JP2008171857A - Solid-state image sensor and manufacturing method of solid-state image sensor - Google Patents

Solid-state image sensor and manufacturing method of solid-state image sensor Download PDF

Info

Publication number
JP2008171857A
JP2008171857A JP2007001098A JP2007001098A JP2008171857A JP 2008171857 A JP2008171857 A JP 2008171857A JP 2007001098 A JP2007001098 A JP 2007001098A JP 2007001098 A JP2007001098 A JP 2007001098A JP 2008171857 A JP2008171857 A JP 2008171857A
Authority
JP
Japan
Prior art keywords
solid
layer
optical functional
insulating layer
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007001098A
Other languages
Japanese (ja)
Inventor
Yasuki Uranishi
泰樹 浦西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007001098A priority Critical patent/JP2008171857A/en
Publication of JP2008171857A publication Critical patent/JP2008171857A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid-state image sensor, capable of realizing an optical waveguide structure without using a photolithographic process. <P>SOLUTION: The manufacturing method of a solid-state image sensor having a light-receiving section 2 formed in a semiconductor substrate 1 is provided with a step of forming an insulating layer 7 having a concave portion A on the upper part of the light-receiving section 2 on the semiconductor substrate 1; an optical function material layer forming step of forming an optical function material layer 8a on the insulating layer 7, the material layer 8a having a function of reflecting a light on an interface between itself and a layer to be formed thereon; a step of etching the entire material layer 8a to form an opening on the material layer 8a on the upper part of the light-receiving section 2; and a step of forming an insulating layer 9 on the material layer 8a after forming the opening. In the material layer 8a formed in the optical function material layer forming step, the thickness of a portion where the opening is to be formed is thinner than that of the other portion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体基板内に形成された受光部と、前記半導体基板上に形成され、前記受光部上方に開口が形成された遮光層とを有する固体撮像素子に関する。   The present invention relates to a solid-state imaging device having a light receiving portion formed in a semiconductor substrate and a light shielding layer formed on the semiconductor substrate and having an opening above the light receiving portion.

従来、CCDやCMOS型イメージセンサなどの固体撮像素子は、半導体基板の表面に形成された受光部の上方に、入射光の集光効率を向上させるためのオンチップ型のマイクロレンズが設けられた構成のものが知られている。
また、近年では固体撮像素子の小型化及び高密度化が進められており、例えば下記特許文献に示すように、集光効率を更に改善するため、受光部の上層に下凸形状の高屈折率の材料からなる層を形成し、高屈折率材料層の周囲を屈折率の低い材料からなる層で形成することで、マイクロレンズを透過した入射光を、高屈折材料層を透過させて受光部に導く光導波路を形成する構成が提案されている。
Conventionally, solid-state imaging devices such as CCD and CMOS type image sensors have been provided with an on-chip type microlens for improving the light collection efficiency of incident light above a light receiving portion formed on the surface of a semiconductor substrate. A configuration is known.
In recent years, solid-state imaging devices have been reduced in size and density. For example, as shown in the following patent document, in order to further improve the light collection efficiency, a high refractive index having a lower convex shape on the upper layer of the light receiving unit. By forming a layer made of the above material and forming a layer made of a material having a low refractive index around the high refractive index material layer, the incident light that has passed through the microlens is transmitted through the high refractive material layer to receive the light. There has been proposed a configuration for forming an optical waveguide that leads to the above.

特開2003−224249号公報JP 2003-224249 A 特開2003−249633号公報JP 2003-249633 A

光導波路は、半導体基板の受光部の上方に、フォトリソグラフィ工程を用いてレジストパターンからなるマスクを形成し、このマスクを介して異方性ドライエッチングを行うことで、高屈折材料層を形成するための開口部を形成する。このとき、フォトリソグラフィのレジストパターンの位置が適正でないと、高屈折材料層と下部の受光部との位置にずれが生じてしまい、入射した光を受光部へ適正に導くことができなくなることに起因して、光学特性が劣化してしまう不具合が生じる。このため、フォトリソグラフィの位置合わせには高い位置精度が必要であった。 In the optical waveguide, a mask made of a resist pattern is formed above the light receiving portion of the semiconductor substrate using a photolithography process, and anisotropic dry etching is performed through the mask to form a high refractive material layer. An opening for forming is formed. At this time, if the position of the resist pattern of photolithography is not appropriate, the position of the high refractive material layer and the lower light receiving part will be displaced, and the incident light cannot be properly guided to the light receiving part. This causes a problem that the optical characteristics deteriorate. For this reason, high positional accuracy is required for alignment of photolithography.

本発明は、上記事情に鑑みてなされたもので、その目的は、フォトリソグラフィ工程を用いずに光導波路を形成することが可能な固体撮像素子の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a solid-state imaging device capable of forming an optical waveguide without using a photolithography process.

本発明の固体撮像素子の製造方法は、半導体基板内に形成された受光部を有する固体撮像素子の製造方法であって、前記半導体基板上に、前記受光部の上方に凹部を有した第一の絶縁層を形成する第一の絶縁層形成工程と、前記第一の絶縁層上に光学機能材料層を形成する光学機能材料層形成工程とを備え、前記光学機能材料層は、その上に形成される層との界面で光を反射させる機能を有し、前記光学機能材料層全体をエッチングして、前記受光部上方に開口を有する光学機能層を形成する光学機能層形成工程と、前記光学機能層形成工程後、前記光学機能層上に第二の絶縁層を形成する第二の絶縁層形成工程とを備え、前記光学機能材料層形成工程で形成された前記光学機能材料層は、前記開口を形成すべき部分の厚みが、それ以外の部分よりも薄くなっている。   A method for manufacturing a solid-state imaging device according to the present invention is a method for manufacturing a solid-state imaging device having a light-receiving portion formed in a semiconductor substrate, the first having a recess above the light-receiving portion on the semiconductor substrate. A first insulating layer forming step of forming an insulating layer, and an optical functional material layer forming step of forming an optical functional material layer on the first insulating layer, wherein the optical functional material layer is formed thereon An optical functional layer forming step having a function of reflecting light at an interface with the layer to be formed, etching the entire optical functional material layer, and forming an optical functional layer having an opening above the light receiving portion; A second insulating layer forming step of forming a second insulating layer on the optical functional layer after the optical functional layer forming step, the optical functional material layer formed in the optical functional material layer forming step, The thickness of the portion where the opening should be formed is the other portion It is thinner than.

本発明の固体撮像素子の製造方法は、前記光学機能材料層が金属材料からなる。   In the method for manufacturing a solid-state imaging device of the present invention, the optical functional material layer is made of a metal material.

本発明の固体撮像素子の製造方法は、前記金属材料がアルミニウムを含む。   In the method for manufacturing a solid-state imaging device of the present invention, the metal material contains aluminum.

本発明の固体撮像素子の製造方法は、前記光学機能材料層が、前記第二の絶縁層よりも低屈折率の材料からなる。   In the method for manufacturing a solid-state imaging device according to the present invention, the optical functional material layer is made of a material having a lower refractive index than the second insulating layer.

本発明の固体撮像素子は、半導体基板内に形成された受光部を有する固体撮像素子であって、前記半導体基板上に形成され、前記受光部上方に凹部を有する第一の絶縁層と、前記第一の絶縁層上に形成され且つ前記受光部上方に開口が形成された光学機能層であって、その上に形成される層との界面で光を反射させる機能を有する光学機能層と、前記第一の絶縁層及び前記光学機能層の上に形成された第二の絶縁層とを備え、前記光学機能層は、前記凹部よりも上の位置から前記開口に向かうにしたがって厚みが徐々に薄くなっている。   The solid-state imaging device of the present invention is a solid-state imaging device having a light receiving portion formed in a semiconductor substrate, the first insulating layer formed on the semiconductor substrate and having a recess above the light receiving portion, An optical functional layer formed on the first insulating layer and having an opening formed above the light receiving portion, the optical functional layer having a function of reflecting light at an interface with the layer formed thereon; A first insulating layer and a second insulating layer formed on the optical functional layer, wherein the optical functional layer gradually increases in thickness from the position above the recess toward the opening. It is getting thinner.

本発明の固体撮像素子は、前記光学機能層が金属材料からなる。   In the solid-state imaging device of the present invention, the optical functional layer is made of a metal material.

本発明の固体撮像素子は、前記金属材料がアルミニウムを含む。   In the solid-state imaging device of the present invention, the metal material contains aluminum.

本発明の固体撮像素子は、前記光学機能層が、前記第二の絶縁層よりも低屈折率の材料からなる。   In the solid-state imaging device of the present invention, the optical functional layer is made of a material having a refractive index lower than that of the second insulating layer.

本発明によれば、フォトリソグラフィ工程を用いずに光導波路を形成することが可能な固体撮像素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid-state image sensor which can form an optical waveguide without using a photolithography process can be provided.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1から図4は、本発明の実施形態である固体撮像素子の製造工程の手順を説明する図である。
まず、シリコン等の半導体基板1内に、フォトダイオード等の受光部2、この受光部2に対応する図示しない電荷転送チャネル、及び受光部2とそれに対応する電荷転送チャネルとの間の電荷読み出し領域等を、公知の手法によって形成する。次に、電荷転送チャネルに電荷転送パルスを供給し、電荷読み出し領域に読み出しパルスを供給するための電極4を半導体基板1上にゲート絶縁層3を介して形成する。電極4は、電荷転送チャネルと電荷読み出し領域の上方に形成される。次に、電極4の周囲を覆う絶縁層5を形成し、半導体基板1全面にタングステン等の遮光層6を形成し、フォトリソグラフィ工程とエッチング工程によって受光部2上方の遮光層6に開口を形成する。ここまでの工程は、公知である。
1 to 4 are diagrams for explaining the procedure of the manufacturing process of the solid-state imaging device according to the embodiment of the present invention.
First, in a semiconductor substrate 1 such as silicon, a light receiving portion 2 such as a photodiode, a charge transfer channel (not shown) corresponding to the light receiving portion 2, and a charge readout region between the light receiving portion 2 and the charge transfer channel corresponding thereto. Etc. are formed by a known method. Next, an electrode 4 for supplying a charge transfer pulse to the charge transfer channel and supplying a read pulse to the charge reading region is formed on the semiconductor substrate 1 via the gate insulating layer 3. The electrode 4 is formed above the charge transfer channel and the charge readout region. Next, an insulating layer 5 covering the periphery of the electrode 4 is formed, a light shielding layer 6 such as tungsten is formed on the entire surface of the semiconductor substrate 1, and an opening is formed in the light shielding layer 6 above the light receiving portion 2 by a photolithography process and an etching process. To do. The steps up to here are known.

次に、半導体基板1全面に、BPSG(Boro-phospho silicate glass)などの光透過性を有する絶縁層7を形成し、この絶縁層7をリフローする。この工程により、電極4上の遮光層6のパターンを反映して、絶縁層7に凹部Aが形成される(図1参照)。   Next, a light-transmitting insulating layer 7 such as BPSG (Boro-phosphosilicate glass) is formed on the entire surface of the semiconductor substrate 1, and the insulating layer 7 is reflowed. By this step, the recess A is formed in the insulating layer 7 reflecting the pattern of the light shielding layer 6 on the electrode 4 (see FIG. 1).

次に、絶縁層7上に金属材料(例えば、光反射率の高いアルミニウム)からなる光学機能材料層8aをスパッタ法やCVD法等によって形成する(図2参照)。このとき、電極4上方の光学機能材料層8aの層厚が最も厚く、層厚が最大となる位置から凹部Aの底部に向かうにしたがって、光学機能材料層8aの層厚が徐々に薄くなるように、スパッタ条件又はCVD条件を調整する。   Next, an optical functional material layer 8a made of a metal material (for example, aluminum having high light reflectivity) is formed on the insulating layer 7 by sputtering, CVD, or the like (see FIG. 2). At this time, the layer thickness of the optical functional material layer 8a above the electrode 4 is the thickest, and the layer thickness of the optical functional material layer 8a gradually decreases from the position where the layer thickness is maximum toward the bottom of the recess A. In addition, the sputtering conditions or the CVD conditions are adjusted.

次に、光学機能材料層8a全体をエッチングして、光学機能材料層8aの受光部2上方に開口を形成し、開口を有した光学機能層8を形成する(図3参照)。このときのエッチング条件は、光学機能材料層8aのうち受光部2上の一部分は完全に除去でき、その他の部分は層が残るような条件にする。このエッチングにより、受光部2上方の層厚が薄くなっている部分のみが消失して開口が形成される。   Next, the entire optical functional material layer 8a is etched to form an opening above the light receiving portion 2 of the optical functional material layer 8a, thereby forming the optical functional layer 8 having the opening (see FIG. 3). The etching conditions at this time are such that a part of the optical functional material layer 8a on the light receiving portion 2 can be completely removed and the other parts remain. By this etching, only the portion where the layer thickness above the light receiving portion 2 is thin disappears and an opening is formed.

エッチングとしては、異方性エッチング、等方性エッチングを使用することができる。異方性エッチングとしては、プラズマエッチング(ドライエッチング)を行う。プラズマエッチングの種類としては、ECR(電子サイクロトロン共鳴)方式、ICP(誘導結合プラズマ)方式などがあり、低圧力で高密度のプラズマによって、エッチングによる形状を一般的に異方性とすることができる。   As the etching, anisotropic etching or isotropic etching can be used. Plasma etching (dry etching) is performed as anisotropic etching. The types of plasma etching include ECR (electron cyclotron resonance) method and ICP (inductively coupled plasma) method, and the shape by etching can be made generally anisotropic by low pressure and high density plasma. .

次に、光学機能層8の上に、パッシベーション膜となる窒化シリコン等の光透過性を有する絶縁層9をCVD法等によって形成する(図4参照)。これにより、光学機能層8同士の間の領域に絶縁層9が埋め込まれた状態となる。隣接する2つの光学機能層8の間にある絶縁層9に入射した光は、絶縁層9と光学機能層8との界面で反射しながら下方に進み、受光部2へと入射する。つまり、隣接する2つの光学機能層8の間にある絶縁層9に入射した光は、受光部2以外の領域に侵入することなく、そのほとんどが受光部2に入射する。このように、隣接する2つの光学機能層8と、これらで挟まれる絶縁層9とによって、入射光を受光部2に効率的に導く光導波路が構成される。   Next, a light-transmitting insulating layer 9 such as silicon nitride serving as a passivation film is formed on the optical functional layer 8 by a CVD method or the like (see FIG. 4). As a result, the insulating layer 9 is buried in the region between the optical function layers 8. The light incident on the insulating layer 9 between the two adjacent optical functional layers 8 travels downward while being reflected at the interface between the insulating layer 9 and the optical functional layer 8 and enters the light receiving unit 2. That is, most of the light incident on the insulating layer 9 between the two adjacent optical function layers 8 enters the light receiving unit 2 without entering the region other than the light receiving unit 2. As described above, the two adjacent optical function layers 8 and the insulating layer 9 sandwiched between them form an optical waveguide that efficiently guides incident light to the light receiving unit 2.

図5は、本発明の実施形態である固体撮像素子の概略構成を示す断面模式図である。
図5に示す固体撮像素子は、上述した方法で図4に示す状態の素子を形成した後、絶縁層9上に平坦化層10を形成し、その上に、カラーフィルタ11を形成し、その上にマイクロレンズ12を形成することで製造される。マイクロレンズ12は、1つの光導波路に対応し、この光導波路内に光を集光するように構成されている。
FIG. 5 is a schematic cross-sectional view showing a schematic configuration of the solid-state imaging device according to the embodiment of the present invention.
In the solid-state imaging device shown in FIG. 5, after the device shown in FIG. 4 is formed by the above-described method, the planarization layer 10 is formed on the insulating layer 9, and the color filter 11 is formed thereon. It is manufactured by forming the microlens 12 thereon. The microlens 12 corresponds to one optical waveguide, and is configured to collect light in the optical waveguide.

マイクロレンズ12に光が入射すると、この光が光導波路内に集光され、受光部2へと到達する。光導波路内に入射した光のうち、光学機能層8の表面に入射した光はここで反射しながら下方の受光部2に入射する。そして、受光部2に入射した光が信号電荷に変換され、半導体基板1に形成された転送チャネルによって転送される、信号電荷に応じた信号電圧が固体撮像素子から出力される。   When light enters the microlens 12, the light is collected in the optical waveguide and reaches the light receiving unit 2. Of the light incident on the optical waveguide, the light incident on the surface of the optical functional layer 8 is incident on the lower light receiving unit 2 while being reflected here. Then, the light incident on the light receiving unit 2 is converted into a signal charge, and a signal voltage corresponding to the signal charge transferred by a transfer channel formed on the semiconductor substrate 1 is output from the solid-state imaging device.

上述した固体撮像素子の製造方法によれば、絶縁層7上に光学機能材料層8aを形成した後、レジストマスクを用いずに光学機能材料層8a全体をエッチングして受光部2上の光学機能材料層8aのみを完全に除去して開口を形成し、この開口を埋めるように絶縁層9を形成して、光導波路を形成することができる。従来のようにフォトリソグラフィ工程を用いていないため、フォトリソグラフィのレジストパターンの位置ズレに起因する光学特性の劣化を防止することができる。又、フォトリソグラフィ工程を行わないため、製造コストを削減することができる。   According to the above-described method for manufacturing a solid-state imaging device, after the optical functional material layer 8a is formed on the insulating layer 7, the entire optical functional material layer 8a is etched without using a resist mask, so that the optical function on the light receiving unit 2 is obtained. Only the material layer 8a is completely removed to form an opening, and the insulating layer 9 is formed so as to fill the opening, whereby an optical waveguide can be formed. Since a photolithography process is not used as in the prior art, it is possible to prevent deterioration of optical characteristics due to a positional shift of a resist pattern of photolithography. Further, since the photolithography process is not performed, the manufacturing cost can be reduced.

又、上述した固体撮像素子の製造方法によれば、図5に示すように、光学機能層8の層厚が、凹部Aよりも上の位置から光学機能層8の開口に向かうにしたがって徐々に薄くなっている固体撮像素子を製造することができる。このような構成の固体撮像素子によれば、光導波路の容積が大きくなるため、導波できる光を増やすことができ、感度向上を実現することができる。   Further, according to the method for manufacturing the solid-state imaging device described above, as shown in FIG. 5, the layer thickness of the optical function layer 8 gradually increases from the position above the recess A toward the opening of the optical function layer 8. A thin solid-state imaging device can be manufactured. According to the solid-state imaging device having such a configuration, since the volume of the optical waveguide is increased, the light that can be guided can be increased, and the sensitivity can be improved.

尚、光学機能材料層8a全体をエッチングして光学機能材料層8aに開口を形成するためには、少なくとも次の条件を満たせば良く、上述した例に限らない。その条件とは、光学機能材料層8aの開口を形成すべき部分の層厚を、それ以外の部分の層厚よりも薄くし、且つ、該開口を形成すべき部分の光学機能層8aが完全に除去された状態で、それ以外の部分の光学機能層8aが残るようなエッチング条件を適用することである。   In order to form the opening in the optical functional material layer 8a by etching the entire optical functional material layer 8a, at least the following conditions need to be satisfied, and the present invention is not limited to the above example. The condition is that the thickness of the portion of the optical functional material layer 8a where the opening is to be formed is made thinner than the thickness of the other portion, and the portion of the optical functional layer 8a where the opening is to be formed is completely In other words, the etching conditions are applied such that the optical functional layer 8a in the remaining portion remains in the state of being removed.

又、以上の説明では、光学機能材料層8として金属材料を用いるものとしたが、光学機能材料層8は、その上に形成される絶縁層9との界面で光を反射させる反射機能を持たせることができる材料であれば良く、金属材料に限らない。例えば、光学機能材料層8の材料として、絶縁層9を構成する材料よりも低屈折率の絶縁材料を用いることでも、絶縁層9との屈折率差により、光学機能材料層8の界面に反射機能を持たせることができる。   In the above description, a metal material is used as the optical functional material layer 8, but the optical functional material layer 8 has a reflection function of reflecting light at the interface with the insulating layer 9 formed thereon. Any material can be used as long as it can be applied, and the material is not limited to a metal material. For example, even when an insulating material having a lower refractive index than that of the material constituting the insulating layer 9 is used as the material of the optical functional material layer 8, the optical functional material layer 8 is reflected on the interface of the optical functional material layer 8 due to the refractive index difference with the insulating layer 9. Can have a function.

又、以上の説明では、光学機能材料層8aの開口を形成すべき部分の層厚を、それ以外の部分の層厚よりも薄くするという条件を満たすために、光学機能材料層8aの形成条件を調整するものとしたが、絶縁層7のリフロー条件の調整により凹部Aの縦横のアスペクト比を調整し、光学機能材料層8aは層厚を均一にして形成する条件とすることでも、上記形成条件を満たすことが可能である。   In the above description, in order to satisfy the condition that the thickness of the portion where the opening of the optical functional material layer 8a is to be formed is thinner than the thickness of the other portion, the formation conditions of the optical functional material layer 8a However, by adjusting the reflow conditions of the insulating layer 7 to adjust the aspect ratio of the recess A, the optical functional material layer 8a can be formed to have a uniform thickness. It is possible to satisfy the conditions.

本発明の実施形態である固体撮像素子の製造工程の手順を説明する図The figure explaining the procedure of the manufacturing process of the solid-state image sensor which is embodiment of this invention 本発明の実施形態である固体撮像素子の製造工程の手順を説明する図The figure explaining the procedure of the manufacturing process of the solid-state image sensor which is embodiment of this invention 本発明の実施形態である固体撮像素子の製造工程の手順を説明する図The figure explaining the procedure of the manufacturing process of the solid-state image sensor which is embodiment of this invention 本発明の実施形態である固体撮像素子の製造工程の手順を説明する図The figure explaining the procedure of the manufacturing process of the solid-state image sensor which is embodiment of this invention 本発明の実施形態である固体撮像素子の概略構成を示す断面模式図1 is a schematic cross-sectional view showing a schematic configuration of a solid-state imaging device according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 半導体基板
2 受光部
3 ゲート絶縁層
4 電極
5,7,9 絶縁層
8 光学機能層
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Light-receiving part 3 Gate insulating layer 4 Electrodes 5, 7, 9 Insulating layer 8 Optical functional layer

Claims (8)

半導体基板内に形成された受光部を有する固体撮像素子の製造方法であって、
前記半導体基板上に、前記受光部の上方に凹部を有した第一の絶縁層を形成する第一の絶縁層形成工程と、
前記第一の絶縁層上に光学機能材料層を形成する光学機能材料層形成工程とを備え、
前記光学機能材料層は、その上に形成される層との界面で光を反射させる機能を有し、
前記光学機能材料層全体をエッチングして、前記受光部上方に開口を有する光学機能層を形成する光学機能層形成工程と、
前記光学機能層形成工程後、前記光学機能層上に第二の絶縁層を形成する第二の絶縁層形成工程とを備え、
前記光学機能材料層形成工程で形成された前記光学機能材料層は、前記開口を形成すべき部分の厚みが、それ以外の部分よりも薄くなっている固体撮像素子の製造方法。
A method of manufacturing a solid-state imaging device having a light receiving portion formed in a semiconductor substrate,
A first insulating layer forming step of forming a first insulating layer having a recess above the light receiving portion on the semiconductor substrate;
An optical functional material layer forming step of forming an optical functional material layer on the first insulating layer,
The optical functional material layer has a function of reflecting light at an interface with a layer formed thereon,
An optical functional layer forming step of etching the entire optical functional material layer to form an optical functional layer having an opening above the light receiving portion;
A second insulating layer forming step of forming a second insulating layer on the optical functional layer after the optical functional layer forming step;
In the optical functional material layer formed in the optical functional material layer forming step, the thickness of the portion where the opening is to be formed is thinner than the other portions.
請求項1記載の固体撮像素子の製造方法であって、
前記光学機能材料層が金属材料からなる固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1,
A method for producing a solid-state imaging device, wherein the optical functional material layer is made of a metal material.
請求項2記載の固体撮像素子の製造方法であって、
前記金属材料がアルミニウムを含む固体撮像素子の製造方法。
A method for producing a solid-state imaging device according to claim 2,
The manufacturing method of the solid-state image sensor in which the said metal material contains aluminum.
請求項1記載の固体撮像素子の製造方法であって、
前記光学機能材料層が、前記第二の絶縁層よりも低屈折率の材料からなる固体撮像素子の製造方法。
It is a manufacturing method of the solid-state image sensing device according to claim 1,
A method for manufacturing a solid-state imaging device, wherein the optical functional material layer is made of a material having a refractive index lower than that of the second insulating layer.
半導体基板内に形成された受光部を有する固体撮像素子であって、
前記半導体基板上に形成され、前記受光部上方に凹部を有する第一の絶縁層と、
前記第一の絶縁層上に形成され且つ前記受光部上方に開口が形成された光学機能層であって、その上に形成される層との界面で光を反射させる機能を有する光学機能層と、
前記第一の絶縁層及び前記光学機能層の上に形成された第二の絶縁層とを備え、
前記光学機能層は、前記凹部よりも上の位置から前記開口に向かうにしたがって厚みが徐々に薄くなっている固体撮像素子。
A solid-state imaging device having a light receiving portion formed in a semiconductor substrate,
A first insulating layer formed on the semiconductor substrate and having a recess above the light receiving portion;
An optical functional layer formed on the first insulating layer and having an opening formed above the light receiving portion, the optical functional layer having a function of reflecting light at an interface with the layer formed thereon; ,
A second insulating layer formed on the first insulating layer and the optical functional layer,
The optical functional layer is a solid-state imaging device having a thickness that gradually decreases from the position above the recess toward the opening.
請求項5記載の固体撮像素子であって、
前記光学機能層が金属材料からなる固体撮像素子。
The solid-state imaging device according to claim 5,
A solid-state imaging device in which the optical functional layer is made of a metal material.
請求項6記載の固体撮像素子であって、
前記金属材料がアルミニウムを含む固体撮像素子。
The solid-state imaging device according to claim 6,
A solid-state imaging device in which the metal material contains aluminum.
請求項5記載の固体撮像素子であって、
前記光学機能層が、前記第二の絶縁層よりも低屈折率の材料からなる固体撮像素子。
The solid-state imaging device according to claim 5,
A solid-state imaging device, wherein the optical functional layer is made of a material having a refractive index lower than that of the second insulating layer.
JP2007001098A 2007-01-09 2007-01-09 Solid-state image sensor and manufacturing method of solid-state image sensor Withdrawn JP2008171857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001098A JP2008171857A (en) 2007-01-09 2007-01-09 Solid-state image sensor and manufacturing method of solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001098A JP2008171857A (en) 2007-01-09 2007-01-09 Solid-state image sensor and manufacturing method of solid-state image sensor

Publications (1)

Publication Number Publication Date
JP2008171857A true JP2008171857A (en) 2008-07-24

Family

ID=39699702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001098A Withdrawn JP2008171857A (en) 2007-01-09 2007-01-09 Solid-state image sensor and manufacturing method of solid-state image sensor

Country Status (1)

Country Link
JP (1) JP2008171857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103458A (en) * 2008-09-29 2010-05-06 Sony Corp Solid-state imaging device, method for manufacturing the same, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103458A (en) * 2008-09-29 2010-05-06 Sony Corp Solid-state imaging device, method for manufacturing the same, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4120543B2 (en) Solid-state imaging device and manufacturing method thereof
TWI399849B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US20140203171A1 (en) Photoelectric conversion device and fabrication method therefor
JP2009088415A (en) Solid-state imaging device, method of manufacturing the same, and camera
JP2006080533A (en) Cmos image sensor and its manufacturing method
KR20150027050A (en) Image pickup element, image pickup device, and manufacturing device and method
JPH0745805A (en) Solid-stage image pickup device
JP2006120845A (en) Photoelectric converter and its manufacturing method
JP2007095792A (en) Imaging device
KR100937654B1 (en) Image Sensor and Method of Manufaturing Thereof
JP5031216B2 (en) Manufacturing method of imaging apparatus
JP4923357B2 (en) Method for manufacturing solid-state imaging device
JP2009080313A (en) Color filter and its manufacturing method, solid-state imaging element using this filter and its manufacturing method
JP2012186396A (en) Solid state image pickup device and manufacturing method of the same
JP5224685B2 (en) Photoelectric conversion device, manufacturing method thereof, imaging module, and imaging system
JP2007305683A (en) Solid state image sensing element and method for manufacturing the same
JP2008066409A (en) Solid-state imaging apparatus, and its manufacturing method
JP2007227474A (en) Solid-state imaging apparatus
JP2006319037A (en) Solid-state imaging element
JP2006339339A (en) Solid-state image sensing device and its manufacturing method
JP5383124B2 (en) Solid-state imaging device and manufacturing method thereof
JP2008171857A (en) Solid-state image sensor and manufacturing method of solid-state image sensor
JP2009283637A (en) Solid state imaging device and method of manufacturing the same
JP2006086320A (en) Solid state imaging element and its manufacturing method
KR100967477B1 (en) Image sensor and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606