JP2008178800A - Evaporating concentrator of solution, and evaporating concentration process of solution - Google Patents

Evaporating concentrator of solution, and evaporating concentration process of solution Download PDF

Info

Publication number
JP2008178800A
JP2008178800A JP2007013965A JP2007013965A JP2008178800A JP 2008178800 A JP2008178800 A JP 2008178800A JP 2007013965 A JP2007013965 A JP 2007013965A JP 2007013965 A JP2007013965 A JP 2007013965A JP 2008178800 A JP2008178800 A JP 2008178800A
Authority
JP
Japan
Prior art keywords
solution
air flow
cooling water
mist
evaporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013965A
Other languages
Japanese (ja)
Other versions
JP4958568B2 (en
Inventor
Yoshiteru Yagishita
芳輝 柳下
Koichi Yagishita
幸一 柳下
Takashi Kato
隆 加藤
Tadashi Fukuda
正 福田
Takashi Sato
孝 佐藤
Norio Nomura
記生 野村
Yasushi Hashimoto
泰志 橋本
Irwin Pamplona Ona
アーウィン パンプロナ オナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanshin Mfg Co Ltd
Original Assignee
Sanshin Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshin Mfg Co Ltd filed Critical Sanshin Mfg Co Ltd
Priority to JP2007013965A priority Critical patent/JP4958568B2/en
Publication of JP2008178800A publication Critical patent/JP2008178800A/en
Application granted granted Critical
Publication of JP4958568B2 publication Critical patent/JP4958568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporating concentrator of a solution enabling the concentration and reuse of even a solution which causes decomposition of a component at elevated temperature and cannot be reused by deposition. <P>SOLUTION: The evaporating concentrator of the solution comprises an air current circulation path closed to the outside and circulating an air current inside, air current circulation means for circulating the air current in the air current circulation path, also water content evaporation means for bringing a solution required for concentration treatment into contact with the air current, evaporating a water content in the solution and recovering the concentrated solution in the air current circulation path, solution mist separation means for separating a solution mist in the air current containing steam from the water content evaporation means from the air current, cooling means for cooling the air current containing the steam from which the solution mist from the mist separation means is separated, liquefying the steam and removing it, and water content mist separation means for separating a water content mist in the cooled air current from the cooling means from the air current and recovering it, in this order. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、溶液の蒸発濃縮装置、特に、高温に保った場合に成分が分解、析出してしまうおそれがあるめっき液やその成分を有する希薄溶液を、20℃〜60℃程度の分解・析出が生じない比較的低温に保ちながらも、溶液の蒸発濃縮を効率的に行うことができる溶液の蒸発濃縮装置に関する。   The present invention is an apparatus for evaporating and concentrating a solution, and in particular, a plating solution or a dilute solution containing the component that may decompose and precipitate when kept at a high temperature. The present invention relates to an apparatus for evaporating and concentrating a solution, which can efficiently evaporate and concentrate the solution while maintaining a relatively low temperature at which no generation occurs.

金属めっき工程ではめっき浴中でめっき処理された後、被めっき物は水洗される。この水洗水中にはめっき浴の成分が持ち込まれている。このため、この水洗水を、水分を蒸発させて濃縮しためっき液に加える、あるいは、これら水洗水自体を水分を蒸発させて濃縮したのちめっき浴へ戻す等により有効利用されている。   In the metal plating step, the object to be plated is washed with water after being plated in a plating bath. The components of the plating bath are brought into the washing water. For this reason, this washing water is effectively utilized by adding it to the plating solution concentrated by evaporating the water, or by concentrating the washing water itself by evaporating the water and returning it to the plating bath.

しかしながら、めっき浴の中には、例えば亜鉛めっき液などのように高温に加熱した場合、成分が分解したり、析出してしまうため、40〜50℃程度までしか加熱できないものがある。このような溶液の場合には、水分の蒸発による濃縮が困難であるため、従来は再利用することなく廃棄されてきた。   However, some plating baths can only be heated to about 40 to 50 ° C. because they decompose or precipitate when heated to a high temperature, such as a zinc plating solution. In the case of such a solution, since concentration by evaporation of water is difficult, conventionally, it has been discarded without being reused.

しかし、最終的にゼロエミッションを目指すことが叫ばれている今日、従来は回収利用が困難でありながら、重要な資源を多く含むこれらめっき浴成分を回収し再利用することが求められていた。
特公昭56−46913号公報
However, today, it is screamed that the goal is to achieve zero emissions, and it has been conventionally required to recover and reuse these plating bath components, which contain a lot of important resources, although they are difficult to recover and use.
Japanese Examined Patent Publication No. 56-46913

本発明は、上記した従来の問題点を改善する、すなわち、例えば60℃超の高温では成分に分解が生じたり、あるいは、析出して再利用できなくなってしまうような溶液であっても、濃縮し、再利用可能とすることができる溶液の蒸発濃縮装置を提供することを目的とする。   The present invention improves the above-mentioned conventional problems, that is, even if the solution is decomposed at a high temperature of, for example, 60 ° C. or precipitates and cannot be reused, it is concentrated. It is an object of the present invention to provide an apparatus for evaporating and concentrating a solution that can be reused.

本発明の溶液の蒸発濃縮装置は上記課題を解決するため、請求項1に記載の通り、外部に対して閉鎖され、内部で気流が循環する気流循環経路と、該気流循環経路内に気流を循環させる気流循環手段とを有し、かつ、該気流循環経路に、該気流に対して要濃縮処理溶液を接触させ、該溶液中の水分を蒸発させて濃縮された該溶液を回収する水分蒸発手段、該水分蒸発手段からの水蒸気を含む気流中の溶液ミストを気流から分離し回収する溶液ミスト分離手段、ミスト分離手段からの溶液ミストが分離された水蒸気を含む気流を冷却して該水蒸気を液化して取り除く冷却手段、及び、該冷却手段からの冷却された気流中の水分ミストを気流から分離し回収する水分ミスト分離手段をこの順に備えた溶液の蒸発濃縮装置である。   In order to solve the above-described problems, the solution evaporation concentration apparatus of the present invention is closed to the outside and has an air flow circulation path through which the air flow circulates, and an air flow in the air flow circulation path. A vaporization means for collecting the concentrated solution by bringing the concentration treatment solution into contact with the airflow and evaporating the water in the solution. Means for separating and recovering the solution mist in the air stream containing water vapor from the water evaporation means from the air stream, cooling the air stream containing water vapor from which the solution mist from the mist separating means is separated, and A solution evaporating and concentrating apparatus provided with a cooling means for liquefying and a water mist separating means for separating and recovering the water mist in the air stream cooled from the cooling means in this order.

また、本発明に係る溶液の蒸発濃縮装置は請求項2に記載の通り、請求項1に記載の溶液の蒸発濃縮装置において、前記水分蒸発手段が、シャワー状ないし霧流状に流れる溶液に前記気流を接触させるものであることを特徴とする。   Further, the solution evaporating and concentrating apparatus according to the present invention is the solution evaporating and concentrating apparatus according to claim 1, wherein the moisture evaporating means is provided in the solution flowing in a shower form or a mist flow form. It is characterized by being in contact with an air current.

また、本発明に係る溶液の蒸発濃縮装置は請求項3に記載の通り、請求項1または請求項2に記載の溶液の蒸発濃縮装置において、前記気流循環経路に溶液槽の溶液液面の上方空間で前記気流を水平に誘導する溶液槽上方空間誘導路が設けられ、さらに、前記気流循環経路が、前記溶液槽上方空間誘導路の前記気流上流側に前記溶液槽上方から該溶液液面に向かって気流を誘導する溶液槽下方誘導経路と、前記溶液槽上方空間誘導路の前記気流下流側に前記溶液液面近くから上方に向かって気流を誘導する溶液槽上方誘導経路と、を備えるとともに、前記水分蒸発手段が前記溶液槽下方誘導経路に、かつ、前記溶液ミスト分離手段が前記溶液槽上方誘導経路に、それぞれ設けられていることを特徴とする。   The solution evaporating and concentrating apparatus according to the present invention is the solution evaporating and concentrating apparatus according to claim 1 or 2, wherein the solution evaporating and concentrating apparatus is located above the solution level of the solution tank in the air flow circulation path. A solution tank upper space guide path for horizontally guiding the air flow in the space is provided, and further, the air flow circulation path is formed on the solution liquid surface from above the solution tank on the upstream side of the air flow of the solution tank upper space guide path. A solution tank lower guiding path for guiding the air flow toward the solution tank, and a solution tank upper guiding path for guiding the air flow upward from near the solution liquid surface to the downstream side of the air flow of the solution tank upper space guiding path. The water evaporation means is provided in the solution tank lower guiding path, and the solution mist separating means is provided in the solution tank upper guiding path.

また、本発明に係る溶液の蒸発濃縮装置は請求項4に記載の通り、請求項1ないし請求項3のいずれか1項に記載の溶液の蒸発濃縮装置において、前記冷却手段が、シャワー状ないし霧流状に流れる冷却水を前記気流に接触させるものであることを特徴とする。   According to a fourth aspect of the present invention, there is provided a solution evaporating and concentrating apparatus according to the present invention, wherein the cooling means includes a shower-like or thorough function according to any one of the first to third aspects. The cooling water flowing in a mist flow is brought into contact with the air flow.

また、本発明に係る溶液の蒸発濃縮装置は請求項5に記載の通り、請求項1ないし請求項4のいずれか1項に記載の溶液の蒸発濃縮装置において、前記気流循環経路に冷却水槽の冷却水液面の上方空間で前記気流を水平に誘導する冷却水槽上方空間誘導路が設けられ、さらに、前記気流循環経路が、前記冷却水槽上方空間誘導路の前記気流上流側に前記冷却水槽上方から該冷却水水面に向かって気流を誘導する冷却水槽下方誘導経路と、前記冷却水槽上方空間誘導路の前記気流下流側に前記冷却水水面近くから上方に向かって気流を誘導する冷却水槽上方誘導経路と、を備えるとともに、前記冷却手段が前記冷却水槽下方誘導経路に、かつ、前記水分ミスト分離手段が前記冷却水槽上方誘導経路に、それぞれ設けられていることを特徴とする。   In addition, the solution evaporating and concentrating device according to the present invention is the solution evaporating and concentrating device according to any one of claims 1 to 4, wherein a cooling water tank is provided in the air flow circulation path. A cooling water tank upper space guiding path for horizontally guiding the air flow in the space above the cooling water liquid level is provided, and further, the air flow circulation path is located above the cooling water tank on the upstream side of the air flow of the cooling water tank upper space guiding path. A cooling water tank lower guiding path for guiding the air flow from the cooling water tank to the cooling water surface, and a cooling water tank upper guiding for guiding the air flow upward from near the cooling water surface to the downstream side of the cooling water upper space guiding path. A cooling path is provided in the cooling water tank lower guidance path, and the moisture mist separation means is provided in the cooling water tank upper guidance path.

また、本発明に係る溶液の蒸発濃縮装置は請求項6に記載の通り、請求項1ないし請求項5のいずれか1項に記載の溶液の蒸発濃縮装置において、前記気流循環手段が前記溶液ミスト分離手段と前記冷却手段との間に設けられたことを特徴とする。   The solution evaporating and concentrating device according to the present invention is the solution evaporating and concentrating device according to any one of claims 1 to 5, wherein the air flow circulating means is the solution mist. It is provided between the separating means and the cooling means.

本発明の溶液の蒸発濃縮方法は、請求項7に記載のように、前記請求項1ないし請求項6のいずれか1項に記載の溶液の蒸発濃縮装置を用いる溶液の蒸発濃縮方法である。   The method for evaporating and concentrating a solution of the present invention is a method for evaporating and concentrating a solution using the apparatus for evaporating and concentrating a solution according to any one of claims 1 to 6 as described in claim 7.

本発明の溶液の蒸発濃縮方法は、請求項8に記載の通り、請求項7に記載の溶液の蒸発濃縮方法において、前記要濃縮処理溶液がめっき液成分を有する溶液であることを特徴とする。   The method for evaporating and concentrating a solution according to the present invention is the method for evaporating and concentrating a solution according to claim 7, wherein the concentration-requiring solution is a solution having a plating solution component. .

本発明の溶液の蒸発濃縮装置によれば、外部に対して閉鎖され、内部で気流が循環する気流循環経路と、該気流循環経路内に気流を循環させる気流循環手段とを有し、かつ、該気流循環経路に、該気流に対して要濃縮処理溶液を接触させ、該溶液中の水分を蒸発させて濃縮された該溶液を回収する水分蒸発手段、該水分蒸発手段からの水蒸気を含む気流中の溶液ミストを気流から分離し回収する溶液ミスト分離手段、ミスト分離手段からの溶液ミストが分離された水蒸気を含む気流を冷却して該水蒸気を液化して取り除く冷却手段、及び、該冷却手段からの冷却された気流中の水分ミストを気流から分離し回収する水分ミスト分離手段をこの順に備えているために、要濃縮処理溶液を高温に保たなくても蒸発・濃縮処理が可能となり、また、外部に対して、要濃縮処理溶液やその成分が漏出して生じる問題も予め防止されている。   According to the evaporation and concentration apparatus for a solution of the present invention, it has an air flow circulation path that is closed with respect to the outside and in which an air flow circulates, and an air flow circulation means that circulates the air flow in the air flow circulation path, and Moisture evaporation means for bringing a concentrated treatment solution into contact with the air flow in the air flow circulation path, and evaporating water in the solution to recover the concentrated solution, and air flow including water vapor from the water evaporation means Solution mist separation means for separating and recovering the solution mist from the air stream, cooling means for cooling the air stream containing water vapor from which the solution mist from the mist separation means is separated and liquefying and removing the water vapor, and the cooling means Since the water mist separation means for separating and recovering the water mist in the cooled airflow from the airflow in this order is provided, evaporation / concentration treatment can be performed without maintaining the high concentration treatment solution at a high temperature. Also, Relative parts, main concentration treatment solution and its components can be prevented in advance a problem occurring leaking.

請求項2にかかる本発明の溶液の蒸発濃縮装置によれば、水分蒸発手段が、シャワー状ないし霧流状に流れる要濃縮処理溶液に前記気流を接触させるものであるために、単純な構造でありながら、効果的な気液接触が可能となるので、要濃縮処理溶液中の水分が蒸発しやすい。   According to the evaporation and concentration apparatus of the solution of the present invention according to claim 2, since the water evaporation means makes the air stream contact the concentration-required processing solution flowing in a shower or mist flow, the structure is simple. Nevertheless, since effective gas-liquid contact is possible, the water in the concentrated treatment solution is likely to evaporate.

請求項3にかかる本発明の溶液の蒸発濃縮装置によれば、前記気流循環経路に溶液槽の溶液液面の上方空間で前記気流を水平に誘導する溶液槽上方空間誘導路が設けられ、さらに、前記気流循環経路が、前記溶液槽上方空間誘導路の前記気流上流側に前記溶液槽上方から該溶液液面に向かって気流を誘導する溶液槽下方誘導経路と、前記溶液槽上方空間誘導路の前記気流下流側に前記溶液液面近くから上方に向かって気流を誘導する溶液槽上方誘導経路と、を備えるとともに、前記水分蒸発手段が前記溶液槽下方誘導経路に、かつ、前記溶液ミスト分離手段が前記溶液槽上方誘導経路に、それぞれ設けられているために、請求項2に記載の発明に組み合わせられたときには要濃縮処理溶液と気流との接触時間が長くなるのでより効率的に要濃縮処理溶液中の水分が蒸発しやすくなるとともに、溶液3の流れ方向と気流の流れ方向とが一致せず、かつ、気流の流速が大きい場合に生じる要濃縮処理溶液の気流による川下方向の持ち出しが予め防止されている。さらに、要濃縮処理溶液と接触した後の気流の方向が大きく変化するので、気流中の溶液ミストの除去が促進され、また、溶液ミスト分離手段でミストとして分離された溶液は自重で下方の溶液槽に戻るので溶液の回収手段が不要となる。   According to the apparatus for evaporating and concentrating a solution of the present invention according to claim 3, a solution tank upper space guiding path for horizontally guiding the air flow in the space above the solution liquid surface of the solution tank is provided in the air flow circulation path, The air flow circulation path includes a solution tank lower guiding path for guiding an air flow from the upper side of the solution tank toward the solution liquid surface upstream of the air flow path of the solution tank upper space guiding path, and the solution tank upper space guiding path. A solution tank upper guide path for guiding an air stream upward from near the solution liquid level to the downstream side of the air stream, and the water evaporation means is provided in the solution tank lower guide path and the solution mist separation. Since the means are provided in the solution tank upper guide path, respectively, when combined with the invention according to claim 2, the contact time between the concentration-required treatment solution and the air flow becomes longer, so that the concentration is more efficient. Moisture in the processing solution is likely to evaporate, the flow direction of the solution 3 does not match the flow direction of the air flow, and when the flow rate of the air flow is large, the concentration processing solution that needs to be taken up in the downstream direction due to the air flow It is prevented in advance. Furthermore, since the direction of the airflow after contact with the concentrated treatment solution is greatly changed, the removal of the solution mist in the airflow is promoted, and the solution separated as mist by the solution mist separation means is self-weighted and the lower solution Since it returns to the tank, no solution recovery means is required.

請求項4にかかる本発明の溶液の蒸発濃縮装置によれば、前記冷却手段が、シャワー状ないし霧流状に流れる冷却水を前記気流に接触させるものであるために、単純な手段でありながら、効果的な気液接触が可能となるので、要濃縮処理溶液中の水分が蒸発しやすい。   According to the solution evaporating and concentrating apparatus of the present invention according to claim 4, since the cooling means makes the cooling water flowing in the form of a shower or mist flow contact the air flow, it is a simple means. Since effective gas-liquid contact is possible, the water in the concentration-requiring treatment solution is likely to evaporate.

請求項5にかかる本発明の溶液の蒸発濃縮装置によれば、前記気流循環経路に冷却水槽の冷却水液面の上方空間で前記気流を水平に誘導する冷却水槽上方空間誘導路が設けられ、さらに、前記気流循環経路が、前記冷却水槽上方空間誘導路の前記気流上流側に前記冷却水槽上方から該冷却水水面に向かって気流を誘導する冷却水槽下方誘導経路と、前記冷却水槽上方空間誘導路の前記気流下流側に前記冷却水水面近くから上方に向かって気流を誘導する冷却水槽上方誘導経路と、を備えるとともに、前記冷却手段が前記冷却水槽下方誘導経路に、かつ、前記水分ミスト分離手段が前記冷却水槽上方誘導経路に、それぞれ設けられているために、請求項4に記載の発明に組み合わせられたときには冷却水と気流との接触時間が長くなるのでより効率的に気流中の水分を除去することができるとともに、溶液3の流れ方向と気流の流れ方向とが一致せず、かつ、気流の流速が大きい場合に生じる冷却水の気流による川下方向の持ち出しが予め防止されている。また、冷却水と接触した後の気流の方向が大きく変化するので、気流中の水分ミストの除去が促進され、また、水分ミスト分離手段でミストとして分離された水分は自重で下方の冷却水槽に戻るので冷却水の回収手段が不要となる。   According to the evaporation and concentration apparatus for a solution of the present invention according to claim 5, a cooling water tank upper space guiding path for guiding the air flow horizontally in the space above the cooling water level of the cooling water tank is provided in the air flow circulation path. Further, the air flow circulation path includes a cooling water tank lower guiding path for guiding an air flow from the upper side of the cooling water tank toward the cooling water surface on the upstream side of the air flow of the upper space guiding path of the cooling water tank, and an upper space guidance of the cooling water tank. A cooling water tank upper guiding path for guiding an air flow from the vicinity of the cooling water surface to the upper side on the downstream side of the cooling water surface of the road, and the cooling means in the cooling water tank lower guiding path and the moisture mist separation Since the means is provided in each of the cooling water tank upper guide paths, the contact time between the cooling water and the air flow becomes longer when combined with the invention according to claim 4. Moisture in the airflow can be removed efficiently, the flow direction of the solution 3 does not coincide with the flow direction of the airflow, and the take-up in the downstream direction by the airflow of cooling water generated when the airflow velocity is high Is prevented in advance. In addition, since the direction of the airflow after contact with the cooling water changes greatly, the removal of the water mist in the airflow is promoted, and the water separated as the mist by the water mist separating means is self-weighted to the cooling water tank below. Since it returns, the cooling water recovery means becomes unnecessary.

請求項6にかかる本発明の溶液の蒸発濃縮装置によれば、気流循環手段が前記溶液ミスト分離手段と前記冷却手段との間に設けられたために、水分蒸発手段付近が冷却手段付近に比べ、気圧が低くなる。このため、水分蒸発手段での要濃縮処理溶液からの水分の気流への蒸発が促進されると同時に、冷却手段での気流中の水分の凝縮が促進される。このために、より効果的な溶液の濃縮効果が得られる。   According to the solution evaporating and concentrating apparatus of the present invention according to claim 6, since the air flow circulating means is provided between the solution mist separating means and the cooling means, the vicinity of the water evaporation means is compared with the vicinity of the cooling means, The atmospheric pressure is lowered. For this reason, evaporation of moisture from the concentration-required processing solution in the moisture evaporating means to the air stream is promoted, and at the same time, condensation of moisture in the air stream in the cooling means is promoted. For this reason, a more effective solution concentration effect can be obtained.

請求項7にかかる本発明の溶液の蒸発濃縮方法によれば、要濃縮処理溶液を高温に保たなくても蒸発・濃縮処理が可能となり、また、外部に対して、要濃縮処理溶液やその成分が漏出して生じる問題も予め防止されている。   According to the method for evaporating and concentrating a solution of the present invention according to claim 7, it is possible to evaporate and concentrate the concentrated treatment solution without keeping the concentrated treatment solution at a high temperature. Problems caused by leakage of components are also prevented in advance.

また、請求項8にかかる本発明の溶液の蒸発濃縮方法によれば、上記効果に加え、高温での蒸発濃縮処理では析出や分解のおそれがある成分を含むめっき液、及び、このようなめっき液成分を有するめっき液希薄溶液(本発明では、めっき液とめっき液成分を有するめっき液希薄溶液との両者を併せて、”めっき液成分を有する溶液”と云う)であっても、分解や析出などの恐れなく蒸発濃縮処理が可能であるため、従来廃棄していた資源の再利用が可能となり、及び、従来では必要であった廃棄物処理コストも不要とすることができる。   According to the method for evaporating and concentrating a solution of the present invention according to claim 8, in addition to the above effect, a plating solution containing a component that may be precipitated or decomposed by evaporating and concentrating at a high temperature, and such plating. Even in the case of a dilute plating solution having a liquid component (in the present invention, both the plating solution and the dilute solution having a plating solution component are referred to as a “solution having a plating solution component”) Since evaporative concentration can be performed without fear of precipitation, resources that have been discarded can be reused, and waste processing costs that were conventionally required can be eliminated.

図1に本発明に係る溶液の蒸発濃縮装置Aの一例を示す。   FIG. 1 shows an example of a solution evaporation and concentration apparatus A according to the present invention.

溶液の蒸発濃縮装置Aには外部に対して閉鎖され、内部で気流が循環する気流循環経路1と、該気流循環経路内に気流を循環させる気流循環手段としての送風機2とを有している。   The solution evaporating and concentrating apparatus A has an airflow circulation path 1 that is closed to the outside and circulates an airflow inside, and a blower 2 as an airflow circulation means that circulates the airflow in the airflow circulation path. .

気流循環経路1には溶液槽1a4の要濃縮処理溶液(以下、”溶液”とも云う)3の液面の上方空間で気流を水平に誘導する溶液槽上方空間誘導路1a1が設けられ、この溶液槽上方空間誘導路1a1の気流上流側には溶液槽1a4上方から溶液3液面に向かって気流を誘導する溶液槽下方誘導経路1a2と、溶液槽上方空間誘導路1a1の気流下流側に溶液3液面近くから上方に向かって気流を誘導する溶液槽上方誘導経路1a3とが備えられている。   The air flow circulation path 1 is provided with a solution tank upper space guide path 1a1 for horizontally guiding the air flow in the upper space above the liquid level of the solution requiring concentration treatment (hereinafter also referred to as “solution”) 3 of the solution tank 1a4. On the upstream side of the air flow of the tank upper space guiding path 1a1, the solution tank lower guiding path 1a2 for guiding the air flow from above the solution tank 1a4 toward the liquid surface of the solution 3, and the solution 3 on the downstream side of the air flow of the solution tank upper space guiding path 1a1. A solution tank upward guiding path 1a3 for guiding an air flow from near the liquid surface upward is provided.

溶液槽下方誘導経路1a2には水分蒸発手段としてシャワーノズル4bが設けられ、このシャワーノズル4bは溶液循環ポンプ4aを備えた溶液供給配管4が接続され上記溶液槽1a4底部から溶液3が供給されており、シャワーノズル4bからは溶液3が気流に向けてシャワー状に噴出される。また、本発明ではこの溶液3の流れはシャワーのような連続液流ではなくて、細かい液粒が気流中を流れる霧流状であってもよく、その場合も本発明に含まれる。   The solution tank lower guide path 1a2 is provided with a shower nozzle 4b as a water evaporation means. The shower nozzle 4b is connected to a solution supply pipe 4 provided with a solution circulation pump 4a, and the solution 3 is supplied from the bottom of the solution tank 1a4. From the shower nozzle 4b, the solution 3 is ejected in a shower shape toward the airflow. In the present invention, the flow of the solution 3 may not be a continuous liquid flow like a shower, but may be a mist flow in which fine liquid particles flow in the airflow, and such a case is also included in the present invention.

溶液の蒸発濃縮装置Aでは、溶液槽下方誘導経路1a2での溶液3の流れ方向と気流の流れ方向とが一致するためにこれらの接触時間が長く、このために溶液槽下方誘導経路1a2では落下する溶液3から効率的にその水分が気流中へ蒸発する。さらに、溶液3の流れ方向と気流の流れ方向とが一致せず、かつ、気流の流速が大きい場合に生じる溶液3の気流による川下方向の持ち出しが予め防止されている。   In the solution evaporating and concentrating apparatus A, the flow direction of the solution 3 in the solution tank lower guiding path 1a2 and the flow direction of the air flow coincide with each other, so that the contact time is long. For this reason, the solution tank falls in the solution tank lower guiding path 1a2. The water efficiently evaporates from the solution 3 to the air stream. Further, the downstream direction of the solution 3 caused by the air flow of the solution 3 that occurs when the flow direction of the solution 3 does not match the flow direction of the air flow and the flow velocity of the air flow is large is prevented in advance.

さらに溶液槽下方誘導経路1a2のシャワーノズル下方でかつ溶液槽1a4の液面上方にはこの例ではポリ塩化ビニリデン系繊維からなる繊維マット(商品名サランロック、以下同じ)層8が配置されており、溶液3と気流との接触との効率がより高められている。溶液3はこのように気流に接して、濃縮された後、下方の溶液槽へ回収され、回収のための特別な機構は不要である。なお、本発明はこの例に限定されず、繊維マットの替わりに有孔板やラシヒリング、レッシングリング等の充填材からなる層を用いても良い(以下も同じ)。   Further, in this example, a fiber mat (trade name Saran Lock, hereinafter the same) layer 8 made of polyvinylidene chloride fiber is disposed below the shower nozzle of the solution tank lower guiding path 1a2 and above the liquid level of the solution tank 1a4. The efficiency of the contact between the solution 3 and the airflow is further increased. The solution 3 is in contact with the airflow in this way, concentrated, and then collected in the lower solution tank, so that a special mechanism for collection is unnecessary. In addition, this invention is not limited to this example, You may use the layer which consists of fillers, such as a perforated board, a Raschig ring, and a Lessing ring, instead of a fiber mat (the following is also the same).

このように溶液3と接してその水分を水蒸気として含んだ気流は、溶液槽1a4の溶液3の液面の上方空間である溶液槽上方空間誘導路1a1で一旦で水平になるよう誘導された後、溶液槽上方誘導経路1a3に導入され、そこで上方に誘導される。このように`、気流の方向が大きく変更されるために気流に溶液3のミスト(本発明では”溶液ミスト”と云う)が含まれている場合であっても、そのほとんどは溶液3へと落下する。   After the air flow containing the water as water vapor in contact with the solution 3 in this way is once guided to be horizontal in the solution tank upper space guiding path 1a1 which is the space above the liquid surface of the solution 3 in the solution tank 1a4. Then, it is introduced into the solution tank upward guiding path 1a3, where it is guided upward. Thus, even if the direction of the airflow is greatly changed and the mist of the solution 3 is included in the airflow (referred to as “solution mist” in the present invention), most of the mist flows into the solution 3. Fall.

溶液槽上方誘導経路1a3には水分蒸発手段からの水蒸気を含む気流中の溶液ミストを気流から分離し回収する溶液ミスト分離手段として、フィルター類、この例では有孔板(商品名:エリミネーターEL−222、以下同じ)層7及び繊維マット層8とが設けられ、これらの層をこの順で通過する気流中の溶液ミストを除去する。これら有孔板層8及び繊維マット層7がこの順に気流に接するのは、まず有孔板層7により大きい溶液ミストを除去した後、この有孔板よりも目が細かい繊維マットにより小さい溶液を除去することができるために、大風量であっても気流からの溶液ミストの除去を効率よく行える。   In the solution tank upper guiding path 1a3, as a solution mist separation means for separating and recovering the solution mist containing the water vapor from the water evaporation means from the air flow, a filter, in this example, a perforated plate (trade name: Eliminator EL- 222, the same applies hereinafter) and the fiber mat layer 8 are provided, and the solution mist in the airflow passing through these layers in this order is removed. The perforated plate layer 8 and the fiber mat layer 7 are in contact with the air flow in this order. First, a larger solution mist is removed from the perforated plate layer 7 and then a smaller solution is applied to the fiber mat that is finer than the perforated plate. Since it can be removed, the solution mist can be efficiently removed from the airflow even with a large air volume.

これら有孔板層8及び繊維マット層7に付着し、気流から取り除かれた溶液ミスト(溶液3)は自重で、下方の溶液槽1a4へ落下し、回収されるため、特別な回収手段を設ける必要がない。このように溶液ミストが気流中から取り除かれるために、溶液の成分が溶液ミスト分離手段の気流下流側へは到達しない。   Since the solution mist (solution 3) attached to the perforated plate layer 8 and the fiber mat layer 7 and removed from the airflow falls under its own weight into the lower solution tank 1a4 and is recovered, a special recovery means is provided. There is no need. Thus, since the solution mist is removed from the airflow, the components of the solution do not reach the downstream side of the airflow of the solution mist separating means.

ミスト分離手段からの溶液ミストが分離された、水蒸気を含む気流は、水分蒸発手段からの水蒸気を含む気流中の溶液ミストを気流から分離し回収する溶液ミスト分離手段を備えた溶液槽上方誘導経路1a3から、気流循環経路内に気流を循環させる気流循環手段である送風機2を経て、ミスト分離手段からの溶液ミストが分離された水蒸気を含む気流を冷却してその水蒸気を液化して取り除く冷却手段、及び、該冷却手段からの冷却された気流中の水分ミストを気流から分離し回収する水分ミスト分離手段に供給される。   The air flow including water vapor from which the solution mist from the mist separating means is separated is a solution tank upward guiding path equipped with a solution mist separating means for separating and collecting the solution mist in the air flow containing water vapor from the water evaporation means from the air flow Cooling means that cools and removes the water vapor from 1a3 through the blower 2, which is an air flow circulation means for circulating the air flow in the air flow circulation path, to cool the air stream containing water vapor from which the solution mist from the mist separation means has been separated. And the water mist separating means for separating and recovering the water mist in the cooled airflow from the cooling means from the airflow.

この溶液の蒸発濃縮装置Aでは、気流循環経路に冷却水槽1b4の冷却水6の液面の上方空間で前記気流を水平に誘導する冷却水槽上方空間誘導路1b1が設けられ、この冷却水槽上方空間誘導路1b1の気流上流側に冷却水槽1b4上方から冷却水6水面に向かって気流を誘導する冷却水槽下方誘導経路1b2と、冷却水槽上方空間誘導路1b1の気流下流側に冷却水6の水面近くから上方に向かって気流を誘導する冷却水槽上方誘導経路1b3とを備える、冷却手段は冷却水槽下方誘導経路1b2に、かつ、水分ミスト分離手段は冷却水槽上方誘導経路1b3に、それぞれ設けられている。   In this solution evaporating and concentrating apparatus A, a cooling water tank upper space guiding path 1b1 for horizontally guiding the air flow in the space above the liquid level of the cooling water 6 in the cooling water tank 1b4 is provided in the air flow circulation path. The cooling water tank lower guiding path 1b2 for guiding the air flow from above the cooling water tank 1b4 toward the cooling water 6 water surface on the air flow upstream side of the guiding path 1b1, and the water flow downstream of the cooling water tank upper space guiding path 1b1 near the water surface of the cooling water 6 The cooling means is provided in the cooling water tank lower guiding path 1b2 and the water mist separating means is provided in the cooling water tank upper guiding path 1b3. .

冷却手段としては、この溶液の蒸発濃縮装置Aでは、シャワー状に流れる冷却水を前記気流に接触させるものであって、冷却水槽下方誘導経路1b2の気流中に設けられたシャワーノズル5cが設けられ、このシャワーノズル5cは冷却水槽1b4のオーバーフロー水が供給される冷却水オーバーフロータンク5a、及び、冷却水循環ポンプ5bを備えた冷却水供給配管5が接続され、冷却水槽1b1から冷却水6が供給されており、シャワーノズル5cからは冷却水6が気流に向けてシャワー状に噴出されるために、高い冷却効率が得られる。また、本発明ではこの冷却水6の流れはシャワーのような連続液流ではなくて、細かい液粒が気流中を流れる霧流状であってもよく、その場合も本発明に含まれる。   As the cooling means, this solution evaporating and concentrating apparatus A is for bringing the cooling water flowing in a shower shape into contact with the air flow, and is provided with a shower nozzle 5c provided in the air flow in the cooling water tank lower guide path 1b2. The shower nozzle 5c is connected to a cooling water overflow tank 5a to which the overflow water of the cooling water tank 1b4 is supplied and a cooling water supply pipe 5 provided with a cooling water circulation pump 5b, and the cooling water 6 is supplied from the cooling water tank 1b1. In addition, since the cooling water 6 is ejected from the shower nozzle 5c in a shower shape toward the airflow, high cooling efficiency is obtained. In the present invention, the flow of the cooling water 6 may not be a continuous liquid flow like a shower, but may be a mist flow in which fine liquid particles flow in the airflow, and such a case is also included in the present invention.

溶液の蒸発濃縮装置Aでは、冷却水槽下方誘導経路1b2での冷却水6の流れ方向と気流の流れ方向とが一致するためにこれらの接触時間が長く、このために冷却水槽下方誘導経路1b2では落下する冷却水6により気流は冷却され、気流中の水蒸気が効率的に液化される。さらに、冷却水6の流れ方向と気流の流れ方向とが一致せず、かつ、気流の流速が大きい場合に生じる冷却水6の気流による川下方向の予期しない持ち出しが予め防止されている。   In the solution evaporating and concentrating apparatus A, the flow direction of the cooling water 6 in the cooling water tank lower guiding path 1b2 and the flow direction of the air flow coincide with each other, so that the contact time is long. For this reason, in the cooling water tank lower guiding path 1b2 The airflow is cooled by the falling cooling water 6, and the water vapor in the airflow is efficiently liquefied. Furthermore, the unexpected downstream take-out by the airflow of the cooling water 6 caused when the flow direction of the cooling water 6 does not coincide with the flow direction of the airflow and the airflow velocity is high is prevented in advance.

さらに冷却水槽下方誘導経路1b2のシャワーノズル5c下方でかつ冷却水槽1b4の冷却水6液面上方にはこの例では繊維マット層8が配置されており、冷却水6と気流との接触との効率がより高められているとともに、液滴を粗大化するので、冷却水6(と凝縮水と)の下方の冷却水槽1b4への確実な回収が可能となり、後述する、気流からの冷却水ミストの除去がより確実となる。   Further, in this example, a fiber mat layer 8 is disposed below the shower nozzle 5c of the cooling water tank lower guide path 1b2 and above the cooling water 6 liquid level of the cooling water tank 1b4, and the efficiency of contact between the cooling water 6 and the airflow is improved. Since the droplets are coarsened, the cooling water 6 (and the condensed water) can be reliably recovered in the cooling water tank 1b4, and the cooling water mist from the airflow described later can be recovered. Removal is more reliable.

また、繊維マット層8下方には冷凍装置5eに接続された冷却用熱交換器5dが配されており、ここを通過する気流及び冷却水とを効果的に冷却する。冷却用熱交換器5dの下方にはまた繊維マット層8が設けられ、冷却用熱交換器5dに冷やされた冷却水と気流とが再度効率よく接触するようになっており、気流中の水蒸気除去がより効果的に実施される。   Further, a cooling heat exchanger 5d connected to the refrigeration apparatus 5e is disposed below the fiber mat layer 8, and effectively cools the airflow and cooling water passing therethrough. A fiber mat layer 8 is also provided below the cooling heat exchanger 5d so that the cooled cooling water and the airflow come into efficient contact with the cooling heat exchanger 5d again. Removal is performed more effectively.

本例ではこのように冷却用の熱交換器は気流循環経路に設けたが、冷却用の熱交換器を気流循環経路ではなく、冷却水6の経路、あるいは、冷却水槽1b4に設けてもよく、また、これらの複数箇所に設けても良い。   In this example, the cooling heat exchanger is provided in the air flow circulation path in this way, but the cooling heat exchanger may be provided not in the air flow circulation path but in the cooling water 6 path or the cooling water tank 1b4. Moreover, you may provide in these several places.

冷却水6(及び凝縮水)は最終的に下方の冷却水槽1b4へ回収されるので、回収のための特別な機構は不要である。冷却水槽1b4の冷却槽には凝縮水が加わるために水量が増えるが、この余剰水は、例えば、めっき処理工程後の洗浄水として再利用することにより、本発明の溶液の蒸発濃縮装置を備えためっき処理システムから外部に出ることがなく、このとき無排出(ゼロエミッション)が可能となる。   Since the cooling water 6 (and condensed water) is finally collected in the lower cooling water tank 1b4, a special mechanism for recovery is not necessary. The amount of water increases because condensed water is added to the cooling tank of the cooling water tank 1b4. This excess water is provided, for example, by reusing it as washing water after the plating treatment step, thereby providing the solution evaporation evaporation apparatus of the present invention. In this case, no emission (zero emission) is possible.

このように冷却手段により冷却されて水蒸気が少なくなった気流は、冷却水槽1b4の冷却水6の液面の上方空間である溶液槽上方空間誘導路1b1で一旦水平になるよう誘導された後、冷却槽上方誘導経路1b3に導入され、そこで上方に誘導される。このように、気流の方向が大きく変更されるために気流に冷却水や凝縮水3のミスト(本発明ではこれらを併せて”冷却水ミスト”と云う)が含まれている場合であっても、そのほとんどは冷却水槽1b4の冷却水6へと落下する。   The airflow thus cooled by the cooling means and reduced in water vapor is once guided to be horizontal in the solution tank upper space guiding path 1b1, which is the space above the liquid level of the cooling water 6 in the cooling water tank 1b4. It is introduced into the cooling tank upward guiding path 1b3 and is guided upward there. As described above, even if the direction of the air flow is greatly changed, the air flow includes a mist of cooling water or condensed water 3 (in the present invention, these are collectively referred to as “cooling water mist”). Most of them fall into the cooling water 6 of the cooling water tank 1b4.

冷却水槽上方誘導経路1b3には冷却手段からの気流中の冷却水ミストを気流から分離し回収する冷却水ミスト分離手段として、フィルター類、この例では有孔板層7と繊維マット層8とが設けられ、これらの層をこの順で通過する気流中の大きな冷却水ミストを有孔板層7により、その後、残留した小さい冷却水ミストを繊維マット層8により、効率よく除去することができる。   The cooling water tank upper guiding path 1b3 includes filters, in this example, a perforated plate layer 7 and a fiber mat layer 8, as cooling water mist separating means for separating and recovering cooling water mist in the air current from the cooling means from the air current. The large cooling water mist in the airflow that is provided and passes through these layers in this order can be efficiently removed by the perforated plate layer 7 and then the remaining small cooling water mist can be efficiently removed by the fiber mat layer 8.

冷却水ミスト分離手段であるこれら有孔板層7と繊維マット層8とに付着して気流から除去された冷却水ミスト(冷却水6)は自重で、下方の冷却水槽1b4へ落下し、回収されるため、特別な回収手段を設ける必要がない。このように気流中から冷却水ミストが効果的に除去されるため、気流中には飽和レベルの水蒸気以外の水分がないので水分蒸発手段での水分蒸発による溶液の濃縮が効果的に行われる。   The cooling water mist (cooling water 6) attached to the perforated plate layer 7 and the fiber mat layer 8 which is the cooling water mist separating means and removed from the air flow falls to the cooling water tank 1b4 below by its own weight and is collected. Therefore, it is not necessary to provide a special collecting means. Since the cooling water mist is effectively removed from the airflow in this way, there is no moisture other than the saturated water vapor in the airflow, so that concentration of the solution by water evaporation in the water evaporation means is performed effectively.

気流は冷却水槽上方誘導経路1b3から、再度、水分蒸発手段を備えた溶液槽下方誘導経路1a2に供給されてシャワーノズル部4bに達し、以下同様に循環する。   The airflow is supplied again from the cooling water tank upper guiding path 1b3 to the solution tank lower guiding path 1a2 provided with the water evaporation means, reaches the shower nozzle part 4b, and circulates in the same manner.

このような溶液の蒸発濃縮装置Aにおいて、効率的に濃縮処理を行うには、(1)要濃縮処理溶液の温度をできるだけ高くし、(2)冷却水の温度をできるだけ低くし、かつ、(3)気流循環手段2としての送風機による気流の循環風量をできるだけ大きくして運転することが重要である。しかし、一部のめっき液のように温度を、例えば60℃を超えて加熱するとその成分が析出したり、分解したりする場合がある。このような場合には、冷却水の温度を低く(要濃縮処理溶液の温度より10℃以上低くする。)し、風量を多くして時間当たりの気流の循環回数を高くして運転する。また、運転の結果、要濃縮処理溶液の温度も下がってしまう場合には、溶液液槽1a4に保温器(電気ヒータ、あるいは、蒸気ヒータ等による)を設置して、液温を一定に保つ。   In order to perform the concentration process efficiently in such a solution evaporating and concentrating apparatus A, (1) the temperature of the concentration treatment solution required is made as high as possible, (2) the temperature of the cooling water is made as low as possible, and ( 3) It is important to operate with the circulation air volume of the air stream by the blower as the air circulation means 2 as large as possible. However, when the temperature exceeds, for example, 60 ° C. like some plating solutions, the components may be deposited or decomposed. In such a case, the operation is performed by lowering the temperature of the cooling water (lower by 10 ° C. or more than the temperature of the concentration treatment solution required), increasing the air volume and increasing the number of circulation of the air current per hour. Further, when the temperature of the concentration-requiring treatment solution is lowered as a result of the operation, a warmer (using an electric heater, a steam heater or the like) is installed in the solution liquid tank 1a4 to keep the liquid temperature constant.

本発明において、上記気流を構成する気体としては、通常は空気を用いるが、特別な場合には窒素ガスなどの他の気体を用いることができる。   In the present invention, air is usually used as the gas constituting the air stream, but other gases such as nitrogen gas can be used in special cases.

ここで、溶液の蒸発濃縮装置Aでは、気流循環手段としての送風機2が前記溶液ミスト分離手段と前記冷却手段との間に設けられている。このことにより水分蒸発手段付近の気圧が冷却手段付近の気圧に比べて低くなる。「圧力スイング」とも云えるこのような圧力差によりこのため、水分蒸発手段での要濃縮処理溶液からの水分の気流への蒸発が促進されると同時に、冷却手段での気流中の水分の凝縮が促進される。このために、本発明に係る溶液の蒸発濃縮装置Aでは、より効果的な溶液の濃縮効果が得られる。ここで、溶液の蒸発濃縮装置Aでは気流循環路に上述のようにフィルター類(繊維マットや有孔板)が多く設けられており、これらにより上記の「圧力スイング効果」がさらに高められており、また、この効果は気流循環手段としての送風機2を大流量に対応した強力なものとすることにより、より一層高い効果を得ることができる。   Here, in the solution evaporating and concentrating apparatus A, a blower 2 as an air flow circulating means is provided between the solution mist separating means and the cooling means. As a result, the air pressure near the water evaporation means becomes lower than the air pressure near the cooling means. Because of this pressure difference, also called “pressure swing”, the evaporation of moisture from the concentration-resolved solution in the moisture evaporation means into the air stream is promoted, and at the same time, the condensation of moisture in the air current in the cooling means Is promoted. For this reason, in the solution evaporation concentration apparatus A according to the present invention, a more effective solution concentration effect can be obtained. Here, the solution evaporating and concentrating apparatus A is provided with a large number of filters (fiber mats and perforated plates) in the air circulation circuit as described above, and the above-mentioned “pressure swing effect” is further enhanced. In addition, this effect can be further enhanced by making the blower 2 as the airflow circulation means strong enough to cope with a large flow rate.

さらに、上記溶液の蒸発濃縮装置Aでは、風量を多くして時間当たりの気流の循環量を高くして運転した際に生じやすい、溶液ミストの冷却手段への持ち込みや、気流からの水分ミスト分離不良による水分蒸発手段への水分持ち込みによる水分蒸発効率の低下が、それぞれ溶液槽上方空間誘導路の前後、及び、冷却水槽上方空間誘導路の前後での気流の大きな方向転換により防止されているので、要濃縮処理溶液の温度と冷却手段での冷却温度の差が小さい場合であっても時間当たりの気流の循環量を大きくすることができるので、高い蒸発濃縮効率を得ることができる。   Further, in the solution evaporating and concentrating apparatus A, the solution mist is easily brought into the cooling means, or the water mist is separated from the airflow, which is likely to occur when the airflow is increased to increase the circulation amount of the airflow per hour. Since the deterioration of the water evaporation efficiency due to the introduction of water to the water evaporation means due to defects is prevented by the large change of airflow before and after the solution tank upper space guiding path and before and after the cooling water tank upper space guiding path, respectively. Even when the difference between the temperature of the concentration treatment solution required and the cooling temperature of the cooling means is small, the circulation rate of the airflow per hour can be increased, and thus high evaporative concentration efficiency can be obtained.

ここで、一般的な常識で判断すると、溶液ミスト分離手段と冷却手段との間(露点が高い)に送風機を設置すると、送風機内部で水分の凝集が生じやすく、その結果、送風機寿命が短くなるおそれがあるため、送風機は、露点が低い、冷却水ミスト分離手段と蒸発手段との間に設置するのが最適であると考えられるが、このときには上記のような効果的な蒸発濃縮効果は得られない。   Here, judging from general common sense, if a blower is installed between the solution mist separation means and the cooling means (with a high dew point), water aggregation is likely to occur inside the blower, and as a result, the blower life is shortened. For this reason, it is considered that the blower is optimally installed between the cooling water mist separation means and the evaporation means with a low dew point. I can't.

本発明にかかる溶液の蒸発濃縮装置は、要蒸発濃縮処理溶液、特に、高温にすると分解、析出などの不都合が生じる溶液、例えばめっき液やめっき液成分を含む希薄溶液などの蒸発濃縮に用いることができるが、共析ニッケルめっき浴のような、溶液中に固体が分散した分散溶液にも応用することができ、その場合も本発明に含まれる。   The apparatus for evaporating and concentrating a solution according to the present invention is used for evaporating and concentrating an evaporative concentration treatment solution, particularly a solution that causes inconveniences such as decomposition and precipitation at a high temperature, for example, a dilute solution containing a plating solution and a plating solution component. However, it can also be applied to a dispersion solution in which a solid is dispersed in a solution, such as a eutectoid nickel plating bath, and such a case is also included in the present invention.

本発明に係る溶液の蒸発濃縮装置Aを示すモデル図である。It is a model figure which shows the evaporation concentration apparatus A of the solution which concerns on this invention.

符号の説明Explanation of symbols

A 本発明に係る溶液の蒸発濃縮装置
1 気流循環経路
2 送風機
1a1 溶液槽上方空間誘導路
1a2 溶液槽下方誘導経路
1a3 溶液槽上方誘導経路
1a4 溶液槽
1b1 冷却水槽上方空間誘導路
1b2 冷却水槽下方誘導経路
1b3 冷却水槽上方誘導経路
1b4 冷却水槽
3 要濃縮処理溶液(溶液)
4 溶液供給配管
4a 溶液循環ポンプ
4b シャワーノズル
5 冷却水供給配管
5a 冷却水オーバーフロータンク
5b 冷却水循環ポンプ
5c シャワーノズル
6 冷却水
7 有孔板層
8 繊維マット層
A Evaporation and concentration apparatus for solution according to the present invention 1 Air flow circulation path 2 Blower 1a1 Solution tank upper space guiding path 1a2 Solution tank lower guiding path 1a3 Solution tank upper guiding path 1a4 Solution tank 1b1 Cooling water tank upper space guiding path 1b2 Cooling water tank lower guiding Path 1b3 Cooling water tank upward guiding path 1b4 Cooling water tank 3 Concentrated treatment solution (solution)
4 Solution Supply Piping 4a Solution Circulation Pump 4b Shower Nozzle 5 Cooling Water Supply Piping 5a Cooling Water Overflow Tank 5b Cooling Water Circulation Pump 5c Shower Nozzle 6 Cooling Water 7 Perforated Plate Layer 8 Fiber Mat Layer

Claims (8)

外部に対して閉鎖され、内部で気流が循環する気流循環経路と、該気流循環経路内に気流を循環させる気流循環手段とを有し、かつ、該気流循環経路に、
該気流に対して要濃縮処理溶液を接触させ、該溶液中の水分を蒸発させて濃縮された該溶液を回収する水分蒸発手段、
該水分蒸発手段からの水蒸気を含む気流中の溶液ミストを気流から分離し回収する溶液ミスト分離手段、
ミスト分離手段からの溶液ミストが分離された水蒸気を含む気流を冷却して該水蒸気を液化して取り除く冷却手段、及び、
該冷却手段からの冷却された気流中の水分ミストを気流から分離し回収する水分ミスト分離手段をこの順に備えた
ことを特徴とする溶液の蒸発濃縮装置。
An air flow circulation path that is closed with respect to the outside and circulates the air flow inside, and an air flow circulation means that circulates the air flow in the air flow circulation path; and
A moisture evaporating means for bringing the concentrated treatment solution into contact with the air stream and evaporating moisture in the solution to recover the concentrated solution;
A solution mist separation means for separating and recovering the solution mist in the air stream containing water vapor from the water evaporation means;
A cooling means that cools and removes the water vapor by cooling the air stream containing the water vapor from which the solution mist from the mist separating means has been separated; and
An apparatus for evaporating and concentrating a solution, comprising: a water mist separating means for separating and recovering the water mist in the air stream cooled from the cooling means from the air flow.
前記水分蒸発手段が、シャワー状ないし霧流状に流れる要濃縮処理溶液に前記気流を接触させるものであることを特徴とする請求項1に記載の溶液の蒸発濃縮装置。   2. The apparatus for evaporating and concentrating a solution according to claim 1, wherein the moisture evaporating unit is configured to bring the air stream into contact with a concentration-resolved solution that flows in a shower form or a mist form. 前記気流循環経路に溶液槽の溶液液面の上方空間で前記気流を水平に誘導する溶液槽上方空間誘導路が設けられ、
さらに、前記気流循環経路が、
前記溶液槽上方空間誘導路の前記気流上流側に前記溶液槽上方から該溶液液面に向かって気流を誘導する溶液槽下方誘導経路と、
前記溶液槽上方空間誘導路の前記気流下流側に前記溶液液面近くから上方に向かって気流を誘導する溶液槽上方誘導経路と、
を備えるとともに、
前記水分蒸発手段が前記溶液槽下方誘導経路に、かつ、前記溶液ミスト分離手段が前記溶液槽上方誘導経路に、それぞれ設けられている
ことを特徴とする請求項1または請求項2に記載の溶液の蒸発濃縮装置。
A solution tank upper space guiding path for guiding the air flow horizontally in the space above the solution liquid level of the solution tank is provided in the air flow circulation path,
Furthermore, the air flow circulation path is
A solution tank lower guiding path for guiding an air flow from above the solution tank toward the solution liquid surface on the air stream upstream side of the solution tank upper space guiding path;
A solution tank upper guiding path for guiding an air flow upward from near the solution liquid surface to the downstream side of the air flow of the solution tank upper space guiding path;
With
3. The solution according to claim 1, wherein the water evaporation means is provided in the solution tank lower guiding path, and the solution mist separating means is provided in the solution tank upper guiding path. Evaporative concentration equipment.
前記冷却手段が、シャワー状ないし霧流状に流れる冷却水を前記気流に接触させるものであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の溶液の蒸発濃縮装置。   The evaporative concentration apparatus for a solution according to any one of claims 1 to 3, wherein the cooling means makes cooling water flowing in a shower or mist flow contact the air stream. 前記気流循環経路に冷却水槽の冷却水液面の上方空間で前記気流を水平に誘導する冷却水槽上方空間誘導路が設けられ、
さらに、前記気流循環経路が、
前記冷却水槽上方空間誘導路の前記気流上流側に前記冷却水槽上方から該冷却水水面に向かって気流を誘導する冷却水槽下方誘導経路と、
前記冷却水槽上方空間誘導路の前記気流下流側に前記冷却水水面近くから上方に向かって気流を誘導する冷却水槽上方誘導経路と、
を備えるとともに、
前記冷却手段が前記冷却水槽下方誘導経路に、かつ、前記水分ミスト分離手段が前記冷却水槽上方誘導経路に、それぞれ設けられている
ことを特徴とする請求項1ないし請求項4のいずれか1項に記載の溶液の蒸発濃縮装置。
A cooling water tank upper space guiding path for horizontally guiding the air flow in the space above the cooling water level of the cooling water tank is provided in the air flow circulation path,
Furthermore, the air flow circulation path is
A cooling water tank lower guiding path for guiding an air flow from above the cooling water tank toward the cooling water surface on the upstream side of the air flow of the cooling water tank upper space guiding path;
A cooling water tank upper guiding path for guiding an air flow upward from near the cooling water surface to the downstream side of the air flow of the cooling water tank upper space guiding path;
With
5. The cooling device according to claim 1, wherein the cooling means is provided in the cooling water tank lower guiding path, and the moisture mist separating means is provided in the cooling water tank upper guiding path. An evaporative concentration apparatus for the solution according to 1.
前記気流循環手段が前記溶液ミスト分離手段と前記冷却手段との間に設けられたことを特徴とする請求項1ないし請求項5のいずれか1項に記載の溶液の蒸発濃縮装置。   6. The apparatus for evaporating and concentrating a solution according to claim 1, wherein the air circulation unit is provided between the solution mist separating unit and the cooling unit. 前記請求項1ないし請求項6のいずれ1項に記載の溶液の蒸発濃縮装置を用いることを特徴とする溶液の蒸発濃縮方法。   A method for evaporating and concentrating a solution, wherein the apparatus for evaporating and concentrating a solution according to any one of claims 1 to 6 is used. 前記要濃縮処理溶液がめっき液成分を有する溶液であることを特徴とする請求項7に記載の溶液の蒸発濃縮方法。   The method for evaporating and concentrating a solution according to claim 7, wherein the concentration treatment solution is a solution having a plating solution component.
JP2007013965A 2007-01-24 2007-01-24 Solution evaporation concentration apparatus and solution evaporation concentration method Active JP4958568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013965A JP4958568B2 (en) 2007-01-24 2007-01-24 Solution evaporation concentration apparatus and solution evaporation concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013965A JP4958568B2 (en) 2007-01-24 2007-01-24 Solution evaporation concentration apparatus and solution evaporation concentration method

Publications (2)

Publication Number Publication Date
JP2008178800A true JP2008178800A (en) 2008-08-07
JP4958568B2 JP4958568B2 (en) 2012-06-20

Family

ID=39723108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013965A Active JP4958568B2 (en) 2007-01-24 2007-01-24 Solution evaporation concentration apparatus and solution evaporation concentration method

Country Status (1)

Country Link
JP (1) JP4958568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657247B1 (en) * 2015-06-08 2016-09-30 (주)승진기계 Vapor collecting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471080A (en) * 1977-11-18 1979-06-07 Shizuoka Prefecture Liquid closeddcirculating evaporation concentration method
JPS55102401A (en) * 1979-01-29 1980-08-05 Shigeo Baba Recovering device for organic solvent causing no environmental pollution
JPS5920802U (en) * 1982-07-28 1984-02-08 東京理化器械株式会社 Closed spray concentrator
JPS62151902U (en) * 1986-03-18 1987-09-26
JP2005131504A (en) * 2003-10-29 2005-05-26 Sozo Kagaku Kenkyusho:Kk Liquid medium recovering apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471080A (en) * 1977-11-18 1979-06-07 Shizuoka Prefecture Liquid closeddcirculating evaporation concentration method
JPS55102401A (en) * 1979-01-29 1980-08-05 Shigeo Baba Recovering device for organic solvent causing no environmental pollution
JPS5920802U (en) * 1982-07-28 1984-02-08 東京理化器械株式会社 Closed spray concentrator
JPS62151902U (en) * 1986-03-18 1987-09-26
JP2005131504A (en) * 2003-10-29 2005-05-26 Sozo Kagaku Kenkyusho:Kk Liquid medium recovering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657247B1 (en) * 2015-06-08 2016-09-30 (주)승진기계 Vapor collecting device

Also Published As

Publication number Publication date
JP4958568B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP6101783B2 (en) CO2 recovery system and CO2 recovery method
JP6157912B2 (en) Carbon dioxide recovery system and operation method thereof
KR101188726B1 (en) System and method for eliminating ammonia nitrogen from wastewater
JP2008296216A (en) Carbon dioxide-recovering device using aqueous ammonia, and method therefor
US8603301B2 (en) Method for reduction of contaminants in evaporator distillate
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
US9744613B2 (en) Flux recovery device and soldering device
AU2012309539A1 (en) CO2 recovery device and CO2 recovery method
JP4958568B2 (en) Solution evaporation concentration apparatus and solution evaporation concentration method
JP2002284509A (en) Treatment method of spent sulfuric acid and the treatment equipment
TWI655325B (en) Electroplating equipment
US20220370948A1 (en) Scrubber device
JP2013133544A (en) Mercury distillation plant and mercury distillation method for distilling mercury from waste fluorescent powder in waste fluorescent tube
JP4557742B2 (en) Distillation equipment with solvent recovery function
KR100909210B1 (en) Organic exhaust gas treatment method and apparatus
KR20040025517A (en) No Discharge Waste Water &amp; No Exhaust Air Pollution System in Electro Plating
WO2020203033A1 (en) Condensation device, flux recovery device, soldering device, water vapor eliminating method, flux recovery method and solder processing method
JPS614794A (en) Method for recovering heat of coke oven gas
CN219663311U (en) NMP circulation recovery system
JP4310241B2 (en) System chemical recovery method and recovery device
US20230257889A1 (en) Hydrogen production system and hydrogen production method
JP2018162201A (en) Ammonium sulfate manufacturing method and ammonium sulfate manufacturing facility
JPH0424283B2 (en)
JP2011082282A (en) Reflow apparatus
Tsujiuchi et al. CO 2 recovery system and CO 2 recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250