JP2008173728A - Atomic force microscope microprocessing device and microprocessing method using atomic force microscope - Google Patents

Atomic force microscope microprocessing device and microprocessing method using atomic force microscope Download PDF

Info

Publication number
JP2008173728A
JP2008173728A JP2007010018A JP2007010018A JP2008173728A JP 2008173728 A JP2008173728 A JP 2008173728A JP 2007010018 A JP2007010018 A JP 2007010018A JP 2007010018 A JP2007010018 A JP 2007010018A JP 2008173728 A JP2008173728 A JP 2008173728A
Authority
JP
Japan
Prior art keywords
atomic force
force microscope
processing
cantilever
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007010018A
Other languages
Japanese (ja)
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007010018A priority Critical patent/JP2008173728A/en
Publication of JP2008173728A publication Critical patent/JP2008173728A/en
Ceased legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain high accuracy of processing of an atomic force microscope microprocessing device and to make it possible to remove process waste produced in a cutting step by a process probe. <P>SOLUTION: The atomic force microscope microprocessing device is wholly or partially, in a portion including a cantilever 2 and a processing region, evacuated to be in a vacuum atmosphere to reduce the resistance of air and to improve the Q value of resonance, so that the cantilever 2 having a high spring constant and less torsion or bend which can not be conventionally used because of damages induced even only upon imaging, can be used for observation an processing, and thereby, controllability of a probe 1 during processing is improved to achieve high accuracy processing. Further, process waste produced during cutting with the process probe 1 is sucked and removed by the device evacuating system or the local evacuating system 3A. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明はフォトマスクの欠陥修正などに使われる原子間力顕微鏡微細加工装置および原子間力顕微鏡を用いた微細加工方法に関するものである。   The present invention relates to an atomic force microscope fine processing apparatus and a fine processing method using an atomic force microscope used for defect correction of a photomask.

機能の高度化・高集積化のためにナノメートルオーダーの微細加工技術が求められており、走査プローブ顕微鏡(SPM)を用いた局所陽極酸化や微細スクラッチ加工などの加工技術の研究開発が盛んに行われている。最近では微細な加工の可能性の追求だけでなく、実用的な加工機として精確な形状や高精度な加工も求められるようになりつつある。   Nanometer-order microfabrication technology is required for advanced functions and high integration, and research and development of processing technologies such as local anodization and microscratch processing using a scanning probe microscope (SPM) is actively pursued. Has been done. Recently, not only the pursuit of the possibility of fine processing, but also a precise shape and high-precision processing are required as a practical processing machine.

近年原子間力顕微鏡(AFM)をベースにした装置で実際に精確な形状や高精度な加工が求められている例として、フォトマスクのパターン余剰欠陥の修正がある(非特許文献1)。原子間力顕微鏡によるフォトマスク余剰欠陥修正は、現在、被加工材質(余剰欠陥の材質)よりも硬い原子間力顕微鏡探針を用いて、観察時には通常の原子間力顕微鏡の低加重のコンタクトモードまたは間欠的な接触モードでイメージングを行って欠陥部分を認識し、加工時には高加重のコンタクトモードまたはフィードバックを切って硬い探針を下地ガラス面と同じ高さ位置に固定してガラス面の上にある余剰欠陥部分を走査して物理的に除去加工することで行われている。
原子間力顕微鏡によるフォトマスク余剰欠陥修正は、従来マスクの微細な欠陥の修正装置として用いられてきた集束イオンビーム欠陥修正装置ではチャージアップのため観察・加工しにくい孤立欠陥も修正できるため、最近マスク製造現場でも用いられるようになってきている。マスクはウェーハ転写の原版となるため、修正個所の加工精度が悪かったり、オーバーエッチや削り残しがあると転写特性に悪影響を与え、転写したウェーハ全てにデバイス不良を生じさせてしまうので原子間力顕微鏡による機械的な除去加工で精確な形状や高精度な加工が必要とされる。
In recent years, as an example in which an accurate shape and high-precision processing are required in an apparatus based on an atomic force microscope (AFM), there is correction of a photomask pattern surplus defect (Non-patent Document 1). Photomask surplus defect correction using an atomic force microscope is currently using an atomic force microscope probe that is harder than the material to be processed (the material of the surplus defect). Alternatively, imaging is performed in intermittent contact mode to recognize defective parts, and during processing, the high-weight contact mode or feedback is turned off and the hard probe is fixed at the same height as the underlying glass surface and placed on the glass surface. This is performed by scanning and physically removing a certain excess defect portion.
Photomask surplus defect correction using an atomic force microscope has recently been able to correct isolated defects that are difficult to observe and process due to charge-up using a focused ion beam defect correction apparatus that has been used as a correction apparatus for fine defects in conventional masks. It is also being used at mask manufacturing sites. Since the mask serves as the master for wafer transfer, if the processing accuracy at the correction location is poor, or overetching or uncut parts, the transfer characteristics will be adversely affected, causing device defects on all transferred wafers. Accurate shape and high-precision processing are required by mechanical removal processing with a microscope.

機械的な加工で高精度化を達成するためには、加工抵抗があっても狙った加工位置から刃先がずれないようにねじれやたわみの少ない構造にする必要がある。ねじれやたわみの少ないカンチレバーにすると、力検出の感度が低下してしまい、イメージングしただけで硬い探針でダメージを与えてしまうという問題があった。ダメージを低減するためにイメージングに間欠的な接触モード(ダイナミックモード)が使用されているが、加工性能と感度のトレードオフは依然存在し、イメージングでダメージを与えない範囲でカンチレバーの形状を最適化してもある程度のねじれやたわみが残り、高い加工精度が得られないという問題があった。   In order to achieve high accuracy by mechanical processing, it is necessary to have a structure with little twist and deflection so that the cutting edge does not deviate from the target processing position even if there is processing resistance. If a cantilever with little twist or deflection is used, the sensitivity of force detection is lowered, and there is a problem that a hard probe damages the image just by imaging. Intermittent contact mode (dynamic mode) is used for imaging to reduce damage, but there is still a trade-off between processing performance and sensitivity, and the cantilever shape is optimized within a range that does not cause damage in imaging. However, there is a problem that a certain degree of twisting and deflection remain, and high processing accuracy cannot be obtained.

また機械的な加工では加工屑が発生し、フォトマスクの透過率を確保するためには加工屑除去が必要である。また加工屑は追加工するときに邪魔になったり、再現性の良い加工を行う上で妨げになるので除去する必要がある。従来加工屑除去はウェット洗浄やドライアイスクリーナー(非特許文献2)で行われてきたが、いずれもオフライン洗浄であり、加工と洗浄を繰り返すと工数も増えスループットを低下させていた。インラインで加工屑を洗浄できる方法が求められている。
Y. Morikawa, H. Kokubo, M. Nishiguchi, N. Hayashi, R. White, R. Bozak, and L. Terrill, Proc. of SPIE 5130 520-527(2003) W. V. Brandt, Proc. of SPIE 4562 600-608(2002)
Further, machining waste is generated in mechanical processing, and removal of the machining waste is necessary to ensure the transmittance of the photomask. In addition, it is necessary to remove the processing waste because it becomes an obstacle when performing additional processing, or it interferes with processing with good reproducibility. Conventionally, processing scrap removal has been performed by wet cleaning or dry ice cleaner (Non-patent Document 2), but both are off-line cleaning, and repeated processing and cleaning have increased man-hours and reduced throughput. There is a need for a method that can clean processing waste in-line.
Y. Morikawa, H. Kokubo, M. Nishiguchi, N. Hayashi, R. White, R. Bozak, and L. Terrill, Proc. Of SPIE 5130 520-527 (2003) WV Brandt, Proc. Of SPIE 4562 600-608 (2002)

本発明の目的は、バネ定数の高いカンチレバーを用いた場合に、共振のQa値を上げてダイナミックモードを高感度化することができ、もって、加工精度を向上させることである。
また、他の目的は、加工時に生じる加工屑をリアルタイムで除去することである。
An object of the present invention is to increase the resonance Qa value and increase the sensitivity of the dynamic mode when using a cantilever having a high spring constant, thereby improving processing accuracy.
Another object is to remove processing waste generated during processing in real time.

観察に用いられているバネ定数の低い探針の共振のQ値は大気中に比べ真空中で空気抵抗が減るため桁違いに高くなることが知られている。本発明はこの知見を利用したものである。
すなわち、本発明の原子間力顕微鏡微細加工装置では、カンチレバーを試料に接触させることにより試料に対して微細加工を行う原子間力顕微鏡微細加工装置において、少なくとも前記カンチレバーと前記試料の加工領域を囲むように隔壁を設けるとともに、該隔壁に囲まれた内部空間を真空排気する真空排気系を設けたことを特徴とする。
It is known that the Q value of resonance of a probe having a low spring constant used for observation is orders of magnitude higher because air resistance is reduced in a vacuum than in the atmosphere. The present invention utilizes this finding.
That is, in the atomic force microscope micromachining apparatus of the present invention, in the atomic force microscope micromachining apparatus that performs micromachining on a sample by bringing the cantilever into contact with the sample, at least the cantilever and the processing area of the sample are surrounded. In addition, a partition wall is provided, and an evacuation system for evacuating an internal space surrounded by the partition wall is provided.

本発明の原子間力顕微鏡微細加工装置によれば、バネ定数の高いカンチレバー(ここでは、バネ定数500N/m〜3500N/mの範囲にあるものをいう)及び前記試料の加工領域を囲むように隔壁を設け、隔壁に囲まれた内部空間を真空雰囲気とする。これにより、カンチレバーの振動のQ値を高くすることができる。このため、ダイナミック(ノンコンタクトまたは間欠的接触)モードを高感度化することで、今までイメージングするだけでダメージが発生するため使用できなかったねじれやたわみの少ないバネ定数の高いカンチレバーを観察・加工に使えるようになり、この結果、加工の高精度化を図ることが可能となった。   According to the atomic force microscope microfabrication apparatus of the present invention, a cantilever having a high spring constant (herein, a spring constant in the range of 500 N / m to 3500 N / m) and a processing region of the sample are surrounded. A partition wall is provided, and the internal space surrounded by the partition wall is set to a vacuum atmosphere. Thereby, the Q value of the vibration of the cantilever can be increased. Therefore, by increasing the sensitivity of the dynamic (non-contact or intermittent contact) mode, it is possible to observe and process cantilevers with high spring constants that could not be used because damage occurred just by imaging so far. As a result, it became possible to improve the processing accuracy.

本発明の原子間力顕微鏡微細加工装置では、前記真空排気系の吸引開口部を、前記カンチレバーの先端近傍に配置するのが好ましい。
これにより、この場合カンチレバーの加工探針による機械加工で加工屑が発生するが、発生した加工屑を真空排気系により吸い込んで除去することができる。装置内で加工屑が除去できれば、加工結果確認や追加工のためにフォトマスクを取り出して洗浄してまた装置に戻して位置出しする工程がなくなるので、スループットが向上できる。加工屑に邪魔されることがなくなるので、加工の再現性も向上する。
In the atomic force microscope microfabrication apparatus of the present invention, it is preferable that the suction opening of the evacuation system is disposed near the tip of the cantilever.
Thereby, in this case, machining waste is generated by machining with a cantilever machining probe, but the generated machining waste can be sucked and removed by a vacuum exhaust system. If the processing debris can be removed in the apparatus, there is no step for taking out the photomask for cleaning and confirming the processing result and performing additional processing, and returning it to the apparatus for positioning, thereby improving the throughput. Since it is not obstructed by the processing waste, the reproducibility of processing is also improved.

本発明の原子間力顕微鏡微細加工装置では、前記隔壁によって、前記カンチレバーと試料の加工領域を含んだ局所領域のみを囲むことが好ましい。
このように局所領域のみを真空排気することによって、装置全体を真空対象にして真空に引くのに較べて、排気に要する時間を短くすることができる。
In the atomic force microscope microfabrication apparatus of the present invention, it is preferable that the partition wall surrounds only the local region including the cantilever and the sample processing region.
By evacuating only the local region in this manner, the time required for evacuation can be shortened compared to evacuating the entire apparatus as a vacuum target.

本発明の原子間力顕微鏡微細加工装置では、前記隔壁を内側から外側にかけて複数配置した多重構造とし、前記多重構造の隔壁に囲まれた個々の内部空間をそれぞれ個別に真空排気する多段の真空排気系を設けることが好ましい。
このように、多重構造の隔壁に囲まれた個々の内部空間をそれぞれ個別に真空排気する多段の真空排気系を設けることにより、一番内側の内部空間つまりカンチレバーと前記試料の加工領域を囲む内部空間の空気リーク量を減らして、真空度を高めることができる。
In the atomic force microscope microfabrication apparatus of the present invention, a multi-stage vacuum exhaust system is employed in which a plurality of the partition walls are arranged from the inside to the outside, and each internal space surrounded by the multi-structure partition walls is individually evacuated. A system is preferably provided.
In this way, by providing a multi-stage evacuation system for individually evacuating each internal space surrounded by the multi-structure partition walls, the innermost internal space, that is, the interior surrounding the cantilever and the sample processing region The amount of air leakage in the space can be reduced and the degree of vacuum can be increased.

また、本発明の原子間力顕微鏡を用いた微細加工方法は、バネ定数が500N/m以上のカンチレバーを試料に接触させることにより試料に対して微細加工を行う原子間力顕微鏡を用いた微細加工方法において、少なくとも前記カンチレバーと前記試料の加工領域を囲むように隔壁を設け、該隔壁に囲まれた内部空間を真空排気して真空雰囲気を形成し、前記カンチレバーの共振のQ値を高くして微細加工を行うことを特徴とする。
本発明の本発明の原子間力顕微鏡を用いた微細加工方法によれば、上述した本発明の原子間力顕微鏡微細加工装置が奏する作用効果と同様な作用効果を奏する。
Further, the micromachining method using the atomic force microscope of the present invention is a micromachining using an atomic force microscope that performs micromachining on a sample by bringing a cantilever having a spring constant of 500 N / m or more into contact with the sample. In the method, a partition wall is provided so as to surround at least the cantilever and the sample processing region, an internal space surrounded by the partition wall is evacuated to form a vacuum atmosphere, and a resonance Q value of the cantilever is increased. It is characterized by performing fine processing.
According to the microfabrication method using the atomic force microscope of the present invention of the present invention, the same operational effects as the above-described operational effects of the atomic force microscope microfabrication apparatus of the present invention are exhibited.

本発明によれば、共振のQ値を上げて高感度化することで、ねじれやたわみの少ないバネ定数の高いカンチレバーを観察・加工に使用することができるので、今までよりも加工抵抗があっても刃先の制御性が良くなり、狙った位置で加工できるようになる。そのため加工探針による機械加工の加工精度を今までよりも向上することができる。   According to the present invention, by increasing the resonance Q value to increase the sensitivity, a cantilever having a high spring constant with less twisting and deflection can be used for observation and processing, so that the processing resistance is higher than before. However, the controllability of the cutting edge is improved and machining can be performed at the target position. Therefore, the machining accuracy of machining by the machining probe can be improved more than before.

以下に本発明の実施形態について図面を用いて詳細に説明する。
図1は、本発明に係る原子間力顕微鏡微細加工装置の要部を示す側面図であり、2段の局所真空排気系を用いた例である。1段の局所真空排気系でもよいが、2段の局所真空排気系を用いると真空度によりよく保ちやすい点で有利である。図において、符号12はXYステージであり、その上面には、所定のパターンが形成されたガラス基板6が載置されている。ガラス基板6上には、正常パターン5の他に、黒欠陥4が形成される場合がある。9はZステージで、このZステージ9にはスキャナー8が設けられ、このスキャナー8には加工探針1を備えたカンチレバー2が取り付けられている。このカンチレバー2は、バネ定数が500N/m〜3500N/mと通常のカンチレバーよりも高いバネ定数を有していて、ねじれやたわみの少ないものである。ちなみに、一般に用いられるカンチレバー2のバネ定数は、0.02N/m〜50N/m程度である。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a side view showing a main part of an atomic force microscope microfabrication apparatus according to the present invention, which is an example using a two-stage local vacuum exhaust system. A single-stage local evacuation system may be used, but using a two-stage local evacuation system is advantageous in that it is easy to maintain a better degree of vacuum. In the figure, reference numeral 12 denotes an XY stage, on which a glass substrate 6 on which a predetermined pattern is formed is placed. In addition to the normal pattern 5, the black defect 4 may be formed on the glass substrate 6. Reference numeral 9 denotes a Z stage. A scanner 8 is provided on the Z stage 9, and a cantilever 2 having a machining probe 1 is attached to the scanner 8. The cantilever 2 has a spring constant of 500 N / m to 3500 N / m, which is higher than that of a normal cantilever, and is less twisted or bent. Incidentally, the spring constant of the cantilever 2 generally used is about 0.02 N / m to 50 N / m.

前記カンチレバー2と試料の黒欠陥4を含む加工領域を囲むように第1の隔壁17が設けられ、さらにこの第1の隔壁17を囲むように、その外方に第2の隔壁18が設けられている。つまり、この実施形態において、隔壁はカンチレバー2と試料の加工領域を基準として、内側から外側にかけて複数配置した多重構造とされている。そして、第1の隔壁17に対応してその内部空間を真空排気する、真空ポンプ10及びゲートバルブを備える第1の局所真空排気系3Aが設けられている。また、第2の隔壁18に対応して、第1の隔壁17と第2の隔壁18の間の空間を真空排気する、真空ポンプ10及びゲートバルブを備える第2の局所真空排気系3Bが設けられている。
第1の真空排気系3Aの吸引開口部3AAは、前記カンチレバー2の先端の加工探針1の近傍に、加工探針1を指向するように配置されている。
A first partition wall 17 is provided so as to surround the cantilever 2 and a processing region including the black defect 4 of the sample, and a second partition wall 18 is provided outside the first partition wall 17 so as to surround the first partition wall 17. ing. That is, in this embodiment, the partition wall has a multiple structure in which a plurality of partitions are arranged from the inside to the outside with reference to the cantilever 2 and the processing region of the sample. A first local evacuation system 3A including a vacuum pump 10 and a gate valve that evacuates the internal space corresponding to the first partition wall 17 is provided. A second local evacuation system 3B including a vacuum pump 10 and a gate valve for evacuating the space between the first partition wall 17 and the second partition wall 18 is provided corresponding to the second partition wall 18. It has been.
The suction opening 3AA of the first evacuation system 3A is arranged in the vicinity of the processing probe 1 at the tip of the cantilever 2 so as to point to the processing probe 1.

また、原子間力顕微鏡微細加工装置には、カンチレバー2のたわみを検出する光テコ検出系が設けられている。光テコ検出系は、第1、第2の局所真空排気系3A、3Bのガラスでできたビューポート13を通してレーザー光源14から出たレーザー光15を第1の隔壁17内の空間に入射させる。入射されたレーザー光15はカンチレバー2の背面で反射され、この反射されたレーザー光15はビューポート13を通して位置敏感検出器16に検出されるようになっている。   Further, the atomic force microscope microfabrication apparatus is provided with an optical lever detection system for detecting the deflection of the cantilever 2. The optical lever detection system causes the laser light 15 emitted from the laser light source 14 to enter the space in the first partition wall 17 through the view port 13 made of glass of the first and second local evacuation systems 3A and 3B. The incident laser beam 15 is reflected by the back surface of the cantilever 2, and the reflected laser beam 15 is detected by the position sensitive detector 16 through the view port 13.

次に、上記構成の原子間力顕微鏡微細加工装置を用いた微細加工方法について説明する。まず、黒欠陥4を有するフォトマスクを局所真空排気系3A、3Bを備えた原子間力顕微鏡微細加工装置に導入し、欠陥検査装置で見つかった黒欠陥4がある位置4に、カンチレバー2の加工探針1の先端近傍が位置するように、XYステージ12を移動調整する。
なお、真空排気は、この図示例では局所真空排気を採用しているが、これに限られることなく、装置全体に対して行ってもよい(装置全体に対して排気を行なう系を装置排気系と呼ぶ)。この場合、当該原子間力顕微鏡微細加工装置の主構成要素が収納される内部空間を区画する、床、壁部及び天井が隔壁を構成することとなる。装置排気系を採用する場合には、フォトマスク導入後真空引きを行い、真空度が所定値に至るまで待つ。図1に示すように、2段の局所真空排気系3A、3Bの場合は、真空ポンプ10で引かれた複数の差動排気をもち、一番内側の真空度が高くなるように容易に設定できるので、1段の局所真空排気系に比べて有利である。すなわち、真空度は真空ポンプの排気能力範囲内ではリーク量で決まるが、局所真空排気系を3A、3Bの2段にした場合、大気やリーク源が局所真空排気系3Bの外側にあると局所排気系Aの外側の局所排気系3Bで真空が引かれているため大気やリーク源から内側に流入してくるリーク量が減り、内側の局所排気系3Aの真空度を高く保ちやすい。
なお、ピエゾ効果でカンチレバー2のたわみを抵抗値の変化として検出する自己検知型のカンチレバーを使用する場合には、局所真空排気系3A、3Bにビューポート13は不要である。
Next, a micromachining method using the atomic force microscope micromachining apparatus having the above configuration will be described. First, a photomask having a black defect 4 is introduced into an atomic force microscope fine processing apparatus equipped with local vacuum exhaust systems 3A and 3B, and the cantilever 2 is processed at a position 4 where the black defect 4 found by the defect inspection apparatus is present. The XY stage 12 is moved and adjusted so that the vicinity of the tip of the probe 1 is located.
In this example, local evacuation is adopted for evacuation. However, the evacuation is not limited to this, and it may be performed for the entire apparatus (a system for evacuating the entire apparatus is an apparatus exhaust system). Called). In this case, the floor, the wall, and the ceiling that define the internal space in which the main components of the atomic force microscope microfabrication apparatus are housed constitute a partition wall. When the apparatus exhaust system is employed, evacuation is performed after the photomask is introduced, and the process waits until the degree of vacuum reaches a predetermined value. As shown in FIG. 1, in the case of the two-stage local evacuation systems 3A and 3B, it has a plurality of differential evacuations drawn by the vacuum pump 10 and is easily set so that the innermost degree of vacuum becomes high. This is advantageous compared to a single-stage local vacuum exhaust system. That is, the degree of vacuum is determined by the amount of leakage within the range of the pumping capacity of the vacuum pump. However, when the local vacuum pumping system has two stages of 3A and 3B, the locality is generated when the atmosphere and the leak source are outside the local vacuum pumping system 3B. Since a vacuum is drawn in the local exhaust system 3B outside the exhaust system A, the amount of leak flowing inward from the atmosphere or a leak source is reduced, and the degree of vacuum of the inner local exhaust system 3A can be easily kept high.
When a self-detecting cantilever that detects the deflection of the cantilever 2 as a change in resistance value by the piezo effect is used, the viewport 13 is not required for the local evacuation systems 3A and 3B.

局所排気系の場合は、黒欠陥4の存在する位置で真空ポンプ10のゲートバルブ11を開いて加工領域(黒欠陥)近傍と原子間力顕微鏡の加工探針1やねじれやたわみの少ないカンチレバー2を含む領域を局所排気する。真空にすることで空気抵抗を減らして共振のQ値を向上させ、カンチレバー2を高感度化する。真空排気後、加工探針1をフォトマスク表面近傍まで近づけ加工領域(黒欠陥)4含む領域を被加工材料(フォトマスクのパターン材料)よりも硬い加工探針(例えばダイヤモンド探針)1を用いてダイナミックモードでマスクへのダメージを極力抑えて10μm程度の視野で原子間力顕微鏡像を取得して黒欠陥4を探す。黒欠陥4が見つかったら、黒欠陥4が真ん中にくるようにスキャナー8のオフセットをかけて2μm程度の視野で高解像イメージを再度取得する。欠陥のない正常なパターン5とパターンマッチング等で比較して黒欠陥4の領域を認識する。参照点(ガラス基板6)高さ測定後、加工領域(黒欠陥)4のみ選択的に、フィードバックを切った高さ一定モードの高さを低くして走査し、物理的な除去により加工(黒欠陥修正)を行う。   In the case of a local exhaust system, the gate valve 11 of the vacuum pump 10 is opened at a position where the black defect 4 exists, and the vicinity of the processing region (black defect), the processing probe 1 of the atomic force microscope, and the cantilever 2 with less twist and deflection. The area containing the is exhausted locally. By making a vacuum, the air resistance is reduced, the resonance Q value is improved, and the sensitivity of the cantilever 2 is increased. After vacuum evacuation, use a processing probe (for example, a diamond probe) 1 that is harder than the material to be processed (pattern material of the photomask). In the dynamic mode, the damage to the mask is suppressed as much as possible, and an atomic force microscope image is acquired with a visual field of about 10 μm to search for the black defect 4. If the black defect 4 is found, an offset of the scanner 8 is applied so that the black defect 4 is in the middle, and a high resolution image is obtained again with a field of view of about 2 μm. The area of the black defect 4 is recognized by comparing with a normal pattern 5 having no defect by pattern matching or the like. After measuring the height of the reference point (glass substrate 6), only the processing region (black defect) 4 is selectively scanned with the height of the constant height mode with feedback turned off, and processed by physical removal (black Perform defect correction).

このとき、図2に示すように加工探針1による機械加工で発生した加工屑7は、局所真空排気系3Aもしくは装置排気系で吸い込んでインラインで除去する。加工屑7が残るときには、観察で使用しているダイナミックモードで探針1を走査させるか、またはフィードバックを切った高さ一定モードの下地のパターンを削らないような高さに探針1を設定して走査させるかして加工屑7を移動させて加工屑を細かくし、装置排気系もしくは局所真空排気系3Aに吸い込まれやすくする。下地のパターンを削らないような高さとは下地パターンの高さもしくはそれより少し高い高さのことである。この高さで探針1を走査させれば、下地にダメージを与えずに上にのっている加工屑だけに力を加えて移動させることができる。下地がある程度硬くカンチレバーの感度が悪い場合、下地へのダメージの少ないダイナミックモードの観察を行うと軟らかい加工屑を突き刺したり掻き分けるなどして下地と相互作用し加工屑を移動できることがある。加工屑の高さがダイナミックモードの振幅よりも高い場合には加工屑に走査に伴う横方向の力が働き更に移動しやすくなる。   At this time, as shown in FIG. 2, machining waste 7 generated by machining with the machining probe 1 is sucked by the local vacuum exhaust system 3 </ b> A or the apparatus exhaust system and removed in-line. When the machining waste 7 remains, the probe 1 is scanned in the dynamic mode used for observation, or the probe 1 is set to a height that does not cut the ground pattern in the constant height mode with feedback turned off. Then, the machining waste 7 is moved by making it scan, so that the machining waste is made finer and is easily sucked into the apparatus exhaust system or the local vacuum exhaust system 3A. The height at which the ground pattern is not cut is the height of the ground pattern or a little higher than that. If the probe 1 is scanned at this height, it can be moved by applying force only to the processing scraps on the base without damaging the base. When the base is hard to some extent and the sensitivity of the cantilever is low, observation of a dynamic mode with little damage to the base may move the processing scrap by interacting with the base by piercing or scraping soft processing scraps. When the height of the machining waste is higher than the amplitude in the dynamic mode, the lateral force accompanying the scanning acts on the machining waste, and it becomes easier to move.

このように装置内で加工屑7が除去できるので、いままでのように修正の途中でフォトマスクを取り出してウェット洗浄やドライアイスクリーナーにかける必要がなく、そのまま加工結果確認や追加工を続けることができる。   In this way, the processing waste 7 can be removed in the equipment, so there is no need to take out the photomask in the middle of correction and apply it to wet cleaning or dry ice cleaner as before, and continue processing result confirmation and additional processing as it is. Can do.

局所真空排気系で修正すべき黒欠陥4が複数存在する場合は、一つの欠陥修正終了後、加工探針1をフォトマスク表面から遠ざけ、真空ポンプ10のゲートバルブ11を閉じて局所真空排気系3A、3Bを大気に戻して次の欠陥位置にXYステージ12を移動し、その位置で再び真空ポンプ10のゲートバルブ11を開いて局所真空排気を行い、上記と同様の方法で欠陥修正を行う。修正すべき黒欠陥がなくなるまでこの手順を繰り返す。装置全体を排気する場合は真空のまま全ての欠陥を修正してから大気にしてマスクを取り出す。   If there are a plurality of black defects 4 to be corrected by the local evacuation system, after one defect correction is completed, the processing probe 1 is moved away from the photomask surface, the gate valve 11 of the vacuum pump 10 is closed, and the local evacuation system is closed. 3A and 3B are returned to the atmosphere, the XY stage 12 is moved to the next defect position, the gate valve 11 of the vacuum pump 10 is opened again at that position, and local evacuation is performed, and defect correction is performed in the same manner as described above. . This procedure is repeated until there are no black defects to be corrected. When the entire apparatus is evacuated, all the defects are corrected in a vacuum, and then the mask is taken out to the atmosphere.

もちろん本発明で欠陥の加工屑のみならず、付着力の強い異物を加工探針1で除去する場合にも発生する削り滓を局所真空排気系3Aによりインラインで除去でき、異物除去後のオフラインでの洗浄が不要になる。
なお、前記実施形態では、隔壁を二重構造とし、この二重構造の隔壁に囲まれた個々の内部空間をそれぞれ個別に真空排気する2段の局所真空排気系3A、3Bを設けているが、これに限られることなく、隔壁を3以上の多重構造とし、それに対応して多重構造の隔壁に囲まれた個々の内部空間をそれぞれ個別に真空排気する局所真空排気系を3以上の多段備える構成にしても良い。
Of course, in the present invention, not only defective machining scraps but also shavings generated when foreign particles with strong adhesive force are removed by the processing probe 1 can be removed in-line by the local vacuum exhaust system 3A, and offline after the foreign matter removal. No need for cleaning.
In the above-described embodiment, the partition wall has a double structure, and the two-stage local evacuation systems 3A and 3B are provided to individually evacuate each internal space surrounded by the double structure partition wall. However, the present invention is not limited to this, and the partition wall has a multiple structure of three or more, and correspondingly there are provided three or more multi-stage local vacuum exhaust systems that individually evacuate each internal space surrounded by the multiple structure partition wall. It may be configured.

本発明の特徴を最も良く表す局所真空排気系を用いた例を示す概略断面図である。It is a schematic sectional drawing which shows the example using the local vacuum exhaust system which best expresses the characteristic of this invention. 局所真空排気系で加工屑を吸い込んで除去する例を示す概略断面図である。It is a schematic sectional drawing which shows the example which sucks and removes processing waste with a local vacuum exhaust system.

符号の説明Explanation of symbols

1 加工探針
2 カンチレバー
3A、3B 局所真空排気系
4 黒欠陥
5 正常パターン
6 ガラス基板
7 加工屑
8 スキャナー
9 Z軸ステージ
10 真空ポンプ
11 ゲートバルブ
12 XYステージ
13 ビューポート
14 レーザー光源
15 レーザー光
16 位置敏感検出器
17 第1の隔壁
18 第2の隔壁
DESCRIPTION OF SYMBOLS 1 Processing probe 2 Cantilever 3A, 3B Local evacuation system 4 Black defect 5 Normal pattern 6 Glass substrate 7 Processing waste 8 Scanner 9 Z axis stage 10 Vacuum pump 11 Gate valve 12 XY stage 13 Viewport 14 Laser light source 15 Laser light 16 Position sensitive detector 17 First partition 18 Second partition

Claims (5)

カンチレバーを試料に接触させることにより試料に対して微細加工を行う原子間力顕微鏡微細加工装置において、
少なくとも前記カンチレバーと前記試料の加工領域を囲むように隔壁を設けるとともに、
該隔壁に囲まれた内部空間を真空排気する真空排気系を設けたことを特徴とする原子間力顕微鏡微細加工装置。
In atomic force microscope microfabrication equipment that performs microfabrication on a sample by bringing the cantilever into contact with the sample,
While providing a partition so as to surround at least the processing region of the cantilever and the sample,
An atomic force microscope microfabrication apparatus provided with an evacuation system for evacuating an internal space surrounded by the partition walls.
前記真空排気系の吸引開口部を、前記カンチレバーの先端近傍に配置したことを特徴とする請求項1に記載の原子間力顕微鏡微細加工装置。   2. The atomic force microscope microfabrication apparatus according to claim 1, wherein the suction opening of the vacuum exhaust system is disposed in the vicinity of the tip of the cantilever. 前記隔壁によって、前記カンチレバーと試料の加工領域を含んだ局所領域のみを囲むことを特徴とする請求項1または2に記載の原子間力顕微鏡微細加工装置。   The atomic force microscope fine processing apparatus according to claim 1, wherein the partition wall surrounds only a local region including the processing region of the cantilever and the sample. 前記隔壁を内側から外側にかけて複数配置した多重構造とし、前記多重構造の隔壁に囲まれた個々の内部空間をそれぞれ個別に真空排気する多段の真空排気系を設けたことを特徴とする請求項3に記載の原子間力顕微鏡微細加工装置。   4. A multi-layered structure in which a plurality of the partition walls are arranged from the inside to the outside, and a multistage vacuum exhaust system for individually evacuating each internal space surrounded by the multi-structure partition walls is provided. An atomic force microscope microfabrication apparatus described in 1. バネ定数が500N/m以上のカンチレバーを試料に接触させることにより試料に対して微細加工を行う原子間力顕微鏡を用いた微細加工方法において、
少なくとも前記カンチレバーと前記試料の加工領域を囲むように隔壁を設け、
該隔壁に囲まれた内部空間を真空排気して真空雰囲気を形成し、
前記カンチレバーの共振のQ値を高くして微細加工を行うことを特徴とする原子間力顕微鏡を用いた微細加工方法。
In a micromachining method using an atomic force microscope that performs micromachining on a sample by bringing a cantilever having a spring constant of 500 N / m or more into contact with the sample,
A partition is provided so as to surround at least the cantilever and the processing region of the sample,
The internal space surrounded by the partition is evacuated to form a vacuum atmosphere,
A fine processing method using an atomic force microscope, characterized in that the fine processing is performed by increasing the Q value of resonance of the cantilever.
JP2007010018A 2007-01-19 2007-01-19 Atomic force microscope microprocessing device and microprocessing method using atomic force microscope Ceased JP2008173728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010018A JP2008173728A (en) 2007-01-19 2007-01-19 Atomic force microscope microprocessing device and microprocessing method using atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010018A JP2008173728A (en) 2007-01-19 2007-01-19 Atomic force microscope microprocessing device and microprocessing method using atomic force microscope

Publications (1)

Publication Number Publication Date
JP2008173728A true JP2008173728A (en) 2008-07-31

Family

ID=39701132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010018A Ceased JP2008173728A (en) 2007-01-19 2007-01-19 Atomic force microscope microprocessing device and microprocessing method using atomic force microscope

Country Status (1)

Country Link
JP (1) JP2008173728A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242061A (en) * 1991-01-11 1992-08-28 Hitachi Ltd Processing method and device of surface atom and atomic memory device using such method and device
JPH06204144A (en) * 1992-12-25 1994-07-22 Sony Corp Thin film forming method and its equipment
JPH10283972A (en) * 1997-04-10 1998-10-23 Seiko Instr Inc Machining, recording, and reproducing device using scanning probe microscope
JPH11340449A (en) * 1998-05-27 1999-12-10 Nec Corp Manufacture of semiconductor quantity dot
JP2000353489A (en) * 1999-06-09 2000-12-19 Canon Inc Fine machining device
JP2002283300A (en) * 2001-03-22 2002-10-03 Canon Inc Fine processing method and fine processing device
JP2004318091A (en) * 2003-03-18 2004-11-11 Sii Nanotechnology Inc Method eor correcting black defect of mask by applying electrochemical technique to afm
JP2005081527A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Fine processing method using atomic force microscope
JP2005300442A (en) * 2004-04-15 2005-10-27 Sii Nanotechnology Inc Composite apparatus of fib and probe having function of processing probe head

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242061A (en) * 1991-01-11 1992-08-28 Hitachi Ltd Processing method and device of surface atom and atomic memory device using such method and device
JPH06204144A (en) * 1992-12-25 1994-07-22 Sony Corp Thin film forming method and its equipment
JPH10283972A (en) * 1997-04-10 1998-10-23 Seiko Instr Inc Machining, recording, and reproducing device using scanning probe microscope
JPH11340449A (en) * 1998-05-27 1999-12-10 Nec Corp Manufacture of semiconductor quantity dot
JP2000353489A (en) * 1999-06-09 2000-12-19 Canon Inc Fine machining device
JP2002283300A (en) * 2001-03-22 2002-10-03 Canon Inc Fine processing method and fine processing device
JP2004318091A (en) * 2003-03-18 2004-11-11 Sii Nanotechnology Inc Method eor correcting black defect of mask by applying electrochemical technique to afm
JP2005081527A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Fine processing method using atomic force microscope
JP2005300442A (en) * 2004-04-15 2005-10-27 Sii Nanotechnology Inc Composite apparatus of fib and probe having function of processing probe head

Similar Documents

Publication Publication Date Title
JP5882381B2 (en) Slice and view with decoration
JP5090255B2 (en) STEM sample preparation method in situ
US8709269B2 (en) Method and system for imaging a cross section of a specimen
US7368729B2 (en) Method, apparatus and system for specimen fabrication by using an ion beam
JP4192118B2 (en) Defect inspection apparatus and defect inspection system
JP2019535138A (en) Defect marking for semiconductor wafer inspection
JP2010230672A (en) Method of forming image while milling work piece
JP2006252995A (en) Charged particle beam apparatus
US7428850B2 (en) Integrated in situ scanning electronic microscope review station in semiconductor wafers and photomasks optical inspection system
CN111164432A (en) Method and apparatus for inspecting a measuring tip of a scanning probe microscope
US20110027698A1 (en) Apparatus and method for repairing photo mask
JP2007294365A (en) Test piece inspection method, test piece support body, and test piece inspection device as well as test piece inspection system
US7629088B2 (en) Mask defect repairing method and semiconductor device manufacturing method
US7378654B2 (en) Processing probe
JPH0868772A (en) Apparatus and method for automatic mask inspection by using electron beam microscopy
US20070278177A1 (en) Processing method using atomic force microscope microfabrication device
JP2010038853A (en) Method and device for inspecting substrate surface
JP2008173728A (en) Atomic force microscope microprocessing device and microprocessing method using atomic force microscope
US6683305B1 (en) Method to obtain transparent image of resist contact hole or feature by SEM without deforming the feature by ion beam
JP6487225B2 (en) Charged particle beam apparatus and defect inspection system
JP2003043669A (en) Method of correcting defect of photomask and scanning probe microscope
US11694934B2 (en) FIB delayering endpoint detection by monitoring sputtered materials using RGA
JP2777801B2 (en) Pattern film repair method in focused ion beam device
JP2013210497A (en) Defect correction method for photomask, defect correction device, and photomask
US20220244648A1 (en) Sensitivity improvement of optical and sem defection inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A621 Written request for application examination

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20091215

RD03 Notification of appointment of power of attorney

Effective date: 20121122

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121130

A131 Notification of reasons for refusal

Effective date: 20121211

Free format text: JAPANESE INTERMEDIATE CODE: A131

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702