JP2008172120A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2008172120A
JP2008172120A JP2007005501A JP2007005501A JP2008172120A JP 2008172120 A JP2008172120 A JP 2008172120A JP 2007005501 A JP2007005501 A JP 2007005501A JP 2007005501 A JP2007005501 A JP 2007005501A JP 2008172120 A JP2008172120 A JP 2008172120A
Authority
JP
Japan
Prior art keywords
semiconductor element
power module
insulator
lead terminal
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007005501A
Other languages
Japanese (ja)
Other versions
JP4861200B2 (en
Inventor
Masahiro Okita
真大 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007005501A priority Critical patent/JP4861200B2/en
Publication of JP2008172120A publication Critical patent/JP2008172120A/en
Application granted granted Critical
Publication of JP4861200B2 publication Critical patent/JP4861200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power module which enhances a heat dissipation property and also can prevent increase in a production process. <P>SOLUTION: This power module comprises: a casing 13 made of resin; an insulating metal board 20 which is fixed to the casing 13, forms an inside space together with the casing 13 and is provided with a conductor 7 on the inside face; a semiconductor element 1, mounted on the inside face of the insulating metal board 20; and an internal wiring structure 30 disposed in the casing 13 and having an insulator 5 and a lead terminal 4 fixed to the insulator 5. An electrode, provided on a face on the side opposite a face that faces the insulating metal board 20 of the semiconductor element 1, is connected to the conductor 7 of the insulating metal board 20 via the lead terminal 4 of the internal wiring structure 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、パワーモジュールに関し、パワー半導体素子などの発熱が大きい半導体素子の配線構造および放熱手段に関する。   The present invention relates to a power module, and relates to a wiring structure and heat dissipation means for a semiconductor element that generates a large amount of heat, such as a power semiconductor element.

従来、第1のパワーモジュールとしては、図3A,図3Bに示すものがある。図3Aは従来のパワーモジュールの断面図を示し、図3Bは半導体素子が実装された部分の上面図を示している。このパワーモジュールは、MOS(メタル・オキサイド・セミコンダクタ)−FET(電界効果トランジスタ)やIGBT(絶縁ゲートバイポーラトランジスタ),FRD(高速整流素子)などであって、外部導出端子112がインサート成型された樹脂製の筐体113をパッケージとして用いている。   Conventionally, as the first power module, there are those shown in FIGS. 3A and 3B. 3A is a cross-sectional view of a conventional power module, and FIG. 3B is a top view of a portion where a semiconductor element is mounted. This power module is a MOS (Metal Oxide Semiconductor) -FET (Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), FRD (Fast Rectifier), etc., and a resin in which an external lead-out terminal 112 is insert-molded A case 113 made of a metal is used as a package.

また、上記筐体113の底部に配置されたAlまたはCu製の冷却板109上に、放熱性を向上するよう高熱伝導性セラミック等のフィラーを混合したエポキシ樹脂の絶縁層108を被覆し、さらに絶縁層108上にCu等の導体部107にて回路を形成した構造の絶縁金属基板を用いている。   Further, an Al or Cu cooling plate 109 disposed at the bottom of the casing 113 is coated with an insulating layer 108 of an epoxy resin mixed with a filler such as a high thermal conductive ceramic so as to improve heat dissipation. An insulating metal substrate having a structure in which a circuit is formed by a conductor 107 such as Cu on the insulating layer 108 is used.

上記絶縁金属基板の導体部107上に半導体素子101を配置し、半導体素子101の裏面電極と導体部107を半田103により接合している。ここで、半導体素子101と絶縁金属基板の熱膨張差を補うため、半導体素子101と絶縁金属基板の中間程度の熱膨張率である図示しない導電体を半導体素子101と導体部7の間に積層する場合もある。   The semiconductor element 101 is disposed on the conductor portion 107 of the insulating metal substrate, and the back electrode of the semiconductor element 101 and the conductor portion 107 are joined by solder 103. Here, in order to compensate for the difference in thermal expansion between the semiconductor element 101 and the insulating metal substrate, a conductor (not shown) having a thermal expansion coefficient intermediate between the semiconductor element 101 and the insulating metal substrate is laminated between the semiconductor element 101 and the conductor portion 7. There is also a case.

次に、半導体素子101の実装が完了した絶縁金属基板を接着剤により筐体113と接着し、半導体素子101、導体部107、筐体113の外部導出端子112をAlボンディングワイヤ110,111により接続することにより内部配線を行う。   Next, the insulating metal substrate on which the semiconductor element 101 has been mounted is bonded to the housing 113 with an adhesive, and the semiconductor element 101, the conductor 107, and the external lead-out terminal 112 of the housing 113 are connected by Al bonding wires 110 and 111. By doing so, internal wiring is performed.

上記筐体113内は、半導体素子101およびAlボンディングワイヤ110を保護するためにゲル115で封止されている。   The inside of the casing 113 is sealed with a gel 115 to protect the semiconductor element 101 and the Al bonding wire 110.

また、ボンディングワイヤ110と半導体素子101の接合抵抗を減少するため、エミッタ(ソース)電極のボンディングワイヤを多数本に分けてボンディングをしたり、またボンディングワイヤの代わりにボンディングリボンやフレームリードによる半田接合が用いられたりしている場合もある。   Further, in order to reduce the bonding resistance between the bonding wire 110 and the semiconductor element 101, bonding is performed by dividing the bonding wire of the emitter (source) electrode into a plurality of pieces, or by soldering using a bonding ribbon or a frame lead instead of the bonding wire. May be used.

上記パワーモジュール構造の場合、半導体素子101動作時に発生する熱は、封止樹脂の熱伝導率が0.1〜2W/m・K程度と小さいため、主として絶縁金属基板を経て放熱される。   In the case of the power module structure, heat generated during operation of the semiconductor element 101 is radiated mainly through the insulating metal substrate because the thermal conductivity of the sealing resin is as small as about 0.1 to 2 W / m · K.

しかし、半導体素子の微細化やパッケージの小型化により、上記従来のパワーモジュールの構造では、十分な放熱をすることが困難となっている。   However, due to miniaturization of semiconductor elements and miniaturization of packages, it is difficult to sufficiently dissipate heat in the conventional power module structure.

また、ボンディングリボンやフレームリードを用いた内部配線構造は、接合抵抗の低減および放熱性の向上に効果があるが、微小エリアの接合が困難であるため、大面積のエミッタ(ソース)電極に用いることが可能であっても、小面積のゲート電極は、ボンディングワイヤで接続する必要があり、プロセスの増加を招くことになる。   Also, the internal wiring structure using bonding ribbons and frame leads is effective for reducing junction resistance and improving heat dissipation, but it is difficult to join small areas, so it is used for large area emitter (source) electrodes. Even if it is possible, the gate electrode having a small area needs to be connected by a bonding wire, which increases the number of processes.

また、従来の第2のパワーモジュールとしては、半導体チップ上の電極パッドと導板をクリーム半田で固着することにより、放熱効率を向上させるものがある(例えば、特開2001−332664号公報(特許文献1)参照)
しかしながら、この導板を放熱に用いたパワーモジュールでは、上記従来の第1のパワーモジュールと同様に、ゲート電極をボンディングワイヤで接続する必要があり、プロセスの増加を招く。
特開2001−332664号公報
In addition, as a conventional second power module, there is one that improves heat dissipation efficiency by fixing an electrode pad and a conductive plate on a semiconductor chip with cream solder (for example, Japanese Patent Laid-Open No. 2001-332664 (patent). Reference 1))
However, in the power module using this conductive plate for heat dissipation, it is necessary to connect the gate electrode with a bonding wire as in the first conventional power module, resulting in an increase in processes.
JP 2001-332664 A

そこで、この発明の課題は、放熱性を向上しつつ、製造プロセスの増加を防ぐことができるパワーモジュールを提供することにある。   Accordingly, an object of the present invention is to provide a power module that can prevent an increase in the manufacturing process while improving heat dissipation.

上記課題を解決するため、この発明のパワーモジュールは、
筐体と、
上記筐体に固定され、その筐体と内部空間を形成し、内側の面に導体部が設けられた基材と、
上記基材の上記内側の面に実装された半導体素子と、
上記筐体内に配置され、絶縁体とこの絶縁体に固定された2本以上のリード端子とを有する内部配線構造体と
を備え、
上記半導体素子の上記基材に面する面と反対の側の面に設けられた電極と上記基材の上記導体部とを、上記内部配線構造体の上記リード端子を介して接続したことを特徴とする。
In order to solve the above problems, the power module of the present invention is
A housing,
A base material fixed to the housing, forming an internal space with the housing, and provided with a conductor on the inner surface;
A semiconductor element mounted on the inner surface of the substrate;
An internal wiring structure that is disposed in the housing and includes an insulator and two or more lead terminals fixed to the insulator;
The electrode provided on the surface opposite to the surface facing the base material of the semiconductor element is connected to the conductor portion of the base material via the lead terminal of the internal wiring structure. And

上記構成のパワーモジュールによれば、絶縁体に内部配線に必要な複数のリード端子が予め接合された内部配線構造体を用いて、半導体素子の基材に面する面と反対の側の面に設けられた電極と基材の導体部とをそのリード端子を介して接続することによって、放熱性を向上しつつ、製造プロセスの増加を防ぐことができる。   According to the power module having the above configuration, the internal wiring structure in which a plurality of lead terminals necessary for internal wiring are bonded in advance to the insulator is used, on the surface opposite to the surface facing the base material of the semiconductor element. By connecting the provided electrode and the conductor portion of the base material via the lead terminal, it is possible to prevent the increase in the manufacturing process while improving the heat dissipation.

例えば、上記絶縁体には、半導体素子の熱膨張率に近い熱膨張率でかつ熱伝度率の高い絶縁体材料を選ぶ。また、上記絶縁体とリード端子は、ろう付け,焼成等により半導体素子と基材を半田付けするときのリフローに影響を受けない手段でリフロー前に接合する。そして、上記リード端子は、半導体素子および基材上に接合させるときに半導体素子上の各電極と基板上の導体を配線できるよう適切な配置とする。そうして、リード端子の接合部分(半導体素子の電極側および基材の導体部側)には、半導体素子と基材の接合に使用する半田と同じ成分の半田をめっき、ディップ等により被覆する。それにより、半導体素子と基材を半田接合するときに内部配線構造体を積層しておき、同時にリフローすることによりプロセスの増加を防ぐことができる。   For example, an insulator material having a thermal expansion coefficient close to that of a semiconductor element and a high thermal conductivity is selected as the insulator. Further, the insulator and the lead terminal are joined before reflow by means not affected by reflow when soldering the semiconductor element and the substrate by brazing, firing or the like. The lead terminals are appropriately arranged so that the electrodes on the semiconductor element and the conductors on the substrate can be wired when bonded to the semiconductor element and the substrate. Then, the same solder as the solder used for joining the semiconductor element and the base material is coated by plating, dipping, etc. on the joint portion of the lead terminal (the electrode side of the semiconductor element and the conductor portion side of the base material). . Thereby, when the semiconductor element and the base material are joined by soldering, the internal wiring structure is laminated and reflowed at the same time, thereby preventing an increase in processes.

また、一実施形態のパワーモジュールでは、上記絶縁体に高熱伝導率の絶縁体材料を用いた。   Moreover, in the power module of one Embodiment, the insulator material with high thermal conductivity was used for the said insulator.

上記実施形態によれば、上記絶縁体に高熱伝導率の絶縁体材料を用いることによって、放熱効率をさらに向上できる。   According to the embodiment, the heat dissipation efficiency can be further improved by using an insulator material having high thermal conductivity for the insulator.

また、一実施形態のパワーモジュールでは、上記絶縁体に上記半導体素子の熱膨張率に近い熱膨張率の絶縁体材料を用いた。   In one embodiment of the power module, an insulator material having a thermal expansion coefficient close to that of the semiconductor element is used for the insulator.

上記実施形態によれば、上記絶縁体に半導体素子の熱膨張率に近い熱膨張率の絶縁体材料を用いることによって、リフロー等による熱の影響を防止できる。   According to the above embodiment, by using an insulator material having a thermal expansion coefficient close to that of the semiconductor element as the insulator, it is possible to prevent the influence of heat due to reflow or the like.

また、一実施形態のパワーモジュールでは、上記リード端子と上記半導体素子との間の半田厚を調整するため、上記絶縁体の上記リード端子が固定された側に、上記半導体素子に向かって突出して上記半導体素子に接する突出部を設けた。   In the power module of one embodiment, in order to adjust the solder thickness between the lead terminal and the semiconductor element, the insulator protrudes toward the semiconductor element on the side where the lead terminal is fixed. Protrusions in contact with the semiconductor element were provided.

上記実施形態によれば、上記絶縁体のリード端子が固定された側に設けた突出部が、半導体素子に向かって突出して半導体素子に接することにより、リード端子と半導体素子との間の半田厚を調整するので、リフローしたときに突出部の下端が半導体素子の表面に接触する位置までしか半田が押しつぶされることがなく、ショートを防止できる。   According to the embodiment, the protrusion provided on the side where the lead terminal of the insulator is fixed protrudes toward the semiconductor element and contacts the semiconductor element, whereby the solder thickness between the lead terminal and the semiconductor element is increased. Therefore, when reflowing, the solder is crushed only to the position where the lower end of the protruding portion contacts the surface of the semiconductor element, and a short circuit can be prevented.

また、一実施形態のパワーモジュールでは、
上記筐体の開口部に配置され、外部に一部が露出した高熱伝導率の放熱部を有する蓋を備え、
上記蓋の上記放熱部と上記絶縁体が接する。
Moreover, in the power module of one embodiment,
The lid is disposed at the opening of the housing and has a heat radiating portion with a high thermal conductivity, a part of which is exposed to the outside,
The heat dissipation part of the lid and the insulator are in contact with each other.

上記実施形態によれば、蓋に高熱伝導率の材料で構成された放熱部を外部に一部が露出ように設けて、その放熱部が絶縁体と接触する構造とすることにより、さらに効率よく外部に放熱することができる。   According to the above-described embodiment, the heat radiation part made of a material having high thermal conductivity is provided on the lid so that a part of the heat radiation part is exposed to the outside, and the heat radiation part is in contact with the insulator, thereby further efficiently. It can dissipate heat to the outside.

以上より明らかなように、この発明のパワーモジュールによれば、放熱性を向上しつつ、製造プロセスの増加を防ぐことができるパワーモジュールを実現することができる。   As is clear from the above, according to the power module of the present invention, it is possible to realize a power module that can improve heat dissipation and prevent an increase in manufacturing process.

以下、この発明のパワーモジュールを図示の実施の形態により詳細に説明する。   The power module of the present invention will be described in detail below with reference to the illustrated embodiments.

〔第1実施形態〕
図1Aはこの発明の第1実施形態のパワーモジュールの断面図を示し、図1Bは上記パワーモジュールの半導体素子実装部分の上面図を示している。また、図1Cは図1Aに示すA部分のリフロー前の状態の拡大図を示し、図1Dは図1Aに示すA部分のリフロー後の状態の拡大図を示している。
[First Embodiment]
1A shows a cross-sectional view of a power module according to a first embodiment of the present invention, and FIG. 1B shows a top view of a semiconductor element mounting portion of the power module. Moreover, FIG. 1C shows an enlarged view of the state before reflow of the A portion shown in FIG. 1A, and FIG. 1D shows an enlarged view of the state after the reflow of the A portion shown in FIG. 1A.

この第1実施形態のパワーモジュールは、図1Aに示すように、樹脂製の筐体13と、上記筐体13に固定され、筐体13と共に内側空間を形成し、内側の面に導体部7が設けられた絶縁金属基板20と、上記絶縁金属基板20の内側の面に実装された半導体素子1と、上記筐体13内に配置され、絶縁体5とその絶縁体5に固定されたリード端子4とを有する内部配線構造体30とを備えている。上記絶縁金属基板20は、筐体13の底部に配置されたAlまたはCu製の冷却板9上に、高熱伝導性セラミック等のフィラーを混合したエポキシ樹脂の絶縁層8を被覆し、さらにその絶縁層8上にCu等の導体部7にて回路を形成したものである。   As shown in FIG. 1A, the power module according to the first embodiment is fixed to a resin casing 13 and the casing 13, forms an inner space together with the casing 13, and has a conductor portion 7 on the inner surface. , The semiconductor element 1 mounted on the inner surface of the insulating metal substrate 20, the insulator 5 and the leads fixed to the insulator 5 And an internal wiring structure 30 having terminals 4. The insulating metal substrate 20 covers an insulating layer 8 made of an epoxy resin mixed with a filler such as a high thermal conductive ceramic on a cooling plate 9 made of Al or Cu disposed at the bottom of the casing 13 and further insulates the insulating substrate 8. A circuit is formed on the layer 8 by a conductor portion 7 such as Cu.

上記半導体素子1は、絶縁金属基板20の導体部7上に半田3で接合されている。半導体素子1上面のゲート電極パッドおよびエミッタ(ソース)電極パッドは、リード端子4と半田2で接合されている。リード端子4と絶縁体5は、予めろう付けや焼成等によりリフローの影響を受けない方法で接合されている。絶縁体5は、高熱伝導率で熱膨張率の小さいAlN,SiC,Al23等を選択するとよい。エミッタ(ソース)電極に接続されるリード端子4とゲート電極に接続されるリード端子4は絶縁された状態となっている。ゲート電極パッドとエミッタ(ソース)電極パッドが半田にぬれやすいAuやNi等で被覆されている場合は半田2のみで接合可能であるが、Al等の半田に濡れにくい材質である場合は、Auスタッドバンプを各電極パッドにボンディングし、その電極パッドを介して半田2にて接合可能である。 The semiconductor element 1 is joined to the conductor portion 7 of the insulating metal substrate 20 with solder 3. The gate electrode pad and the emitter (source) electrode pad on the upper surface of the semiconductor element 1 are joined to the lead terminal 4 by the solder 2. The lead terminal 4 and the insulator 5 are joined in advance by a method that is not affected by reflow by brazing, firing, or the like. The insulator 5 may be selected from AlN, SiC, Al 2 O 3 or the like having a high thermal conductivity and a small thermal expansion coefficient. The lead terminal 4 connected to the emitter (source) electrode and the lead terminal 4 connected to the gate electrode are insulated. When the gate electrode pad and the emitter (source) electrode pad are covered with Au or Ni that easily wets the solder, it can be joined only with the solder 2. However, when the material is hard to get wet with the solder such as Al, Au A stud bump can be bonded to each electrode pad and can be bonded by solder 2 via the electrode pad.

上記リード端子4の半導体素子1と反対側の末端は、絶縁金属基板20の導体部7に半田6で接合される。   The end of the lead terminal 4 opposite to the semiconductor element 1 is joined to the conductor portion 7 of the insulating metal substrate 20 with solder 6.

上記半導体素子1と絶縁金属基板20との間の半田およびリード端子4と半導体素子1および絶縁金属基板20との間の半田は、同一成分のものを選ぶことにより同時リフローを行うことが可能である。   The solder between the semiconductor element 1 and the insulating metal substrate 20 and the solder between the lead terminal 4 and the semiconductor element 1 and the insulating metal substrate 20 can be reflowed simultaneously by selecting the same components. is there.

ここで、半田材として半田ペーストを用いると、残渣による腐食や洗浄による損傷が信頼性上問題となるため、半導体素子1と絶縁金属基板20の接合には、フラックスレスの半田プリフォーム材を使用し、内部配線構造体30と半導体素子1および絶縁金属基板20の半田2,6は、予めリード端子4にめっき、プリコートやディップ等によりフラックスのない状態で被覆しておくとよい。この場合、リフローはフラックスレスで行うため、還元雰囲気中で行う必要がある。また、フラックスによりタック(仮付け)させることができないため、治具により各材料を位置決め、保持する必要がある。リフローのとき、半導体素子1と内部配線構造体30の接合を確実とするため、重りまたは治具により絶縁体5上から下方に圧力をかけておく。このとき、圧力はリード端子4の反発力より大きくする必要がある。この圧力により、溶融した半田に内圧がかかり、内部ボイドを外部に放出させる作用が働く。しかし、圧力が過剰であるとリード端子4に被覆した半田2が溶融したときに押しつぶされてショートすることが考えられる。   Here, when a solder paste is used as a solder material, corrosion due to residue or damage due to cleaning becomes a problem in reliability. Therefore, a fluxless solder preform material is used for joining the semiconductor element 1 and the insulating metal substrate 20. The internal wiring structure 30, the semiconductor element 1, and the solder 2 and 6 of the insulating metal substrate 20 are preferably coated on the lead terminal 4 in advance without flux by plating, precoating, dipping, or the like. In this case, since reflow is performed without flux, it is necessary to perform it in a reducing atmosphere. Further, since it cannot be tacked (temporarily attached) by flux, it is necessary to position and hold each material with a jig. During reflow, pressure is applied downward from above the insulator 5 with a weight or a jig to ensure the bonding between the semiconductor element 1 and the internal wiring structure 30. At this time, the pressure needs to be larger than the repulsive force of the lead terminal 4. By this pressure, an internal pressure is applied to the melted solder, and the action of releasing the internal void to the outside works. However, if the pressure is excessive, the solder 2 covering the lead terminals 4 may be crushed and short-circuited when melted.

これを防ぐため、図1Cの如く半田厚が適切となるよう絶縁体5に突出部Bを設けておく。この突出部Bにより半田をリフローしたとき、図1Dのように突出部Bの下端が半導体素子1の表面に接触する位置までしか押しつぶされることがなく、ショートを防止することができる。突出部Bの高さについて、放熱性は薄い方が良好となるがあまりに薄いと半田が溶融したときに流動性が悪くなり、内部にボイドが残留するため、半田厚が50〜100μmとなるよう設計する。   In order to prevent this, a protrusion B is provided in the insulator 5 so that the solder thickness is appropriate as shown in FIG. 1C. When the solder is reflowed by the protruding portion B, as shown in FIG. 1D, the lower end of the protruding portion B is only crushed to a position where it contacts the surface of the semiconductor element 1, and a short circuit can be prevented. As for the height of the protrusion B, the heat dissipation is better when it is thin, but if it is too thin, the fluidity deteriorates when the solder melts, and voids remain inside, so that the solder thickness becomes 50 to 100 μm. design.

なお、図1C,図1Dでは、絶縁体5に突出部Bを1つ設けているが、突出部は複数設けてもよい。   In FIG. 1C and FIG. 1D, one protrusion B is provided on the insulator 5, but a plurality of protrusions may be provided.

そして、表面実装および内部配線を完了した絶縁金属基板20は、筐体13と接着材で固着され、絶縁金属基板20の導体部7と外部導出端子12はボンディングワイヤ10により接合される。   Then, the insulated metal substrate 20 that has been subjected to the surface mounting and the internal wiring is fixed to the housing 13 with an adhesive, and the conductor portion 7 of the insulated metal substrate 20 and the external lead-out terminal 12 are joined by the bonding wire 10.

次に、筐体13の内部をゲル16で封止し、さらに筐体13の開口部に樹脂製の蓋14を固定することにより本パワーモジュールの組み立てが完了する。   Next, the inside of the housing 13 is sealed with the gel 16 and the resin lid 14 is fixed to the opening of the housing 13 to complete the assembly of the power module.

上記第1実施形態によれば、高熱伝導率の絶縁体5に予め必要な数のリード端子4を接合してある内部配線構造体30を用いることにより、ボンディングワイヤよりも接合面積を増やすことが可能となり、放熱効率が向上しつつ、半導体素子1と絶縁金属基板20および内部配線構造体30のリフローを同時に行うことにより半田付けするので、プロセスを増加することなく対応可能となる。   According to the first embodiment, by using the internal wiring structure 30 in which the necessary number of lead terminals 4 are bonded in advance to the insulator 5 having high thermal conductivity, the bonding area can be increased more than the bonding wire. Thus, the heat dissipation efficiency is improved, and soldering is performed by performing reflow of the semiconductor element 1, the insulating metal substrate 20, and the internal wiring structure 30 at the same time.

また、上記絶縁体5に高熱伝導率の絶縁体材料を用いることによって、放熱効率をさらに向上できる。   Moreover, the heat dissipation efficiency can be further improved by using an insulator material having high thermal conductivity for the insulator 5.

また、上記絶縁体5に半導体素子1の熱膨張率に近い熱膨張率の絶縁体材料を用いることによって、リフロー等による熱の影響を防止することができる。   Further, by using an insulator material having a thermal expansion coefficient close to that of the semiconductor element 1 for the insulator 5, it is possible to prevent the influence of heat due to reflow or the like.

また、図1C, 図1Dに示すように、絶縁体5のリード端子4が固定された側に設けた突出部Bが、半導体素子1に向かって突出していることにより、リード端子4と半導体素子1との間の半田厚を調整するので、リフローしたときに突出部Bの下端が半導体素子1の表面に接触する位置までしか半田が押しつぶされることがなく、ショートを防止することができる。   Further, as shown in FIG. 1C and FIG. 1D, the projecting portion B provided on the side of the insulator 5 on which the lead terminal 4 is fixed projects toward the semiconductor element 1, whereby the lead terminal 4 and the semiconductor element Since the solder thickness with respect to 1 is adjusted, the solder is crushed only to the position where the lower end of the protruding portion B contacts the surface of the semiconductor element 1 when reflowing, and a short circuit can be prevented.

〔第2実施形態〕
図2はこの発明の第2実施形態のパワーモジュールの断面図を示している。
[Second Embodiment]
FIG. 2 shows a cross-sectional view of a power module according to a second embodiment of the present invention.

この第2実施形態のパワーモジュールは、第1実施形態のパワーモジュールと同様に、樹脂製の筐体13と絶縁金属基板20の接着、ワイヤボンディングまで行うが、ゲル封止するときに、内部配線構造体30の絶縁体5上面が露出するように封止する。蓋14の一部を高熱伝導率の材料からなる放熱部の一例としての放熱板16とし、この部分が内部配線構造体30に接する構造とすることにより、放熱効率をさらに高めることが可能である。   Similar to the power module of the first embodiment, the power module of the second embodiment performs bonding and wire bonding between the resin casing 13 and the insulating metal substrate 20, but the internal wiring is used when the gel is sealed. The structure 30 is sealed so that the upper surface of the insulator 5 is exposed. A part of the lid 14 is a heat radiating plate 16 as an example of a heat radiating portion made of a material having a high thermal conductivity, and the heat radiating efficiency can be further improved by adopting a structure in which this portion contacts the internal wiring structure 30. .

上記第2実施形態によれば、高熱伝導率の絶縁体5に予め必要な数のリード端子4を接合してある内部配線構造体30を用いることにより、ボンディングワイヤよりも接合面積を増やすことが可能となり、放熱効率が向上しつつ、半導体素子1と絶縁金属基板20および内部配線構造体30のリフローを同時に行うことにより半田付けするので、プロセスを増加することなく対応可能となる。   According to the second embodiment, by using the internal wiring structure 30 in which a necessary number of lead terminals 4 are bonded to the insulator 5 having high thermal conductivity in advance, the bonding area can be increased more than the bonding wire. Thus, the heat dissipation efficiency is improved, and soldering is performed by performing reflow of the semiconductor element 1, the insulating metal substrate 20, and the internal wiring structure 30 at the same time.

また、上記絶縁体5に高熱伝導率の絶縁体材料を用いることによって、放熱効率をさらに向上できる。   Moreover, the heat dissipation efficiency can be further improved by using an insulator material having high thermal conductivity for the insulator 5.

また、上記絶縁体5に半導体素子1の熱膨張率に近い熱膨張率の絶縁体材料を用いることによって、リフロー等による熱の影響を防止することができる。   Further, by using an insulator material having a thermal expansion coefficient close to that of the semiconductor element 1 for the insulator 5, it is possible to prevent the influence of heat due to reflow or the like.

この発明の具体的な実施の形態について説明したが、この発明は上記第1,第2実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。   Although specific embodiments of the present invention have been described, the present invention is not limited to the first and second embodiments described above, and various modifications can be made within the scope of the present invention.

図1Aはこの発明の第1実施形態のパワーモジュールの断面図である。FIG. 1A is a sectional view of a power module according to the first embodiment of the present invention. 図1Bは上記パワーモジュールの半導体素子実装部分の上面図である。FIG. 1B is a top view of a semiconductor element mounting portion of the power module. 図1Cは図1Aに示すA部分のリフロー前の状態の拡大図である。FIG. 1C is an enlarged view of a portion A shown in FIG. 1A before reflowing. 図1Dは図1Aに示すA部分のリフロー後の状態の拡大図である。FIG. 1D is an enlarged view of a state after reflow of portion A shown in FIG. 1A. 図2はこの発明の第2実施形態のパワーモジュールの断面図である。FIG. 2 is a sectional view of a power module according to a second embodiment of the present invention. 図3Aは従来の第1のパワーモジュールの断面図である。FIG. 3A is a cross-sectional view of a conventional first power module. 図3Bは上記パワーモジュールの半導体素子実装部分の上面図である。FIG. 3B is a top view of a semiconductor element mounting portion of the power module.

符号の説明Explanation of symbols

1…半導体素子
2,3,6…半田
4…リード端子
5…絶縁体
7…導体部
8…絶縁層
9…冷却板
10,11…ボンディングワイヤ
12…外部導出端子
13…筐体
14…蓋
15…ゲル
16…放熱板
20…絶縁金属基板
30…内部配線構造体
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 2, 3, 6 ... Solder 4 ... Lead terminal 5 ... Insulator 7 ... Conductor part 8 ... Insulating layer 9 ... Cooling plate 10,11 ... Bonding wire 12 ... External lead-out terminal 13 ... Housing 14 ... Cover 15 ... Gel 16 ... Heat sink 20 ... Insulating metal substrate 30 ... Internal wiring structure

Claims (5)

筐体と、
上記筐体に固定され、その筐体と内部空間を形成し、内側の面に導体部が設けられた基材と、
上記基材の上記内側の面に実装された半導体素子と、
上記筐体内に配置され、絶縁体とこの絶縁体に固定された2本以上のリード端子とを有する内部配線構造体と
を備え、
上記半導体素子の上記基材に面する面と反対の側の面に設けられた電極と上記基材の上記導体部とを、上記内部配線構造体の上記リード端子を介して接続したことを特徴とするパワーモジュール。
A housing,
A base material fixed to the housing, forming an internal space with the housing, and provided with a conductor on the inner surface;
A semiconductor element mounted on the inner surface of the substrate;
An internal wiring structure that is disposed in the housing and includes an insulator and two or more lead terminals fixed to the insulator;
The electrode provided on the surface opposite to the surface facing the base material of the semiconductor element and the conductor portion of the base material are connected via the lead terminal of the internal wiring structure. And power module.
請求項1に記載のパワーモジュールにおいて、
上記絶縁体に高熱伝導率の絶縁体材料を用いたことを特徴とするパワーモジュール。
The power module according to claim 1,
A power module using an insulator material having high thermal conductivity for the insulator.
請求項1に記載のパワーモジュールにおいて、
上記絶縁体に上記半導体素子の熱膨張率に近い熱膨張率の絶縁体材料を用いたことを特徴とするパワーモジュール。
The power module according to claim 1,
A power module characterized in that an insulator material having a thermal expansion coefficient close to that of the semiconductor element is used for the insulator.
請求項1に記載のパワーモジュールにおいて、
上記リード端子と上記半導体素子との間の半田厚を調整するため、上記絶縁体の上記リード端子が固定された側に、上記半導体素子に向かって突出して上記半導体素子に接する突出部を設けたことを特徴とするパワーモジュール。
The power module according to claim 1,
In order to adjust the solder thickness between the lead terminal and the semiconductor element, a protruding portion that protrudes toward the semiconductor element and contacts the semiconductor element is provided on the side of the insulator on which the lead terminal is fixed. A power module characterized by that.
請求項1乃至4のいずれか1つに記載のパワーモジュールにおいて、
上記筐体の開口部に配置され、外部に一部が露出した高熱伝導率の放熱部を有する蓋を備え、
上記蓋の上記放熱部と上記絶縁体が接することを特徴とするパワーモジュール。
In the power module according to any one of claims 1 to 4,
A lid having a heat dissipating part with a high thermal conductivity that is disposed in the opening of the housing and partially exposed to the outside,
The power module, wherein the heat dissipation part of the lid and the insulator are in contact with each other.
JP2007005501A 2007-01-15 2007-01-15 Power module Expired - Fee Related JP4861200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005501A JP4861200B2 (en) 2007-01-15 2007-01-15 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007005501A JP4861200B2 (en) 2007-01-15 2007-01-15 Power module

Publications (2)

Publication Number Publication Date
JP2008172120A true JP2008172120A (en) 2008-07-24
JP4861200B2 JP4861200B2 (en) 2012-01-25

Family

ID=39699917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005501A Expired - Fee Related JP4861200B2 (en) 2007-01-15 2007-01-15 Power module

Country Status (1)

Country Link
JP (1) JP4861200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601719A (en) * 2014-11-05 2017-04-26 成都晶川电力技术有限公司 Fast recovery diode module
WO2018096917A1 (en) 2016-11-22 2018-05-31 千住金属工業株式会社 Soldering method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710748A (en) * 1980-06-23 1982-01-20 Kenji Sakata Variable venturi type carburettor
JPH02137357A (en) * 1988-11-18 1990-05-25 Fujitsu Ltd Hermetically sealed package
JPH04180640A (en) * 1990-11-15 1992-06-26 Nec Yamagata Ltd Method of wiring semiconductor element
JPH0855947A (en) * 1994-08-09 1996-02-27 Sony Corp Semiconductor device, lead frame, and lead bonding method thereof
JP2000156439A (en) * 1998-11-20 2000-06-06 Mitsubishi Electric Corp Power semiconductor module
JP2001332664A (en) * 2000-05-24 2001-11-30 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2005217405A (en) * 2004-01-28 2005-08-11 Samsung Electronics Co Ltd Thermal dissipation type semiconductor package and manufacturing method of same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710748A (en) * 1980-06-23 1982-01-20 Kenji Sakata Variable venturi type carburettor
JPH02137357A (en) * 1988-11-18 1990-05-25 Fujitsu Ltd Hermetically sealed package
JPH04180640A (en) * 1990-11-15 1992-06-26 Nec Yamagata Ltd Method of wiring semiconductor element
JPH0855947A (en) * 1994-08-09 1996-02-27 Sony Corp Semiconductor device, lead frame, and lead bonding method thereof
JP2000156439A (en) * 1998-11-20 2000-06-06 Mitsubishi Electric Corp Power semiconductor module
JP2001332664A (en) * 2000-05-24 2001-11-30 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2005217405A (en) * 2004-01-28 2005-08-11 Samsung Electronics Co Ltd Thermal dissipation type semiconductor package and manufacturing method of same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601719A (en) * 2014-11-05 2017-04-26 成都晶川电力技术有限公司 Fast recovery diode module
WO2018096917A1 (en) 2016-11-22 2018-05-31 千住金属工業株式会社 Soldering method
KR20190077574A (en) 2016-11-22 2019-07-03 센주긴조쿠고교 가부시키가이샤 Soldering method
US10645818B2 (en) 2016-11-22 2020-05-05 Senju Metal Industry Co., Ltd. Soldering method

Also Published As

Publication number Publication date
JP4861200B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4438489B2 (en) Semiconductor device
JP4499577B2 (en) Semiconductor device
US8466548B2 (en) Semiconductor device including excess solder
US20060056213A1 (en) Power module package having excellent heat sink emission capability and method for manufacturing the same
CN109314063B (en) Power semiconductor device
US20120175755A1 (en) Semiconductor device including a heat spreader
JP6206494B2 (en) Semiconductor device
JP2019040971A (en) Semiconductor device
WO2019064775A1 (en) Semiconductor device and production method therefor
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP6448418B2 (en) Power semiconductor device
JP2017123360A (en) Semiconductor module
JP5732880B2 (en) Semiconductor device and manufacturing method thereof
JP5233853B2 (en) Semiconductor device
JP6095303B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2010147053A (en) Semiconductor device
JP2006190728A (en) Electric power semiconductor device
CN111433910B (en) Semiconductor device and method for manufacturing semiconductor device
JP4861200B2 (en) Power module
JP2018182131A (en) Semiconductor device and semiconductor device manufacturing method
WO2019207996A1 (en) Semiconductor device and manufacturing method thereof
JP2009164511A (en) Semiconductor device and method of manufacturing the same
JP2004048084A (en) Semiconductor power module
KR102684854B1 (en) Semiconductor package and method of fabricating the same
JP6274986B2 (en) Power semiconductor module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees