JP2008178954A - Surface coated cutting tool with its hard coating layer exerting excellent resistance against chipping - Google Patents

Surface coated cutting tool with its hard coating layer exerting excellent resistance against chipping Download PDF

Info

Publication number
JP2008178954A
JP2008178954A JP2007015553A JP2007015553A JP2008178954A JP 2008178954 A JP2008178954 A JP 2008178954A JP 2007015553 A JP2007015553 A JP 2007015553A JP 2007015553 A JP2007015553 A JP 2007015553A JP 2008178954 A JP2008178954 A JP 2008178954A
Authority
JP
Japan
Prior art keywords
layer
plane
phase
hard coating
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007015553A
Other languages
Japanese (ja)
Other versions
JP4888709B2 (en
Inventor
Kohei Tomita
興平 冨田
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007015553A priority Critical patent/JP4888709B2/en
Publication of JP2008178954A publication Critical patent/JP2008178954A/en
Application granted granted Critical
Publication of JP4888709B2 publication Critical patent/JP4888709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool whose hard coating layer can exert an excellent resistance against chipping in a high-speed intermittent cutting. <P>SOLUTION: By means of evaporative deposition process, the surface of a tool base is fitted with a hard coating layer whose underlayer (a) is configured with Ti compounds and overlayer (b) consists in a two-phase mixed oxide layer including Al<SB>2</SB>O<SB>3</SB>phase and ZrO<SB>2</SB>phase in the condition evaporated with chemical vapor deposition, wherein the Zr/(Al+Zr) value (by atomic ratio) of the layer ranges between 0.003-0.2, and the crystal grains constituting the layer assume a grain boundary surface orientation where the grain boundary surface unit with the mutually crossing angle of the normals to the (0001) plane on the boundary surface of the adjoining crystal grains with each other and the one of the normals to the (10-10) plane being 15 degrees or less occupies 30% or more of the whole grain boundary surface unit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、高い発熱を伴うとともに切刃に断続的かつ衝撃的な高負荷がかかる高速断続切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard coating even when cutting various materials such as steel and cast iron under high-speed intermittent cutting conditions that cause high heat generation and intermittent and impactful loads on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型またはκ型の結晶構造の酸化アルミニウム(以下、Alで示す)と酸化ジルコニウム(以下、ZrOで示す)の2相混合酸化物組織を有し、かつ、0.1〜10重量%のZrOがAl素地に分散した2相混合酸化物層(以下、単に「従来2相混合酸化物層」という)、
を蒸着形成してなる被覆工具が、例えば各種の鋼や鋳鉄などの切削加工に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. As a hard coating layer,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) Two-phase mixed oxide of aluminum oxide (hereinafter referred to as Al 2 O 3 ) and zirconium oxide (hereinafter referred to as ZrO 2 ) having an α-type or κ-type crystal structure in a state where the upper layer is chemically vapor-deposited A two-phase mixed oxide layer having a structure and 0.1 to 10% by weight of ZrO 2 dispersed in an Al 2 O 3 substrate (hereinafter simply referred to as “conventional two-phase mixed oxide layer”),
It is well known that a coated tool formed by vapor-depositing is used for cutting various steels and cast irons, for example.

また、上記の従来被覆工具において、硬質被覆層の下部層を構成するTi化合物層のTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開2001−38504号公報 特開平6−8010号公報
Further, in the conventional coated tool, the TiCN layer of the Ti compound layer constituting the lower layer of the hard coating layer is formed as an organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus for the purpose of improving the strength of the layer itself. It is also known to form a vertically elongated crystal structure by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing benzene.
JP 2001-38504 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを高い発熱を伴うと共に、切刃に断続的かつ衝撃的な高負荷がかかる高速断続切削加工に用いた場合には、硬質被覆層の上部層を構成する従来2相混合酸化物層における粒界強度が十分でないために、そこから生じたクラックによりチッピングが発生しやすくなり、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. For tools, there is no problem when this is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but this is accompanied by high heat generation and intermittent and impact on the cutting edge. When used for high-speed intermittent cutting that requires a high load, the grain boundary strength of the conventional two-phase mixed oxide layer that forms the upper layer of the hard coating layer is not sufficient, so chipping is caused by cracks generated from the grain boundary strength. Is likely to occur, and due to this, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来2相混合酸化物層が硬質被覆層の上部層を構成する被覆工具に着目し、特に、高速断続切削加工における硬質被覆層の耐チッピング性の向上を図るべく研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する上部層としての従来2相混合酸化物層は、すぐれた高温硬さと所定の高温強度を備えており、この層は、例えば、通常の化学蒸着装置にて、
(イ)反応ガス組成(容量%):
AlCl:1〜10 %、
ZrCl:0.01〜10 %、
CO2:1〜30 %、
HCl:0.5〜10 %、
:1〜15%
S:0.02〜2 %、
2:残り、
(ロ)反応雰囲気温度 :850〜1050 ℃、
(ハ)反応雰囲気圧力 :5.3〜53.2 kPa
の条件(通常条件という)で、従来被覆工具の下部層であるTi化合物層上に蒸着形成されるが、このような従来2相混合酸化物層からなる上部層では、既に述べたように、Al相とZrO相間の結晶粒界強度が十分でないため、高速断続切削加工において満足できる耐チッピング性を示さないこと。
In view of the above, the present inventors have focused on the coated tool in which the above-described conventional two-phase mixed oxide layer constitutes the upper layer of the hard coating layer, and in particular, the hard coating layer in high-speed intermittent cutting. As a result of research to improve chipping resistance,
(A) The conventional two-phase mixed oxide layer as the upper layer constituting the hard coating layer of the conventional coated tool has excellent high-temperature hardness and a predetermined high-temperature strength. In the device
(B) Reaction gas composition (volume%):
AlCl 3: 1~10%,
ZrCl 4: 0.01~10%,
CO 2: 1~30%,
HCl: 0.5-10%
N 2: 1~15%
H 2 S: 0.02~2%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 850-1050 ° C.
(C) Reaction atmosphere pressure: 5.3 to 53.2 kPa
Under the above conditions (referred to as normal conditions), it is formed by vapor deposition on the Ti compound layer which is the lower layer of the conventional coated tool. However, in the upper layer composed of such a conventional two-phase mixed oxide layer, as already described, Since the grain boundary strength between the Al 2 O 3 phase and the ZrO 2 phase is not sufficient, it does not exhibit satisfactory chipping resistance in high-speed intermittent cutting.

(b)そこで、蒸着形成した硬質被覆層の下部層であるTi化合物層上に、通常の化学蒸着装置にて、
(イ)反応ガス組成(容量%):
AlCl:6〜10%、
ZrCl:0.6〜1.2%、
CO2:4〜8%、
HCl:3〜5%、
S: 0.25〜0.6%、
Ar:5〜50%、
2:残り、
(ロ)反応雰囲気温度;1060〜1100℃、
(ハ)反応雰囲気圧力;6〜10 kPa、
の条件で蒸着を行い、2〜15μmの平均層厚の酸化アルミニウム(以下、Alで示す)相と酸化ジルコニウム(以下、ZrOで示す)相の2相混合酸化物層(以下、「改質2相混合酸化物層」という)からなる上部層を形成すると、この条件で形成された上部層は、ZrOがAl素地に均一に分散した2相混合酸化物組織を有し、そして、該層におけるAl成分との合量に占めるZr成分の含有割合をX(但し、原子比)とした場合に、X=0.003〜0.2を満足し、さらに、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位(以下、小角粒界面という)が全結晶粒界面単位の30%以上の割合を占める結晶粒界面配列を示す(以下、このような結晶粒界面配列を、小角粒界面比率30%以上の結晶粒界面配列という)こと。
(B) Therefore, on the Ti compound layer, which is the lower layer of the hard coating layer formed by vapor deposition, with a normal chemical vapor deposition apparatus,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
ZrCl 4: 0.6~1.2%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
Ar: 5 to 50%
H 2 : Remaining
(B) Reaction atmosphere temperature: 1060 to 1100 ° C.
(C) Reaction atmosphere pressure; 6 to 10 kPa,
The two-phase mixed oxide layer (hereinafter referred to as “ZrO 2” ) and the aluminum oxide (hereinafter referred to as “Al 2 O 3” ) phase having an average layer thickness of 2 to 15 μm are deposited. When the upper layer made of “modified two-phase mixed oxide layer” is formed, the upper layer formed under these conditions has a two-phase mixed oxide structure in which ZrO 2 is uniformly dispersed in the Al 2 O 3 substrate. And when the content ratio of the Zr component in the total amount with the Al component in the layer is X (however, the atomic ratio), X = 0.003 to 0.2 is satisfied. Using an emission scanning electron microscope and an electron backscatter diffraction image apparatus, the crystal grains of aluminum oxide having a hexagonal crystal lattice are formed by irradiating individual crystal grains existing within the measurement range of the surface polished surface with an electron beam. Each normal of the surface is the surface polished surface method The angle intersecting the line is measured, and from this measurement result, the (0001) plane and the {10-10} plane, which are the constituent crystal planes of the crystal grains, are selected, and the selected (0001) plane and {10-10} plane are selected. The angle between the normal lines of the (0001) planes and the normal lines of the {10-10} planes at the interface between adjacent crystal grains (grain interface unit) is A crystal grain interface unit (hereinafter referred to as a small-angle grain interface) in which the angle between the normal lines and the normal lines of the {10-10} planes intersects 15 degrees or less accounts for 30% or more of the total grain interface unit. Show grain interface arrangement (hereinafter, such a crystal grain interface arrangement is referred to as a crystal grain interface arrangement with a small-angle grain interface ratio of 30% or more).

(c)上記(b)の化学蒸着条件で蒸着形成された改質2相混合酸化物層からなる上部層は、特に、分散相であるZrO相と素地相であるAl相間の結晶粒界強度が高められ、さらに、潤滑性と耐熱性も高められるため、前記(a)の通常条件で形成された従来被覆工具の従来2相混合酸化物層の備えるすぐれた高温硬さに加えて、さらに、一段とすぐれた高温強度、潤滑性、耐熱性を具備するようになることから、これを硬質被覆層の上部層として備えた被覆工具は、高い発熱を伴い断続的かつ衝撃的な高負荷のかかる高速断続切削という厳しい条件下での切削加工においても、従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮し、また、長期にわたってすぐれた耐摩耗性を発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The upper layer composed of the modified two-phase mixed oxide layer formed by vapor deposition under the chemical vapor deposition conditions of (b) above is particularly between the ZrO 2 phase as a dispersed phase and the Al 2 O 3 phase as a base phase. Since the grain boundary strength is increased and the lubricity and heat resistance are also improved, the excellent high-temperature hardness of the conventional two-phase mixed oxide layer of the conventional coated tool formed under the normal conditions of (a) above. In addition, the coated tool equipped with the hard coating layer as an upper layer of the hard coating layer is intermittent and shocking with high heat generation because it has excellent high temperature strength, lubricity and heat resistance. Even in cutting operations under severe conditions such as high-speed interrupted cutting with high load, the hard coating layer exhibits even better chipping resistance and superior wear resistance over a long period of time compared to conventional coated tools. To demonstrate.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、2〜15μmの平均層厚を有し、化学蒸着された状態で酸化ジルコニウム相が酸化アルミニウム相に均一に分散した2相混合酸化物層からなり、かつ、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位(小角粒界面)が全結晶粒界面単位の30%以上の割合を占める結晶粒界面配列(小角粒界面比率30%以上の結晶粒界面配列)を示し、さらに、2相混合酸化物層におけるジルコニウム成分の含有割合がAl成分との合量における原子比(Zr/(Al+Zr))で、0.003〜0.2である2相混合酸化物層、
以上(a)、(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) The upper layer has a mean layer thickness of 2 to 15 μm, is composed of a two-phase mixed oxide layer in which a zirconium oxide phase is uniformly dispersed in an aluminum oxide phase in a chemical vapor deposited state, and is a field emission type Using a scanning electron microscope and an electron backscatter diffraction image apparatus, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the constituent crystal planes of the aluminum oxide crystal grains having a hexagonal crystal lattice are observed. The angle at which each normal intersects the normal of the surface-polished surface was measured. From this measurement result, the (0001) plane and the {10-10} plane, which are the constituent crystal planes of the crystal grains, were selected and further selected. In the (0001) plane and the {10-10} plane, the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface (crystal grain interface unit) between adjacent crystal grains. , The angle at which the normals of the (0001) planes and the normals of the {10-10} planes intersect is 15 degrees or less. It shows a crystal grain interface arrangement (a crystal grain interface arrangement with a small-angle grain interface ratio of 30% or more) occupying a ratio of 30% or more. A two-phase mixed oxide layer having an atomic ratio (Zr / (Al + Zr)) of 0.003 to 0.2,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer formed by vapor-depositing the hard coating layer constituted by (a) and (b). (Coated tool). "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質2相混合酸化物層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する接合強度を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Lower layer (Ti compound layer)
Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer exists as a lower layer of the hard coating layer, In addition to contributing to improving the high temperature strength of the hard coating layer due to its excellent high temperature strength, it adheres firmly to both the tool base and the modified two-phase mixed oxide layer, so that the hard coating layer is bonded to the tool base. Although it has an effect of improving the strength, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 20 μm, particularly in high-speed intermittent cutting with high heat generation. Since it becomes easy to cause thermoplastic deformation, which causes uneven wear, the average layer thickness was determined to be 3 to 20 μm.

(b)上部層(改質2相混合酸化物層)
化学蒸着された状態で酸化ジルコニウム相が酸化アルミニウム相に均一に分散した改質2相混合酸化物層の構成成分であるAl成分は、層の高温硬さおよび耐熱性を向上させ、同Zr成分は、層中に微量(Alとの合量に占める割合で、Zr/(Al+Zr)が0.003〜0.2(但し、原子比))含有されることにより、上部層(改質2相混合酸化物層)の高温強度、潤滑性、耐熱性の向上に寄与するが、Zr成分の含有割合が0.003未満では、上記作用を期待することはできず、一方、Zr成分の含有割合が0.2を超えた場合には、酸化ジルコニウム相が粗大化し、欠損が生じやすくなるため、Al成分との合量に占めるZr成分の含有割合(Zr/(Al+Zr)の比の値)を0.003〜0.2(但し、原子比))と定めた。
(B) Upper layer (modified two-phase mixed oxide layer)
The Al component, which is a component of the modified two-phase mixed oxide layer in which the zirconium oxide phase is uniformly dispersed in the aluminum oxide phase in the state of chemical vapor deposition, improves the high-temperature hardness and heat resistance of the layer, and the Zr component Is contained in the layer in a trace amount (percentage of total amount with Al, Zr / (Al + Zr) is 0.003 to 0.2 (atomic ratio)), so that the upper layer (modified two-phase The mixed oxide layer) contributes to improving the high-temperature strength, lubricity, and heat resistance, but if the content ratio of the Zr component is less than 0.003, the above effect cannot be expected, while the content ratio of the Zr component When Z exceeds 0.2, the zirconium oxide phase becomes coarse and defects are likely to occur. Therefore, the content ratio of the Zr component in the total amount with the Al component (the value of the ratio of Zr / (Al + Zr)) 0.003-0.2 (however, atomic ratio))

Al23相素地中にZrO2相が均一に分散した組織の2相混合酸化物層を化学蒸着で形成するためには、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、以下のとおり調整することが必要である。
即ち、
(イ)反応ガス組成(容量%):
AlCl:6〜10%、
ZrCl:0.6〜1.2%、
CO2:4〜8%、
HCl:3〜5%、
S: 0.25〜0.6%、
Ar:5〜50%、
2:残り、
(ロ)反応雰囲気温度;1060〜1100℃、
(ハ)反応雰囲気圧力;6〜10 kPa、
の条件で、2〜15μmの平均層厚の蒸着層を成膜すると、Al23相素地中にZrO2相が均一に分散した2相混合酸化物組織の改質2相混合酸化物層を形成することができる。
In order to form a two-phase mixed oxide layer having a structure in which the ZrO 2 phase is uniformly dispersed in the Al 2 O 3 phase substrate by chemical vapor deposition, each of the reaction gas composition, reaction atmosphere temperature and reaction atmosphere pressure at the time of vapor deposition is used. It is necessary to adjust the chemical vapor deposition conditions as follows.
That is,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
ZrCl 4: 0.6~1.2%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
Ar: 5 to 50%
H 2 : Remaining
(B) Reaction atmosphere temperature: 1060 to 1100 ° C.
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When a deposited layer having an average layer thickness of 2 to 15 μm is formed under the above conditions, a modified two-phase mixed oxide layer having a two-phase mixed oxide structure in which a ZrO 2 phase is uniformly dispersed in an Al 2 O 3 phase matrix Can be formed.

そして、上記蒸着形成された改質2相混合酸化物層の分散相であるZrO2相は、その摩擦係数が低くまた熱伝導性も低いことから、上記ZrO2相が素地中に均一に分散していることによって、改質2相混合酸化物層の潤滑性が高められ、また、耐熱性も高められる。 Since the ZrO 2 phase, which is the dispersed phase of the modified two-phase mixed oxide layer formed by vapor deposition, has a low coefficient of friction and low thermal conductivity, the ZrO 2 phase is uniformly dispersed in the substrate. By doing so, the lubricity of the modified two-phase mixed oxide layer is enhanced, and the heat resistance is also enhanced.

上記改質2相混合酸化物層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し(図1)、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下(図2)の結晶粒界面単位が全結晶粒界面単位の30%以上の割合を占める結晶粒界面配列(小角粒界面比率30%以上の結晶粒界面配列)を示していることから、Al23層を化学蒸着で形成する際に、その反応ガス中に微量(0.6〜1.2%)のZrClを添加し1060〜1100℃の反応雰囲気温度で蒸着を行い、層中に微量のZr成分を含有させることによって、小角粒界面比率が増大し、Al23相とZrO2相間の結晶粒界強度が強化され、そして、その結果として、高速断続切削加工という厳しい切削条件の下であっても、硬質被覆層の上部層を構成する改質2相混合酸化物層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が防止され、硬質被覆層の耐チッピング性の向上が図られる。
ただ、上部層の層厚が2μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の層厚が15μmを超えるとチッピングが発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。
The modified two-phase mixed oxide layer is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, thereby forming a hexagonal crystal. The angle at which each normal line of the constituent crystal plane of the aluminum oxide crystal grain having a crystal lattice intersects with the normal line of the surface-polished surface is measured (FIG. 1). The (0001) plane and the {10-10} plane are selected, and in the selected (0001) plane and {10-10} plane, the (0001) plane at the interface between adjacent crystal grains (crystal grain interface unit), respectively. The angle at which the normals of the {0001} plane and the normals of the {10-10} plane intersect is 15 degrees. Below (Figure 2) Since the grain boundaries units indicates the grain boundaries sequences account for more than 30% of the total grain surface unit (angle grain surface ratio of 30% or more grain boundaries sequence), chemistry the Al 2 O 3 layer When forming by vapor deposition, a small amount (0.6 to 1.2%) of ZrCl 4 is added to the reaction gas, vapor deposition is performed at a reaction atmosphere temperature of 1060 to 1100 ° C., and a small amount of Zr component is added to the layer. Inclusion increases the interface ratio of small-angle grains, strengthens the grain boundary strength between the Al 2 O 3 phase and the ZrO 2 phase, and as a result, under severe cutting conditions such as high-speed intermittent cutting. However, it is possible to suppress the occurrence of cracks in the modified two-phase mixed oxide layer constituting the upper layer of the hard coating layer, and even if cracks occur, the cracks are prevented from growing and propagating and hard. Chipping resistance of coating layer Improvement is achieved.
However, if the thickness of the upper layer is less than 2 μm, the excellent characteristics of the upper layer cannot be fully exhibited, while if the thickness of the upper layer exceeds 15 μm, chipping tends to occur. The average layer thickness of the upper layer was set to 2 to 15 μm.

一方、硬質被覆層の上部層が、従来2相混合酸化物層からなる従来被覆工具においては、その上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、小角粒界面比率は30%未満に過ぎないために、Al23相とZrO2相間の結晶粒界強度は弱く、その結果、高速断続切削加工という厳しい切削条件下では、上部層(従来2相混合酸化物層)にクラックが発生しやすく、また、発生したクラックの成長・伝播を抑えることもできないため、従来被覆工具の硬質被覆層の耐チッピング性は劣ったものとなる。 On the other hand, in the conventional coated tool in which the upper layer of the hard coating layer is a conventional two-phase mixed oxide layer, the upper layer is subjected to surface polishing using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Irradiate each crystal grain within the measurement range with an electron beam, and measure the angle at which each normal of the constituent crystal planes of the aluminum oxide crystal grains having a hexagonal crystal lattice intersects the normal of the surface polished surface. Then, from this measurement result, the (0001) plane and the {10-10} plane, which are the constituent crystal planes of the crystal grains, are selected, and further, the adjacent crystals on the selected (0001) plane and {10-10} plane, respectively. When the angle at which the normals of the (0001) planes and the normals of the {10-10} planes intersect each other at the interface (grain interface unit) between the grains is obtained, the small-angle grain interface ratio is less than 30%. For, Al 2 O 3 phase and the grain boundary strength of ZrO 2 phases is weak, as a result, the severe cutting conditions of high-speed intermittent cutting work, cracks are generated in the upper layer (conventional 2-phase mixed oxide layer) It is easy, and since the growth and propagation of the generated crack cannot be suppressed, the chipping resistance of the hard coating layer of the conventional coated tool is inferior.

上記のとおり、この発明の被覆工具は、上部層を構成する酸化アルミニウムと酸化ジルコニウムの改質2相混合酸化物層において、ZrO2相がAl23相からなる素地に均一に分散分布すると共に、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し(図1)、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下(図2)の結晶粒界面単位が全結晶粒界面単位の30%以上の割合を占める結晶粒界面配列(小角粒界面比率30%以上の結晶粒界面配列)を示すことにより、従来被覆工具の従来2相混合酸化物層のもつすぐれた高温硬さに加えて、一段とすぐれた高温強度、潤滑性、耐熱性を具備し、各種の鋼や鋳鉄などを、高い発熱と断続的かつ衝撃的な負荷がかかる高速断続切削条件下で用いた場合にも、硬質被覆層がすぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 As described above, in the coated tool of the present invention, in the modified two-phase mixed oxide layer of aluminum oxide and zirconium oxide constituting the upper layer, the ZrO 2 phase is uniformly dispersed and distributed on the base material composed of the Al 2 O 3 phase. At the same time, using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam to obtain a crystal grain of aluminum oxide having a hexagonal crystal lattice. The angle at which each normal line of the constituent crystal plane intersects with the normal line of the surface polished surface is measured (FIG. 1), and from this measurement result, the (0001) plane which is the constituent crystal plane of the crystal grain and {10-10 } Planes, and in the selected (0001) plane and {10-10} plane, the normals of the (0001) planes at the interfaces between adjacent crystal grains (grain interface units) and When the angle at which the normal lines of the {10-10} plane intersect is determined, the angle at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other is 15 degrees or less (FIG. 2). The conventional two-phase mixing of the conventional coated tool by showing the crystal grain interface arrangement (the crystal grain interface arrangement with a small-angle grain interface ratio of 30% or more) in which the crystal grain interface unit accounts for 30% or more of the total crystal grain interface unit. In addition to the excellent high-temperature hardness of the oxide layer, it has excellent high-temperature strength, lubricity, and heat resistance, and various steels and cast irons are subjected to high heat generation and intermittent and impact loads. Even when used under interrupted cutting conditions, the hard coating layer exhibits excellent chipping resistance, and the service life can be further extended.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成した。
次に、表4に示される蒸着条件により、同じく表5に示される目標層厚の改質2相混合酸化物層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 5 under the conditions shown in Table 5 are the conditions for forming the TiCN layer having the vertically grown crystal structure described, and the other conditions for forming the normal granular crystal structure. And Ti compound layer was vapor-deposited as a lower layer of a hard coating layer with target layer thickness.
Next, according to the deposition conditions shown in Table 4, the present invention coated tools 1 to 13 are formed by vapor-depositing a modified two-phase mixed oxide layer having the target layer thickness shown in Table 5 as the upper layer of the hard coating layer. Were manufactured respectively.

また、比較の目的で、硬質被覆層の上部層として、表4に示される条件で、表6に示される目標層厚で従来2相混合酸化物層を形成することにより比較被覆工具1〜13をそれぞれ製造した。   For comparison purposes, comparative coating tools 1 to 13 are formed by forming a conventional two-phase mixed oxide layer with the target layer thickness shown in Table 6 under the conditions shown in Table 4 as the upper layer of the hard coating layer. Were manufactured respectively.

ついで、上記の本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の上部層を構成する改質2相混合酸化物層および従来2相混合酸化物層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、結晶粒界面配列を調査した。
すなわち、上記の本発明被覆工具1〜13の改質2相混合酸化物層および比較被覆工具1〜13の従来2相混合酸化物層について、まず、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶粒のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(小角粒界面比率という)を算出し、表5、6にそれぞれ示した。
なお、本発明被覆工具1〜13の硬質被覆層の上部層を構成する改質2相混合酸化物層については、透過型電子顕微鏡により調査したところ、Al23相の素地中にZrO2相が均一に分散していることが確認されている。
Next, the field emission scanning is performed on the modified two-phase mixed oxide layer and the conventional two-phase mixed oxide layer constituting the upper layer of the hard coating layer of the present invention coated tools 1 to 13 and comparative coated tools 1 to 13. The crystal grain interface arrangement was examined using an electron microscope and an electron backscatter diffraction image apparatus.
That is, with respect to the modified two-phase mixed oxide layer of the present invention-coated tools 1 to 13 and the conventional two-phase mixed oxide layer of the comparative coated tools 1 to 13, first, each surface is a polished surface, It is set in a barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the surface polished surface with an irradiation current of 1 nA within the measurement range of each surface polished surface. Each crystal grain having an existing hexagonal crystal lattice is irradiated with an electron beam, and a 30 × 50 μm region is separated at an interval of 0.1 μm / step by using an electron backscatter diffraction image apparatus. The angle at which each of the normal lines intersects the normal line of the surface polished surface is measured. From this measurement result, the (0001) plane and the {10-10} plane, which are the constituent crystal planes of the crystal grains, are selected and further selected. (0001) plane And in the {10-10} plane, the angle at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface between adjacent crystal grains (grain interface unit) is 15 degrees or less. The ratio of the crystal grain interface units to the total crystal grain interface units (referred to as small-angle grain interface ratio) was calculated and shown in Tables 5 and 6, respectively.
The modified two-phase mixed oxide layer constituting the upper layer of the hard coating layer of the coated tools 1 to 13 of the present invention was examined by a transmission electron microscope. As a result, ZrO 2 was found in the Al 2 O 3 phase substrate. It has been confirmed that the phases are uniformly dispersed.

表5、6にそれぞれ示される通り、本発明被覆工具の改質2相混合酸化物層の小角粒界面比率は、いずれも30%以上であるのに対して、比較被覆工具ではいずれも小角粒界面比率が30%未満の値であった。   As shown in Tables 5 and 6, respectively, the small-angle grain interface ratio of the modified two-phase mixed oxide layer of the coated tool of the present invention is 30% or more, whereas in the comparative coated tool, the small-angle grain ratio is both The interface ratio was less than 30%.

また、本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated tools 1 to 13 and the comparative coated tools 1 to 13 was measured using a scanning electron microscope (longitudinal cross section measurement), both of them were the target layer thickness. The substantially same average layer thickness (average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆工具1〜13および比較被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入の丸棒、
切削速度: 365 m/min、
切り込み: 2 mm、
送り: 0.4 mm/rev、
切削時間: 5 分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は、250m/min)、
[切削条件B]
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 360 m/min、
切り込み: 2 mm、
送り: 0.24 mm/rev、
切削時間: 5 分、
の条件でのニッケルクロムモリブデン鋼の乾式高速断続切削試験(通常の切削速度は、200m/min)、
[切削条件C]
被削材:JIS・FCD500の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 365 m/min、
切り込み: 1.7 mm、
送り: 0.48 mm/rev、
切削時間: 5 分、
の条件でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は、180m/min)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, for the various coated tools of the present invention coated tools 1-13 and comparative coated tools 1-13, all are screwed to the tip of the tool steel tool with a fixing jig,
[Cutting conditions A]
Work material: JIS-S25C round bars with four equal grooves in the longitudinal direction,
Cutting speed: 365 m / min,
Incision: 2 mm,
Feed: 0.4 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (normal cutting speed is 250 m / min),
[Cutting conditions B]
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 360 m / min,
Incision: 2 mm,
Feed: 0.24 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test of nickel chrome molybdenum steel under normal conditions (normal cutting speed is 200 m / min),
[Cutting conditions C]
Work material: JIS / FCD500 lengthwise equal length 4 round bar with groove,
Cutting speed: 365 m / min,
Cutting depth: 1.7 mm,
Feed: 0.48 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test under normal conditions (normal cutting speed is 180 m / min)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 2008178954
Figure 2008178954

Figure 2008178954
Figure 2008178954

Figure 2008178954
Figure 2008178954

Figure 2008178954
Figure 2008178954

Figure 2008178954
Figure 2008178954

Figure 2008178954
Figure 2008178954

Figure 2008178954
Figure 2008178954

表5〜7に示される結果から、本発明被覆工具1〜13は、硬質被覆層の上部層が、Al23相中にZrO2相が均一に分散した2相混合酸化物組織からなる改質2相混合酸化物層として蒸着形成され、さらに、該改質2相混合酸化物層は、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面の結晶粒界面配列が、小角粒界面比率30%以上の値を示し、すぐれた高温硬さ、粒界強度、潤滑性、耐熱性を備え、高い発熱を伴い、かつ、切刃に対する断続的かつ衝撃的な負荷がかかる鋼や鋳鉄の高速断続切削でも、硬質被覆層の下部層を形成するTi化合物層の有する高温強度と高い接合強度に加え、前記改質2相混合酸化物層が具備するすぐれた高温硬さ、高温強度、潤滑性、耐熱性により、硬質被覆層の耐チッピング性が著しく改善され、長期にわたってすぐれた工具特性を示すのに対して、硬質被覆層の上部層として従来2相混合酸化物層が蒸着形成された比較被覆工具1〜13においては、高速断続切削という厳しい切削条件下では、硬質被覆層の特に粒界強度および高温強度が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, in the present invention coated tools 1 to 13, the upper layer of the hard coating layer is composed of a two-phase mixed oxide structure in which the ZrO 2 phase is uniformly dispersed in the Al 2 O 3 phase. The modified two-phase mixed oxide layer is formed by vapor deposition. Further, the modified two-phase mixed oxide layer has a crystal grain interface arrangement of crystal grains of aluminum oxide having a hexagonal crystal lattice. Steel or cast iron with an interface ratio of 30% or more, excellent high-temperature hardness, grain boundary strength, lubricity, heat resistance, high heat generation, and intermittent and impact load on the cutting edge In addition to the high temperature strength and high bonding strength of the Ti compound layer that forms the lower layer of the hard coating layer, the high-temperature hardness, high-temperature strength provided by the modified two-phase mixed oxide layer, The chipping resistance of the hard coating layer is remarkable due to lubricity and heat resistance Compared with the comparative coated tools 1 to 13 in which the conventional two-phase mixed oxide layer is formed by vapor deposition as the upper layer of the hard coating layer, the high-speed intermittent cutting is severe. Under the cutting conditions, it is apparent that chipping occurs in the hard coating layer due to the insufficient grain boundary strength and high-temperature strength of the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高い発熱を伴い断続的かつ衝撃的な負荷がかかる高速断続切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for cutting under normal conditions such as various types of steel and cast iron, but also for high-speed intermittent cutting with high heat generation and intermittent and impact load. Since the hard coating layer exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it is sufficient for improving the performance of cutting equipment, saving labor and energy, and reducing costs It can respond to satisfaction.

表面研磨面の法線と、改質2相混合酸化物層における酸化アルミニウムの結晶粒の(0001)面の法線、{10−10}面の法線の関係を示す概略説明図である。It is a schematic explanatory drawing which shows the relationship between the normal line of a surface grinding | polishing surface, the normal line of the (0001) plane of the crystal grain of the aluminum oxide in a modified 2 phase mixed oxide layer, and the normal line of the {10-10} plane. 隣接する結晶粒相互の界面において、(0001)面の法線C,C’同士、また、{10−10}面の法線a,a’同士の交わる角度が15度以下であることを示す概略説明図である。It indicates that the angle between the normal lines C and C ′ of the (0001) plane and the normal lines a and a ′ of the {10-10} plane is 15 degrees or less at the interface between adjacent crystal grains. It is a schematic explanatory drawing.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、2〜15μmの平均層厚を有し、化学蒸着された状態で酸化ジルコニウム相が酸化アルミニウム相に均一に分散した2相混合酸化物層からなり、かつ、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する酸化アルミニウムの結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の30%以上の割合を占める結晶粒界面配列を示し、さらに、2相混合酸化物層におけるジルコニウム成分の含有割合がAl成分との合量における原子比(Zr/(Al+Zr))で、0.003〜0.2である2相混合酸化物層、
以上(a)、(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) The upper layer has a mean layer thickness of 2 to 15 μm, is composed of a two-phase mixed oxide layer in which a zirconium oxide phase is uniformly dispersed in an aluminum oxide phase in a chemical vapor deposited state, and is a field emission type Using a scanning electron microscope and an electron backscatter diffraction image apparatus, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the constituent crystal planes of the aluminum oxide crystal grains having a hexagonal crystal lattice are observed. The angle at which each normal intersects the normal of the surface-polished surface was measured. From this measurement result, the (0001) plane and the {10-10} plane, which are the constituent crystal planes of the crystal grains, were selected and further selected. In the (0001) plane and the {10-10} plane, the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface (crystal grain interface unit) between adjacent crystal grains. Is obtained, the ratio of the crystal grain interface unit whose angle between the normal lines of the (0001) planes and the normal lines of the {10-10} planes is 15 degrees or less is 30% or more of the total crystal grain interface units. And the content ratio of the zirconium component in the two-phase mixed oxide layer is 0.003 to 0.2 in terms of the atomic ratio (Zr / (Al + Zr)) in the total amount with the Al component. A two-phase mixed oxide layer,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer formed by vapor-depositing the hard coating layer constituted by (a) and (b).
JP2007015553A 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP4888709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015553A JP4888709B2 (en) 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015553A JP4888709B2 (en) 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2008178954A true JP2008178954A (en) 2008-08-07
JP4888709B2 JP4888709B2 (en) 2012-02-29

Family

ID=39723240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015553A Active JP4888709B2 (en) 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP4888709B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058176A (en) * 2008-09-01 2010-03-18 Mitsubishi Materials Corp Surface coated cutting tool, having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2010064150A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
CN103205728A (en) * 2012-01-17 2013-07-17 株洲钻石切削刀具股份有限公司 Surface-modified coated cutting tool and preparation method thereof
JP2013163254A (en) * 2012-02-13 2013-08-22 Sumitomo Electric Hardmetal Corp Surface coated cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058176A (en) * 2008-09-01 2010-03-18 Mitsubishi Materials Corp Surface coated cutting tool, having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2010064150A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
CN103205728A (en) * 2012-01-17 2013-07-17 株洲钻石切削刀具股份有限公司 Surface-modified coated cutting tool and preparation method thereof
JP2013163254A (en) * 2012-02-13 2013-08-22 Sumitomo Electric Hardmetal Corp Surface coated cutting tool

Also Published As

Publication number Publication date
JP4888709B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4888771B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5019255B2 (en) Surface coated cutting tool
JP5099490B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP4888709B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4888710B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP2007210066A (en) SURFACE COATED CERMET CUTTING TOOL INCLUDING REFORMED k-TYPE ALUMINUM OXIDE LAYER OF HARD COATING LAYER HAVING EXCELLENT GRAIN BOUNDARY SURFACE STRENGTH
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2008000882A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP2008000881A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4888709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3