JP2008172935A - In-wheel motor driver - Google Patents

In-wheel motor driver Download PDF

Info

Publication number
JP2008172935A
JP2008172935A JP2007003997A JP2007003997A JP2008172935A JP 2008172935 A JP2008172935 A JP 2008172935A JP 2007003997 A JP2007003997 A JP 2007003997A JP 2007003997 A JP2007003997 A JP 2007003997A JP 2008172935 A JP2008172935 A JP 2008172935A
Authority
JP
Japan
Prior art keywords
motor
motor drive
controller
wheel
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007003997A
Other languages
Japanese (ja)
Other versions
JP4953830B2 (en
Inventor
Takami Ozaki
孝美 尾崎
Koichi Okada
浩一 岡田
Yusuke Makino
祐介 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007003997A priority Critical patent/JP4953830B2/en
Publication of JP2008172935A publication Critical patent/JP2008172935A/en
Application granted granted Critical
Publication of JP4953830B2 publication Critical patent/JP4953830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-wheel motor driver which can raise the durability of the parts of a speed reducer and can also improve the riding comfort by preventing excessive acting force which arises between metallic parts accompanying the backlash at a speed reducer part. <P>SOLUTION: This is an in-wheel motor driver where the output shaft of a motor B and the hub of a vehicle are coupled with each other via the speed reducer and which includes a bearing for wheel which supports the above hub. It includes a controller 51 which controls the drive of the motor B, according to an external motor command by an accelerator signal, etc. This controller 51 includes a driving force change limiting means 56 which controls the differential amount of the driving force of the motor B under a set value. This controller 51 has a control circuit 55 for motor drive which generates a current to be let flow to the motor B, according to a motor driving force command r. For example, a low-pass filter is used as the above driving force change limiting means 56. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、自動車に搭載されるモータ、減速機、および車輪用軸受が連結されたインホイールモータ駆動装置に関する。   The present invention relates to an in-wheel motor drive device in which a motor, a reducer, and a wheel bearing mounted on an automobile are connected.

従来、電気自動車で使用されるインホイールモータ駆動装置として、車輪用軸受(ハブベアリング)と減速機、モータが連結され、モータの駆動トルクを、減速機で倍増(回転数では減速)し、車輪用軸受を介してタイヤに伝達する構成のものがある。この減速機には、遊星歯車を使用したものが用いられたりするが、コンパクト化を図るため、サイクロイド減速機が使用される(例えば、特許文献1)。
特開2006−258289号公報
Conventionally, as an in-wheel motor drive device used in an electric vehicle, a wheel bearing (hub bearing), a speed reducer, and a motor are connected, and the drive torque of the motor is doubled by the speed reducer (decelerates at the number of revolutions). Some are configured to transmit to the tire via a bearing. As this reducer, a planetary gear is used, but a cycloid reducer is used in order to reduce the size (for example, Patent Document 1).
JP 2006-258289 A

上記インホイールモータ駆動装置における減速機にはバックラッシュ(機械的な遊び)が存在し、特にコンパクト化が図れるサイクロイド減速機ではバックラッシュが大きい。設計によって、このバックラッシュを小さくすることは可能であるが、その製造コストおよび組み立て性に難がある。
上記バックラッシュが存在すると、減速機が停止状態から急加速したときに、バックラッシュによって、構成部品間の衝突が起こったり、また、急加速・減速によって、構成部品間に過大な作用力が発生することになり、減速機部品の耐久性に問題がある。
また、この構成部品間の衝突によって、モータからの衝突音が発生したり、さらには、駆動される車体の乗り心地が悪くなったりする。
The reducer in the in-wheel motor drive apparatus has backlash (mechanical play), and particularly in a cycloid reducer that can be made compact, the backlash is large. Although it is possible to reduce this backlash by design, its manufacturing cost and assemblability are difficult.
When the above-mentioned backlash exists, when the speed reducer suddenly accelerates from a stopped state, collision between components occurs due to backlash, and excessive force is generated between components due to sudden acceleration / deceleration. Therefore, there is a problem in the durability of the reducer parts.
Further, the collision between the component parts generates a collision sound from the motor, and further, the riding comfort of the driven vehicle body is deteriorated.

この発明の目的は、モータの起動時、加速・減速時のモータ駆動力の単位時間当たりの変化量を制限することで、減速機部でのバックラッシュに伴う金属部品間に生じる過大な作用力を防ぎ、減速機部品の耐久性を向上させると共に、乗り心地を改善できるインホイールモータ駆動装置を提供することである。   The object of the present invention is to limit the amount of change per unit time of the motor driving force during acceleration / deceleration at the time of starting the motor, so that an excessive working force generated between metal parts due to backlash in the reduction gear unit. It is to provide an in-wheel motor drive device that can improve the durability of the reducer parts and improve the ride comfort.

この発明のインホイールモータ駆動装置は、車輪用軸受A、モータB、およびこのモータBと上記車輪用軸受Aとの間に介在した減速機Cを有するインホイールモータ駆動装置において、外部モータ指令値に応じて上記モータBの駆動を制御するコントローラ51を設け、このコントローラ51は、モータBの駆動力の単位時間当たりの変化量を設定値以下に制御する駆動力変化制限手段56を有するものとしたことを特徴とする。
この構成によると、モータBの駆動力の単位時間当たりの変化量、すなわち微分量を設定値以下に制御する駆動力変化制限手段56を設けたため、モータ起動時、加速時および減速時に、モータBを滑らかに駆動・回転させることができる。このため、減速機Cを構成する部品間の過大な作用力を抑制し、また部品間の衝突を防ぐことができ、減速機Cの耐久性を向上させることができる。さらに、滑らかな駆動・回転により減速機C内での振動も抑制でき、これにより、駆動される車体の乗り心地を改善することができる。
The in-wheel motor drive device according to the present invention is an in-wheel motor drive device having a wheel bearing A, a motor B, and a reduction gear C interposed between the motor B and the wheel bearing A. A controller 51 for controlling the driving of the motor B is provided according to the control unit, and the controller 51 includes a driving force change limiting means 56 for controlling the amount of change of the driving force of the motor B per unit time to a set value or less. It is characterized by that.
According to this configuration, since the driving force change limiting means 56 for controlling the amount of change of the driving force of the motor B per unit time, that is, the differential amount, is provided below the set value, the motor B is activated at the time of motor activation, acceleration and deceleration. Can be driven and rotated smoothly. For this reason, the excessive action force between the components which comprise the reduction gear C can be suppressed, the collision between components can be prevented, and the durability of the reduction gear C can be improved. Furthermore, vibration in the speed reducer C can be suppressed by smooth driving and rotation, and thereby the ride quality of the driven vehicle body can be improved.

上記減速機Cは、サイクロイド減速機であっても良い。サイクロイド減速機は、コンパクト化に優れる反面、バックラッシュが大きい欠点があるが、この発明によると上記駆動力変化制限手段56によって滑らかに駆動・回転させることができるため、バックラッシュが大きい欠点が解消され、バックラッシュの問題を生じることなく、コンパクトな減速機、しいてはコンパクトなインホイールモータ駆動装置が実現される。   The speed reducer C may be a cycloid speed reducer. Although the cycloid reducer is excellent in downsizing, it has a drawback of large backlash. However, according to the present invention, it can be smoothly driven and rotated by the driving force change limiting means 56, so the disadvantage of large backlash is solved. Thus, a compact speed reducer and a compact in-wheel motor drive device can be realized without causing the problem of backlash.

この発明において、上記コントローラ51が、モータ駆動力指令値rに応じて上記モータBに流す電流を生成するモータ駆動用コントローラ回路55を有するものであり、上記駆動力変化制限手段56として、上記コントローラ51における上記外部モータ指令値の入力部57と上記モータ駆動用コントローラ回路55との間に介在したローパスフィルタ56Aを有するものとしても良い。この場合に、上記駆動力変化制限手段56は、ローパスフィルタ56Aのみから構成されるものとしても良く、またローパスフィルタ56Aとその他の手段とを組み合わせたものであっても良い。
ローパスフィルタ56Aを挿入することで、アクセル等から発生させた外部モータ指令値の高周波ゲインが低下して急激な変動が抑えられる。これによって、モータBの急激な加速・減速を抑制することができる。
In the present invention, the controller 51 has a motor drive controller circuit 55 that generates a current to be supplied to the motor B in accordance with a motor drive force command value r. As the drive force change limiting means 56, the controller A low-pass filter 56 </ b> A interposed between the external motor command value input unit 57 and the motor drive controller circuit 55 in 51 may be provided. In this case, the driving force change limiting means 56 may be constituted by only the low-pass filter 56A, or may be a combination of the low-pass filter 56A and other means.
By inserting the low-pass filter 56A, the high-frequency gain of the external motor command value generated from the accelerator or the like is reduced, and rapid fluctuations are suppressed. Thereby, rapid acceleration / deceleration of the motor B can be suppressed.

この発明において、上記コントローラ51が、モータ駆動力指令値rに応じて上記モータBに流す電流を生成するモータ駆動用コントローラ回路55を有し、上記駆動力変化制限手段55として、上記モータBの角加速度の信号を上記モータ駆動力指令値rに対して負帰還させるフィードバック手段56Bを有するものとしても良い。
このようにフィードバック手段56Bを設けることで、モータ回転の角加速度をアクセル信号等による外部モータ指令値に対して減算するようにフィードバックしてモータ駆動力指令値rを生成することによっても、モータBの急激な加速・減速を抑制することができる。
In the present invention, the controller 51 has a motor drive controller circuit 55 that generates a current to be passed through the motor B in accordance with a motor drive force command value r. A feedback means 56B that negatively feeds back an angular acceleration signal to the motor driving force command value r may be provided.
By providing the feedback means 56B in this way, the motor B is also generated by feeding back the angular acceleration of the motor rotation to the external motor command value by the accelerator signal or the like to generate the motor driving force command value r. The rapid acceleration / deceleration can be suppressed.

上記フィードバック手段56Bを設けた場合に、このフィードバック手段56Bが、上記角加速度の信号を通すローパスフィルタ59を有するものであっても良い。
単純に回転角加速度を比例ゲイン(フィードバックゲイン)で増幅した信号をアクセル信号等に対して減算すると、この角加速度信号は高周波域でのゲインが高くなるため、高周波ノイズによって、誤動作する可能性もある。これに対して、上記フィードバック経路に、角加速度の信号を通すローパスフィルタ59を比例回路58とカスケードに組み合わせることにより、高周波ノイズによる誤動作を防止することができる。
When the feedback unit 56B is provided, the feedback unit 56B may include a low-pass filter 59 that passes the angular acceleration signal.
If a signal obtained by simply amplifying the rotational angular acceleration with a proportional gain (feedback gain) is subtracted from the accelerator signal, etc., the angular acceleration signal has a high gain in the high frequency range, and may malfunction due to high frequency noise. is there. On the other hand, it is possible to prevent malfunction due to high frequency noise by combining a low-pass filter 59 that passes an angular acceleration signal in a cascade with the proportional circuit 58 in the feedback path.

この発明において、上記駆動力変化制限手段56として、上記コントローラ51における上記外部モータ指令値の入力部57と上記モータ駆動用コントローラ回路55との間に介在し上記外部モータ指令値と上記モータ駆動力指令値rとの関係を、1次を超える次数の関数とする指令値変換手段56Cを有するものとしても良い。
アクセル信号等の外部モータ指令値と、モータ駆動用コントローラ回路55に入力されるモータ駆動力指令値rとの関係について、1次を越える関数の関係を持たせることで、外部モータ指令値が小さい時にはその変化に応じるモータ駆動トルク変動を少なくすることができ、アクセルの踏み始めでは急速な加速を抑制できる。
In the present invention, as the driving force change limiting means 56, the external motor command value and the motor driving force are interposed between the external motor command value input unit 57 and the motor driving controller circuit 55 in the controller 51. It is good also as what has the command value conversion means 56C which makes the relationship with the command value r the function of the order exceeding a primary.
The relationship between the external motor command value such as an accelerator signal and the motor driving force command value r input to the motor drive controller circuit 55 is such that the external motor command value is small by having a function relationship exceeding the first order. Sometimes, motor drive torque fluctuations corresponding to the change can be reduced, and rapid acceleration can be suppressed at the start of the accelerator pedal.

この発明において、モータの角加速度が規定値を超えた場合または規定値以上の場合にモータ駆動トルクを設定分だけ減少させ、この減少の後、車両前輪の操舵角とホイールベース、トレッドから求めた車両の旋回半径に応じたモータBの回転数に達した後に、再度モータBの駆動トルクを上昇させる状況対応制御手段60を設けても良い。
このように、角加速度が規定値を超えた場合にモータ駆動トルクを減少させ、車両の旋回半径に応じたタイヤの回転数となるモータの回転数に達した後に、再度モータの駆動トルクを上昇させることで、モータ駆動トルクを適正にしつつ車両姿勢制御も最適に保つことができる。
In the present invention, when the angular acceleration of the motor exceeds the specified value or exceeds the specified value, the motor driving torque is decreased by a set amount, and after this decrease, it is obtained from the steering angle of the vehicle front wheel, the wheel base, and the tread. You may provide the situation corresponding | compatible control means 60 which raises the drive torque of the motor B again, after reaching the rotation speed of the motor B according to the turning radius of a vehicle.
In this way, when the angular acceleration exceeds a specified value, the motor drive torque is decreased, and after reaching the motor rotation speed, which is the tire rotation speed according to the turning radius of the vehicle, the motor drive torque is increased again. By doing so, it is possible to keep the vehicle attitude control optimal while making the motor driving torque appropriate.

この発明のインホイールモータ駆動装置は、車輪用軸受、モータ、およびこのモータと上記車輪用軸受との間に介在した減速機を有するインホイールモータ駆動装置において、外部モータ指令値に応じて上記モータの駆動を制御するコントローラを設け、このコントローラは、モータの駆動力の単位時間当たりの変化量を設定値以下に制御する駆動力変化制限手段を有するものとしたため、減速機部でのバックラッシュに伴う金属部品間に生じる過大な作用力を防ぎ、減速機部品の耐久性を向上させると共に、乗り心地を改善することができる。   An in-wheel motor drive device according to the present invention includes a wheel bearing, a motor, and an in-wheel motor drive device having a reduction gear interposed between the motor and the wheel bearing, and the motor according to an external motor command value. A controller for controlling the driving of the motor is provided, and this controller has a driving force change limiting means for controlling the amount of change of the driving force of the motor per unit time below the set value. The excessive force generated between the accompanying metal parts can be prevented, the durability of the speed reducer parts can be improved, and the riding comfort can be improved.

この発明の第1の実施形態を図1ないし図5と共に説明する。図1に、車両の車輪用軸受Aと電動式のモータBとの間に減速機Cを介在させ、車輪用軸受Aで支持されるハブとモータBの出力軸24とを同軸心上で連結したインホイールモータ駆動装置を示す。減速機Cは、サイクロイド減速機であって、モータBの出力軸24に同軸に連結される入力軸32に偏心部32a,32bを形成し、偏心部32a,32bにそれぞれ軸受35を介して曲線板34a,34bを装着し、曲線板34a,34bの偏心運動を車輪軸受へ回転運動として伝達する構成である。   A first embodiment of the present invention will be described with reference to FIGS. In FIG. 1, a reduction gear C is interposed between a vehicle wheel bearing A and an electric motor B, and a hub supported by the wheel bearing A and an output shaft 24 of the motor B are connected coaxially. The in-wheel motor drive device which was made is shown. The speed reducer C is a cycloid speed reducer, in which eccentric portions 32 a and 32 b are formed on an input shaft 32 coaxially connected to the output shaft 24 of the motor B, and the eccentric portions 32 a and 32 b are curved via bearings 35, respectively. The plates 34a and 34b are mounted, and the eccentric motion of the curved plates 34a and 34b is transmitted to the wheel bearings as rotational motion.

すなわち、減速機Cにつき、モータBの回転を曲線板34a,34bの偏心運動とし、この偏心運動を回転運動としてハブに伝達するサイクロイド減速機とすることにより、コンパクトで大きな減速比が得られる減速機Cとこの減速機Cのコンパクトな配置構造を有するインホイールモータ駆動装置である。上記サイクロイド減速機Cは、部品点数が少なくコンパクトに設計でき、1段で1/10以上の大きな減速比を得ることができる。   That is, for the speed reducer C, the rotation of the motor B is the eccentric motion of the curved plates 34a, 34b, and the cycloid speed reducer that transmits this eccentric motion to the hub as the rotational motion is a compact speed reduction that provides a large reduction ratio. This is an in-wheel motor drive device having a compact arrangement structure of the machine C and the speed reducer C. The cycloid reduction gear C can be designed compactly with a small number of parts, and a large reduction ratio of 1/10 or more can be obtained in one stage.

モータBは、外部のコントローラ51によって駆動され、その電流源はバッテリ52によって供給される。コントローラ51は、外部のアクセル54から出力されるアクセル信号に従い、モータBの駆動電流を制御するものである。また、コントローラ51は、モータBの回転数を回転センサ53で検出し、モータBの回転制御に利用する構成である。アクセル54は、車両のアクセルペダル(図示せず)と、このアクセルペダルの踏み込み量を電気信号であるアクセル信号に変換するアクセル信号生成手段(図示せず)とで構成される。   The motor B is driven by an external controller 51, and its current source is supplied by a battery 52. The controller 51 controls the drive current of the motor B in accordance with the accelerator signal output from the external accelerator 54. The controller 51 is configured to detect the rotation speed of the motor B with the rotation sensor 53 and use it for rotation control of the motor B. The accelerator 54 includes an accelerator pedal (not shown) of the vehicle, and an accelerator signal generating means (not shown) that converts an amount of depression of the accelerator pedal into an accelerator signal that is an electric signal.

図2,図3は、インホイールモータ駆動装置の機械部分の具体的構成例を示す。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。車輪用軸受Aは、軸受の転走面を形成した内方部材2がハブを構成する第3世代型の内輪回転タイプとされている。   2 and 3 show a specific configuration example of the mechanical part of the in-wheel motor drive device. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side. The wheel bearing A is a third generation inner ring rotating type in which the inner member 2 forming the rolling surface of the bearing constitutes a hub.

この車輪用軸受Aは、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1およびハブ2の転走面3,4間に介在した複列の転動体5とで構成される。内方部材2は、車両の車輪を取付けるハブを兼用する。この車輪用軸受Aは、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1とハブ2との間の軸受空間のアウトボード側端は、シール部材7でシールされている。   The wheel bearing A includes an outer member 1 having a double row rolling surface 3 formed on the inner periphery, an inner member 2 having a rolling surface 4 facing each of the rolling surfaces 3, and these outer members 1. It is comprised with the rolling element 5 of the double row interposed between the rolling surfaces 3 and 4 of the direction member 1 and the hub 2. FIG. The inward member 2 also serves as a hub for attaching the vehicle wheel. The wheel bearing A is a double-row angular ball bearing type, and the rolling elements 5 are formed of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. The outboard side end of the bearing space between the outer member 1 and the hub 2 is sealed with a seal member 7.

外方部材1は静止側軌道輪となるものであって、減速機Cのアウトボード側のハウジング33bに取付けるフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所にボルト挿通孔14が設けられている。また、ハウジング33bには、ボルト挿通孔14に対応する位置に、内周にねじが切られたボルト螺着孔44が設けられている。ボルト挿通孔14に挿通した取付ボルト15をボルト螺着孔44に螺着させることにより、外方部材1がハウジング33bに取付けられる。   The outer member 1 is a stationary raceway, and has a flange 1a attached to the housing 33b on the outboard side of the speed reducer C on the outer periphery, and the whole is an integral part. The flange 1a is provided with bolt insertion holes 14 at a plurality of locations in the circumferential direction. Further, the housing 33b is provided with a bolt screw hole 44 whose inner periphery is threaded at a position corresponding to the bolt insertion hole 14. The outer member 1 is attached to the housing 33b by screwing the attachment bolt 15 inserted into the bolt insertion hole 14 into the bolt screw hole 44.

内方部材2は、車輪取付用のハブフランジ9aを有するアウトボード側材9と、このアウトボード側材9の内周にアウトボード側が嵌合して加締めによってアウトボード側材9に一体化されたインボード側材10とでなる。これらアウトボード側材9およびインボード側材10に、前記各列の転走面4が形成されている。インボード側材10の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト16の挿入孔17が設けられている。アウトボード側材9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。このパイロット部13の内周には、前記貫通孔11のアウトボード側端を塞ぐキャップ18が取付けられている。   The inboard member 2 is integrated with the outboard side member 9 by fitting the outboard side member 9 having a hub flange 9a for wheel mounting to the inner periphery of the outboard side member 9 and caulking. And the inboard side material 10 made. The rolling surface 4 of each said row | line | column is formed in these outboard side materials 9 and inboard side materials 10. FIG. A through hole 11 is provided at the center of the inboard side member 10. The hub flange 9a is provided with insertion holes 17 for hub bolts 16 at a plurality of locations in the circumferential direction. In the vicinity of the root portion of the hub flange 9a of the outboard side member 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side. A cap 18 that closes the outboard side end of the through hole 11 is attached to the inner periphery of the pilot portion 13.

モータBは、筒状のハウジング22に固定したステータ23と出力軸24に取付けたロータ25との間にアキシアルギャップを設けたアキシアルギャップ型のものである。出力軸24は、減速機Cのインボード側のハウジング33aの筒部に2つの軸受26で片持ち支持されている。出力軸24とハウジング33a間の隙間のインボード側端は、シール部材27でシールされている。また、ハウジング22のインボード側の開口にはキャップ28が装着され、ハウジング22の周壁部には冷却液流路29が設けられている。   The motor B is an axial gap type in which an axial gap is provided between a stator 23 fixed to a cylindrical housing 22 and a rotor 25 attached to an output shaft 24. The output shaft 24 is cantilevered by two bearings 26 on the cylindrical portion of the housing 33a on the inboard side of the speed reducer C. The inboard side end of the gap between the output shaft 24 and the housing 33 a is sealed with a seal member 27. A cap 28 is attached to the opening on the inboard side of the housing 22, and a coolant flow path 29 is provided on the peripheral wall portion of the housing 22.

減速機Cは、上記のようにサイクロイド減速機であり、図3のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板34a,34bが、それぞれ軸受35を介して入力軸32の各偏心部32a,32bに装着してある。これら各曲線板34a,34bの偏心運動を外周側で案内する複数の外ピン36を、それぞれハウジング33bに差し渡して設け、内方部材2のインボード側材10に取付けた複数の内ピン38を、各曲線板34a,34bの内部に設けられた複数の円形の貫通孔39に挿入状態に係合させてある。入力軸32は、モータBの出力軸24とスプライン結合されて一体に回転する。なお、入力軸32はインボード側のハウジング33aと内方部材2のインボード側材10の内径面とに2つの軸受40で両持ち支持されている。   The speed reducer C is a cycloid speed reducer as described above, and two curved plates 34a and 34b formed with wavy trochoidal curves having a gentle outer shape as shown in FIG. It is attached to each of the 32 eccentric parts 32a and 32b. A plurality of outer pins 36 for guiding the eccentric motion of each of the curved plates 34a, 34b on the outer peripheral side are provided across the housing 33b, and a plurality of inner pins 38 attached to the inboard side member 10 of the inner member 2 are provided. The curved plates 34a and 34b are engaged with a plurality of circular through holes 39 provided in the inserted state. The input shaft 32 is spline-coupled with the output shaft 24 of the motor B and rotates integrally. The input shaft 32 is supported at both ends by two bearings 40 on the housing 33a on the inboard side and the inner diameter surface of the inboard side member 10 of the inner member 2.

モータBの出力軸24が回転すると、これと一体回転する入力軸32に取付けられた各曲線板34a,34bが偏心運動を行う。この各曲線板34a,34bの偏心運動が、内ピン38と貫通孔39との係合によって、内方部材2に回転運動として伝達される。出力軸24の回転に対して内方部材2の回転は減速されたものとなる。   When the output shaft 24 of the motor B rotates, the curved plates 34a and 34b attached to the input shaft 32 that rotates integrally therewith perform an eccentric motion. The eccentric motions of the curved plates 34 a and 34 b are transmitted to the inner member 2 as rotational motion by the engagement of the inner pins 38 and the through holes 39. The rotation of the inner member 2 is decelerated with respect to the rotation of the output shaft 24.

前記2枚の曲線板34a,34bは、互いに偏心運動による振動が打ち消されるように180°位相をずらして入力軸32の各偏心部32a,32bに装着され、各偏心部32a,32bの両側には、各曲線板34a,34bの偏心運動によって発生する回転軸に直交する軸回りの慣性偶力よる振動を打ち消すように、各偏心部32a,32bの偏心方向と逆方向へ偏心させたカウンターウエイト41が装着されている。   The two curved plates 34a and 34b are mounted on the eccentric portions 32a and 32b of the input shaft 32 so as to cancel vibrations caused by the eccentric motion, and are respectively attached to both sides of the eccentric portions 32a and 32b. Is a counterweight that is eccentric in the direction opposite to the eccentric direction of the eccentric parts 32a, 32b so as to cancel out the vibration caused by the inertial couple around the axis orthogonal to the rotation axis generated by the eccentric movement of the curved plates 34a, 34b. 41 is attached.

図3(B)に拡大して示すように、前記各外ピン36と内ピン38には軸受42,43が装着され、これらの軸受42,43の外輪42a,43aが、それぞれ各曲線板34a,34bの外周と各貫通孔39の内周とに転接する。したがって、外ピン36と各曲線板34a,34bの外周との接触抵抗、および内ピン38と各貫通孔39の内周との接触抵抗を低減し、各曲線板34a,34bの偏心運動をスムーズに内方部材2に回転運動として伝達することができる。   As shown in an enlarged view in FIG. 3B, bearings 42 and 43 are mounted on the outer pins 36 and the inner pins 38, and the outer rings 42a and 43a of the bearings 42 and 43 are respectively connected to the curved plates 34a. , 34b and the inner periphery of each through-hole 39. Therefore, the contact resistance between the outer pin 36 and the outer periphery of each curved plate 34a, 34b and the contact resistance between the inner pin 38 and the inner periphery of each through hole 39 are reduced, and the eccentric motion of each curved plate 34a, 34b is smooth. Can be transmitted to the inner member 2 as a rotational motion.

この車輪用軸受装置は、減速機Cのハウジング33bまたはモータBのハウジング22の外周部で、ナックル等の懸架装置(図示せず)を介して車体に固定される。   The wheel bearing device is fixed to the vehicle body via a suspension device (not shown) such as a knuckle on the outer periphery of the housing 33b of the reduction gear C or the housing 22 of the motor B.

図4は、コントローラ51の構成例を示す。コントローラ51は、アクセル信号等による外部モータ指令値(コントローラ51に対する外部から与えられるモータ指令値)に応じてモータBの駆動を制御するものであり、上記アクセル信号により生成されるモータ駆動力指令値rに応じてモータBに流す電流を生成するモータ駆動用コントローラ回路55を有している。この回路55で生成された電流がモータBに流され、モータBは回転トルクを発生する。モータ駆動用コントローラ回路55は、例えば、モータ駆動力指令値rに比例したモータ電流を生成する。   FIG. 4 shows a configuration example of the controller 51. The controller 51 controls driving of the motor B according to an external motor command value (motor command value given from the outside to the controller 51) by an accelerator signal or the like, and a motor driving force command value generated by the accelerator signal. A motor drive controller circuit 55 that generates a current to be supplied to the motor B according to r is included. The current generated by the circuit 55 is passed to the motor B, and the motor B generates rotational torque. For example, the motor drive controller circuit 55 generates a motor current proportional to the motor drive force command value r.

この実施形態は、このコントローラ51に、モータBの駆動力の単位時間当たりの変化量、すなわち駆動力の微分量を設定値以下に制御する駆動力変化制限手段55を設けたものである。
駆動力変化制限手段56は、例えば図5のように、コントローラ51におけるアクセル信号の入力部57とモータ駆動用コントローラ回路55との間に介在したローパスフィルタ56Aからなる。
In this embodiment, the controller 51 is provided with driving force change limiting means 55 for controlling the amount of change of the driving force of the motor B per unit time, that is, the differential amount of the driving force to a set value or less.
For example, as shown in FIG. 5, the driving force change limiting unit 56 includes a low-pass filter 56 </ b> A interposed between an accelerator signal input unit 57 in the controller 51 and a motor driving controller circuit 55.

この構成のインホイールモータ駆動装置によると、モータコントローラ51に、アクセル信号の入力部57とモータ駆動用コントローラ回路55との間にローパスフィルタ56Aを挿入したため、アクセル信号の高周波ゲインが低下し、モータ駆動用コントローラ回路55に入力されるモータ駆動指令値rは、アクセル54(図1)からの信号の急激な変動が抑えられたものとなる。これによって、モータBの急激な加速・減速を抑制することができる。すなわち、モータBの駆動力の単位時間当たりの変化量である微分量を設定値以下に制御することができる。
その原理図(ブロック線図)を図4,図5に併記してある。図中sはラプラス変換素子てあり、jJはモータBの慣性モーメントである。
According to the in-wheel motor drive device having this configuration, since the low-pass filter 56A is inserted in the motor controller 51 between the accelerator signal input unit 57 and the motor drive controller circuit 55, the high-frequency gain of the accelerator signal is reduced, and the motor The motor drive command value r input to the drive controller circuit 55 is one in which rapid fluctuations in the signal from the accelerator 54 (FIG. 1) are suppressed. Thereby, rapid acceleration / deceleration of the motor B can be suppressed. That is, the differential amount, which is a change amount per unit time of the driving force of the motor B, can be controlled to be equal to or less than the set value.
The principle diagram (block diagram) is also shown in FIGS. In the figure, s is a Laplace conversion element, and jJ is the moment of inertia of the motor B.

このように、モータBの駆動力の微分量が制限されるため、モータBの起動時、加速時および減速時に、モータBを滑らかに駆動・回転させることができる。このため、減速機Cを構成する部品、例えば曲線板34a,34b、外ピン36、内ピン38等の間の過大な作用力を抑制し、またこれらの部品間の衝突を防ぐことができ、減速機Cの耐久性を向上させることができる。さらに、滑らかな駆動・回転により減速機C内での振動も抑制でき、これにより、駆動される車体の乗り心地を改善することができる。   Thus, since the differential amount of the driving force of the motor B is limited, the motor B can be smoothly driven and rotated when the motor B is started, accelerated and decelerated. For this reason, it is possible to suppress excessive acting force between the parts constituting the speed reducer C, for example, the curved plates 34a and 34b, the outer pin 36, the inner pin 38, etc., and to prevent a collision between these parts. The durability of the reduction gear C can be improved. Furthermore, vibration in the speed reducer C can be suppressed by smooth driving and rotation, and thereby the ride quality of the driven vehicle body can be improved.

上記駆動力変化制限手段56は、ローパスフィルタ56Aの他に、次のように各種の構成のものとできる。
図6は、駆動力変化制限手段56として、モータBの回転角の加速度の信号を、上記モータ駆動力指令値rに対して負帰還させるフィードバック手段56Bを設けた例を示す。フィードバック系には、回転角加速度のフィードバックゲイン(比例ゲイン)Fを与える比例回路58が設けられている。
In addition to the low-pass filter 56A, the driving force change limiting means 56 can have various configurations as follows.
FIG. 6 shows an example in which feedback means 56B is provided as the driving force change limiting means 56, which negatively feeds back an acceleration signal of the rotation angle of the motor B with respect to the motor driving force command value r. The feedback system is provided with a proportional circuit 58 that provides a feedback gain (proportional gain) F of rotational angular acceleration.

このように、モータBの回転角加速度をアクセル信号に減算するようにフィードバックしてモータ駆動力指令値rを生成することによっても、モータBの急激な加速・減速を抑制することができる。
この場合、モータBの回転角加速度の検出は、モータBのロータの回転センサ53(図1)で得られる回転角を2階微分することで得ても良い。また、モータBにタコジェネレータ(図示せず)を装着し、その出力を1階微分することで得ても良い。その他いずれの方式において、検出した回転角加速度を利用してもよい。
Thus, the rapid acceleration / deceleration of the motor B can also be suppressed by generating the motor driving force command value r by feeding back the rotational angular acceleration of the motor B to the accelerator signal.
In this case, the rotation angular acceleration of the motor B may be detected by second-order differentiation of the rotation angle obtained by the rotation sensor 53 (FIG. 1) of the rotor of the motor B. Alternatively, a tacho generator (not shown) may be mounted on the motor B and the output thereof may be obtained by first-order differentiation. In any other method, the detected rotational angular acceleration may be used.

図7は、図6に示す実施形態において、フィードバック系に、比例回路58に対してローパスフィルタ59をカスケードに組み合わせた例を示す。
図6に示した例では、単純に回転角加速度を比例ゲイン(フィードバックゲイン)Fで増幅した信号をアクセル信号に減算する構成であるため、フィードバックされる角加速度信号の高周波域でのゲインが高くなり、高周波ノイズによって、誤動作する可能性がある。しかし、図7の例のように、比例ゲインFを与える比例回路58とローパスフィルタ58とをカスケードに組み合わせることによって、高周波ノイズによる誤動作を防止することができる。
FIG. 7 shows an example in which the low-pass filter 59 is combined in a cascade with respect to the proportional circuit 58 in the feedback system in the embodiment shown in FIG.
In the example shown in FIG. 6, since the signal obtained by simply amplifying the rotational angular acceleration with the proportional gain (feedback gain) F is subtracted from the accelerator signal, the gain in the high-frequency region of the fed back angular acceleration signal is high. Therefore, there is a possibility of malfunction due to high frequency noise. However, malfunctions due to high frequency noise can be prevented by combining the proportional circuit 58 providing the proportional gain F and the low-pass filter 58 in a cascade as in the example of FIG.

図8は駆動力変化制限手段56のさらに他の例を示す。すなわち、図6または図7のフィードバック手段56Bは、図5と共に前述したアクセル信号の入力系のローパスフィルタ56Aと、図8のように組み合わせても良い。   FIG. 8 shows still another example of the driving force change limiting means 56. That is, the feedback means 56B of FIG. 6 or FIG. 7 may be combined with the low-pass filter 56A of the accelerator signal input system described above with reference to FIG. 5 as shown in FIG.

図9は駆動力変化制限手段56のさらに他の例を示す。この例は、駆動力変化制限手段56を構成する手段として、コントローラ51における外部モータ指令値の入力部57とモータ駆動用コントローラ回路55との間に、アクセル信号による外部モータ指令値とモータ駆動力指令値rとの関係を、例えば図10に示すような1次を超える次数の関数とする指令値変換手段56Cを介在させたものである。このように指令値を変換することで、アクセル信号が小さい時にはその変化に応じるモータ駆動トルク変動を少なくすることができ、アクセルの踏み始めでは急速な加速を抑制できる。指令値変換手段56Cは、例えば2次関数、またはさらに高次の関係となるように変換するものとされるが、1次を超える次数であれば、2次未満の次数の関数の関係に変換するものであっても良い。
また、この実施形態では、図6と共に前述したフィードバック手段56Bを併用し、指令値変換手段56Cとフィードバック手段56Bとで駆動力変化制限手段56を構成している。
FIG. 9 shows still another example of the driving force change limiting means 56. In this example, as a means for constituting the driving force change limiting means 56, an external motor command value and a motor driving force based on an accelerator signal are provided between the external motor command value input unit 57 and the motor driving controller circuit 55 in the controller 51. For example, a command value conversion means 56C is used in which the relationship with the command value r is a function of the order exceeding the first order as shown in FIG. By converting the command value in this way, when the accelerator signal is small, motor drive torque fluctuations corresponding to the change can be reduced, and rapid acceleration can be suppressed at the beginning of the accelerator depression. The command value conversion means 56C converts, for example, a quadratic function or a higher order relationship, but if the order exceeds the first order, the command value conversion means 56C converts it to a function relationship of the order less than the second order. It may be what you do.
In this embodiment, the feedback means 56B described above with reference to FIG. 6 is used together, and the command value conversion means 56C and the feedback means 56B constitute the driving force change limiting means 56.

図11〜図13は、この発明のさらに他の実施形態を示す。この例は、コントローラ51に、図12に流れ図で示すアルゴリズムでモータBの駆動を制御する状況対応制御手段60を設けたものである。
すなわち、モータ駆動トルクを入力し(S1)、モータBの角加速度を検出して(S2)、この角加速度が予め設定した規定値を超えるか否かを判定し(S3)、規定値を超えた場合、モータ駆動トルクを予め設定した分だけ減少させる(S4)。上記判定過程(S3)で、角加速度が規定値未満の場合は、角加速度の検出(S2)および上記判定(S3)を繰り返す。すなわち、角加速度につき規定値を超えるまで監視を続ける。なお、上記判定過程(S3)は、規定値を超えるか否かの判定に代えて、規定値以上であるか否かを判定するようにしても良い。
ステップS4で、モータ駆動トルクを減少させた後は、モータBの回転数を測定し(S5)、車両前輪の操舵角とホイールベース(前後輪距離)、トレッド(左右輪距離)から求めた車両の旋回半径に応じた車輪の回転数となるモータの回転数に達したか否かを判定する処理(S6)を繰り返して続け、車両旋回半径に応じた車輪回転数となるモータBの回転数に達した後に、再度モータBの駆動トルクを元のトルク値(ステップS1で検出したときのトルク値)まで上昇復帰させる(S7)。
11 to 13 show still another embodiment of the present invention. In this example, the controller 51 is provided with a situation response control means 60 for controlling the driving of the motor B by the algorithm shown in the flowchart of FIG.
That is, the motor drive torque is input (S1), the angular acceleration of the motor B is detected (S2), and it is determined whether or not the angular acceleration exceeds a preset specified value (S3). If this happens, the motor drive torque is decreased by a preset amount (S4). If the angular acceleration is less than the specified value in the determination process (S3), the detection of angular acceleration (S2) and the determination (S3) are repeated. That is, monitoring is continued until the angular acceleration exceeds a specified value. In the determination process (S3), instead of determining whether or not the specified value is exceeded, it may be determined whether or not the specified value is exceeded.
After reducing the motor drive torque in step S4, the rotational speed of the motor B is measured (S5), and the vehicle is obtained from the steering angle of the vehicle front wheel, the wheel base (front and rear wheel distance), and the tread (left and right wheel distance). The process of determining whether or not the motor rotation speed corresponding to the wheel rotation speed corresponding to the turning radius of the motor B has been repeated is continued (S6), and the motor B rotation speed corresponding to the vehicle rotation radius is determined. Then, the drive torque of the motor B is again returned to the original torque value (torque value as detected in step S1) (S7).

このように、モータBの角加速度が規定値を越えた場合に、モータ駆動トルクを予め設定した分だけ減少させ、この後、車両の旋回半径に応じたタイヤの回転数となるモータの回転数に達した後に、再度モータの駆動トルクを上昇させる制御を行うことで、モータ駆動トルクを適正にしつつ車両姿勢制御も最適に保つことができる。   As described above, when the angular acceleration of the motor B exceeds the specified value, the motor driving torque is decreased by a preset amount, and thereafter, the rotational speed of the motor which becomes the rotational speed of the tire according to the turning radius of the vehicle. Then, the control for increasing the driving torque of the motor is performed again, so that the vehicle attitude control can be kept optimal while the motor driving torque is made appropriate.

具体的制御方法を、図13を用いて説明する。まず、基本となる車輪回転数を求める方法を説明する。ホイールベースをH、トレッドをD、左右前輪61,62の平均舵角をθとした場合、左右後輪63,64の軸の中心位置の旋回半径Rは、R=H×tan(π/2- θ) で表される。また、車輪の旋回半径は、右前輪62では、Rfr=((R−D/2)2+H2 )1/2、左前輪61では、Rfl=((R+D/2)2+H2 )1/2、右後輪64では、Rrr=R+D/2、左後輪63では、Rrl=R−D/2となる。全ての車輪の旋回角速度は同じであるから、車輪回転数の比は旋回半径の比と等しい。 A specific control method will be described with reference to FIG. First, a method for obtaining the basic wheel rotation speed will be described. When the wheel base is H, the tread is D, and the average rudder angle of the left and right front wheels 61, 62 is θ, the turning radius R of the center position of the left and right rear wheels 63, 64 is R = H × tan (π / 2 -θ). The turning radius of the wheel is Rfr = ((R−D / 2) 2 + H 2 ) 1/2 for the right front wheel 62 and Rfl = ((R + D / 2) 2 + H 2 ) 1 / for the left front wheel 61. 2. Rrr = R + D / 2 for the right rear wheel 64 and Rrl = RD−2 for the left rear wheel 63. Since the turning angular velocities of all the wheels are the same, the ratio of the wheel rotational speed is equal to the ratio of the turning radius.

上記関係より、モータBによる駆動輪が空転した場合も、左右前輪61,62の回転数を元に、あるべき回転数を推定し、モータトルクを減少させること(図12のステップS3,S4の処理)によってその回転数に制御することができる。ただし、その回転数において駆動力を発生していることが確認できないため、回転数到達後、再度モータトルクを上昇させて駆動力を発生する(図12のステップS5,S6)。モータBの角加速度が規定値を超えた場合は、再度モータトルクを減少させ回転数を下げる制御を行う。   From the above relationship, even when the driving wheel driven by the motor B idles, the number of rotations to be supposed is estimated based on the number of rotations of the left and right front wheels 61 and 62, and the motor torque is reduced (in steps S3 and S4 in FIG. 12). The number of rotations can be controlled by processing. However, since it cannot be confirmed that the driving force is generated at the rotation speed, after reaching the rotation speed, the motor torque is increased again to generate the driving force (steps S5 and S6 in FIG. 12). When the angular acceleration of the motor B exceeds the specified value, control is performed to reduce the motor torque again and reduce the rotational speed.

図11において、状況対応制御手段60は、モータ駆動用コントローラ回路55に対して上記制御を行うものとされる。状況対応制御手段60には、モータ駆動トルクの入力(図12のステップS1)として、例えば、モータ駆動用コントローラ回路55の出力する電流値が入力され、またモータの角加速度は、前記各実施形態と同様に回転センサ53(図1)やタコジェネレータ等の検出値から微分演算される値を用いる。操舵角については、車両のハンドル等の操舵角を検出する操舵角検出手段(図示せず)から得た信号が状況対応制御手段60に入力される。   In FIG. 11, the situation corresponding control means 60 performs the above control on the motor drive controller circuit 55. For example, the current value output from the motor drive controller circuit 55 is input to the situation control unit 60 as the motor drive torque input (step S1 in FIG. 12), and the angular acceleration of the motor is determined according to each of the above embodiments. In the same manner as described above, a value that is differentiated from the detected value of the rotation sensor 53 (FIG. 1) or the tachometer is used. As for the steering angle, a signal obtained from a steering angle detecting means (not shown) for detecting a steering angle of a vehicle handle or the like is input to the situation corresponding control means 60.

状況対応制御手段60は、これ自体が特許請求の範囲で言う駆動力変化制限手段となるが、この実施形態では、状況対応制御手段60と共に、別の駆動力変化制限手段56を併用している。併用する別の駆動力変化制限手段56は、図5〜図10と共に前述したいずれかの構成のものとされる。   The situation handling control means 60 itself becomes the driving force change limiting means referred to in the claims, but in this embodiment, another driving force change limiting means 56 is used together with the situation handling control means 60. . Another driving force change limiting means 56 to be used together has one of the configurations described above with reference to FIGS.

なお、上記各実施形態は、一つの車輪におけるインホイールモータ駆動装置について説明したが、車両の各車輪を駆動するモータに対して、上記各実施形態で述べたインホイールモータ駆動装置が適用される。
また、上記各実施形態は、減速機Cがサイクロイド型である場合につき説明したが、この発明は、減速機Cを他の各種構成のものとした場合にも適用することができる。
In addition, although each said embodiment demonstrated the in-wheel motor drive device in one wheel, the in-wheel motor drive device described in each said embodiment is applied with respect to the motor which drives each wheel of a vehicle. .
Moreover, although each said embodiment demonstrated the case where the reduction gear C was a cycloid type, this invention is applicable also when the reduction gear C is made into the thing of another various structure.

この発明の第1の実施形態にかかるインホイールモータ駆動装置の全体の構成を示す説明図である。It is explanatory drawing which shows the structure of the whole in-wheel motor drive device concerning 1st Embodiment of this invention. 同インホイールモータ駆動装置の車輪用軸受、減速機、およびモータを示す破断側面図である。It is a fracture side view showing a wheel bearing, a reduction gear, and a motor of the in-wheel motor drive. (A)は図2のIII-III 線に沿う断面図、(B)は同図(A)の部分拡大断面図である。(A) is sectional drawing which follows the III-III line | wire of FIG. 2, (B) is the elements on larger scale of FIG. 同インホイールモータ駆動装置のコントローラの一例の概念構成とモータのブロック線図とを組み合わせて示す説明図である。It is explanatory drawing shown combining the conceptual structure of an example of the controller of the same in-wheel motor drive device, and the block diagram of a motor. 図4につき一部を具体的ブロックに置き換えて示した説明図である。FIG. 5 is an explanatory diagram showing a part of FIG. 4 replaced with specific blocks. この発明の他の実施形態に係るインホイールモータ駆動装置のコントローラの概念構成とモータのブロック線図とを組み合わせて示す説明図である。It is explanatory drawing shown combining the conceptual structure of the controller of the in-wheel motor drive device which concerns on other embodiment of this invention, and the block diagram of a motor. この発明のさらに他の実施形態に係るインホイールモータ駆動装置のコントローラの概念構成とモータのブロック線図とを組み合わせて示す説明図である。It is explanatory drawing shown combining the conceptual structure of the controller of the in-wheel motor drive device which concerns on further another embodiment of this invention, and the block diagram of a motor. この発明のさらに他の実施形態に係るインホイールモータ駆動装置のコントローラの概念構成とモータのブロック線図とを組み合わせて示す説明図である。It is explanatory drawing shown combining the conceptual structure of the controller of the in-wheel motor drive device which concerns on further another embodiment of this invention, and the block diagram of a motor. この発明のさらに他の実施形態に係るインホイールモータ駆動装置のコントローラの概念構成とモータのブロック線図とを組み合わせて示す説明図である。It is explanatory drawing shown combining the conceptual structure of the controller of the in-wheel motor drive device which concerns on further another embodiment of this invention, and the block diagram of a motor. 同コントローラにおける指令値変換手段の関数例を示すグラフである。It is a graph which shows the example of a function of the command value conversion means in the controller. この発明のさらに他の実施形態に係るインホイールモータ駆動装置のコントローラの概念構成とモータのブロック線図とを組み合わせて示す説明図である。It is explanatory drawing shown combining the conceptual structure of the controller of the in-wheel motor drive device which concerns on further another embodiment of this invention, and the block diagram of a motor. その状況対応制御手段の処理を示す流れ図である。It is a flowchart which shows the process of the condition response control means. 同状況対応制御手段の処理を示す説明図である。It is explanatory drawing which shows the process of the situation corresponding | compatible control means.

符号の説明Explanation of symbols

1…外方部材
2…内方部材(ハブ)
5…転動体
24…出力軸
32…入力軸
32a,32b…偏心部
34a,34b…曲線板
51…コントローラ
53…回転センサ
54…アクセル
55…モータ駆動用コントローラ回路
56…駆動力変化制限手段
56A…ローパスフィルタ
56B…フィードバック手段
56C…指令値変換手段
57…入力部
58…比例回路
59…ローパスフィルタ
60…状況対応制御手段
A…車輪用軸受
B…モータ
C…減速機
1 ... Outer member 2 ... Inner member (hub)
DESCRIPTION OF SYMBOLS 5 ... Rolling body 24 ... Output shaft 32 ... Input shaft 32a, 32b ... Eccentric part 34a, 34b ... Curve board 51 ... Controller 53 ... Rotation sensor 54 ... Accelerator 55 ... Controller circuit 56 for motor drive ... Driving force change restriction means 56A ... Low-pass filter 56B ... feedback means 56C ... command value conversion means 57 ... input unit 58 ... proportional circuit 59 ... low-pass filter 60 ... situation response control means A ... wheel bearing B ... motor C ... reduction gear

Claims (7)

車輪用軸受、モータ、およびこのモータと上記車輪用軸受との間に介在した減速機を有するインホイールモータ駆動装置において、
外部モータ指令値に応じて上記モータの駆動を制御するコントローラを設け、このコントローラは、モータの駆動力の単位時間当たりの変化量を設定値以下に制御する駆動力変化制限手段を有するものとしたことを特徴とするインホイールモータ駆動装置。
In an in-wheel motor drive device having a wheel bearing, a motor, and a reduction gear interposed between the motor and the wheel bearing,
A controller for controlling the driving of the motor according to an external motor command value is provided, and this controller has a driving force change limiting means for controlling the amount of change in driving force of the motor per unit time to a set value or less. An in-wheel motor drive device characterized by that.
請求項1において、上記減速機がサイクロイド減速機であるインホイールモータ駆動装置。   The in-wheel motor drive device according to claim 1, wherein the speed reducer is a cycloid speed reducer. 請求項1または請求項2において、上記コントローラが、モータ駆動力指令値に応じて上記モータに流す電流を生成するモータ駆動用コントローラ回路を有し、上記駆動力変化制限手段として、上記コントローラにおける上記外部モータ指令値の入力部と上記モータ駆動用コントローラ回路との間に介在したローパスフィルタを有するインホイールモータ駆動装置。   3. The controller according to claim 1, wherein the controller includes a motor drive controller circuit that generates a current to be supplied to the motor in accordance with a motor drive force command value, and the drive force change limiting unit includes the controller in the controller. An in-wheel motor drive device having a low-pass filter interposed between an input unit for an external motor command value and the motor drive controller circuit. 請求項1ないし請求項3のいずれか1項において、上記コントローラが、モータ駆動力指令値に応じて上記モータに流す電流を生成するモータ駆動用コントローラ回路を有し、上記駆動力変化制限手段として、上記モータの角加速度の信号を上記モータ駆動力指令値に対して負帰還させるフィードバック手段を有するインホイールモータ駆動装置。   The controller according to any one of claims 1 to 3, wherein the controller includes a motor drive controller circuit that generates a current to be passed through the motor in accordance with a motor drive force command value. An in-wheel motor drive device comprising feedback means for negatively feeding back the angular acceleration signal of the motor to the motor drive force command value. 請求項4において、上記フィードバック手段が、上記角加速度の信号を通すローパスフィルタを有するインホイールモータ駆動装置。   5. The in-wheel motor drive device according to claim 4, wherein the feedback means has a low-pass filter that passes the angular acceleration signal. 請求項1ないし請求項5のいずれか1項において、上記コントローラが、モータ駆動力指令値に応じて上記モータに流す電流を生成するモータ駆動用コントローラ回路を有し、上記駆動力変化制限手段として、上記コントローラにおける上記外部モータ指令値の入力部と上記モータ駆動用コントローラ回路との間に介在し上記外部モータ指令値と上記モータ駆動力指令値との関係を、1次を超える次数の関数とする指令値変換手段を有するインホイールモータ駆動装置。   6. The motor drive controller circuit according to claim 1, wherein the controller includes a motor drive controller circuit that generates a current to be supplied to the motor in accordance with a motor drive force command value. A relationship between the external motor command value and the motor driving force command value that is interposed between the external motor command value input unit and the motor drive controller circuit in the controller, An in-wheel motor drive device having command value conversion means for performing 請求項1ないし請求項6のいずれか1項において、モータの角加速度が規定値を超えた場合または規定値以上の場合にモータ駆動トルクを設定分だけ減少させ、この減少の後、車両前輪の操舵角とホイールベース、トレッドから求めた車両の旋回半径に応じたモータの回転数に達した後に、再度モータの駆動トルクを上昇させる状況対応制御手段を設けたインホイールモータ駆動装置。   The motor driving torque is reduced by a set amount when the angular acceleration of the motor exceeds a specified value or exceeds a specified value, and after this reduction, An in-wheel motor drive device provided with a situation response control means for increasing the drive torque of the motor again after reaching the rotational speed of the motor according to the turning angle of the vehicle obtained from the steering angle, the wheel base, and the tread.
JP2007003997A 2007-01-12 2007-01-12 In-wheel motor drive device Expired - Fee Related JP4953830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003997A JP4953830B2 (en) 2007-01-12 2007-01-12 In-wheel motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003997A JP4953830B2 (en) 2007-01-12 2007-01-12 In-wheel motor drive device

Publications (2)

Publication Number Publication Date
JP2008172935A true JP2008172935A (en) 2008-07-24
JP4953830B2 JP4953830B2 (en) 2012-06-13

Family

ID=39700481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003997A Expired - Fee Related JP4953830B2 (en) 2007-01-12 2007-01-12 In-wheel motor drive device

Country Status (1)

Country Link
JP (1) JP4953830B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236563A (en) * 2009-03-30 2010-10-21 Toyota Motor Corp Vehicle control device
JP2011093373A (en) * 2009-10-28 2011-05-12 Nsk Ltd Hub for in-wheel motor, and in-wheel motor
WO2011065261A1 (en) * 2009-11-27 2011-06-03 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
WO2012114903A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
WO2012114899A1 (en) 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
WO2012121199A1 (en) 2011-03-07 2012-09-13 Ntn株式会社 Electric vehicle
WO2012121197A1 (en) 2011-03-07 2012-09-13 Ntn株式会社 Electric vehicle
WO2014057537A1 (en) * 2012-10-10 2014-04-17 トヨタ自動車株式会社 Wheel control device, vehicle, wheel control method
US8886381B2 (en) 2011-03-07 2014-11-11 Ntn Corporation Electric vehicle
US9550435B2 (en) 2011-11-24 2017-01-24 Ntn Corporation Electric vehicle control device
US9751409B2 (en) 2011-02-25 2017-09-05 Ntn Corporation Electric automobile

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438419A (en) * 1990-06-04 1992-02-07 Nippondenso Co Ltd Steering angle detector
JPH04191431A (en) * 1990-11-22 1992-07-09 Mazda Motor Corp Slip control device for vehicle
JPH0630510A (en) * 1991-08-16 1994-02-04 Shinko Electric Co Ltd Travel control method for fork-lift truck
JPH06229268A (en) * 1993-02-03 1994-08-16 Mazda Motor Corp Slip control device for vehicle
JPH09130911A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Drive controller for electric automobile
JPH1118214A (en) * 1997-06-20 1999-01-22 Hiroshi Shimizu Controller of electric vehicle
JP2001028809A (en) * 1999-07-12 2001-01-30 Toyota Motor Corp Power controller in vehicle with motor
JP2002064904A (en) * 2000-08-18 2002-02-28 Honda Motor Co Ltd Moving object
JP2006141104A (en) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd Motor traction controller for vehicle
JP2006258289A (en) * 2005-02-16 2006-09-28 Ntn Corp In-wheel motor drive unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438419A (en) * 1990-06-04 1992-02-07 Nippondenso Co Ltd Steering angle detector
JPH04191431A (en) * 1990-11-22 1992-07-09 Mazda Motor Corp Slip control device for vehicle
JPH0630510A (en) * 1991-08-16 1994-02-04 Shinko Electric Co Ltd Travel control method for fork-lift truck
JPH06229268A (en) * 1993-02-03 1994-08-16 Mazda Motor Corp Slip control device for vehicle
JPH09130911A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Drive controller for electric automobile
JPH1118214A (en) * 1997-06-20 1999-01-22 Hiroshi Shimizu Controller of electric vehicle
JP2001028809A (en) * 1999-07-12 2001-01-30 Toyota Motor Corp Power controller in vehicle with motor
JP2002064904A (en) * 2000-08-18 2002-02-28 Honda Motor Co Ltd Moving object
JP2006141104A (en) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd Motor traction controller for vehicle
JP2006258289A (en) * 2005-02-16 2006-09-28 Ntn Corp In-wheel motor drive unit

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236563A (en) * 2009-03-30 2010-10-21 Toyota Motor Corp Vehicle control device
JP2011093373A (en) * 2009-10-28 2011-05-12 Nsk Ltd Hub for in-wheel motor, and in-wheel motor
WO2011065261A1 (en) * 2009-11-27 2011-06-03 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
JP2011133101A (en) * 2009-11-27 2011-07-07 Ntn Corp Wheel bearing device with built-in in-wheel motor sensor
CN102686435A (en) * 2009-11-27 2012-09-19 Ntn株式会社 Wheel bearing device with built-in in-wheel motor sensor
US8581457B2 (en) 2009-11-27 2013-11-12 Ntn Corporation Wheel support bearing assembly with sensor and in-wheel motor integration
WO2012114903A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
WO2012114899A1 (en) 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
US9751409B2 (en) 2011-02-25 2017-09-05 Ntn Corporation Electric automobile
US9031724B2 (en) 2011-02-25 2015-05-12 Ntn Corporation Electric automobile
JP2012178919A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
US8909406B2 (en) 2011-02-25 2014-12-09 Ntn Corporation Electric automobile
US8843291B2 (en) 2011-03-07 2014-09-23 Ntn Corporation Electric vehicle
US9296291B2 (en) 2011-03-07 2016-03-29 Ntn Corporation Electric vehicle
WO2012121199A1 (en) 2011-03-07 2012-09-13 Ntn株式会社 Electric vehicle
WO2012121197A1 (en) 2011-03-07 2012-09-13 Ntn株式会社 Electric vehicle
US9114711B2 (en) 2011-03-07 2015-08-25 Ntn Corporation Electric vehicle
US9126599B2 (en) 2011-03-07 2015-09-08 Ntn Corporation Electric vehicle
US8886381B2 (en) 2011-03-07 2014-11-11 Ntn Corporation Electric vehicle
EP2684736A4 (en) * 2011-03-07 2016-02-24 Ntn Toyo Bearing Co Ltd Electric vehicle
US9550435B2 (en) 2011-11-24 2017-01-24 Ntn Corporation Electric vehicle control device
JP5794446B2 (en) * 2012-10-10 2015-10-14 トヨタ自動車株式会社 Wheel control device, vehicle, wheel control method
US9475404B2 (en) 2012-10-10 2016-10-25 Toyota Jidosha Kabushiki Kaisha Wheel control device, vehicle, wheel control method
CN104661858B (en) * 2012-10-10 2016-11-02 丰田自动车株式会社 Wheel control device, vehicle, wheel control method
CN104661858A (en) * 2012-10-10 2015-05-27 丰田自动车株式会社 Wheel control device, vehicle, wheel control method
WO2014057537A1 (en) * 2012-10-10 2014-04-17 トヨタ自動車株式会社 Wheel control device, vehicle, wheel control method
DE112012006994B4 (en) * 2012-10-10 2021-05-20 Toyota Jidosha Kabushiki Kaisha Wheel control device, vehicle, and wheel control method

Also Published As

Publication number Publication date
JP4953830B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4953830B2 (en) In-wheel motor drive device
JP5072370B2 (en) In-wheel motor drive device
JP5528168B2 (en) Controller for electric vehicles
JP5705585B2 (en) Electric car
JP4877296B2 (en) DRIVE DEVICE AND CONTROL DEVICE THEREOF
JP5657426B2 (en) Electric car
JP5657425B2 (en) Electric car
WO2013077409A1 (en) Electric vehicle control device
JP5936306B2 (en) Electric car
JP6007823B2 (en) Wheel drive device
JP6099965B2 (en) In-wheel motor drive device
JP2008081090A (en) Bearing device for wheel with sensor containing in-wheel type motor
JP2010025263A (en) Vehicle drive device
JP5731233B2 (en) Electric car
JP2003237550A (en) Parking device
JP2007078174A (en) Power transmission device
JP2007216932A (en) In-wheel motor driving device
JP4507768B2 (en) Each wheel independent drive vehicle
JP5063904B2 (en) Hybrid car
JP2017022987A (en) Motor control device
JP2006067669A (en) Vehicle controller
JP2008172975A (en) In-wheel motor drive device
JP5165849B2 (en) In-wheel motor drive device
JP2008081089A (en) Bearing device for wheel with sensor containing in-wheel type motor
JP5829497B2 (en) Electric vehicle motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4953830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees