JP2008172208A - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP2008172208A
JP2008172208A JP2007307621A JP2007307621A JP2008172208A JP 2008172208 A JP2008172208 A JP 2008172208A JP 2007307621 A JP2007307621 A JP 2007307621A JP 2007307621 A JP2007307621 A JP 2007307621A JP 2008172208 A JP2008172208 A JP 2008172208A
Authority
JP
Japan
Prior art keywords
electrode
ceramic heater
temperature
slit
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007307621A
Other languages
Japanese (ja)
Other versions
JP5378677B2 (en
Inventor
Takeshi Torigoe
猛 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007307621A priority Critical patent/JP5378677B2/en
Priority to US11/950,546 priority patent/US7812289B2/en
Publication of JP2008172208A publication Critical patent/JP2008172208A/en
Application granted granted Critical
Publication of JP5378677B2 publication Critical patent/JP5378677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic heater which has high uniform heating performance in respective parts. <P>SOLUTION: The ceramic heater includes a heating portion made of ceramics, and a cooling plate portion. In the heating portion, belt like printed electrodes are formed continuously in a spiral shape along a circumferential direction, and in the printed electrodes 15, 17, slits 51 extended in width directions of the printed electrodes 15, 17 are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、CVD装置やエッチング装置等の半導体製造装置に適用されるセラミックヒータに関する。   The present invention relates to a ceramic heater applied to a semiconductor manufacturing apparatus such as a CVD apparatus or an etching apparatus.

半導体の製造技術分野では、ウエハ等にプラズマエッチング、化学的気相成長(CVD)、及びイオンプレーティング等の処理加工を施すことが多い。このような処理加工を施す場合に、ウエハを加熱する装置としてセラミックヒータ等を使用している。該セラミックヒータは、ウエハ等を載置して加熱する加熱部を備えている。(例えば、特許文献1参照)。   In the field of semiconductor manufacturing technology, wafers and the like are often subjected to processing such as plasma etching, chemical vapor deposition (CVD), and ion plating. When performing such processing, a ceramic heater or the like is used as an apparatus for heating the wafer. The ceramic heater includes a heating unit that places and heats a wafer or the like. (For example, refer to Patent Document 1).

この加熱部には、電圧が印加されることによって発熱する印刷電極(膜状の抵抗発熱体)が設けられている。   The heating unit is provided with a printed electrode (film resistance heating element) that generates heat when a voltage is applied.

ここで、印刷電極を適用したセラミックヒータの加熱部の製造方法を簡単に説明する。セラミックスの仮焼体又は焼結体の上面に抵抗発熱体ペースト層を形成し、該抵抗発熱体ペースト層の上からセラミックス粉体を充填して圧縮成形することにより成形体を作成し、該成形体にホットプレス焼成を施すことによって加熱部が得られる。
特開平4−101380号公報
Here, the manufacturing method of the heating part of the ceramic heater to which the printed electrode is applied will be briefly described. A resistance heating element paste layer is formed on the upper surface of the ceramic calcined body or sintered body, a ceramic powder is filled from above the resistance heating element paste layer, and compression molding is performed to form a molded body. A heating part is obtained by subjecting the body to hot press firing.
Japanese Patent Laid-Open No. 4-101380

しかしながら、前述したセラミックヒータにおいて、帯状の印刷電極が周方向に沿って渦状に連続して形成されている場合は、印刷電極の幅のうち内周側に電流が集中して流れることが考えられる。すると、印刷電極で発生する発熱量も幅方向の内周側が外周側よりも高くなり、印刷電極が形成された電極形成面において発熱密度にバラツキが発生して均熱性が低下するおそれがある。この電極形成面における均熱性の低下によって、加熱部表面の加熱面にも均熱性の低下が生じる。加熱面の均熱性の低下によって、ウエハ等の被処理物の品質低下を招くおそれがある。   However, in the above-described ceramic heater, when the belt-like print electrodes are continuously formed in a spiral shape along the circumferential direction, it is considered that the current flows concentrated on the inner circumference side of the width of the print electrodes. . As a result, the amount of heat generated in the printed electrode is also higher on the inner peripheral side in the width direction than on the outer peripheral side, and there is a possibility that the heat generation density varies on the electrode forming surface on which the printed electrode is formed and the thermal uniformity is lowered. Due to the decrease in the temperature uniformity on the electrode forming surface, the temperature uniformity also decreases on the heating surface of the heating portion surface. There is a risk that the quality of the object to be processed such as a wafer is deteriorated due to a decrease in the thermal uniformity of the heating surface.

そこで、本発明は、加熱面における均熱性が高いセラミックヒータを提供することを目的とする。   Accordingly, an object of the present invention is to provide a ceramic heater having high heat uniformity on the heating surface.

前記課題を解決するため、本発明に係るセラミックヒータは、セラミックスからなる加熱部と、該加熱部に、加熱部の周方向に沿って渦状に連続して形成した帯状の印刷電極と、該印刷電極の幅方向に、加熱部の内周側から外周側に向けて延びるスリットとを備え、前記スリットを、前記印刷電極の部位のうち、外周側に向けて凸状に折れ曲がる屈曲部に設けたことを特徴とする。   In order to solve the above-mentioned problems, a ceramic heater according to the present invention includes a heating part made of ceramics, a belt-like printed electrode formed continuously in a spiral shape along the circumferential direction of the heating part, and the printing A slit extending in the width direction of the electrode from the inner peripheral side to the outer peripheral side of the heating unit, and the slit is provided in a bent portion that bends in a convex shape toward the outer peripheral side in the portion of the printed electrode. It is characterized by that.

本発明に係るセラミックヒータでは、印刷電極の幅方向に、加熱部の内周側から外周側に向けて延びるスリットを印刷電極の屈曲部に形成している。従って、印刷電極の幅方向のどの部位にも均一に電流が流れるため、電流密度が幅方向で均一化される。これによって、印刷電極が形成された電極形成面における均熱性が向上し、セラミックヒータの加熱部に形成された加熱面内における均熱性も向上する。加熱面における均熱性の向上に伴って、ウエハ等の被処理物に品質不良が生じることがない。   In the ceramic heater according to the present invention, slits extending from the inner circumference side to the outer circumference side of the heating part are formed in the bent part of the print electrode in the width direction of the print electrode. Accordingly, since the current flows uniformly to any part in the width direction of the print electrode, the current density is made uniform in the width direction. Thereby, the thermal uniformity on the electrode forming surface on which the printed electrode is formed is improved, and the thermal uniformity in the heating surface formed on the heating portion of the ceramic heater is also improved. Along with the improvement of the heat uniformity on the heating surface, quality defects do not occur in the workpiece such as a wafer.

以下、図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態によるセラミックヒータを概略的に示す断面図である。   FIG. 1 is a cross-sectional view schematically illustrating a ceramic heater according to an embodiment of the present invention.

このセラミックヒータ1では、上側に配置した加熱部3と下側に配置したクーリングプレート部5とがボンディングシート7を介して接合されている。また、加熱部3の上面は、ウエハ等の被処理物が載置されて加熱される加熱面9に形成されている。そして、加熱部3の内部には、印刷電極11が設けられている。   In the ceramic heater 1, the heating unit 3 disposed on the upper side and the cooling plate unit 5 disposed on the lower side are joined via a bonding sheet 7. Further, the upper surface of the heating unit 3 is formed on a heating surface 9 on which an object to be processed such as a wafer is placed and heated. A printing electrode 11 is provided inside the heating unit 3.

図2は、図1のA−A線による断面図である。また、図3は、図2の一部を拡大した断面図である。   2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is an enlarged cross-sectional view of a part of FIG.

図2に示すように、電極形成面13に形成された印刷電極11は、内周側に配置された幅の広い内側電極15と、該内側電極15の外周側に配置された幅の狭い外側電極17とから構成されている。内側電極15の一端19及び他端21は、図2の左端部に示すようにされており、互いに近接して配置されている。   As shown in FIG. 2, the printed electrode 11 formed on the electrode forming surface 13 includes a wide inner electrode 15 disposed on the inner peripheral side, and a narrow outer surface disposed on the outer peripheral side of the inner electrode 15. And the electrode 17. One end 19 and the other end 21 of the inner electrode 15 are as shown at the left end of FIG. 2 and are arranged close to each other.

内側電極15は、一端19から時計方向に沿って図2の右斜め上方に延び、途中の折り返し部23で折り返して反時計方向に沿って延びる。そして、周方向に沿って渦状に連続して延び、内側電極15の中心部近傍で、再度折り返して時計方向に沿って延び、他端21に至る。   The inner electrode 15 extends obliquely upward and to the right in FIG. 2 from the one end 19 in the clockwise direction, and is folded at the middle folding portion 23 and extends in the counterclockwise direction. Then, it continuously extends in a spiral shape along the circumferential direction, and is folded back and extends in the clockwise direction near the center of the inner electrode 15, and reaches the other end 21.

外側電極17は、内側電極15よりも幅の狭い電極であり、一端25と他端27とが近接して配置されている。一端25から、反時計周りに周方向に沿って延び、途中で折り返し、この折り返し部29から時計周りに周方向に沿って一周延び、再度、別の折り返し部31にて折り返して一周延び、前記他端27に至る。   The outer electrode 17 is an electrode having a narrower width than the inner electrode 15, and one end 25 and the other end 27 are arranged close to each other. From one end 25, it extends in the counterclockwise direction along the circumferential direction, and is folded in the middle, extending from the folded portion 29 in the clockwise direction along the circumferential direction, and then folded in another folding portion 31 to extend once in a round, The other end 27 is reached.

図3は、複数箇所にスリットが形成された印刷電極を示している。   FIG. 3 shows a printed electrode in which slits are formed at a plurality of locations.

内側電極15においては、径方向内側から径方向外側に向けて(即ち、内周側から外周側に向けて)屈曲する屈曲部が複数形成されている。これらの屈曲部は、印刷電極が略直角状に折れ曲がる部位であり、外周側に向けて凸状に形成されている。   In the inner electrode 15, a plurality of bent portions that are bent from the radially inner side toward the radially outer side (that is, from the inner peripheral side toward the outer peripheral side) are formed. These bent portions are portions where the printed electrode is bent at a substantially right angle, and are formed in a convex shape toward the outer peripheral side.

前記屈曲部には、第1屈曲部33、第2屈曲部35、第3屈曲部37、第4屈曲部39、第5屈曲部41、第6屈曲部43、第7屈曲部45、第8屈曲部47、及び第9屈曲部49があり、それぞれの屈曲部には、内周側から外周側に向けてそれぞれスリット51が形成されている。   The bent portion includes a first bent portion 33, a second bent portion 35, a third bent portion 37, a fourth bent portion 39, a fifth bent portion 41, a sixth bent portion 43, a seventh bent portion 45, and an eighth bent portion. There are a bent portion 47 and a ninth bent portion 49, and a slit 51 is formed in each bent portion from the inner peripheral side to the outer peripheral side.

印刷電極11は、周方向に沿って渦状に連続して形成されている。ここで、前記[発明が解決しようとする課題]にて述べたように、スリット51が形成されていない場合は、印刷電極11における幅方向のうち内周側に電流が偏って流れやすく、内周側の電流密度が大きくなる。そうすると、内周側の発熱密度が外周側よりも大きくなる傾向になる。   The printed electrode 11 is continuously formed in a spiral shape along the circumferential direction. Here, as described in the above [Problems to be Solved by the Invention], when the slit 51 is not formed, the current tends to flow unevenly on the inner peripheral side in the width direction of the print electrode 11, The current density on the circumferential side increases. Then, the heat generation density on the inner peripheral side tends to be larger than that on the outer peripheral side.

しかし、本実施形態によれば、印刷電極11の内周側から外周側に向けて延びるスリット51を形成しているため、印刷電極11の幅方向における電流密度を均一化することができ、発熱密度も均一化することができる。   However, according to the present embodiment, since the slits 51 extending from the inner peripheral side to the outer peripheral side of the print electrode 11 are formed, the current density in the width direction of the print electrode 11 can be made uniform, and the heat generation The density can also be made uniform.

また、図3の左上に示すように、外側電極17の一部を突出させて突出部53を形成している。内側電極15の最も外周側には、前述したように、折り返し部23が形成されており、この折り返し部23、内側電極15の第9屈曲部49、及び外側電極17で囲まれた部位は、印刷電極11の印刷密度が低い低密度部55となる。従って、この低密度部55に向けて(即ち、内周側に向けて)、外側電極17の突出部53を突設させている。この外側電極17の突出部53には、外周側から内周側に向けてスリット51が形成されている。   Further, as shown in the upper left of FIG. 3, a part of the outer electrode 17 is protruded to form a protrusion 53. As described above, the folded portion 23 is formed on the outermost peripheral side of the inner electrode 15, and the portion surrounded by the folded portion 23, the ninth bent portion 49 of the inner electrode 15, and the outer electrode 17 is as follows. It becomes the low density part 55 where the printing density of the printing electrode 11 is low. Therefore, the protruding portion 53 of the outer electrode 17 is provided so as to project toward the low density portion 55 (that is, toward the inner peripheral side). A slit 51 is formed in the protruding portion 53 of the outer electrode 17 from the outer peripheral side toward the inner peripheral side.

ここで、前記低密度部55は、内側電極15と外側電極17との間隔が大きい部位であり、発熱密度が低くなっている。従って、この低密度部55に向けて突出部53を突出して形成することにより、低密度部55における発熱温度の低下を防止し、電極形成面13における均熱性を良好な状態にすることができる。   Here, the low density portion 55 is a portion where the distance between the inner electrode 15 and the outer electrode 17 is large, and the heat generation density is low. Therefore, by forming the protruding portion 53 so as to project toward the low density portion 55, it is possible to prevent a decrease in the heat generation temperature in the low density portion 55 and to make the temperature uniformity on the electrode forming surface 13 good. .

なお、前述した図2の内側電極15においても、図2の左端部に示したように、内側電極15の一端19及び他端21と、これらの一端19,他端21の内周側に隣接して配置された内側電極15との間に、別の低密度部59が形成されている。そして、この低密度部59に向けて、内側電極15の一部を突出させた突出部61が形成されている。   2, the inner electrode 15 of FIG. 2 is adjacent to the one end 19 and the other end 21 of the inner electrode 15 and the inner peripheral side of the one end 19 and the other end 21, as shown at the left end of FIG. Another low density portion 59 is formed between the inner electrode 15 and the inner electrode 15. A projecting portion 61 is formed by projecting a part of the inner electrode 15 toward the low density portion 59.

図4は、第2屈曲部におけるスリット近傍部を拡大した平面図である。   FIG. 4 is an enlarged plan view of the vicinity of the slit in the second bent portion.

図4に示すように、第2屈曲部35の径方向内側には、外周側に向けて細長く延びる略矩形状のスリット51が形成されている。スリット51の長手方向に沿った長さはxであり、幅はyに設定されている。また、図3に示すように、互いに隣接する印刷電極同士の間隔をzとすると、以下の(式1)でΔTが得られる。このΔTが2℃未満となるようにx,y,zを選択する。   As shown in FIG. 4, a substantially rectangular slit 51 extending elongated toward the outer peripheral side is formed on the radially inner side of the second bent portion 35. The length along the longitudinal direction of the slit 51 is x, and the width is set to y. Further, as shown in FIG. 3, when the interval between adjacent print electrodes is z, ΔT can be obtained by the following (formula 1). X, y, and z are selected so that ΔT is less than 2 ° C.

ΔT =(-0.06y-0.773)x-0.24y+0.424z+1.522・・・(式1)
また、下記(式2)によって面積率Sを定義する。

Figure 2008172208
ΔT = (-0.06y-0.773) x-0.24y + 0.424z + 1.522 (Formula 1)
Moreover, the area ratio S is defined by the following (Formula 2).
Figure 2008172208

ここで、ΔTが2℃未満となるx,y,zとΔTの値とを(式2)に代入して面積率Sを算出し、この算出した面積率Sが5%以下になるように、x,y,zを設定することにより、電極形成面13及び加熱面9の均熱性を非常に高くすることができる。   Here, the area ratio S is calculated by substituting the values of x, y, z and ΔT at which ΔT is less than 2 ° C. into (Equation 2), and the calculated area ratio S is 5% or less. , X, y, z can be set so that the temperature uniformity of the electrode forming surface 13 and the heating surface 9 can be made extremely high.

以下に、本実施形態によるセラミックヒータの製造方法を簡単に説明する。   Below, the manufacturing method of the ceramic heater by this embodiment is demonstrated easily.

まず、セラミックからなる円盤状の仮焼体又は焼結体の表面(電極形成面13)に、周方向に沿って渦状に連続した電極を印刷することにより、電極形成面13の上に印刷電極11が形成される。そして、この印刷電極11が形成された仮焼体又は焼結体の上に、セラミック粉体を充填し、該セラミック粉体を圧縮成形することにより、成形体を作成する。次いで、この成形体にホットポレス焼成を施し、所定の機械加工を施すことにより取付穴を形成し、該取付穴を介して給電端子を電極に接続し、加熱部3が完成する。   First, a printed electrode is formed on the electrode forming surface 13 by printing a continuous electrode in a spiral shape along the circumferential direction on the surface (electrode forming surface 13) of a disk-shaped calcined body or sintered body made of ceramic. 11 is formed. Then, a ceramic body is filled on the calcined body or sintered body on which the printed electrode 11 is formed, and the ceramic powder is compression-molded to form a molded body. Next, the molded body is subjected to hot pole firing and subjected to predetermined machining to form an attachment hole, and the power supply terminal is connected to the electrode through the attachment hole, whereby the heating unit 3 is completed.

一方、クーリングプレート部5は、例えばアルミニウム等の金属からなり、内部に冷却流路及び導通孔を形成する。   On the other hand, the cooling plate part 5 consists of metals, such as aluminum, for example, and forms a cooling flow path and a conduction | electrical_connection hole inside.

そして、これらの加熱部3及びクーリングプレート部5をボンディングシート7を介して接合すると、本発明に係るセラミックヒータ1が完成する。   And if these heating parts 3 and cooling plate part 5 are joined via bonding sheet 7, ceramic heater 1 concerning the present invention will be completed.

以下に、本発明を実施例を通して具体的に説明する。   Hereinafter, the present invention will be specifically described through examples.

[実施例1]
実施例1では、図1と同様の構造を有するセラミックヒータ1を用いて、内部に印刷電極11が設けられた加熱部3の加熱面9における均熱性を検証した。
[Example 1]
In Example 1, using the ceramic heater 1 having the same structure as that shown in FIG. 1, the thermal uniformity on the heating surface 9 of the heating unit 3 in which the printed electrode 11 was provided was verified.

セラミックヒータ1における加熱部3は、アルミナからなり、電極形成面13の上に印刷電極11が設けられている。なお、加熱部3は、前記実施形態で説明した方法と同じ製造方法によって作製した。   The heating unit 3 in the ceramic heater 1 is made of alumina, and a printed electrode 11 is provided on the electrode forming surface 13. In addition, the heating part 3 was produced by the same manufacturing method as the method demonstrated in the said embodiment.

セラミックヒータ1は、略円盤状に形成されており、その外径は300mmであり、厚さは6mmとした。また、印刷電極11は図2に示す形状とした。なお、印刷電極11と加熱面9との距離は、3.5mmとした。   The ceramic heater 1 is formed in a substantially disc shape, and has an outer diameter of 300 mm and a thickness of 6 mm. The printed electrode 11 has a shape shown in FIG. The distance between the printing electrode 11 and the heating surface 9 was 3.5 mm.

前記セラミックヒータ1の印刷電極11に、給電端子を介して2950Wの電力を供給した。具体的には、内側電極15には2380W、外側電極17には590Wの電力を供給した。この状態で、図5,6に示すように、加熱面9における発熱量を赤外線カメラを用いて測定した。図5は本発明例による加熱面9での発熱分布を示している。この印刷電極には、スリットを形成している。一方、図6は印刷電極にスリットを形成していない、比較例による発熱分布を示す。   Electric power of 2950 W was supplied to the printing electrode 11 of the ceramic heater 1 through a power supply terminal. Specifically, 2380 W was supplied to the inner electrode 15 and 590 W was supplied to the outer electrode 17. In this state, as shown in FIGS. 5 and 6, the amount of heat generated on the heating surface 9 was measured using an infrared camera. FIG. 5 shows a heat generation distribution on the heating surface 9 according to an example of the present invention. A slit is formed in the printed electrode. On the other hand, FIG. 6 shows a heat generation distribution according to a comparative example in which no slit is formed in the printed electrode.

図5においては、ハッチング部T1の温度は、白色部T0の温度よりも約1.1℃低かった。図6においては、ハッチング部T1の温度は、白色部T0の温度よりも約1.1℃低く、ハッチング部T2の温度は、白色部T0の温度よりも約3.2℃低く、ハッチング部T3の温度は、白色部T0の温度よりも約5.4℃低かった。   In FIG. 5, the temperature of the hatched portion T1 is approximately 1.1 ° C. lower than the temperature of the white portion T0. In FIG. 6, the temperature of the hatched portion T1 is approximately 1.1 ° C. lower than the temperature of the white portion T0, the temperature of the hatched portion T2 is approximately 3.2 ° C. lower than the temperature of the white portion T0, and the hatched portion T3. The temperature of was about 5.4 ° C. lower than the temperature of the white part T0.

また、図7のグラフは、図5及び図6での温度分布を示す。即ち、図5,6に示すように、加熱面9の中心部近傍における温度測定開始部STから、印刷電極の屈曲部(図2参照)に対応する加熱面9の部位を通って、電極形成面13の外周縁に対応する加熱面9の部位における温度測定終了部ENに至る温度測定部位57に沿って加熱温度を測定した。   Moreover, the graph of FIG. 7 shows the temperature distribution in FIG.5 and FIG.6. That is, as shown in FIGS. 5 and 6, the electrode formation is performed from the temperature measurement start portion ST in the vicinity of the center portion of the heating surface 9 through the portion of the heating surface 9 corresponding to the bent portion (see FIG. 2) of the printed electrode. The heating temperature was measured along the temperature measurement portion 57 that reaches the temperature measurement end portion EN in the portion of the heating surface 9 corresponding to the outer peripheral edge of the surface 13.

図7に示すように、実線で示す本発明例(図5に相当)では加熱面9の全体における発熱温度の最大値と最低値との差違は1.7℃であり、破線で示す比較例(図6に相当)では4.2℃となった。このように、印刷電極にスリットを形成した本発明例の方が、スリットを形成していない比較例よりも、加熱面9の全体における発熱温度の均熱性が大幅に向上することが判明した。   As shown in FIG. 7, in the example of the present invention indicated by the solid line (corresponding to FIG. 5), the difference between the maximum value and the minimum value of the heat generation temperature on the entire heating surface 9 is 1.7 ° C. (Corresponding to FIG. 6) was 4.2 ° C. Thus, it turned out that the example of the present invention in which the slits are formed on the printed electrodes significantly improves the temperature uniformity of the heat generation temperature on the entire heating surface 9 than the comparative example in which no slits are formed.

[実施例2]
次いで、電極間隔zを4mmとし、スリットの長さx、及び幅yを、下記表1に示す値に設定した場合の発熱温度を測定した。また、セラミックヒータ1の大きさを、外径が141mmで厚さを6mmとした。なお、加熱部3は、実施例1と同様にアルミナからなり、セラミックヒータ1の製造方法は、実施例1と同一にした。

Figure 2008172208
[Example 2]
Next, the exothermic temperature was measured when the electrode interval z was 4 mm, and the slit length x and width y were set to the values shown in Table 1 below. The ceramic heater 1 was sized to have an outer diameter of 141 mm and a thickness of 6 mm. The heating unit 3 is made of alumina as in the first embodiment, and the manufacturing method of the ceramic heater 1 is the same as that in the first embodiment.
Figure 2008172208

印刷電極11に897.8Wの電力を供給し、加熱面9における発熱温度を測定した。なお、実施例2における897.8Wの供給電力は、実施例1の外径が300mmのセラミックヒータ1における3kWの供給電力に相当する発熱密度を有する。   897.8 W of electric power was supplied to the printing electrode 11, and the heat generation temperature on the heating surface 9 was measured. The supply power of 897.8 W in the second embodiment has a heat generation density corresponding to the supply power of 3 kW in the ceramic heater 1 having an outer diameter of 300 mm in the first embodiment.

図8は、表1における本発明例7における加熱面9の温度分布を示す概略図である。加熱面9のほぼ全体が、設定温度である45℃の温度に発熱されており、図8の上部に2箇所、最低温度である42℃の部位63が見られた。ここで、設定温度と最低温度との差は3℃であり、2℃よりも大きい。この42℃の部位の面積63は、62.5mmであった。よって、設定温度と最低温度との温度差が2℃よりも大きくなる部位のレンジ外れ面積率は0.4%となった。 FIG. 8 is a schematic diagram showing the temperature distribution of the heating surface 9 in Example 7 of the present invention in Table 1. Almost the entire heating surface 9 was heated to a temperature of 45 ° C., which is a set temperature, and two places and a portion 63 having a minimum temperature of 42 ° C. were seen in the upper part of FIG . Here, the difference between the set temperature and the minimum temperature is 3 ° C., which is larger than 2 ° C. The area 63 of this 42 ° C. region was 62.5 mm 2 . Therefore, the out-of-range area ratio of the portion where the temperature difference between the set temperature and the minimum temperature is greater than 2 ° C. is 0.4%.

なお、このレンジ外れ面積率の算出方法を簡単に説明する。加熱面9と電極形成面13とは、同一面積に形成されている。まず、加熱面9の全体の面積は、π×(141/2)2=15607mmとなる。一方、発熱温度が42℃(最低温度)の部位63の面積は、62.5mmである。従って、表1に示すように、レンジ外れ面積率=(62.5/15607)×100≒0.4%と算出される。 A method for calculating the out-of-range area ratio will be briefly described. The heating surface 9 and the electrode forming surface 13 are formed in the same area. First, the entire area of the heating surface 9 is π × (141/2) 2 = 15607 mm 2 . On the other hand, the area of the part 63 where the heat generation temperature is 42 ° C. (minimum temperature) is 62.5 mm 2 . Therefore, as shown in Table 1, the out-of-range area ratio = (62.5 / 15607) × 100≈0.4%.

また、図9は、表1中の比較例1の加熱面9における温度分布を示している。この比較例1では、印刷電極11にスリットを形成しなかった。加熱面9において最低温度である42℃の部位63が3箇所見られた。設定温度と最低温度との温度差が2℃よりも大きい部位の面積(部位63の合計面積)は、1967mmであった。従って、表1に示すように、レンジ外れ面積率=(1967/15607)×100=12.6%となる。他のレンジ外れ面積率の算出方法も同様とした。 FIG. 9 shows the temperature distribution on the heating surface 9 of Comparative Example 1 in Table 1. In Comparative Example 1, no slit was formed in the printed electrode 11. Three portions 63 at 42 ° C., which is the lowest temperature, were found on the heating surface 9. The area of the part where the temperature difference between the set temperature and the minimum temperature is greater than 2 ° C. (total area of the part 63) was 1967 mm 2 . Therefore, as shown in Table 1, the out-of-range area ratio = (1967/15607) × 100 = 12.6%. The other calculation methods for the out-of-range area ratio were the same.

表1に示すように、電極間隔zが4mmの場合、本発明例1〜20のレンジ外れ面積率は、比較例1のレンジ外れ面積率よりも大幅に小さいことが判明した。   As shown in Table 1, when the electrode spacing z was 4 mm, it was found that the out-of-range area ratio of Examples 1 to 20 of the present invention was significantly smaller than the out-of-range area ratio of Comparative Example 1.

[実施例3]
次いで、電極間隔zを1.5mmとし、スリット51の長さx、及び幅yを、下記表2に示す値に設定した場合の発熱温度を測定した。また、セラミックヒータ1の大きさを、外径が117mmで厚さを6mmとした。なお、加熱部3は、実施例1,2と同様にアルミナからなり、セラミックヒータ1の製造方法は、実施例1及び実施例2と同一にした。

Figure 2008172208
[Example 3]
Next, the exothermic temperature was measured when the electrode interval z was 1.5 mm and the length x and width y of the slit 51 were set to the values shown in Table 2 below. The ceramic heater 1 was sized to have an outer diameter of 117 mm and a thickness of 6 mm. The heating unit 3 is made of alumina as in the first and second embodiments, and the manufacturing method of the ceramic heater 1 is the same as that in the first and second embodiments.
Figure 2008172208

印刷電極11に602.2Wの電力を供給し、加熱面9における発熱温度を測定した。なお、実施例3における602.2Wの供給電力は、実施例1の外径が300mmのセラミックヒータ1における3kWの供給電力に相当する発熱密度を有する。   A power of 602.2 W was supplied to the printing electrode 11 and the heat generation temperature on the heating surface 9 was measured. In addition, the supply power of 602.2 W in Example 3 has a heat generation density corresponding to the supply power of 3 kW in the ceramic heater 1 having an outer diameter of 300 mm in Example 1.

図10は、表2の本発明例23における温度分布を示す加熱面9の概略図である。加熱面9のほぼ全体にわたって、設定温度である45℃の温度に発熱されていた。また、最低温度は、設定温度の45℃よりも0.4℃低い44.6℃であった。よって、設定温度と最低温度との温度差が2℃よりも大きくなる部位のレンジ外れ面積率は0%となった。   FIG. 10 is a schematic view of the heating surface 9 showing the temperature distribution in Invention Example 23 in Table 2. Over almost the entire heating surface 9, heat was generated at a set temperature of 45 ° C. The minimum temperature was 44.6 ° C., which is 0.4 ° C. lower than the set temperature of 45 ° C. Therefore, the out-of-range area ratio of the part where the temperature difference between the set temperature and the minimum temperature is greater than 2 ° C. is 0%.

図11は、表2の比較例2における温度分布を示す加熱面9の概略図である。この比較例2では、印刷電極11にスリットを形成しなかった。加熱面9において、最低温度である42℃の部位63が3箇所見られた。設定温度と最低温度との温度差が2℃よりも大きくなる部位の面積(部位63の合計面積)は817mmであり、レンジ外れ面積率は7.6%となった。 FIG. 11 is a schematic view of the heating surface 9 showing the temperature distribution in Comparative Example 2 in Table 2. In Comparative Example 2, no slit was formed in the printed electrode 11. On the heating surface 9, three portions 63 having a minimum temperature of 42 ° C. were found. The area of the part where the temperature difference between the set temperature and the minimum temperature is greater than 2 ° C. (total area of the part 63) was 817 mm 2 , and the out-of-range area ratio was 7.6%.

表2に示すように、本発明例21〜39におけるレンジ外れ面積率は、比較例2におけるレンジ外れ面積率よりも、大幅に小さい値となった。   As shown in Table 2, the out-of-range area ratio in Examples 21 to 39 of the present invention was significantly smaller than the out-of-range area ratio in Comparative Example 2.

次いで、前記実施形態で示した(式1)(式2)について説明する。以下に、(式1)(式2)を再掲する。   Next, (Formula 1) and (Formula 2) shown in the embodiment will be described. (Equation 1) and (Equation 2) are listed again below.

ΔT=(-0.06y-0.773)x-0.24y+0.424z+1.522・・・(式1)

Figure 2008172208
ΔT = (-0.06y-0.773) x-0.24y + 0.424z + 1.522 (Formula 1)
Figure 2008172208

前記表1及び表2に記載されたx,y,zをそれぞれ(式1)に代入してΔTを求める。この(式1)によって求められたΔTが2℃未満となるx,y,zを選択する。そして、これらのx,y,z,ΔTを(式2)に代入して面積率Sを求めた。本発明例1〜39の全てについて、面積率Sが5%以下となり、良好な均熱性を有することが判明した。具体的に一例を示す。   ΔT is obtained by substituting x, y, and z described in Tables 1 and 2 into (Equation 1), respectively. X, y, and z are selected such that ΔT obtained by (Equation 1) is less than 2 ° C. Then, the area ratio S was obtained by substituting these x, y, z, and ΔT into (Equation 2). For all of Examples 1 to 39 of the present invention, the area ratio S was 5% or less, and it was found that the samples had good heat uniformity. A specific example is shown.

本発明例20では、x=2.0、y=3.0、z=4.0である。(式1)を用いてΔTを算出すると、ΔT≒0.592となった。この0.592は、2未満であるため、(式2)によって面積率Sを求めると、S≒1.31(5%以下)となった。このように、本発明例20では、ΔTが2℃未満となり、面積率Sが5%以下となった。   In Invention Example 20, x = 2.0, y = 3.0, and z = 4.0. When ΔT was calculated using (Expression 1), ΔT≈0.592 was obtained. Since this 0.592 is less than 2, when the area ratio S is determined by (Equation 2), S≈1.31 (5% or less). Thus, in Invention Example 20, ΔT was less than 2 ° C., and the area ratio S was 5% or less.

本発明の実施形態によるセラミックヒータを概略的に示す断面図である。1 is a cross-sectional view schematically showing a ceramic heater according to an embodiment of the present invention. 図1のA−A線による断面図であり、電極形成面の全体を示している。It is sectional drawing by the AA line of FIG. 1, and has shown the whole electrode formation surface. 図2の一部を拡大した断面図である。It is sectional drawing to which a part of FIG. 2 was expanded. 第2屈曲部におけるスリット近傍部を拡大した平面図である。It is the top view to which the slit vicinity part in the 2nd bending part was expanded. 実施例1において、印刷電極にスリットを形成した本発明例の加熱面での温度分布を示す概略図である。In Example 1, it is the schematic which shows the temperature distribution in the heating surface of the example of this invention which formed the slit in the printed electrode. 実施例1において、印刷電極にスリットを形成しない比較例の加熱面での温度分布を示す概略図である。In Example 1, it is the schematic which shows the temperature distribution in the heating surface of the comparative example which does not form a slit in a printing electrode. 実施例1において、図5及び図6での温度測定結果を示したグラフである。In Example 1, it is the graph which showed the temperature measurement result in FIG.5 and FIG.6. 実施例2における本発明例7の加熱面の温度分布を示す概略図である。6 is a schematic diagram showing a temperature distribution on a heating surface of Example 7 of the present invention in Example 2. FIG. 実施例2における比較例1の加熱面の温度分布を示す概略図である。6 is a schematic diagram showing a temperature distribution on a heating surface of Comparative Example 1 in Example 2. FIG. 実施例3における本発明例25の加熱面の温度分布を示す概略図である。It is the schematic which shows the temperature distribution of the heating surface of this invention example 25 in Example 3. FIG. 実施例3における比較例2の加熱面の温度分布を示す概略図である。6 is a schematic diagram showing a temperature distribution on a heating surface of Comparative Example 2 in Example 3. FIG.

符号の説明Explanation of symbols

1…セラミックヒータ
3…加熱部
11…印刷電極
33…第1屈曲部(屈曲部)
35…第2屈曲部(屈曲部)
37…第3屈曲部(屈曲部)
39…第4屈曲部(屈曲部)
41…第5屈曲部(屈曲部)
43…第6屈曲部(屈曲部)
45…第7屈曲部(屈曲部)
47…第8屈曲部(屈曲部)
49…第9屈曲部(屈曲部)
51…スリット
53,61…突出部
55,59…低密度部
DESCRIPTION OF SYMBOLS 1 ... Ceramic heater 3 ... Heating part 11 ... Print electrode 33 ... 1st bending part (bending part)
35 ... 2nd bending part (bending part)
37 ... 3rd bending part (bending part)
39 ... Fourth bent part (bent part)
41 ... Fifth bent part (bent part)
43 ... Sixth bent part (bent part)
45 ... Seventh bent part (bent part)
47 ... Eighth bent part (bent part)
49 ... 9th bent part (bent part)
51 ... Slit 53, 61 ... Projection part 55, 59 ... Low density part

Claims (3)

セラミックスからなる加熱部と、該加熱部に、加熱部の周方向に沿って渦状に連続して形成した帯状の印刷電極とを備え、該印刷電極の幅方向に、加熱部の内周側から外周側に向けて延びるスリットを形成すると共に、前記スリットを、前記印刷電極の部位のうち外周側に向けて凸状に折れ曲がる屈曲部に設けたことを特徴とするセラミックヒータ。   A heating part made of ceramics, and a belt-like printed electrode formed continuously in a spiral shape along the circumferential direction of the heating part are provided on the heating part, and from the inner peripheral side of the heating part in the width direction of the printed electrode A ceramic heater, wherein a slit extending toward an outer peripheral side is formed, and the slit is provided in a bent portion that bends in a convex shape toward the outer peripheral side in a portion of the printed electrode. セラミックスからなる加熱部と、該加熱部に、加熱部の周方向に沿って渦状に連続して形成した帯状の印刷電極とを備え、該印刷電極の幅方向に延びるスリットを前記印刷電極に形成し、
前記印刷電極の印刷密度が低い低密度部に向けて印刷電極を突出して形成し、前記スリットを、前記低密度部に向けて形成したことを特徴とするセラミックヒータ。
A heating part made of ceramics, and a belt-like print electrode formed continuously in a spiral along the circumferential direction of the heating part, and a slit extending in the width direction of the print electrode are formed in the print electrode And
A ceramic heater, wherein a printed electrode protrudes toward a low-density portion where the printing density of the printed electrode is low, and the slit is formed toward the low-density portion.
前記スリットの長さをx、幅をy、隣接する印刷電極同士の間隔をzとした場合に、下記(式1)で得られるΔTが2℃未満となるx,y,zを選択し、このときのx,y,z,ΔTを(式2)に代入して面積率Sを算出し、この算出した面積率Sが5%以下となるように、前記x,y,zを設定したことを特徴とする請求項1に記載のセラミックヒータ。
ΔT=(-0.06y-0.773)x-0.24y+0.424z+1.522・・・(式1)
Figure 2008172208
When the length of the slit is x, the width is y, and the interval between adjacent print electrodes is z, select x, y, z where ΔT obtained by the following (Formula 1) is less than 2 ° C., The area ratio S is calculated by substituting x, y, z, and ΔT at this time into (Equation 2), and the x, y, and z are set so that the calculated area ratio S is 5% or less. The ceramic heater according to claim 1.
ΔT = (-0.06y-0.773) x-0.24y + 0.424z + 1.522 (Formula 1)
Figure 2008172208
JP2007307621A 2006-12-15 2007-11-28 Ceramic heater Active JP5378677B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007307621A JP5378677B2 (en) 2006-12-15 2007-11-28 Ceramic heater
US11/950,546 US7812289B2 (en) 2006-12-15 2007-12-05 Ceramic heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006338467 2006-12-15
JP2006338467 2006-12-15
JP2007307621A JP5378677B2 (en) 2006-12-15 2007-11-28 Ceramic heater

Publications (2)

Publication Number Publication Date
JP2008172208A true JP2008172208A (en) 2008-07-24
JP5378677B2 JP5378677B2 (en) 2013-12-25

Family

ID=39699977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307621A Active JP5378677B2 (en) 2006-12-15 2007-11-28 Ceramic heater

Country Status (2)

Country Link
JP (1) JP5378677B2 (en)
KR (1) KR100942003B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727780B1 (en) 2012-10-01 2017-04-17 우시오덴키 가부시키가이샤 Filament lamp for heating and heating apparatus
JP2017152317A (en) * 2016-02-26 2017-08-31 日本特殊陶業株式会社 Ceramic heater
WO2024034054A1 (en) * 2022-08-10 2024-02-15 日本碍子株式会社 Wafer placement table

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6571550B2 (en) * 2015-03-09 2019-09-04 株式会社ニューフレアテクノロジー Heater and semiconductor manufacturing apparatus using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317284A (en) * 1998-04-30 1999-11-16 Komatsu Ltd Temperature control device
JP2001244059A (en) * 2000-02-28 2001-09-07 Kyocera Corp Ceramic heating resistor and its applied wafer heating device
JP2002093677A (en) * 1999-10-22 2002-03-29 Ibiden Co Ltd Ceramic heater for producing/inspecting system of semiconductor
JP2002246155A (en) * 2001-02-16 2002-08-30 Ibiden Co Ltd Ceramic heater
JP2004111107A (en) * 2002-09-13 2004-04-08 Ngk Insulators Ltd Heating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338593B2 (en) * 1995-09-19 2002-10-28 日本碍子株式会社 Semiconductor processing apparatus and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317284A (en) * 1998-04-30 1999-11-16 Komatsu Ltd Temperature control device
JP2002093677A (en) * 1999-10-22 2002-03-29 Ibiden Co Ltd Ceramic heater for producing/inspecting system of semiconductor
JP2001244059A (en) * 2000-02-28 2001-09-07 Kyocera Corp Ceramic heating resistor and its applied wafer heating device
JP2002246155A (en) * 2001-02-16 2002-08-30 Ibiden Co Ltd Ceramic heater
JP2004111107A (en) * 2002-09-13 2004-04-08 Ngk Insulators Ltd Heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727780B1 (en) 2012-10-01 2017-04-17 우시오덴키 가부시키가이샤 Filament lamp for heating and heating apparatus
JP2017152317A (en) * 2016-02-26 2017-08-31 日本特殊陶業株式会社 Ceramic heater
WO2024034054A1 (en) * 2022-08-10 2024-02-15 日本碍子株式会社 Wafer placement table
JP7478905B1 (en) 2022-08-10 2024-05-07 日本碍子株式会社 Wafer placement table

Also Published As

Publication number Publication date
KR100942003B1 (en) 2010-02-12
KR20080056087A (en) 2008-06-20
JP5378677B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
KR100281953B1 (en) Heating device and its manufacturing method
US8168926B2 (en) Heating device
JP3582518B2 (en) Resistance heating element circuit pattern and substrate processing apparatus using the same
KR101343556B1 (en) Ceramic heater with heat wire arranged two-dimensionally
TWI466847B (en) Method for manufacturing ceramic sintered body, ceramic sintered body and ceramic heater
JP5378677B2 (en) Ceramic heater
JP2008153194A (en) Heating device
JP2004171834A (en) Heating device
JPWO2019181500A1 (en) Multi-zone heater
JP3642746B2 (en) Ceramic heater
US10615060B2 (en) Heating device
JP2019194939A (en) Ceramic heater
JP2005203456A (en) Heating device
JP4690297B2 (en) heater
EP2288230A1 (en) Heating element unit and heating device
CN113056961B (en) Ceramic heater
US7812289B2 (en) Ceramic heater
US20180096868A1 (en) Ceramic heater
JP6604884B2 (en) Ceramic heater
JP2018005998A (en) Ceramic heater
JP2005197074A (en) Resistance heating element and heater
JP3918806B2 (en) Heater member for placing object to be heated and heat treatment apparatus
JP2003045765A (en) Wafer-supporting member
JP6704791B2 (en) Heating device
KR101363027B1 (en) heat wire connecting structure for ceramic heater.

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150