JP2008170091A - Simultaneous treating method for combustible waste and low heating value waste - Google Patents

Simultaneous treating method for combustible waste and low heating value waste Download PDF

Info

Publication number
JP2008170091A
JP2008170091A JP2007004612A JP2007004612A JP2008170091A JP 2008170091 A JP2008170091 A JP 2008170091A JP 2007004612 A JP2007004612 A JP 2007004612A JP 2007004612 A JP2007004612 A JP 2007004612A JP 2008170091 A JP2008170091 A JP 2008170091A
Authority
JP
Japan
Prior art keywords
waste
combustible
calorific value
combustible waste
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004612A
Other languages
Japanese (ja)
Other versions
JP4811597B2 (en
Inventor
Fumihiro Miyoshi
史洋 三好
Masuhito Shimizu
益人 清水
Takashi Kobayashi
敬司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
JFE Environmental Solutions Corp
Original Assignee
JFE Engineering Corp
JFE Environmental Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, JFE Environmental Solutions Corp filed Critical JFE Engineering Corp
Priority to JP2007004612A priority Critical patent/JP4811597B2/en
Publication of JP2008170091A publication Critical patent/JP2008170091A/en
Application granted granted Critical
Publication of JP4811597B2 publication Critical patent/JP4811597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simultaneously treating gasification melting of combustible waste and gasification melting of low heating value waste using a gasifying melting furnace. <P>SOLUTION: The simultaneous treating method for combustible waste and low heating value waste such as incinerated ash, sludge and contaminated soil using a vertical gasifying melting furnace not using a coke packed layer, comprises mixing the low heating value waste and a carbon-containing material having high reactivity, mixing an obtained mixture with the combustible waste and supplying it into the gasifying melting furnace, carrying out gasification melting of the combustible waste by oxygen-containing gas and melting of incinerated ash at the lower part of the gasifying melting furnace, and continuously discharging obtained slag. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物を焼却処理した際に発生する焼却灰、排水処理で発生した汚泥及び汚染土壌等の低発熱量廃棄物を可燃廃棄物と共に竪型ガス化溶融炉において同時処理する方法に関する。   The present invention relates to a method for simultaneously treating incineration ash generated when incineration of wastes, low heat generation waste such as sludge generated in wastewater treatment and contaminated soil in a vertical gasification melting furnace together with combustible wastes. .

現在、廃棄物処分場の不足などが顕在化しており、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿で、あるいは何らかの事前処理の上、焼却処分され減容化された後に埋め立てなどの最終処分が行われる場合が多い。上記した焼却処分の方法としては様々な方法が挙げられるが、近年、焼却場における発生ガス中のダイオキシンなど有害物質の管理が問題となっており、高温酸化雰囲気で有害物を分解することが可能な処理方法が求められてきている。また、廃棄物を処理する際に発生するエネルギーを有効活用するニーズが高まり、高効率発電に対するニーズが高い。   Currently, there is a shortage of waste disposal sites, and much of industrial waste or general waste is landfilled as it is or after being incinerated and reduced in volume after some pretreatment. In many cases, final disposal is performed. There are various methods for incineration as described above. In recent years, management of harmful substances such as dioxins in the gas generated in incineration has become a problem, and it is possible to decompose harmful substances in a high-temperature oxidizing atmosphere. There is a need for a new processing method. In addition, there is a growing need for efficient use of energy generated when processing waste, and there is a high need for highly efficient power generation.

このような高温処理が可能な廃棄物処理方法として、廃棄物を熱分解溶融炉に装入し、乾燥、予熱、熱分解、燃焼、溶融し、スラグ及びメタルとして取り出す廃棄物ガス化溶融処理方法がある。廃棄物をガス化溶融処理する技術として種々のものが提案されている。
また、廃棄物をガス化溶融処理する方法において、廃棄物を焼却した際に発生する焼却灰を廃棄物と同時に処理する方法も提案されている。
As a waste treatment method capable of such high-temperature treatment, waste gasification and fusion treatment method in which waste is charged into a pyrolysis melting furnace and dried, preheated, pyrolyzed, combusted, melted, and taken out as slag and metal There is. Various techniques for gasifying and melting wastes have been proposed.
In addition, as a method for gasifying and melting waste, a method has also been proposed in which incineration ash generated when the waste is incinerated is treated simultaneously with the waste.

例えば、特許文献1には、炉底部にコークス層を形成し、このコークス層へ空気を吹込んでコークスを燃焼させ、高温の燃焼帯を形成させながら、その上に廃棄物を投入し、投入された廃棄物を高温のコークス層の上で予熱し、次いで熱分解してガス化し溶融して溶融スラグとする竪型溶融炉において、廃棄物中に飛灰が混じっているとコークス層の通気性が著しく低下してコークス層への正常な送風ができなくなり、操業を停止しなければならないと言う問題が発生することに鑑み、飛灰を含む廃棄物の溶融処理に際し、コークス層の表面部の温度が所定値以上になるように、装入量を調節することによってコークス層の通気性を確保することが開示されている。しかしながら、この方法はコークス充填層を用いるものであり、コークスは塊状であるため炭材としての反応性が低く、炉内で十分に燃焼しにくく、連続出滓の場合、出滓とともに流れ出ることが多いという問題がある。   For example, in Patent Document 1, a coke layer is formed at the bottom of the furnace, air is blown into the coke layer, the coke is burned, and a high temperature combustion zone is formed, and waste is put on and put into it. In a vertical melting furnace where the waste is preheated on a high-temperature coke layer, then pyrolyzed, gasified and melted to form molten slag, if the fly ash is mixed in the waste, the air permeability of the coke layer In view of the problem that the normal air flow to the coke layer cannot be significantly reduced and the operation must be stopped, the melting of the waste containing fly ash causes the surface portion of the coke layer to be melted. It is disclosed that the air permeability of the coke layer is ensured by adjusting the charging amount so that the temperature becomes equal to or higher than a predetermined value. However, this method uses a coke packed bed, and since the coke is a lump, it has low reactivity as a carbonaceous material and is not easily burned in the furnace. There is a problem that there are many.

特許文献2には、廃棄物、廃棄物を焼却した灰、あるいは汚泥を単独または混合して溶融処理する方法において、廃棄物の溶融スラグの成分が珪酸SiO2が豊富で、溶融状態で粘性が高く、溶融炉からの排出が困難であるため、貝殻を熱風で乾燥、脱臭した後、破砕して粒径を0.3〜20mmとしたものを石灰源として供給して、溶融スラグの塩基度CaO/SiO2を調整することにより、溶融状態のスラグの流動性を改善してスラグの排出作業を容易にし緻密で強固なスラグを得ることが開示されている。しかしながらこの方法では廃棄物、貝殻及びコークスを炉上部の装入装置から溶融炉1に投入するものであるが、連続出滓の際にコークスがスラグ゛と共に流れ出る可能性がある。 In Patent Document 2, in a method of melting a waste, ash obtained by incineration of waste, or sludge alone or mixed, the component of the molten slag of the waste is rich in silicate SiO 2 , and the viscosity is in a molten state. Since it is high and difficult to discharge from the melting furnace, the shell is dried with hot air, deodorized, and then crushed to a particle size of 0.3 to 20 mm as a lime source. It is disclosed that by adjusting CaO / SiO 2 , the fluidity of molten slag is improved to facilitate discharge of slag and to obtain a dense and strong slag. However, in this method, waste, shells and coke are charged into the melting furnace 1 from the charging device at the upper part of the furnace, but there is a possibility that the coke flows out together with the slag during continuous unloading.

特許文献3には、従来の、予め焼却灰を塊状(ブリケット)としたものを、追加塊コークスと共に溶融炉へ投入するという焼却灰の溶融処理方法に替えて、微粉コークスと焼却灰とを予め混練して含炭ブリケットを形成し、次に、該含炭ブリケットを、追加塊コークスと共に、溶融炉内へ投入して、上記焼却灰を溶融して溶融スラグとして出滓させるという方法を採用することにより、焼却灰を効率良く溶融して、燃料となる塊コークスの使用量を低減できることが開示されている。この方法もコークスベッド式溶融炉を用いるため、特許文献3について述べたと同様の問題がある。   In Patent Document 3, instead of the conventional method of incineration ash in which the incinerated ash is preliminarily made into a lump (briquette) and added to the ingot ash together with the additional lump coke, the finely ground coke and the incinerated ash are pre- Kneaded to form a carbon-containing briquette, and then the carbon-containing briquette is introduced into a melting furnace together with additional lump coke to melt the incinerated ash and leave it as molten slag. Thus, it is disclosed that the incinerated ash can be efficiently melted to reduce the amount of lump coke used as fuel. Since this method also uses a coke bed melting furnace, there is a problem similar to that described in Patent Document 3.

特許文献4には、可燃性廃棄物を一旦粗粉砕し、金属類を除去した後微粉砕し、微粉砕後微粉炭焚きボイラへ供給して石炭と混合燃焼させるという方法では、大粒径粒子の一部は炉内に供給された後燃えきる前に炉底に落下するという問題があるため、可燃性廃棄物を燃焼させて燃焼後の固体に含まれる可燃成分を回収し、回収した可燃成分を石炭と混合して粉砕し、得られた可燃成分と石炭の混合物を燃焼設備へ供給し燃焼させることによって大粒径粒子が燃えきる前に炉底に落下することを防ぐという方法が開示されている。特許文献4には、石炭灰を溶融することについても記載があるが、その方法は、可燃性廃棄物を分級器25で小粒径粒子と大粒径粒子とに分離し、小粒径粒子を、灰溶融炉へ供給して灰溶融炉で旋回流46中に小粒径粒子を保持し燃焼させて、灰溶融炉に同時に供給される石炭灰を溶融させて、炉底部から、スラグとして石炭灰を回収するというものであり、ガス化溶融炉で石炭灰を処理するというものではない。   Patent Document 4 discloses a method in which combustible waste is coarsely pulverized once, metals are removed and then finely pulverized, and then supplied to a pulverized coal-fired boiler and mixed and burned with coal. Since some of them fall into the furnace bottom before being burned after being supplied to the furnace, the combustible waste is burned to recover the combustible components contained in the solid after combustion, and the recovered combustible Disclosed is a method to prevent the large particles from falling to the bottom of the furnace before they burn out by mixing the components with coal and crushing them, and supplying the resulting combustible component and coal mixture to a combustion facility and burning it. Has been. Patent Document 4 also describes the melting of coal ash, but the method is to separate the combustible waste into small particle size particles and large particle size particles with a classifier 25, and then the small particle size particles. Is supplied to the ash melting furnace, small particles are held in the swirling flow 46 and burned in the ash melting furnace, and coal ash supplied simultaneously to the ash melting furnace is melted to form slag from the furnace bottom. It is to collect coal ash, not to treat coal ash in a gasification melting furnace.

特許文献5には、バイオマスを空気遮断状態での間接加熱により400〜900℃の熱分解ガスと固形炭化物に分離し、熱分解ガスをガス改質して改質ガスとし、熱分解工程で得られた固形炭化物を微粉砕して得られた固形炭化物にバインダーを添加して加圧成型により造粒してバイオマスコークスとし、これを廃棄物のシャフト炉式溶融炉の溶融燃料用コークスとして利用することが開示されている。しかしながら、溶融燃料用コークスとしての具体的な使用法についての開示はない。   In Patent Document 5, biomass is separated into a pyrolysis gas and a solid carbide of 400 to 900 ° C. by indirect heating in an air shut-off state, and the pyrolysis gas is gas reformed to obtain a reformed gas, which is obtained in the pyrolysis step. Binder is added to the solid carbide obtained by pulverizing the obtained solid carbide and granulated by pressure molding to form biomass coke, which is used as coke for molten fuel in the shaft furnace type melting furnace for waste It is disclosed. However, there is no disclosure about specific usage as coke for molten fuel.

特開2000−257832号公報JP 2000-257832 A 特開2004−216243号公報JP 2004-216243 A 特開2006−234209号公報JP 2006-234209 A 特開2003−130308号公報JP 2003-130308 A 特開2006−282914号公報JP 2006-282914 A

本発明の目的は、可燃廃棄物のガス化溶融と、低発熱量廃棄物の溶融処理とを同時に可能とする廃棄物の処理方法を提供することにあり、より詳細には、コークス充填層を用いないガス化溶融炉を用いて可燃廃棄物のガス化溶融と低発熱量廃棄物の溶融処理とを同時に行ない、溶融スラグを炉から連続出滓することが可能な可燃廃棄物及び低発熱量廃棄物の同時処理方法を提供することにある。なお、本発明でいう低発熱量廃棄物とは焼却灰、汚泥、汚染土壌等の発熱量が低いもの(例:500kcal/kg以下)のものをいう。   An object of the present invention is to provide a waste processing method that enables simultaneous gasification melting of combustible waste and melting processing of low calorific value waste, and more particularly, a coke packed bed. Combustible waste and low calorific value capable of continuously discharging molten slag from the furnace by simultaneously gasifying and melting combustible waste and melting treatment of low calorific value waste using an unused gasification melting furnace The object is to provide a method for simultaneous treatment of waste. In addition, the low calorific value waste referred to in the present invention refers to those having a low calorific value (eg, 500 kcal / kg or less) such as incinerated ash, sludge, and contaminated soil.

本発明者等は鋭意検討した結果、焼却灰、汚泥、汚染土壌等の低発熱量廃棄物をまず高反応性を有する炭素含有物質と混合し、ついでその混合物を可燃廃棄物と混合してガス化溶融炉内に供給し、炉下部で酸素含有ガスにより廃棄物をガス化溶融し、かつ低発熱量廃棄物を溶融することにより上記課題を解決することができることを見出して本発明を完成した。
すなわち、本発明は次に記載するとおりの構成を有する。
As a result of intensive studies, the inventors first mixed low-calorific waste such as incinerated ash, sludge, and contaminated soil with a highly reactive carbon-containing substance, and then mixed the mixture with combustible waste to produce a gas. The present invention was completed by finding that the above-mentioned problems can be solved by supplying the gas into a chemical melting furnace, gasifying and melting the waste with an oxygen-containing gas at the bottom of the furnace, and melting the low calorific value waste. .
That is, the present invention has a configuration as described below.

(1)コークス充填層を用いない竪型のガス化溶融炉を用いて、可燃廃棄物及び低発熱量廃棄物を同時処理する方法において、低発熱量廃棄物と高反応性を有する炭素含有物質とを混合し、得られた混合物を可燃廃棄物と混合してガス化溶融炉内に供給し、該ガス化溶融炉下部において酸素含有ガスにより可燃廃棄物をガス化溶融すると共に低発熱量廃棄物を溶融し、得られたスラグを連続出滓することを特徴とする可燃廃棄物及び低発熱量廃棄物の同時処理方法。
(2)低発熱量廃棄物及び高反応性を有する炭素含有物質の混合物と可燃廃棄物とを圧縮してブロック化し、この圧縮ブロックを前記ガス化溶融炉の横側から炉内に供給することを特徴とする上記(1)に記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。
(3)前記炭素含有物質が木質炭又はRDF炭であることを特徴とする上記(1)又は(2)に記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。
(4)前記炭素含有物質の重量平均粒径が1mm〜40mmであることを特徴とする上記(1)〜(3)のいずれかに記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。
(5)前記低発熱量廃棄物と前記高反応性を有する炭素含有物質との混合物中における炭素含有物質の割合が5mass%〜50mass%であることを特徴とする上記(1)〜(4)のいずれかに記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。
(6)低発熱量廃棄物及び高反応性を有する炭素含有物質の混合物と可燃廃棄物との混合物中における低発熱量廃棄物の割合が80mass%以下であることを特徴とする上記(1)〜(5)のいずれかに記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。
(1) In a method of simultaneously treating combustible waste and low heat generation waste using a vertical gasification melting furnace that does not use a coke packed bed, a carbon-containing substance having high reactivity with low heat generation waste And the resulting mixture is mixed with combustible waste and supplied into the gasification and melting furnace. At the bottom of the gasification and melting furnace, the combustible waste is gasified and melted with an oxygen-containing gas and discarded at a low calorific value. A method for simultaneously treating combustible waste and low calorific value waste, characterized by melting the product and continuously discharging the obtained slag.
(2) A mixture of a low calorific value waste and a highly reactive carbon-containing substance and combustible waste are compressed to form a block, and this compressed block is supplied into the furnace from the side of the gasification melting furnace. The method for simultaneous treatment of combustible waste and low calorific value waste according to (1) above.
(3) The method for simultaneous treatment of combustible waste and low calorific value waste according to (1) or (2), wherein the carbon-containing substance is wood charcoal or RDF charcoal.
(4) The method for simultaneous treatment of combustible waste and low calorific value waste according to any one of (1) to (3), wherein the carbon-containing material has a weight average particle diameter of 1 mm to 40 mm. .
(5) The above-mentioned (1) to (4), wherein the ratio of the carbon-containing material in the mixture of the low calorific value waste and the highly reactive carbon-containing material is 5 mass% to 50 mass%. A method for simultaneously treating combustible waste and low heat generation waste according to any one of the above.
(6) The above-mentioned (1), characterized in that the ratio of the low calorific value waste in the mixture of the low calorific value waste and the highly reactive carbon-containing material and the combustible waste is 80 mass% or less. The simultaneous processing method of the combustible waste and low calorific value waste in any one of-(5).

本発明によれば、廃棄物を焼却処理した際に発生する低発熱量廃棄物を可燃廃棄物と共に竪型ガス化溶融炉において同時処理することができ、また、高反応性を有する炭素含有物質を用いることによりスラグ中への炭素粒子の混入を防止・低減することができるので、得られるスラグは炭材を含まない良好な品質のものであり、資源として再利用することが可能である。また、高反応性を有する炭素含有物質として木質炭を用いると、カーボンニュートラルとなり、CO2削減に寄与するという効果が得られる。 According to the present invention, low calorific value waste generated when waste is incinerated can be simultaneously processed together with combustible waste in a vertical gasification and melting furnace, and a highly reactive carbon-containing substance. Since it is possible to prevent and reduce the mixing of carbon particles into the slag, the obtained slag is of good quality not containing carbonaceous material and can be reused as a resource. In addition, when wood charcoal is used as a highly reactive carbon-containing substance, carbon neutral is obtained, and the effect of contributing to CO 2 reduction can be obtained.

本発明の詳細について以下説明するが、まず本発明の前提技術である廃棄物のガス化溶融処理方法について低発熱量廃棄物として焼却灰を処理する場合を例に挙げて図1に基づいて説明する。
この方式の基本的な構成をフローに沿って説明すると次の通りである。
ピットに集積された都市ごみ、産業廃棄物等の廃棄物は圧縮装置3で圧縮ブロック7とし、該圧縮ブロック7をガス化溶融炉本体1に供給する。ガス化溶融炉の下部(図1のa位置)にはランスが配置され、このランスによって炉内に高濃度酸素ガス5が導入され、この高濃度酸素ガス5が廃棄物中の炭素をガス化し、一酸化炭素と二酸化炭素が生成する。また、高温水蒸気が存在するため、炭素と水蒸気とによる水性ガス反応が生じて、水素と一酸化炭素が生成される。更に、有機化合物(炭化水素など)も水蒸気と反応して、水素と一酸化炭素が生成する。廃棄物の装入レベル以上の位置(図1のb位置)からは酸素含有ガス6が吹き込まれ、廃棄物から発生したガスを部分燃焼して発生ガス2として炉頂部から排出される。排出ガスはガス処理設備において洗浄され精製され、精製合成ガスとして回収される。
The details of the present invention will be described below. First, the waste gasification and melting method, which is a prerequisite technology of the present invention, will be described with reference to FIG. To do.
The basic configuration of this method will be described along the flow as follows.
Waste such as municipal waste and industrial waste accumulated in the pits is made into a compression block 7 by the compression device 3, and the compression block 7 is supplied to the gasification melting furnace body 1. A lance is arranged in the lower part of the gasification melting furnace (position a in FIG. 1), and the high-concentration oxygen gas 5 is introduced into the furnace by the lance, and the high-concentration oxygen gas 5 gasifies carbon in the waste. , Carbon monoxide and carbon dioxide are produced. Further, since high-temperature steam is present, a water gas reaction occurs between carbon and steam, and hydrogen and carbon monoxide are generated. Further, organic compounds (such as hydrocarbons) also react with water vapor to produce hydrogen and carbon monoxide. The oxygen-containing gas 6 is blown from a position above the waste charging level (position b in FIG. 1), and the gas generated from the waste is partially combusted and discharged as generated gas 2 from the top of the furnace. The exhaust gas is washed and purified in a gas processing facility and recovered as a purified synthesis gas.

本発明においては、上記のガス化溶融炉1において、廃棄物のガス化溶融と同時に焼却灰の溶融処理も合わせて行うものであり、本発明の特徴は、燃焼補助剤としてコークス充填層を用いない点及び連続出滓を可能とした点にある。   In the present invention, in the gasification and melting furnace 1 described above, waste gasification and melting are performed at the same time as incineration ash melting treatment. There are no points and continuous output.

コークスは塊状であり、炭材としての反応性が低く、炉内で十分に燃焼しにくく、連続出滓の場合、出滓とともに流れ出ることが多い。出滓が間歇的である場合には、炉底にスラグが溜まって後に出滓するため、コークスは溶融スラグ上に浮いており、出滓初期には流れ出さず出滓後期になって初めて流れ出だす。しかしながら、出滓が連続的である場合には、炉底にスラグが溜まっていないところで、スラグの生成と同時に出滓が起こるので、その出滓に伴ってコークスが流れ出てしまうことになる。そこで、本発明では、塊状であり反応性の悪いコークスを使わずに、かつ連続出滓の際にも炭材が出滓と共に流れ出にくい状態での焼却灰の溶融無害化と廃棄物のガス化溶融の同時達成を可能としたものである。   Coke is a lump, has low reactivity as a carbonaceous material, is not easily combusted in the furnace, and often flows along with the tapping in the case of continuous tapping. When the output is intermittent, slag accumulates at the bottom of the furnace and is discharged later, so the coke floats on the molten slag and does not flow at the beginning of the discharge but only at the end of the discharge. It's out. However, when the brewing is continuous, slag is collected at the same time as the slag is generated where slag is not accumulated at the bottom of the furnace, so that coke flows out along with the brewing. Therefore, in the present invention, incineration ash is made harmless and gasification of waste in a state where the coke is not bulky and does not use reactive coke, and even during continuous brewing, the carbonaceous material is difficult to flow with the brewing. It is possible to achieve simultaneous melting.

焼却灰を廃棄物のガス化溶融時に同時に溶融無害化するためには、焼却灰中には可燃分がほとんど残存しないために、熱バランス上、燃焼補助剤が必要である。従って、本発明においてはコークスに代わる燃焼補助剤が必要となるが、本発明においては燃焼補助剤として高反応性(高燃焼性)を有する炭素含有物質を用いる。   In order to make the incineration ash harmless and harmless at the same time when the waste gasifies and melts, a combustible component is hardly left in the incineration ash, so a combustion aid is necessary for heat balance. Accordingly, in the present invention, a combustion auxiliary agent in place of coke is required, but in the present invention, a carbon-containing substance having high reactivity (high combustion property) is used as the combustion auxiliary agent.

すなわち、炭素含有物質として、反応性が高く早期に燃焼して、出滓口到達時には全て燃焼し尽くしているほどの高反応性の炭素含有物質を用いることにより、出滓の際に炭材がスラグと共に流れ出るという問題を解消することができる。
また、焼却灰は泥状であるため、それらによく熱を伝わらせるためにはまず該泥状の焼却灰と高反応性の炭素含有物質とを混合し、焼却灰の中から発熱・熱供給を起こすことが好ましい。また、炉内にはガス流が存在するが、焼却灰と炭素含有物質との混合物はこのガス流によって飛散する恐れがあるので、該混合物と可燃廃棄物とを混合して装入することが好ましく、さらには、該混合物と可燃廃棄物とを圧縮ブロック化して装入することがより好ましい。
そして、通常、可燃性廃棄物は焼却灰より粒径が大きいため、両者の混合は容易ではないので、装入ごとに炭素含有物質及び焼却灰の混合物と可燃廃棄物とを圧縮装置に供給して圧縮ブロック化することが好ましく、これによって全体としては安定した熱供給ができ、炉内反応が安定化する。
In other words, by using a highly reactive carbon-containing material that is highly reactive and burns quickly at the time of arrival at the tap outlet, the carbonaceous material is reduced in the output. The problem of flowing out with the slag can be solved.
Incineration ash is in the form of mud, so to transfer heat well to them, first mix the incinerated ash and highly reactive carbon-containing material, and then generate heat and heat from the incineration ash. It is preferable to cause In addition, although there is a gas flow in the furnace, the mixture of incinerated ash and carbon-containing material may be scattered by this gas flow, so the mixture and combustible waste can be mixed and charged. More preferably, it is more preferable to charge the mixture and combustible waste in a compression block.
In general, combustible waste has a larger particle size than incineration ash, so mixing of both is not easy. Therefore, a mixture of carbon-containing material and incineration ash and combustible waste are supplied to the compressor for each charge. Thus, it is preferable to form a compression block, whereby stable heat supply can be achieved as a whole, and the reaction in the furnace is stabilized.

高反応性(燃焼性)の炭素含有物質としては、溶融スラグ中で残存しないものであれば特に限定されないが、木質炭の他、ごみを固形燃料化した高反応性のRDF炭(Refuse Derived Fuel炭)を好ましい例として挙げることができる。また、RDF炭でも、プラスチックを主体とするものではなく、木くず、紙くずを主体とするRDF炭が好ましい。
木質炭とコークスとを比較すると、コークスは、気孔率:50〜60%、真比重:1.5〜1.9、見かけ密度:0.8から1.0g/cm3であり、木質炭は気孔率:60〜90%、真比重:0.8〜1.5、見かけ密度:0.4〜0.8g/cm3である。そして上記の物性の違いにより、木炭の反応速度はコークスの約5倍である。
The highly reactive (combustible) carbon-containing substance is not particularly limited as long as it does not remain in the molten slag. In addition to wood charcoal, highly reactive RDF charcoal obtained by converting waste into solid fuel (Refuse Derived Fuel). Charcoal) can be mentioned as a preferred example. RDF charcoal is not mainly made of plastic, but RDF charcoal mainly made of wood waste and paper waste is preferable.
When comparing charcoal and coke, the coke has a porosity of 50 to 60%, a true specific gravity of 1.5 to 1.9, and an apparent density of 0.8 to 1.0 g / cm 3. The porosity is 60 to 90%, the true specific gravity is 0.8 to 1.5, and the apparent density is 0.4 to 0.8 g / cm 3 . Due to the difference in physical properties, the reaction rate of charcoal is about 5 times that of coke.

木質炭は既に炭化された状態であるため揮発分が少なく、焼却灰と混合された木質炭はそのまま焼却灰とともに炉底部に移動し、炉底部に熱源を供給できるだけでなく、コークスに比較して気孔が多く、酸素との反応性が高いため酸素との反応により、部分的に2000℃程度の温度になり、この温度で、焼却灰が溶融する。また木質炭は焼却灰を溶融し均質化した後は、残存することがない。一方、可燃廃棄物は、熱分解し、熱分解ガスは炉上部に流れ、灰分と熱分解炭素が炉底部に移動する。
これに対し、コークスを燃焼補助材として用いると、コークスは反応性が低いため、残存したコークスが溶融物とともに、コークスの形態をたまったまま出滓され、スラグの品質を低下させるという問題がある。
また、木質炭をあらかじめ焼却灰と混合していない場合には、焼却灰が偏在して炭素がない部分ができ、十分な熱の供給がないために、未溶融の部分が発生するという問題があるほか、温度に分布が生じて、メタルが十分に溶けずに、スラグ、メタルの分離が悪化したり、出滓でメタルが固化し、閉塞に至る場合がある。
Since the charcoal is already carbonized, the volatile content is low, and the charcoal mixed with the incineration ash can move to the bottom of the furnace with the incineration ash as it is and supply heat source to the bottom of the furnace, compared to coke. Since there are many pores and the reactivity with oxygen is high, the reaction with oxygen partially brings the temperature to about 2000 ° C., and the incinerated ash melts at this temperature. Woody charcoal does not remain after incineration ash is melted and homogenized. On the other hand, combustible waste is pyrolyzed, pyrolysis gas flows to the top of the furnace, and ash and pyrolytic carbon move to the bottom of the furnace.
On the other hand, when coke is used as a combustion auxiliary material, since coke is low in reactivity, there is a problem that the remaining coke is discharged together with the melt while remaining in the form of coke and the quality of slag is lowered. .
In addition, if the charcoal is not mixed with the incineration ash in advance, the incineration ash is unevenly distributed and there is no carbon, and there is a problem that an unmelted part is generated because there is not sufficient heat supply. In addition, there is a case where the temperature is distributed, the metal is not sufficiently melted, the separation of slag and metal is deteriorated, or the metal is solidified due to slag, resulting in blockage.

炭素含有物質の重量平均粒径は1mm〜40mmであることが好ましい。粒径が1mm未満であると、炉内のガス流に同伴されて炉外に排出され、炉底部に移動する量が少なくなり溶融の効率を低下させる。また、粒径が40mmを超えると焼却灰との均質な混合が困難となるだけでなく溶融の効率が低下する。   The weight average particle diameter of the carbon-containing material is preferably 1 mm to 40 mm. When the particle size is less than 1 mm, the amount of the gas flowing in the furnace is discharged to the outside of the furnace and moved to the bottom of the furnace, and the melting efficiency is lowered. On the other hand, if the particle diameter exceeds 40 mm, not only homogeneous mixing with the incinerated ash becomes difficult, but also the efficiency of melting decreases.

焼却灰と炭素含有物質との混合物中の炭素含有物質の割合は5mass%〜50mass%とすることが好ましい。5mass%未満であると焼却灰を溶融するには熱量が不足し、50mass%を超える場合は、過剰に熱を供給することとなりエネルギー的に無駄となる。   The ratio of the carbon-containing material in the mixture of the incinerated ash and the carbon-containing material is preferably 5 mass% to 50 mass%. If it is less than 5 mass%, the amount of heat is insufficient to melt the incinerated ash, and if it exceeds 50 mass%, excessive heat is supplied and energy is wasted.

[実施例1]
焼却灰に1〜10mmの木質炭(重量平均粒径6mm)を15mass%添加混合し、得られた混合物を可燃廃棄物とともに、該混合物の割合が15mass%となるようにプレスホッパーに装入し、ガス化改質溶融装置に逐次装入してガス化溶融をした。スラグは連続出滓が可能であり、得られたスラグは均質であり、資源化することができる品質のものであった。
[Example 1]
Add 1 to 10 mm of charcoal (weight average particle size 6 mm) to the incinerated ash by 15 mass% and mix the resulting mixture together with combustible waste into a press hopper so that the ratio of the mixture is 15 mass%. The gasification reforming and melting apparatus was sequentially charged and gasified and melted. The slag was capable of continuous tapping, and the obtained slag was homogeneous and of a quality that could be recycled.

[比較例1]
焼却灰に、粒径10〜30mmのコークス(重量平均粒径25mm)を15mass%添加混合し、該混合物を15mass%、可燃廃棄物とともに、プレスホッパーに装入し、ガス化改質溶融装置に逐次装入してガス化溶融をした。連続出滓はできたが、スラグ中にコークスが残存し、資源化物としては不十分であった。
[Comparative Example 1]
Coke with a particle size of 10 to 30 mm (weight average particle size 25 mm) is added and mixed with incinerated ash at 15 mass%, and the mixture is charged into a press hopper together with 15 mass% and combustible waste. Sequentially charged and gasified and melted. Although continuous tapping was possible, coke remained in the slag and was insufficient as a resource.

[比較例2]
焼却灰と可燃廃棄物と焼却灰に対して粒径1〜10mmの木質炭(重量平均粒径6mm)を15mass%プレスホッパーに装入し、ガス化改質溶融装置に逐次装入してガス化溶融をした。出滓は不安定であり、長期的には出滓口を閉塞するトラブルが頻発した。
[Comparative Example 2]
Charcoal charcoal (weight average particle size 6 mm) with a particle size of 1 to 10 mm is charged into a 15 mass% press hopper for incinerated ash, combustible waste, and incinerated ash, and then sequentially charged into a gasification reforming and melting apparatus. It was melted. The output was unstable, and troubles that blocked the exit were frequent in the long term.

本発明の方法は、ガス化溶融装置内で、可燃廃棄物と焼却灰とを同時に処理することができるので、設備的、工程的に低コストでの処理が可能であり、産業廃棄物及び一般廃棄物の処理方法として好適である。 Since the method of the present invention can simultaneously process combustible waste and incinerated ash in a gasification and melting apparatus, it can be processed at low cost in terms of equipment and process, and can be used for industrial waste and general waste. It is suitable as a waste processing method.

ガス化溶融方法を説明する図である。It is a figure explaining the gasification melting method. 本発明の方法のフローシートを示す図である。It is a figure which shows the flow sheet of the method of this invention.

符号の説明Explanation of symbols

1 ガス化溶融炉
2 発生ガス
3 圧縮装置
4 均質化炉
5 酸素含有ガス
6 酸素含有ガス
7 圧縮ブロック
8 加熱炉
9 燃料ガス
DESCRIPTION OF SYMBOLS 1 Gasification melting furnace 2 Generated gas 3 Compression apparatus 4 Homogenization furnace 5 Oxygen containing gas 6 Oxygen containing gas 7 Compression block 8 Heating furnace 9 Fuel gas

Claims (6)

コークス充填層を用いない竪型のガス化溶融炉を用いて、可燃廃棄物及び低発熱量廃棄物を同時処理する方法において、該低発熱量廃棄物と高反応性を有する炭素含有物質とを混合し、得られた混合物を可燃廃棄物と混合してガス化溶融炉内に供給し、該ガス化溶融炉下部において酸素含有ガスにより可燃廃棄物をガス化溶融すると共に該低発熱量廃棄物を溶融し、得られたスラグを連続出滓することを特徴とする可燃廃棄物及び焼却灰の同時処理方法。   In a method of simultaneously treating combustible waste and low calorific value waste using a vertical gasification melting furnace without using a coke packed bed, the low calorific value waste and a highly reactive carbon-containing substance The mixture obtained is mixed with combustible waste and supplied into the gasification melting furnace, and the combustible waste is gasified and melted with an oxygen-containing gas at the lower part of the gasification melting furnace and the low heat generation waste A method for simultaneously treating combustible waste and incinerated ash, characterized in that slag is melted and the obtained slag is continuously discharged. 低発熱量廃棄物及び高反応性を有する炭素含有物質の混合物と可燃廃棄物とを圧縮してブロック化し、この圧縮ブロックを前記ガス化溶融炉の横側から炉内に供給することを特徴とする請求項1記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。   A mixture of a low calorific value waste and a highly reactive carbon-containing material and combustible waste are compressed into a block, and the compressed block is supplied into the furnace from the side of the gasification melting furnace. The method for simultaneously treating combustible waste and low heat generation waste according to claim 1. 前記炭素含有物質が木質炭又はRDF炭であることを特徴とする請求項1又は請求項2記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。   The method for simultaneous treatment of combustible waste and low calorific value waste according to claim 1 or 2, wherein the carbon-containing substance is wood charcoal or RDF charcoal. 前記炭素含有物質の重量平均粒径が1mm〜40mmであることを特徴とする請求項1〜3のいずれかに記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。   The method for simultaneous treatment of combustible waste and low calorific value waste according to any one of claims 1 to 3, wherein the carbon-containing material has a weight average particle diameter of 1 mm to 40 mm. 前記低発熱量廃棄物と前記高反応性を有する炭素含有物質との混合物中における炭素含有物質の割合が5mass%〜50mass%であることを特徴とする請求項1〜4のいずれかに記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。 The ratio of the carbon-containing material in the mixture of the low calorific value waste and the highly reactive carbon-containing material is 5 mass% to 50 mass%, according to any one of claims 1 to 4. Simultaneous treatment of combustible waste and low heat generation waste. 低発熱量廃棄物及び高反応性を有する炭素含有物質の混合物と可燃廃棄物との混合物中における低発熱量廃棄物の割合が80mass%以下であることを特徴とする請求項1〜5のいずれかに記載の可燃廃棄物及び低発熱量廃棄物の同時処理方法。   The ratio of the low calorific value waste in the mixture of the low calorific value waste and the mixture of the carbon-containing material having high reactivity and the combustible waste is 80 mass% or less. A method for simultaneously treating combustible waste and low calorific value waste.
JP2007004612A 2007-01-12 2007-01-12 Simultaneous treatment of combustible waste and low calorific value waste Active JP4811597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004612A JP4811597B2 (en) 2007-01-12 2007-01-12 Simultaneous treatment of combustible waste and low calorific value waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004612A JP4811597B2 (en) 2007-01-12 2007-01-12 Simultaneous treatment of combustible waste and low calorific value waste

Publications (2)

Publication Number Publication Date
JP2008170091A true JP2008170091A (en) 2008-07-24
JP4811597B2 JP4811597B2 (en) 2011-11-09

Family

ID=39698354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004612A Active JP4811597B2 (en) 2007-01-12 2007-01-12 Simultaneous treatment of combustible waste and low calorific value waste

Country Status (1)

Country Link
JP (1) JP4811597B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953595A (en) * 2019-11-13 2020-04-03 亿利洁能股份有限公司达拉特分公司 Clean utilization system of carbide stove waste material incineration used heat
CN111229784A (en) * 2020-03-02 2020-06-05 刘跃伟 Forming process and forming equipment of biomass derived fuel (RDF)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126327A (en) * 1991-08-01 1993-05-21 Nippon Steel Corp Method for processing dusts generated under combustion of waste material
JPH11270824A (en) * 1998-03-24 1999-10-05 Kawasaki Steel Corp Waste treatment and facility therefor
JP2004250590A (en) * 2003-02-20 2004-09-09 Cyc:Kk Wood-based coke
JP2005274122A (en) * 2004-02-26 2005-10-06 Nippon Steel Corp Waste melting method using biomass
JP2006234209A (en) * 2005-02-23 2006-09-07 Shin Meiwa Ind Co Ltd Incinerated ash treatment method
JP2006266548A (en) * 2005-03-23 2006-10-05 Ngk Insulators Ltd Ash melting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126327A (en) * 1991-08-01 1993-05-21 Nippon Steel Corp Method for processing dusts generated under combustion of waste material
JPH11270824A (en) * 1998-03-24 1999-10-05 Kawasaki Steel Corp Waste treatment and facility therefor
JP2004250590A (en) * 2003-02-20 2004-09-09 Cyc:Kk Wood-based coke
JP2005274122A (en) * 2004-02-26 2005-10-06 Nippon Steel Corp Waste melting method using biomass
JP2006234209A (en) * 2005-02-23 2006-09-07 Shin Meiwa Ind Co Ltd Incinerated ash treatment method
JP2006266548A (en) * 2005-03-23 2006-10-05 Ngk Insulators Ltd Ash melting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953595A (en) * 2019-11-13 2020-04-03 亿利洁能股份有限公司达拉特分公司 Clean utilization system of carbide stove waste material incineration used heat
CN111229784A (en) * 2020-03-02 2020-06-05 刘跃伟 Forming process and forming equipment of biomass derived fuel (RDF)
CN111229784B (en) * 2020-03-02 2021-05-21 刘跃伟 Forming process and forming equipment of biomass derived fuel (RDF)

Also Published As

Publication number Publication date
JP4811597B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP6554384B2 (en) Method and apparatus for treating carbon-containing feedstock into gasification gas
US6333015B1 (en) Synthesis gas production and power generation with zero emissions
JP4377824B2 (en) Waste melting treatment method using biomass
KR19980023904A (en) Waste treatment apparatus and method through vaporization
JP3916179B2 (en) High temperature gasification method and apparatus for waste
WO1999008047A1 (en) Method of melt disposal of combustibles
AU2012259853A1 (en) Method of waste melting treatment
JP2008106270A (en) Method for manufacturing solid feedstock and fuel
CN107952786B (en) Method for treating solid hazardous waste
JP2010043840A (en) Method and apparatus for melting waste
JP4811597B2 (en) Simultaneous treatment of combustible waste and low calorific value waste
JP3079051B2 (en) Gasification of waste
JP4191636B2 (en) Waste melting treatment method using bulk biomass
CN111499129A (en) Method for producing rock wool through gasification, fusion and power generation of industrial activated sludge
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
JP2005249279A (en) Waste melting and treating method utilizing biomass
JP3048968B2 (en) Waste treatment method using waste plastic gasification and ash melting
JP2004195459A (en) Waste treatment apparatus
JP4362428B2 (en) Treatment method of sludge and incineration ash
JPH11241817A (en) Gasifying and melting system
JP2005114197A (en) Waste gasification melting treatment method
JP2013108629A (en) Waste melting method
JPH11106211A (en) Production of active carbon from refuse derived fuel
JP4168709B2 (en) Disposal of used plastic
JP2004347257A (en) Operation method of gasification melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4811597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350