JP2008174664A - Rubber composition and pneumatic tire using the same - Google Patents

Rubber composition and pneumatic tire using the same Download PDF

Info

Publication number
JP2008174664A
JP2008174664A JP2007010637A JP2007010637A JP2008174664A JP 2008174664 A JP2008174664 A JP 2008174664A JP 2007010637 A JP2007010637 A JP 2007010637A JP 2007010637 A JP2007010637 A JP 2007010637A JP 2008174664 A JP2008174664 A JP 2008174664A
Authority
JP
Japan
Prior art keywords
rubber composition
resin
mass
rubber
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010637A
Other languages
Japanese (ja)
Other versions
JP5265118B2 (en
Inventor
Shigeki Kamo
重貴 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007010637A priority Critical patent/JP5265118B2/en
Priority to US12/522,424 priority patent/US8318861B2/en
Priority to PCT/JP2008/050299 priority patent/WO2008084860A1/en
Priority to EP08703163A priority patent/EP2103650B1/en
Priority to CN200880002192.2A priority patent/CN101589100B/en
Publication of JP2008174664A publication Critical patent/JP2008174664A/en
Application granted granted Critical
Publication of JP5265118B2 publication Critical patent/JP5265118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition capable of improving both of the initial grip performance and the traveling stability of the tire as compared with conventional tires by using it in a tread rubber and to provide a pneumatic tire in which the rubber composition is used in the tread rubber. <P>SOLUTION: The rubber composition comprises 100 pts.mass rubber component and 5-80 pts.mass at least one resin selected from 9C resins having ≥130°C and ≤190°C softening point and containing indene and 10-80 pts.mass at least one resin selected from a homopolymer of terpene having ≥130°C and a terpene-phenol copolymer resin, based on 100 pts.mass rubber component. The rubber composition is used in the tread rubber of tire. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、タイヤのトレッドゴムに使用することにより、タイヤの初期グリップ性能と走行安定性の両方を、従来のタイヤよりも向上させることが可能なゴム組成物、及び該ゴム組成物をトレッドゴムに用いた空気入りタイヤに関する。   The present invention relates to a rubber composition capable of improving both the initial grip performance and running stability of a tire as compared with a conventional tire by using the tread rubber for a tire, and the tread rubber. It relates to a pneumatic tire used in the above.

競技等に使用される高性能タイヤのトレッドは、乾燥路面上において走行初期から走行終了まで優れた操縦安定性(DRYグリップ性)を保つことが望まれる。そのため、従来から、タイヤが比較的低温である走行初期のDRYグリップ性(初期グリップ性能)を向上させる目的で、トレッドゴムに用いるゴム組成物に低軟化点の樹脂及び液状ポリマーを含めたオイル成分並びに低温で効果を発揮する軟化剤等を配合することが検討されている。   It is desired that a high-performance tire tread used for competitions or the like maintains excellent handling stability (DRY grip performance) from the initial driving to the end of driving on a dry road surface. Therefore, conventionally, for the purpose of improving the DRY grip property (initial grip performance) at the beginning of running when the tire is relatively low in temperature, an oil component including a low softening point resin and a liquid polymer in a rubber composition used for tread rubber. In addition, it has been studied to add a softener or the like that exhibits an effect at a low temperature.

例えば、C9 芳香族系樹脂等を配合したゴム組成物が特許文献1に記載されているが、樹脂の混練り中での分散性を考慮し、該ゴム組成物には軟化点が140℃以下のC9 芳香族系樹脂を配合している。 For example, although a rubber composition containing a C 9 aromatic resin or the like is described in Patent Document 1, in consideration of dispersibility during resin kneading, the rubber composition has a softening point of 140 ° C. It is blended with the following C 9 aromatic resin.

しかしながら、この様に低軟化点の樹脂を配合してゴム組成物を調製し、該ゴム組成物をトレッドゴムに使用して製造したタイヤは、初期グリップ性能が向上するものの、走行中、タイヤトレッドの温度が上昇するにつれてグリップ性能が低下する。一方、走行中にタイヤ温度が上昇した際のタイヤのグリップ性能(走行安定性)を向上させるためにC9 系樹脂等の高軟化点樹脂を単独でゴム組成物に配合すると、低温路面上でのタイヤの初期グリップ性能が大きく低下する。 However, a tire produced by blending a resin with a low softening point in this way and using the rubber composition as a tread rubber has improved initial grip performance. As the temperature increases, the grip performance decreases. On the other hand, when compounded in the rubber composition alone high softening point resin such as C 9 resins for tire temperature improves the grip performance of the tire at the time of rise (running stability) while traveling on the low road surface The initial grip performance of the tire is greatly reduced.

こうした問題を解決する方法として高軟化点樹脂と低軟化点樹脂の両方をゴム組成物に配合する方法が考えられる。しかしながら、配合する総樹脂量がゴム組成物の温度特性に影響を与えるため、ゴム組成物に配合可能な樹脂の量が制限される。そのため、該方法によって得られるタイヤは初期グリップ性能及び走行安定性の両方が中庸であった。従って、タイヤの初期グリップ性能と走行安定性を高いレベルで両立することが可能な、タイヤのトレッドゴムに使用するためのゴム組成物を提供することが必要である。   As a method for solving such a problem, a method is conceivable in which both a high softening point resin and a low softening point resin are blended in a rubber composition. However, since the total resin amount to be blended affects the temperature characteristics of the rubber composition, the amount of resin that can be blended in the rubber composition is limited. Therefore, the tire obtained by this method has a moderate initial grip performance and running stability. Therefore, it is necessary to provide a rubber composition for use in a tread rubber of a tire that can achieve both high initial grip performance and running stability of the tire.

特開平5−9336号公報JP-A-5-9336

本発明者は、低軟化点樹脂が配合され初期グリップ性能が良好であるゴム組成物をトレッドゴムとして用いたタイヤは、走行中のどのような状況でグリップ性能が低下するかについて鋭意検討したところ、同じコースであっても、その路面温度によってグリップ性の低下の度合いが大きく変化することを見出した。すなわち、路面温度が10℃以下の状況ではタイヤの走行安定性がほとんど低下しないのに対し、路面温度が40℃を超える状況ではタイヤの走行安定性が低下しやすいことが判った。  The present inventor has intensively studied under which conditions the grip performance of a tire using a rubber composition containing a low softening point resin and good initial grip performance as a tread rubber is deteriorated. It was found that even in the same course, the degree of decrease in grip performance greatly changes depending on the road surface temperature. That is, it was found that the running stability of the tire hardly decreases when the road surface temperature is 10 ° C. or lower, whereas the running stability of the tire tends to decrease when the road surface temperature exceeds 40 ° C.

また、路面温度が42℃のサーキットにおいて、該ゴム組成物をトレッドゴムに使用したタイヤを装着した車両を走行させ、走行中の該タイヤの内部温度を測定したところ、10ラップ程度走行した後に該タイヤの内部温度が100℃〜110℃まで上昇していることが見出された。タイヤの内部温度の測定は車輌がガレージに戻ってきた後に行うため、走行中の該内部温度は更に高いことが予想される。低軟化点樹脂を配合したゴム組成物は100℃以上での動的弾性率(E’)の低下が大きいので、該ゴム組成物をトレッドゴムに用いたタイヤは、タイヤ内部が高温になった際に樹脂と共にゴム組成物が軟化し、走行安定性が低下することが懸念される。   Further, in a circuit where the road surface temperature is 42 ° C., a vehicle equipped with a tire using the rubber composition as a tread rubber was run, and the internal temperature of the tire during running was measured. It has been found that the internal temperature of the tire has increased from 100 ° C to 110 ° C. Since the internal temperature of the tire is measured after the vehicle returns to the garage, the internal temperature during driving is expected to be higher. Since the rubber composition containing the low softening point resin has a large decrease in the dynamic elastic modulus (E ′) at 100 ° C. or higher, the tire using the rubber composition as a tread rubber has a high temperature inside the tire. At that time, there is a concern that the rubber composition is softened together with the resin and the running stability is lowered.

そこで、本発明は、タイヤのトレッドゴムに使用することにより、タイヤの初期グリップ性能と走行安定性の両方を、従来のタイヤよりも向上させることが可能なゴム組成物、及び該ゴム組成物をトレッドゴムに用いた空気入りタイヤを堤供することを目的とする。   Accordingly, the present invention provides a rubber composition capable of improving both the initial grip performance and running stability of a tire as compared with a conventional tire by using the tread rubber of a tire, and the rubber composition. The purpose is to provide a pneumatic tire used for tread rubber.

本発明者は、上記目的を達成するために、室温においてE’を下げる効果を有し且つ高温でのE’を確保できる、軟化点が少なくとも120℃以上の樹脂及び該樹脂を2種以上組み合わせて配合したゴム組成物に関して鋭意検討したところ、軟化点が130℃以上190℃以下でありインデンを含有するC9 樹脂から選択される少なくとも1種の樹脂、並びに軟化点が130℃以上のテルペンの単独重合体樹脂及びテルペン−フェノール共重合体樹脂から選択される少なくとも1種の樹脂を組み合わせて配合することによって、従来のタイヤよりも高い初期グリップ性能と走行安定性を併せ持つタイヤを製造できるトレッドゴム用のゴム組成物が調製できることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventor has an effect of lowering E ′ at room temperature and can secure E ′ at high temperature, and has a softening point of at least 120 ° C. or more and a combination of two or more of these resins As a result of intensive studies on the rubber composition formulated in this manner, it was found that at least one resin selected from C 9 resins having a softening point of 130 ° C. or higher and 190 ° C. or lower and containing indene, and a terpene having a softening point of 130 ° C. or higher. A tread rubber capable of producing a tire having both higher initial grip performance and running stability than conventional tires by combining at least one resin selected from a homopolymer resin and a terpene-phenol copolymer resin. The present inventors have found that a rubber composition can be prepared, and have completed the present invention.

即ち、本発明のゴム組成物は、ゴム成分100質量部に対して、軟化点が130℃以上190℃以下でありインデンを含有するC9 樹脂から選択される少なくとも1種の樹脂を5〜80質量部、並びに軟化点が130℃以上のテルペンの単独重合体樹脂及びテルペン−フェノール共重合体樹脂から選択される少なくとも1種の樹脂を10〜80質量部含有することを特徴とする。 That is, the rubber composition of the present invention comprises 5 to 80 at least one resin selected from C 9 resins having a softening point of 130 ° C. or higher and 190 ° C. or lower and containing indene with respect to 100 parts by mass of the rubber component. It contains 10 to 80 parts by mass of at least one resin selected from a terpene homopolymer resin and a terpene-phenol copolymer resin having a mass part and a softening point of 130 ° C. or higher.

本発明のゴム組成物は、前記インデンを含有するC9 樹脂の軟化点が140℃以上190℃以下、並びに前記テルペンの単独重合体樹脂及び前記テルペン−フェノール共重合体樹脂の軟化点が140℃以上であることが更に好適である。 In the rubber composition of the present invention, the softening point of the C 9 resin containing indene is 140 ° C. or higher and 190 ° C. or lower, and the softening point of the terpene homopolymer resin and the terpene-phenol copolymer resin is 140 ° C. More preferably, it is the above.

また、前記ゴム成分は、ブタジエン部のビニル結合量が10%以上であるブタジエン系共重合体を70質量%以上含むことが好ましい。   Moreover, it is preferable that the said rubber component contains 70 mass% or more of butadiene-type copolymers whose vinyl bond amount of a butadiene part is 10% or more.

更に、前記ブタジエン系共重合体がスチレン−ブタジエン共重合体(SBR)を含むことが好ましい。   Furthermore, it is preferable that the butadiene-based copolymer contains a styrene-butadiene copolymer (SBR).

また、前記スチレン−ブタジエン共重合体は、スチレン含有率が20〜60質量%であることが好適である。   The styrene-butadiene copolymer preferably has a styrene content of 20 to 60% by mass.

また、本発明のゴム組成物は、更に前記ゴム成分100質量部に対してカーボンブラックを60〜200質量部含有することが好適である。   Further, the rubber composition of the present invention preferably further contains 60 to 200 parts by mass of carbon black with respect to 100 parts by mass of the rubber component.

更に、本発明の好適例において、前記C9 樹脂が軟化点155℃以上180℃以下のα-メチルスチレン−ビニルトルエン−インデン共重合体樹脂である。 Furthermore, in a preferred embodiment of the present invention, the C 9 resin is an α-methylstyrene-vinyltoluene-indene copolymer resin having a softening point of 155 ° C. or higher and 180 ° C. or lower.

本発明の空気入りタイヤは、前記ゴム組成物をトレッドゴムに使用して製造することが好適である。   The pneumatic tire of the present invention is preferably produced using the rubber composition as a tread rubber.

本発明によれば、タイヤのトレッドゴムに使用することにより、タイヤの初期グリップ性能と走行安定性の両方を、従来のタイヤよりも向上させることが可能なゴム組成物、及び該ゴム組成物をトレッドゴムに用いた空気入りタイヤを堤供することができる。   According to the present invention, a rubber composition capable of improving both the initial grip performance and running stability of a tire as compared with a conventional tire by using the tire tread rubber, and the rubber composition. A pneumatic tire used for tread rubber can be provided.

本発明のゴム組成物は、ゴム成分100質量部に対して、軟化点が130℃以上190℃以下でありインデンを含有するC9 樹脂から選択される少なくとも1種の樹脂を5〜80質量部、並びに軟化点が130℃以上のテルペンの単独重合体樹脂及びテルペン−フェノール共重合体樹脂から選択される少なくとも1種の樹脂を10〜80質量部含有する。ここで、軟化点が130℃未満のインデンを含有するC9 樹脂をゴム組成物に配合すると、タイヤの走行安定性を改善できない。該樹脂の軟化点が190℃を超えると、混練り中の樹脂の分散性が悪化する。タイヤの走行安定性向上の観点から、前記インデンを含有するC9 樹脂の軟化点は、140〜180℃が好ましく、155〜180℃が更に好ましい。該樹脂の配合量は、ゴム組成物に該樹脂の特性を付与するため、ゴム成分100質量部に対して5質量部以上配合することが必要であるが、80質量部を超えると低温においてゴム組成物が硬化する。前記インデンを含有するC9 樹脂とは、インデンの単独重合体、並びに、C9 芳香族系モノマーの共重合体樹脂のうち、原料のモノマーにインデンが含まれる樹脂のことをいい、該C9芳香族系モノマーとしては、ビニルトルエン、α-メチルスチレン、クマロン等が挙げられる。即ち、前記C9 樹脂としては、ビニルトルエン−α-メチルスチレン−インデン樹脂、ビニルトルエン−インデン樹脂、α-メチルスチレン−インデン樹脂、クマロン−インデン樹脂等が挙げられる。 The rubber composition of the present invention has 5 to 80 parts by mass of at least one resin selected from C 9 resins having a softening point of 130 ° C. or higher and 190 ° C. or lower and containing indene with respect to 100 parts by mass of the rubber component. And 10-80 parts by mass of at least one resin selected from terpene homopolymer resins and terpene-phenol copolymer resins having a softening point of 130 ° C. or higher. Here, if a C 9 resin containing indene having a softening point of less than 130 ° C. is blended in the rubber composition, the running stability of the tire cannot be improved. When the softening point of the resin exceeds 190 ° C., the dispersibility of the resin during kneading deteriorates. From the viewpoint of improving the running stability of the tire, the softening point of the C 9 resin containing indene is preferably 140 to 180 ° C, and more preferably 155 to 180 ° C. The blending amount of the resin is required to blend 5 parts by mass or more with respect to 100 parts by mass of the rubber component in order to impart the characteristics of the resin to the rubber composition. The composition is cured. The C 9 resin containing the indene, homopolymer of indene, as well as of a copolymer resin of C 9 aromatic monomer refers to a resin that contains indene in the monomer raw material, the C 9 Examples of aromatic monomers include vinyltoluene, α-methylstyrene, coumarone, and the like. That is, examples of the C 9 resin include vinyltoluene-α-methylstyrene-indene resin, vinyltoluene-indene resin, α-methylstyrene-indene resin, coumarone-indene resin, and the like.

また、グリップ性能と作業性の両方を更に高いレベルでバランスした性能を得るために、軟化点が130℃以上のテルペンの単独重合体樹脂及びテルペン−フェノール共重合体樹脂から選択される少なくとも1種を更にゴム組成物に配合するが、該樹脂の軟化点は140℃以上であることが好ましい。該樹脂の配合量が、ゴム成分100質量部に対して10質量部未満であると本発明の目的とする所望の効果を得ることができず、100質量部を超えて配合してもゴム組成物の性能は向上せず、混練り作業性が著しく悪化し、また加硫後に低温で硬化するため作業性が悪化する。これら作業性等の観点から、該樹脂のゴム組成物への配合量は20〜80質量部であることが好ましい。該樹脂の原料であるテルペンモノマーとしては特に限定されず、α−ピネン及びリモネン等のモノテルペン炭化水素が好適に挙げられる。グリップ性能と作業性の観点から、該モノマーとしてはα−ピネンを含むモノマーが更に好ましく、α−ビネンであることが尚さらに好ましい。該樹脂の軟化点は、該樹脂の混練り中での分散性を考えれば190℃以下が好ましい。   Further, in order to obtain a performance that balances both grip performance and workability at a higher level, at least one selected from terpene homopolymer resins and terpene-phenol copolymer resins having a softening point of 130 ° C. or higher. Is further blended in the rubber composition, and the softening point of the resin is preferably 140 ° C. or higher. If the compounding amount of the resin is less than 10 parts by mass with respect to 100 parts by mass of the rubber component, the desired effect of the present invention cannot be obtained, and even if it exceeds 100 parts by mass, the rubber composition The performance of the product is not improved, the kneading workability is remarkably deteriorated, and the workability is deteriorated because it is cured at a low temperature after vulcanization. From the viewpoint of workability and the like, the blending amount of the resin in the rubber composition is preferably 20 to 80 parts by mass. The terpene monomer that is a raw material of the resin is not particularly limited, and monoterpene hydrocarbons such as α-pinene and limonene are preferably exemplified. From the viewpoint of grip performance and workability, the monomer is more preferably a monomer containing α-pinene, and more preferably α-vinene. The softening point of the resin is preferably 190 ° C. or lower in view of dispersibility during kneading of the resin.

また、前記C9 樹脂としては、軟化点155℃以上180℃以下のα-メチルスチレン−ビニルトルエン−インデン共重合体樹脂が特に好ましい。前記C9 樹脂がα-メチルスチレン−ビニルトルエン−インデン共重合体樹脂であると、グリップ性能と作業性の両方を更に高いレベルでバランスできる。かかる樹脂の軟化点が155℃未満であると走行安定性が低下し、180℃を超えると混練り中での樹脂の分散性が低下する。また、軟化点155℃の樹脂を配合したゴム組成物は、軟化点140℃の樹脂を配合したものよりも走行安定性の低下が更に抑制され、軟化点180℃の樹脂を配合したゴム組成物は、軟化点190℃の樹脂を配合したものよりも混練り中での樹脂の分散性の低下が更に抑制される。 The C 9 resin is particularly preferably an α-methylstyrene-vinyltoluene-indene copolymer resin having a softening point of 155 ° C. or higher and 180 ° C. or lower. The C 9 resin α- methylstyrene - vinyl toluene - If it is indene copolymer resin, the balance of both grip performance and operability further at a high level. When the softening point of the resin is less than 155 ° C., the running stability is lowered, and when it exceeds 180 ° C., the dispersibility of the resin during kneading is lowered. Further, the rubber composition containing a resin having a softening point of 155 ° C. is further suppressed from lowering in running stability than that containing a resin having a softening point of 140 ° C., and the rubber composition containing a resin having a softening point of 180 ° C. This further suppresses the lowering of the dispersibility of the resin during kneading as compared with the case where the resin having a softening point of 190 ° C.

本発明のゴム組成物において、前記ゴム成分はブタジエン部のビニル結合量が10%以上であるブタジエン系共重合体を70質量%以上含むことが好適である。ブタジエン部のビニル結合量が10%未満であるとゴム組成物の高温域での剛性が低下して所望の効果が得られず、該ブタジエン系共重合体のゴム成分中での含有率が70質量%未満であると高温域における所望のグリップ性能を得ることができない。   In the rubber composition of the present invention, it is preferable that the rubber component contains 70% by mass or more of a butadiene-based copolymer having a vinyl bond amount in the butadiene portion of 10% or more. If the vinyl bond content of the butadiene part is less than 10%, the rigidity of the rubber composition at a high temperature range is lowered and a desired effect cannot be obtained, and the content of the butadiene copolymer in the rubber component is 70. If it is less than mass%, desired grip performance in a high temperature range cannot be obtained.

なお、本発明のゴム組成物のゴム成分は、特に限定されず、上記ブタジエン系共重合体の他、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、エチレン−プロピレン共重合体、イソブチレン−イソプレン共重合体、ポリクロロプレン等のジエン系ゴムを含んでもよい。   The rubber component of the rubber composition of the present invention is not particularly limited. In addition to the butadiene copolymer, natural rubber, polybutadiene rubber, polyisoprene rubber, ethylene-propylene copolymer, isobutylene-isoprene copolymer. Further, a diene rubber such as polychloroprene may be included.

また、本発明のゴム組成物において、前記ブタジエン系共重合体がスチレン−ブタジエン共重合体を含むことが好ましい。ブタジエン系共重合体がスチレン−ブタジエン共重合体を含むと、高温域における所望のグリップ性能を得ることができる。スチレン−ブタジエン共重合体は、乳化重合や溶液重合等の如何なる合成法で合成してもよい。スチレン−ブタジエン共重合体以外のブタジエン系共重合体としてはアクリロニトリル−ブタジエン共重合体等が挙げられる。   In the rubber composition of the present invention, the butadiene copolymer preferably contains a styrene-butadiene copolymer. When the butadiene copolymer contains a styrene-butadiene copolymer, desired grip performance in a high temperature range can be obtained. The styrene-butadiene copolymer may be synthesized by any synthesis method such as emulsion polymerization or solution polymerization. Examples of the butadiene-based copolymer other than the styrene-butadiene copolymer include acrylonitrile-butadiene copolymer.

また、前記スチレン−ブタジエン共重合体のスチレン含有率は20〜60質量%であることが好ましい。スチレン含有率が20質量%未満であると、低温及び高温においてタイヤが所望のグリップ性能を得ることができず、スチレン含有率が60質量%を超えると、ブロック剛性が必要以上に高くなり路面へのゴムの食い込みが少なくなるため、タイヤが所望のグリップ性能を得ることができない。更に、タイヤのグリップ性能が顕著に高くなることから、前記スチレン−ブタジエン共重合体のスチレン含有率は20〜45質量%であることがより好ましい。   Moreover, it is preferable that the styrene content rate of the said styrene-butadiene copolymer is 20-60 mass%. If the styrene content is less than 20% by mass, the tire cannot obtain a desired grip performance at low and high temperatures, and if the styrene content exceeds 60% by mass, the block rigidity becomes higher than necessary and the road surface is increased. Therefore, the tire cannot obtain a desired grip performance. Further, since the grip performance of the tire is remarkably enhanced, the styrene content of the styrene-butadiene copolymer is more preferably 20 to 45% by mass.

本発明のゴム組成物は、更にカーボンブラックを上記ゴム成分100質量部に対して60〜200質量部含有することが好ましく、60〜160質量部含有することが更に好ましい。ここで、前記ゴム組成物へのカーボンブラックの配合量が60質量部未満であると、タイヤのDRYグリップ性向上への寄与が十分ではなく、200質量部を超えるとタイヤの耐摩耗性を低下させ、更に加工性が極端に悪化する。また、前記ゴム組成物へのカーボンブラックの配合量は70〜140質量部であることがより一層好ましい。前記カーボンブラックは、窒素吸着比表面積が約80〜280m/gであることが好ましい。カーボンブラックの窒素吸着比表面積が80m/g未満では十分な弾性率が得られず耐摩耗性が悪化し、280m/gを超えるとグリップ力、耐摩耗性の向上が望めない一方で混練作業性が悪化する。前記カーボンブラックの例としては、HAF、ISAF、及びSAF等が挙げられ、耐摩耗性能とグリップ性能の両立という点からSAFが好ましい。カーボンブラックは、1種単独で使用しても2種以上を併用してもよく、市販品を好適に使用できる。 The rubber composition of the present invention preferably further contains 60 to 200 parts by mass, more preferably 60 to 160 parts by mass of carbon black with respect to 100 parts by mass of the rubber component. Here, if the blending amount of carbon black in the rubber composition is less than 60 parts by mass, the contribution to improving the DRY grip property of the tire is not sufficient, and if it exceeds 200 parts by mass, the wear resistance of the tire is reduced. Further, the workability is extremely deteriorated. The amount of carbon black added to the rubber composition is more preferably 70 to 140 parts by mass. The carbon black preferably has a nitrogen adsorption specific surface area of about 80 to 280 m 2 / g. When the nitrogen adsorption specific surface area of carbon black is less than 80 m 2 / g, sufficient elastic modulus cannot be obtained and wear resistance deteriorates, and when it exceeds 280 m 2 / g, improvement in grip strength and wear resistance cannot be expected, but kneading Workability deteriorates. Examples of the carbon black include HAF, ISAF, and SAF, and SAF is preferable from the viewpoint of achieving both wear resistance and grip performance. Carbon black may be used individually by 1 type, or may use 2 or more types together, and a commercial item can be used conveniently.

更に、本発明のゴム組成物は、加硫後のアセトン・クロロホルム抽出分が、ゴム成分100質量部に対して30〜270質量部であることが好ましい。該抽出物が30質量部未満及び270質量部を超えると、いずれもグリップ性能及び耐摩耗性の向上が望めず、更に混練作業性が悪化するため好ましくない。該抽出分は、グリップカ及び耐摩耗性の向上と良好な混練作業性の両立という点から、ゴム成分100質量部に対して30〜200質量部であることが更に好ましい。   Furthermore, in the rubber composition of the present invention, the acetone / chloroform extract after vulcanization is preferably 30 to 270 parts by mass with respect to 100 parts by mass of the rubber component. If the extract is less than 30 parts by mass and exceeds 270 parts by mass, neither improvement in grip performance nor wear resistance can be expected, and the kneading workability is further deteriorated. The extracted amount is more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the rubber component, from the viewpoint of both improvement in gripping force and wear resistance and good kneading workability.

前記ゴム組成物には、この他にゴム業界で使用されるアルキルフェノール系樹脂を用いることができる。該アルキルフェノール系樹脂としては、p-t-ブチルフェノール−アセチレン等のアルキルフェノール−アセチレン系樹脂、及びクレゾール類、キシレノール類、p-t-ブチルフェノール、及びp-t-オクチルフェノール類を含むアルキルフェノール−ホルムアルテヒド系樹脂等が挙げられる。これらの樹脂の軟化点としては130〜160℃が好ましい。軟化点が130℃未満では走行安定性が低下し、また160℃を超えると樹脂の極性が高いため混練の際に樹脂が均一に分散せず、耐摩耗性が著しく低下する。これらのアルキルフェノール系樹脂は単独で使用しても、2種以上を使用してもよい。該樹脂の配合量はゴム成分100質量部に対して10〜100質量部であることが好ましい。該樹脂の配合量が10質量部未満の場合には樹脂によるグリップ性能が向上せず、100質量部を超えると混練作業性を著しく悪化させる。また、これらの効果が顕著であることから、該樹脂の配合量は20〜80質量部であることがより好ましい。   In addition to this, the phenolic resin used in the rubber industry can be used for the rubber composition. Examples of the alkylphenol-based resin include alkylphenol-acetylene resins such as pt-butylphenol-acetylene, and alkylphenol-formaldehyde including cresols, xylenols, pt-butylphenol, and pt-octylphenols. Examples thereof include resins. The softening point of these resins is preferably 130 to 160 ° C. When the softening point is less than 130 ° C., running stability is lowered, and when it exceeds 160 ° C., the polarity of the resin is high, so that the resin is not uniformly dispersed during kneading, and the wear resistance is significantly lowered. These alkylphenol resins may be used alone or in combination of two or more. It is preferable that the compounding quantity of this resin is 10-100 mass parts with respect to 100 mass parts of rubber components. When the amount of the resin is less than 10 parts by mass, the grip performance by the resin is not improved, and when it exceeds 100 parts by mass, the kneading workability is remarkably deteriorated. Moreover, since these effects are remarkable, it is more preferable that the compounding quantity of this resin is 20-80 mass parts.

前記ゴム組成物には、ゴム成分、樹脂成分、カーボンブラックの他、プロセスオイル等の油分、加硫剤、加硫促進剤、老化防止剤、軟化剤、酸化亜鉛、無機充填剤、オゾン劣化防止剤、着色剤、帯電防止剤、滑剤、酸化防止剤、カップリング剤、発泡剤、発泡助剤及びステアリン酸等のゴム業界で通常使用される配合剤を、本発明の目的を害しない範囲内で適宜選択し配合することができる。これら配合剤は、市販品を好適に使用できる。   The rubber composition includes rubber components, resin components, carbon black, oils such as process oils, vulcanizing agents, vulcanization accelerators, anti-aging agents, softening agents, zinc oxide, inorganic fillers, and ozone deterioration prevention. Additives, colorants, antistatic agents, lubricants, antioxidants, coupling agents, foaming agents, foaming aids, and compounding agents commonly used in the rubber industry such as stearic acid are within the range that does not impair the purpose of the present invention. Can be appropriately selected and blended. As these compounding agents, commercially available products can be suitably used.

前記プロセスオイル等の油分としては、特に制限はなく、目的に応じて適宜選択して使用可能である。前記油分としては、アロマティックオイル、ナフテン系オイル、パラフィン系オイル、エステル系オイル、溶液状共役ジエンゴム、及び溶液状水素添加共役ジエンゴム等が挙げられる。油分がゴム組成物に含まれていると該ゴム組成物の流動性をコントロールできるため、加硫前のゴム組成物の粘度を低下させて流動性を高めることにより、極めて良好にゴム組成物の押出を行うことができる点で有利である。   There is no restriction | limiting in particular as oils, such as the said process oil, According to the objective, it can select suitably and can be used. Examples of the oil include aromatic oils, naphthenic oils, paraffinic oils, ester oils, solution conjugated diene rubbers, solution hydrogenated conjugated diene rubbers, and the like. When the oil component is contained in the rubber composition, the fluidity of the rubber composition can be controlled. Therefore, by reducing the viscosity of the rubber composition before vulcanization and increasing the fluidity, the rubber composition can be improved very well. This is advantageous in that it can be extruded.

前記油分の前記ゴム組成物における含有量は、ゴム成分100質量部に対して、ゴム成分が油展されている場合はこれらの油展分も含めて35〜200質量部が好ましく、40〜150質量部がより好ましい。ゴム成分100質量部に対して油分の含有量が35質量部未満であると、未加硫ゴムのムーニー粘度が極端に高くなって加工性が悪化し、更にタイヤのDRYグリップ性も悪化する場合があり、200質量部を超えるとムーニー粘度が極端に低くなって加工性が悪化し、更にトレッドが柔らかくなり過ぎて耐摩耗性が悪化する場合がある。   The content of the oil in the rubber composition is preferably 35 to 200 parts by mass, including these oils, when the rubber component is oil-extended with respect to 100 parts by mass of the rubber component. Part by mass is more preferable. When the oil content is less than 35 parts by mass with respect to 100 parts by mass of the rubber component, the Mooney viscosity of the unvulcanized rubber becomes extremely high and the workability deteriorates, and further, the DRY grip property of the tire also deteriorates. When the amount exceeds 200 parts by mass, the Mooney viscosity becomes extremely low and workability is deteriorated. Further, the tread becomes too soft and wear resistance may be deteriorated.

また、上記加硫剤として、従来の硫黄に加えて、有機チオスルフェート化合物(例えば1,6−ヘキサメチレンジチオ硫酸ナトリウム・2水和物)、ビスマレイミド化合物(例えばフェニレンビスマレイミド)の少なくとも1種を併用することができる。   Further, as the vulcanizing agent, in addition to conventional sulfur, at least one of an organic thiosulfate compound (for example, sodium 1,6-hexamethylenedithiosulfate dihydrate) and a bismaleimide compound (for example, phenylene bismaleimide) Seeds can be used in combination.

また、上記加硫促進剤としては、テトラキス−2−エチルへキシルチウラムジスルフィド、テトラキス−2−イソプロピルチウラムジスルフィド、テトラキス−ドデシルチウラムジスルフィド、及びテトラキス−ベンジルチウラムジスルフィド等のチウラム化合物、ジ−2−エチルへキシルジチオカルバメート亜鉛、ドデシルジチオカルバメート亜鉛、及びベンジルジチオカルバメート亜鉛等のジチオカルバミン酸塩類化合物、並びにジベンゾチアジルジスルフィド、4,4’−ジメチルジベンゾチアジルジスルフィド、N-シクロへキシル−2−ベンソチアジル−スルフェンアミド、N-t-ブチル−2−ベンゾチアジル−スルフェンアミド、N-t-ブチル−2−ベンゾチアジル−スルフェンイミド、N-オキシジエチレン−ベンゾチアジル−スルフェンアミド、及びN,N’-ジシクロへキシル−2−ベンゾチアジル−スルフェンアミド等のベンゾチアゾリル加硫促進剤等が挙げられる。   Examples of the vulcanization accelerator include tetrakis-2-ethylhexyl thiuram disulfide, tetrakis-2-isopropyl thiuram disulfide, tetrakis-dodecyl thiuram disulfide, and thiuram compounds such as tetrakis-benzyl thiuram disulfide, di-2-ethyl Dithiocarbamate compounds such as zinc hexyl dithiocarbamate, zinc dodecyldithiocarbamate, and zinc benzyldithiocarbamate, and dibenzothiazyl disulfide, 4,4′-dimethyldibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazyl- Sulfenamide, Nt-butyl-2-benzothiazyl-sulfenamide, Nt-butyl-2-benzothiazyl-sulfenimide, N-oxydiethylene-benzothiazyl Fen'amido, and N, hexyl N'- dicyclohexyl-2-benzothiazyl - benzothiazolyl vulcanization accelerator such as sulfenamide and the like.

本発明のゴム組成物は、ゴム成分、樹脂、及び必要に応じて適宜選択した前記その他の配合剤等を、混練り、熱入れ、押出、及び加硫等することにより製造できる。   The rubber composition of the present invention can be produced by kneading, heating, extruding, vulcanizing, etc., a rubber component, a resin, and the above-described other compounding agents appropriately selected as necessary.

混練りの条件としては、特に制限はなく、混練り装置への各成分の投入量、ローターの回転速度、ラム圧、混練り温度、混練り時間、混練り装置の種類等の諸条件によって適宜選択できる。前記混練り装置としては、一般にゴム組成物の混練りに用いるバンバリーミキサー、インターミックス、及びニーダー等が挙げられる。   The kneading conditions are not particularly limited, and are appropriately determined according to various conditions such as the amount of each component charged into the kneading apparatus, the rotational speed of the rotor, the ram pressure, the kneading temperature, the kneading time, and the type of the kneading apparatus. You can choose. Examples of the kneading apparatus include Banbury mixers, intermixes, and kneaders that are generally used for kneading rubber compositions.

熱入れの条件は、特に制限はなく、熱入れ温度、熱入れ時間、熱入れ装置等の諸条件について目的に応じて適宜選択することができる。前記熱入れ装置としては、通常ゴム組成物の熱入れに用いるロール機等が挙げられる。   The conditions for the heating are not particularly limited, and various conditions such as the heating temperature, the heating time, and the heating apparatus can be appropriately selected according to the purpose. Examples of the heating apparatus include a roll machine that is usually used for heating a rubber composition.

押出の条件は、特に制限はなく、押出時間、押出速度、押出装置、及び押出温度等の諸条件に応じて適宜選択できる。前記押出装置としては、一般にタイヤ用ゴム組成物の押出に用いる押出機等が挙げられる。前記押出温度は、適宜決定することができる。   The conditions for extrusion are not particularly limited, and can be appropriately selected according to various conditions such as extrusion time, extrusion speed, extrusion apparatus, and extrusion temperature. As said extrusion apparatus, the extruder etc. which are generally used for extrusion of the rubber composition for tires are mentioned. The extrusion temperature can be appropriately determined.

加硫を行う装置、方式、条件等については、特に制限はなく、目的に応じて適宜選択することができる。加硫を行う装置としては、一般にタイヤ用ゴム組成物の加硫に用いる金型による成形加硫機等が挙げられる。加硫する温度は通常約100〜約190℃である。   There is no restriction | limiting in particular about the apparatus, system, conditions, etc. which perform a vulcanization | cure, According to the objective, it can select suitably. Examples of the vulcanizing apparatus include a molding vulcanizer using a mold generally used for vulcanizing a tire rubber composition. The vulcanization temperature is usually about 100 to about 190 ° C.

本発明のゴム組成物は、空気入りタイヤのトレッドゴム、特にサーキット走行等に使用する高速競技車用タイヤのトレッドゴムに用いることが好適である。なお、トレッドゴム以外のタイヤ部材としては、公知の部材を使用することができる。また、該空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。   The rubber composition of the present invention is preferably used for a tread rubber of a pneumatic tire, particularly a tread rubber of a tire for a high-speed competition vehicle used for circuit running or the like. In addition, as a tire member other than the tread rubber, a known member can be used. Further, as the gas filled in the pneumatic tire, an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air whose oxygen partial pressure is adjusted.

本発明の空気入りタイヤは、前記ゴム組成物を少なくとも用いてなり、好ましくは少なくともトレッドに用いてなる。本発明のタイヤは、前記本発明のゴム組成物を用いること以外は、特に限定はなく、公知のタイヤの構成をそのまま採用することができる。   The pneumatic tire of the present invention comprises at least the rubber composition, preferably at least for a tread. The tire of the present invention is not particularly limited except that the rubber composition of the present invention is used, and a known tire configuration can be adopted as it is.

本発明の空気入りタイヤの構成の一例としては、該空気入りタイヤが、1対のビード部、該ビード部にトロイド状をなして連なるカーカス、該カーカスのクラウン部をたが締めするベルト及びトレッドを有してなるタイヤであることが挙げられる。本発明のタイヤは、ラジアル構造を有していてもよいし、バイアス構造を有していてもよい。   As an example of the configuration of the pneumatic tire of the present invention, the pneumatic tire includes a pair of bead portions, a carcass connected to the bead portion in a toroid shape, a belt and a tread for tightening a crown portion of the carcass It is mentioned that it is a tire which has. The tire of the present invention may have a radial structure or a bias structure.

本発明の空気入りタイヤのトレッドの構造としては、特に制限はなく、1層構造であってもよいし、多層構造であってもよく、また、直接路面に接地する上層のキャップ部と、該キャップ部のタイヤの内側に隣接して配置される下層のベース部とから構成される、いわゆるキャップ・ベース構造を有していてもよい。本発明においては、少なくとも前記キャップ部が前記ゴム組成物で形成されていることが好ましい。   The structure of the tread of the pneumatic tire of the present invention is not particularly limited, and may be a one-layer structure or a multilayer structure, and an upper cap portion that directly contacts the road surface; You may have what is called a cap base structure comprised from the base part of the lower layer arrange | positioned adjacent to the inner side of the tire of a cap part. In the present invention, it is preferable that at least the cap portion is formed of the rubber composition.

本発明のタイヤは、その製造方法につき特に制限はないが、例えば、以下のようにして製造することができる。即ち、まず、本発明のゴム組成物を調製し、該ゴム組成物を生タイヤケースのクラウン部に予め貼り付けられた未加硫のベース部の上に貼り付ける。その後、所定のモールドで所定温度、所定圧力の下で加硫成形することにより製造することができる。   Although there is no restriction | limiting in particular about the tire of this invention, For example, it can manufacture as follows. That is, first, the rubber composition of the present invention is prepared, and the rubber composition is pasted on an unvulcanized base portion that is preliminarily pasted on the crown portion of the raw tire case. Thereafter, it can be produced by vulcanization molding with a predetermined mold at a predetermined temperature and a predetermined pressure.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples, and can be appropriately changed without departing from the scope of the present invention.

(比較例1〜8及び実施例1〜3)
下記の表1に示す配合(単位は質量部)に従い、バンバリーミキサーを用いて各ゴム組成物を混練して調製した。また、該ゴム組成物を用いて乗用車タイヤ(サイズ:225/40R18)のトレッドを形成し、試作タイヤを製造した。その後、該ゴム組成物及び該試作タイヤについて、DRYグリップ性等を以下の方法に従って評価した。結果を表1に示す。
(Comparative Examples 1-8 and Examples 1-3)
Each rubber composition was kneaded and prepared using a Banbury mixer in accordance with the formulation shown in Table 1 below (unit: parts by mass). Further, a tread of a passenger car tire (size: 225 / 40R18) was formed using the rubber composition, and a prototype tire was manufactured. Thereafter, the DRY grip properties and the like of the rubber composition and the prototype tire were evaluated according to the following methods. The results are shown in Table 1.

<動的弾性率 E’(MPa)>
得られたゴム組成物を145℃、45分で加硫した後、JIS K6265に記されるフレクソメーターによる定応力測定を各温度において行い、サンプル内部に亀裂が発生するまでの時間を耐熱疲労時間とし測定を行った。データは比較例1を100として指数化した値を示す。
<Dynamic elastic modulus E '(MPa)>
After vulcanization of the obtained rubber composition at 145 ° C. for 45 minutes, constant stress measurement with a flexometer described in JIS K6265 is performed at each temperature, and the time until cracks are generated inside the sample is determined as heat fatigue. Measurements were taken as time. The data shows values indexed with Comparative Example 1 as 100.

<初期グリップ性能及び走行安定性>
試作タイヤを最高時速300km/hで走行可能な高性能車両に装備させて、サーキットで走行させ、走行時におけるテストドライバーのフィーリングを下記の基準にて評価した。数値が正の値で大きくなる程、初期グリップ性能又は走行安定性に優れることを意味する。
+3・・・運転頻度の低い一般ドライバーが明確に差を認識できる程度
+2・・・運転頻度の高い一般ドライバーが差を認識できる程度
+1・・・プロのドライバーが差を認識できる程度
0 ・・・コントロール
−1・・・プロのドライバーが差を認識できる程度
−2・・・運転頻度の高い一般ドライバーが差を認識できる程度
−3・・・運転頻度の低い一般ドライバーが明確に差を認識できる程度
<Initial grip performance and running stability>
A prototype tire was installed in a high-performance vehicle capable of traveling at a maximum speed of 300 km / h, and was run on a circuit. The feeling of the test driver during running was evaluated according to the following criteria. The larger the numerical value, the better the initial grip performance or running stability.
+3: To the extent that a general driver with low driving frequency can clearly recognize the difference +2: To the extent that a general driver with high driving frequency can recognize the difference +1: To the extent that a professional driver can recognize the difference 0・ Control-1: To the extent that a professional driver can recognize the difference-2 ... To the extent that a general driver with high driving frequency can recognize the difference-3 ... With a general driver with low driving frequency clearly seeing the difference As much as possible

<耐熱疲労性>
試作タイヤを競技用車両に装着させて、サーキットで走行させ、サーキット走行後におけるタイヤの内部及び外部観察をして下記の基準にて評価した。
0 ・・・全くチャンクの発生がない状態
−1・・・内部に0.5mm未満の亀裂がある状態
−2・・・内部に0.5mm以上の亀裂がある状態
−3・・・外部に亀裂がある状態
<Heat resistance fatigue>
The prototype tire was mounted on a competition vehicle and run on a circuit, and the inside and outside of the tire after running on the circuit were observed and evaluated according to the following criteria.
0 ... No chunks are generated-1 ... There is a crack less than 0.5 mm inside-2 ... There is a crack more than 0.5 mm inside-3 ... Outside With cracks

Figure 2008174664
Figure 2008174664

*1 JSR(株)社製、1712(スチレン含有率23.5%、37.5%アロマティックオイル油添)
*2 東海カーボン(株)社製、シースト9H(窒素吸着比表面積(NSA)=142m/g、ジブチルフタレート吸油量=130ml/100g)
*3 富士興産(株)社製、フコール アロマックス#3
*4 ヤスハラケミカル(株)社製、YSポリスターT115、テルペンフェノール樹脂、軟化点115℃
*5 ヤスハラケミカル(株)社製、YSポリスターT160、テルペンフェノール樹脂、軟化点160℃
*6 新日本石油化学(株)社製、ネオポリマーL90、C9 樹脂、軟化点90℃
*7 新日本石油化学(株)社製、ネオポリマー170S、C9 樹脂、軟化点170℃
*8 精工化学(株)社製、マイクロクリスタリンワックス
*9 大内新興化学工業(株)社製、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン
*10 三進化学工業(株)社製、ビス(4−メチルジベンゾチアゾリル−2)−ジスルフィド
* 1 1712 (styrene content 23.5%, 37.5% aromatic oil added), manufactured by JSR Corporation
* 2 Toast Carbon Co., Ltd., Seast 9H (nitrogen adsorption specific surface area (N 2 SA) = 142 m 2 / g, dibutyl phthalate oil absorption = 130 ml / 100 g)
* 3 Fucole Aromax # 3, manufactured by Fuji Kosan Co., Ltd.
* 4 YShara Chemical Co., Ltd., YS Polystar T115, terpene phenol resin, softening point 115 ° C
* 5 YShara Chemical Co., Ltd., YS Polystar T160, terpene phenol resin, softening point 160 ° C
* 6 Nippon Petrochemicals Co., Ltd., neo polymer L90, C 9 resins, softening point 90 ° C.
* 7 Made by Nippon Petrochemical Co., Ltd., Neopolymer 170S, C 9 resin, softening point 170 ° C
* 8 Seiko Chemical Co., Ltd., microcrystalline wax * 9 Ouchi Shinsei Chemical Co., Ltd., N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine * 10 Three evolutions Bis (4-methyldibenzothiazolyl-2) -disulfide manufactured by Gaku Kogyo Co., Ltd.

テルペンフェノール樹脂のみをゴム組成物に配合した場合、100℃のE’が低くタイヤ温度が上昇した際のタイヤ性能(耐熱疲労性及び走行安定性)が向上しない(比較例2、3)。該樹脂のゴム組成物への配合量を増加させると、高温での弾性率(100℃のE’)は上昇するが、それ以上に低温での弾性率(30℃のE’)が上昇するためタイヤの初期グリップ性能が低下する(比較例4)。   When only the terpene phenol resin is blended in the rubber composition, the tire performance (heat fatigue resistance and running stability) when the tire temperature rises with a low E ′ at 100 ° C. is not improved (Comparative Examples 2 and 3). Increasing the compounding amount of the resin in the rubber composition increases the elastic modulus at high temperature (E ′ at 100 ° C.), but further increases the elastic modulus at low temperature (E ′ at 30 ° C.). Therefore, the initial grip performance of the tire is reduced (Comparative Example 4).

低軟化点を有するC9 樹脂を単独で配合すると(比較例5)、テルペンフェノール樹脂と同様に100℃のE’は向上しない。また、高軟化点を有するC9 樹脂を単独で配合すると(比較例6、7)、100℃のE’は向上するが低温時の弾性率も上昇するため、初期グリップ性能が向上しない。 When a C 9 resin having a low softening point is blended alone (Comparative Example 5), E ′ at 100 ° C. does not improve as in the case of the terpene phenol resin. In addition, when a C 9 resin having a high softening point is added alone (Comparative Examples 6 and 7), E ′ at 100 ° C. is improved, but the elastic modulus at low temperature is also increased, so the initial grip performance is not improved.

高軟化点のC9 樹脂と高軟化点のテルペンフェノール樹脂を組み合わせてゴム組成物に配合すると、100℃のE’及び耐熱疲労性を維持したまま、DRYグリップ性の向上が確認された(実施例1〜3)。ただし、高軟化点を有するテルペンフェノール樹脂のゴム組成物への配合量が多いと、走行安定性及び耐熱疲労性が他実施例よりも低くなる(実施例3)。また、高軟化点を有するC9 樹脂のゴム組成物への配合量が多いと初期グリップ性能が他実施例よりも低くなる(実施例1)。比較例8は、高軟化点のC9 樹脂と高軟化点のテルペンフェノール樹脂を組み合わせてゴム組成物に配合しているものの、その配合量が実施例よりも多いため、低温時の弾性率が上昇し初期グリップ性能が低下する。 When formulated in combination C 9 resin and terpene phenol resin having a high softening point of the high softening point in the rubber composition, while maintaining the 100 ° C. of E 'and thermal fatigue resistance, improved DRY grip has been confirmed (implemented Examples 1-3). However, when the blending amount of the terpene phenol resin having a high softening point in the rubber composition is large, the running stability and the heat fatigue resistance become lower than those of other examples (Example 3). Further, the amount of the rubber composition of C 9 resin is often the initial grip performance becomes lower than the other embodiments having higher softening point (Example 1). In Comparative Example 8, although the C 9 resin having a high softening point and the terpene phenol resin having a high softening point are combined in the rubber composition, the amount of the compound is larger than that in the example, and therefore the elastic modulus at low temperature is high. Increases initial grip performance.

Claims (8)

ゴム成分100質量部に対して軟化点が130℃以上190℃以下でありインデンを含有するC9 樹脂から選択される少なくとも1種を5〜80質量部、並びに軟化点が130℃以上のテルペンの単独重合体樹脂及びテルペン−フェノール共重合体樹脂から選択される少なくとも1種を10〜80質量部含有することを特徴とするゴム組成物。 A terpene having 5 to 80 parts by mass of at least one selected from C 9 resins having a softening point of 130 ° C. or more and 190 ° C. or less and containing indene with respect to 100 parts by mass of a rubber component, and a softening point of 130 ° C. or more. A rubber composition comprising 10 to 80 parts by mass of at least one selected from a homopolymer resin and a terpene-phenol copolymer resin. 前記インデンを含有するC9 樹脂の軟化点が140℃以上190℃以下、並びに前記テルペンの単独重合体樹脂及び前記テルペン−フェノール共重合体樹脂の軟化点が140℃以上であることを特徴とする請求項1に記載のゴム組成物。 The softening point of the C 9 resin containing indene is 140 ° C. or more and 190 ° C. or less, and the softening point of the terpene homopolymer resin and the terpene-phenol copolymer resin is 140 ° C. or more. The rubber composition according to claim 1. 前記ゴム成分が、ブタジエン部のビニル結合量が10%以上であるブタジエン系共重合体を70質量%以上含むことを特徴とする請求項1に記載のゴム組成物。   2. The rubber composition according to claim 1, wherein the rubber component contains 70% by mass or more of a butadiene-based copolymer having a vinyl bond amount in a butadiene portion of 10% or more. 前記ブタジエン系共重合体がスチレン−ブタジエン共重合体を含むことを特徴とする請求項3に記載のゴム組成物。   The rubber composition according to claim 3, wherein the butadiene-based copolymer includes a styrene-butadiene copolymer. 前記スチレン−ブタジエン共重合体は、スチレン含有率が20〜60質量%であることを特徴とする請求項4に記載のゴム組成物。   The rubber composition according to claim 4, wherein the styrene-butadiene copolymer has a styrene content of 20 to 60% by mass. 更に、カーボンブラックを前記ゴム成分100質量部に対して60〜200質量部含有することを特徴とする請求項1に記載のゴム組成物。   Furthermore, 60-200 mass parts of carbon black is contained with respect to 100 mass parts of said rubber components, The rubber composition of Claim 1 characterized by the above-mentioned. 前記C9 樹脂が、軟化点155℃以上180℃以下のα-メチルスチレン−ビニルトルエン−インデン共重合体樹脂であることを特徴とする請求項2に記載のゴム組成物。 The C 9 resin, a softening point of 155 ° C. or higher 180 ° C. or less of α- methyl styrene - rubber composition according to claim 2, characterized in that the indene copolymer resin - vinyl toluene. 請求項1〜7のいずれかに記載のゴム組成物をトレッドゴムに使用したことを特徴とする空気入りタイヤ。   A pneumatic tire using the rubber composition according to claim 1 for a tread rubber.
JP2007010637A 2007-01-11 2007-01-19 Rubber composition and pneumatic tire using the same Active JP5265118B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007010637A JP5265118B2 (en) 2007-01-19 2007-01-19 Rubber composition and pneumatic tire using the same
US12/522,424 US8318861B2 (en) 2007-01-11 2008-01-11 Rubber composition and tire using the same
PCT/JP2008/050299 WO2008084860A1 (en) 2007-01-11 2008-01-11 Rubber composition and tire using the same
EP08703163A EP2103650B1 (en) 2007-01-11 2008-01-11 Rubber composition and tire using the same
CN200880002192.2A CN101589100B (en) 2007-01-11 2008-01-11 Rubber composition and tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010637A JP5265118B2 (en) 2007-01-19 2007-01-19 Rubber composition and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2008174664A true JP2008174664A (en) 2008-07-31
JP5265118B2 JP5265118B2 (en) 2013-08-14

Family

ID=39701921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010637A Active JP5265118B2 (en) 2007-01-11 2007-01-19 Rubber composition and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP5265118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515817A (en) * 2009-12-23 2013-05-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Rubber composition for aircraft tire tread
JP2014141680A (en) * 2009-04-21 2014-08-07 Bridgestone Corp Rubber composition and pneumatic tire using the rubber composition for tread member
JP2017071682A (en) * 2015-10-06 2017-04-13 住友ゴム工業株式会社 Tire rubber composition
US10160847B2 (en) 2010-11-26 2018-12-25 Compagnie Generale Des Etablissments Michelin Tyre tread

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912784A (en) * 1995-06-29 1997-01-14 Toyo Tire & Rubber Co Ltd Rubber composition
JPH10195242A (en) * 1997-01-14 1998-07-28 Yokohama Rubber Co Ltd:The Rubber composition for tire
JPH10195238A (en) * 1997-01-10 1998-07-28 Yokohama Rubber Co Ltd:The Tire tread rubber composition for racing
JPH11269308A (en) * 1998-03-24 1999-10-05 Bridgestone Corp Pneumatic tire
WO2004000931A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Rubber composition for tire and tire made therefrom
JP2005307166A (en) * 2004-03-26 2005-11-04 Bridgestone Corp Rubber composition for tread and pneumatic tire using the same
JP2006249230A (en) * 2005-03-10 2006-09-21 Bridgestone Corp Rubber composition for tread and pneumatic tire using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912784A (en) * 1995-06-29 1997-01-14 Toyo Tire & Rubber Co Ltd Rubber composition
JPH10195238A (en) * 1997-01-10 1998-07-28 Yokohama Rubber Co Ltd:The Tire tread rubber composition for racing
JPH10195242A (en) * 1997-01-14 1998-07-28 Yokohama Rubber Co Ltd:The Rubber composition for tire
JPH11269308A (en) * 1998-03-24 1999-10-05 Bridgestone Corp Pneumatic tire
WO2004000931A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Rubber composition for tire and tire made therefrom
JP2005307166A (en) * 2004-03-26 2005-11-04 Bridgestone Corp Rubber composition for tread and pneumatic tire using the same
JP2006249230A (en) * 2005-03-10 2006-09-21 Bridgestone Corp Rubber composition for tread and pneumatic tire using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141680A (en) * 2009-04-21 2014-08-07 Bridgestone Corp Rubber composition and pneumatic tire using the rubber composition for tread member
US9333803B2 (en) 2009-04-21 2016-05-10 Bridgestone Corporation Process for producing resin-extended isoprene rubber, rubber composition obtained by the process and pneumatic tire
JP2013515817A (en) * 2009-12-23 2013-05-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Rubber composition for aircraft tire tread
US10160847B2 (en) 2010-11-26 2018-12-25 Compagnie Generale Des Etablissments Michelin Tyre tread
JP2017071682A (en) * 2015-10-06 2017-04-13 住友ゴム工業株式会社 Tire rubber composition

Also Published As

Publication number Publication date
JP5265118B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5265114B2 (en) Rubber composition and pneumatic tire using the same
JP5497254B2 (en) Rubber composition and pneumatic tire using the same
US8318861B2 (en) Rubber composition and tire using the same
JP4088258B2 (en) Rubber composition and tire using the same
JP7054613B2 (en) Tires with styrene / butadiene elastomer combinations and rubber treads containing traction resin and pre-hydrophobicized precipitated silica reinforcement
JP4286653B2 (en) Rubber composition and pneumatic tire using the same
JP4607077B2 (en) Rubber composition for tire and tire using the same
JP2005298804A (en) Rubber composition and pneumatic tire obtained using the same
JP6790351B2 (en) Rubber composition and tires
JP5265115B2 (en) Rubber composition and pneumatic tire using the same
JP5110232B2 (en) Rubber composition for tire sidewall and pneumatic tire using the same
JP2011246685A (en) Rubber composition and pneumatic tire using the same
JP2001348461A (en) Rubber composition and pneumatic tire obtained by using the same
JP2010174231A (en) Rubber composition for tire
JP2011246563A (en) Rubber composition for tire and pneumatic tire using the same
WO2019111546A1 (en) Rubber composition and pneumatic tire
JP5216386B2 (en) Rubber composition and tire using the same
US20180362740A1 (en) Rubber composition for tire, tread and tire
JP5265118B2 (en) Rubber composition and pneumatic tire using the same
JP2010126671A (en) Rubber composition for tire tread
JP4402530B2 (en) Rubber composition and tire using the same
JP2005220181A (en) Tire tread rubber composition and pneumatic tire using the same
JP2011246565A (en) Rubber composition for tire, and pneumatic tire using the same
JP5094128B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP2004091716A (en) Tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250