting device
TWM585898U (en) Automatic optical inspection mechanism for inspecting defects of silicon wafer