JP2008163359A - Stainless steel sheet for structural member having excellent impact absorbing property - Google Patents

Stainless steel sheet for structural member having excellent impact absorbing property Download PDF

Info

Publication number
JP2008163359A
JP2008163359A JP2006350723A JP2006350723A JP2008163359A JP 2008163359 A JP2008163359 A JP 2008163359A JP 2006350723 A JP2006350723 A JP 2006350723A JP 2006350723 A JP2006350723 A JP 2006350723A JP 2008163359 A JP2008163359 A JP 2008163359A
Authority
JP
Japan
Prior art keywords
stainless steel
phase
tensile test
less
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006350723A
Other languages
Japanese (ja)
Other versions
JP5220311B2 (en
Inventor
Junichi Hamada
純一 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2006350723A priority Critical patent/JP5220311B2/en
Publication of JP2008163359A publication Critical patent/JP2008163359A/en
Application granted granted Critical
Publication of JP5220311B2 publication Critical patent/JP5220311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel sheet for a structural member having excellent impact absorbing properties. <P>SOLUTION: The stainless steel sheet for a structural member having excellent impact absorbing properties has a composition comprising, by mass, 0.001 to 0.1% C, 0.001 to 0.5% N, 0.1 to 1% Si, 0.1 to 10% Mn and 10 to 30% Cr, and the balance Fe with inevitable impurities, and has a structure where a mother phase is composed of a ferrite phase, and an austenite phase or a martensite phase is present by ≥5%, and in which impact absorbed energy to 10% strain in a dynamic tensile test is ≥50 MJ/m<SP>3</SP>, and the ratio between proof stress in a static tensile test and proof stress in a dynamic tensile test is ≥1.3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主として強度や衝撃吸収性能が必要な構造用部材として使用されるステンレス鋼板に関するもので、特に自動車、バスのフロントサイドメンバー、ピラー、バンパーなどの衝撃吸収部材並びに足回り部材、鉄道車両の車体、自転車のリムなどの構造部材用鋼板に関わるものである。   The present invention relates to a stainless steel plate mainly used as a structural member that requires strength and shock absorption performance. Particularly, the present invention relates to shock absorbing members such as automobiles, bus front side members, pillars, and bumpers, as well as suspension members, railway vehicles, and the like. This is related to steel plates for structural members such as body rims and bicycle rims.

近年、環境問題の観点から、自動車、二輪車、バス、鉄道車両などの輸送機器の燃費向上が必須課題になってきている。その解決手段の一つとして、車体の軽量化が積極的に推進されている。車体の軽量化は、部材を形成する素材の軽量化、具体的には素材板厚の薄手化に依るものが大きいが、素材板厚を薄くすると剛性や衝突安全性能が低下してしまう。衝突安全性向上の対策としては、部材を構成する材料の高強度化が有効であり、普通鋼高強度鋼板が自動車の衝撃吸収部材に適用されている。しかしながら、普通鋼は耐食性能が低いため、重塗装することが前提となっており、塗装しない、もしくは軽塗装部材には適用出来なかったり、重塗装によるコストアップが必須であった。一方、Crを含有するステンレス鋼を適用した場合、普通鋼に比べて大幅に耐食性が優位であるため、錆代低減による軽量化、塗装省略化が期待される。更に、衝突安全性向上に対しては、例えば車両の衝突を考えた場合、車両フレームに高い衝撃吸収能を有する材料を適用すれば、部材が圧壊変形することで衝撃を吸収し、車両内の人員に与える衝撃を緩和することが出来る。即ち、車体軽量化による燃費向上、塗装簡略化、安全性の向上などのメリットが大きくなる。   In recent years, from the viewpoint of environmental problems, improvement in fuel consumption of transportation equipment such as automobiles, motorcycles, buses, and railway vehicles has become an essential issue. As one of the solutions, weight reduction of the vehicle body is actively promoted. The weight reduction of the vehicle body is largely due to the weight reduction of the material forming the member, specifically, the reduction of the thickness of the material plate. However, if the thickness of the material plate is reduced, the rigidity and the collision safety performance are lowered. As measures for improving the collision safety, it is effective to increase the strength of the material constituting the member, and a high-strength steel plate of ordinary steel is applied to an impact absorbing member of an automobile. However, since ordinary steel has low corrosion resistance, it is premised on heavy coating, and it is not applied or cannot be applied to light-painted parts, or cost increase by heavy coating is essential. On the other hand, when stainless steel containing Cr is applied, the corrosion resistance is significantly superior to that of ordinary steel, so that weight reduction and coating omission are expected by reducing the rust allowance. Furthermore, for improving collision safety, for example, when considering a vehicle collision, if a material having a high impact absorption capacity is applied to the vehicle frame, the impact is absorbed by the member being crushed and deformed. The impact on personnel can be reduced. That is, merits such as fuel efficiency improvement, painting simplification, and safety improvement by weight reduction of the vehicle body are increased.

耐食性が要求される車両部材、例えば鉄道車両の構造部材としては、耐食性に優れたSUS301LやSUS304などの延性が高く成型性に優れたオーステナイト系ステンレス鋼板が使用されている。下記特許文献1には、主として鉄道車両および一般車両の構造部材や補強材に使用することを目的として、高歪み速度での衝撃吸収能に優れたオーステナイト系ステンレス鋼が開示されている。これは、Niを6〜8%含有し、オーステナイト組織を有する素材において、変形時に加工誘起マルテンサイト相が生成することで高速変形において高強度化するものである。しかしながら、Niを多量に含有するためコスト高となり、自動車、二輪車およびバスなどの一般輸送車両への適用は困難であった。また、オーステナイト系ステンレス鋼は成分系や使用環境によっては応力腐食割れや時効割れが問題になる場合があり、構造体としての信頼性が課題になることもある。   As a vehicle member requiring corrosion resistance, for example, a structural member of a railway vehicle, an austenitic stainless steel plate having excellent ductility and excellent formability such as SUS301L and SUS304 having excellent corrosion resistance is used. Patent Document 1 listed below discloses austenitic stainless steel that is excellent in shock absorption capability at a high strain rate, mainly for use in structural members and reinforcements of railway vehicles and general vehicles. This is a material containing 6 to 8% of Ni and having an austenite structure, and a work-induced martensite phase is generated at the time of deformation, thereby increasing strength in high-speed deformation. However, since it contains a large amount of Ni, the cost is high, and application to general transport vehicles such as automobiles, motorcycles, and buses has been difficult. In addition, stress corrosion cracking and aging cracking may become a problem in austenitic stainless steel depending on the component system and usage environment, and reliability as a structure may be a problem.

焼き入れにより高強度化するマルテンサイト系ステンレス鋼板(例えばSUS420)は、延性が著しく低く、溶接部靭性が著しく低い問題がある。自動車、バス、鉄道車両は溶接構造が多いため、溶接部靭性が低い場合、構造物としての信頼性が大きく低下してしまう。更に、フェライト系ステンレス鋼板(例えばSUS430)は、強度が低いために強度が要求される部材には不適であり、部材高速で変形する際の衝撃吸収エネルギーが低い問題から、衝突安全性能を向上させることは不可能であった。即ち、特に母相をフェライト相とする高強度ステンレス鋼について、車両衝突時の高歪み速度領域での動的変形特性は殆ど解明されていないため、衝撃を吸収する部材にステンレス鋼を適用は困難な状況であった。
特開2002−20843号公報
A martensitic stainless steel sheet (for example, SUS420) that is strengthened by quenching has a problem that ductility is remarkably low and weld zone toughness is remarkably low. Since automobiles, buses, and railway vehicles have many welded structures, if the welded part has low toughness, the reliability as a structure is greatly reduced. Furthermore, a ferritic stainless steel plate (for example, SUS430) is not suitable for a member that requires strength because of its low strength, and improves impact safety performance due to low impact absorption energy when deforming at high speed. It was impossible. That is, especially for high-strength stainless steel with a ferrite phase as the parent phase, the dynamic deformation characteristics in the high strain rate region at the time of vehicle collision have not been clarified, so it is difficult to apply stainless steel as a member that absorbs impact. It was a serious situation.
JP 2002-20843 A

上記の様に、特にフェライト相を母相とするステンレス鋼板において衝突安全性能を確保するための高速変形時の衝撃吸収エネルギーを向上させる技術は皆無であった。この様なことから、本発明は高強度でかつ高速変形時の衝撃吸収特性に優れたステンレス鋼板を提供することを課題とする。   As described above, there has been no technique for improving the impact absorption energy at the time of high-speed deformation in order to ensure the collision safety performance particularly in a stainless steel plate having a ferrite phase as a parent phase. In view of the above, an object of the present invention is to provide a stainless steel plate having high strength and excellent shock absorption characteristics during high-speed deformation.

上記課題を解決するために、本発明者らは高速変形を受けた際の変形機構に関する金属組織的研究を実施した。そして、軟質なフェライト母相に第2相を形成させて高速変形時の衝撃吸収エネルギーを向上させる技術を見出した。具体的には、軟質なフェライト相中に第2相を適量析出させることで、歪み速度103/secという超高速変形時の変形抵抗を上昇させつつ、特定歪み域までの急激な加工硬化を活用し、衝撃吸収エネルギーを増大させることである。これにより、車体衝突時の衝撃を吸収し、かつ車体崩壊を最小限にして乗員の安全性を飛躍的に向上させるものである。 In order to solve the above problems, the present inventors conducted a metallographic study on a deformation mechanism when subjected to high-speed deformation. And the technique which improves the shock absorption energy at the time of a high-speed deformation | transformation by forming a 2nd phase in a soft ferrite mother phase was discovered. Specifically, by precipitating an appropriate amount of the second phase in the soft ferrite phase, the deformation resistance at the time of ultra-high-speed deformation at a strain rate of 10 3 / sec is increased, and rapid work hardening up to a specific strain region is achieved. It is to increase the impact absorption energy. As a result, the impact at the time of a vehicle body collision is absorbed, and the vehicle body collapse is minimized, thereby greatly improving the safety of the occupant.

上記課題を解決する本発明の要旨は、
(1)質量%にて、C:0.001〜0.1%、N:0.001〜0.5%、Si:0.1〜1%、Mn:0.1〜10%、Cr:10〜30%を含有し、残部がFeおよび不可避的不純物からなり、母相をフェライト相とし、オーステナイト相またはマルテンサイト相が5%以上存在し、動的引張試験における10%歪みまでの衝撃吸収エネルギーが50MJ/m以上であることを特徴とする衝撃吸収特性に優れた構造部材用ステンレス鋼板。
(2)質量%にて、Ni:5%以下、Cu:5%以下の1種または2種を含有することを特徴とする(1)に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
(3)質量%にて、Ti:0.5%以下、Nb:0.5%以下、V:0.5%以下の1種または2種以上を含有することを特徴とする(1)または(2)に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
(4)質量%にて、Mo:2%以下、Al:5%以下、B:0.0030%以下の1種または2種以上を含有することを特徴とする(1)乃至(3)のいずれか一項に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
(5)静的引張試験における耐力と動的引張試験における耐力の比率が1.3以上であることを特徴とする(1)乃至(4)のいずれか一項に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.001 to 0.1%, N: 0.001 to 0.5%, Si: 0.1 to 1%, Mn: 0.1 to 10%, Cr: Containing 10 to 30%, the balance is Fe and inevitable impurities, the parent phase is ferrite phase, the austenite phase or martensite phase is present 5% or more, shock absorption up to 10% strain in the dynamic tensile test A stainless steel plate for structural members excellent in impact absorption characteristics, characterized in that the energy is 50 MJ / m 3 or more.
(2) The stainless steel plate for structural members having excellent impact absorption characteristics according to (1), characterized by containing one or two of Ni: 5% or less and Cu: 5% or less in mass% .
(3) One or two or more of Ti: 0.5% or less, Nb: 0.5% or less, and V: 0.5% or less in mass% (1) or The stainless steel plate for structural members excellent in impact absorption characteristics as described in (2).
(4) In mass%, Mo: 2% or less, Al: 5% or less, B: 0.0030% or less, 1 type or 2 types or more are contained, (1) thru | or (3) characterized by the above-mentioned The stainless steel plate for structural members excellent in the impact absorption characteristic as described in any one of Claims.
(5) The ratio of the proof stress in the static tensile test and the proof stress in the dynamic tensile test is 1.3 or more, and it is excellent in impact absorption characteristics according to any one of (1) to (4) Stainless steel plate for structural members.

尚、動的引張試験における全吸収エネルギーとは、車両衝突時の歪み速度に対応する10/secで高速引張試験を行った際の破断までの衝撃吸収エネルギーとし、10%歪みまでの衝撃吸収エネルギーとは、前記高速引張試験において10%歪み域までの衝撃吸収エネルギーである。また、静的引張試験は、通常の引張速度(歪み速度10-3〜-2/sec)で行う引張試験である。 Note that the total absorbed energy in the dynamic tensile test is the shock absorbed energy up to the break when the high speed tensile test is performed at 10 3 / sec corresponding to the strain rate at the time of the vehicle collision. The energy is energy absorbed by impact up to 10% strain in the high-speed tensile test. The static tensile test is a tensile test performed at a normal tensile rate (strain rate of 10 −3 to −2 / sec).

以上の説明から明らかなように、本発明によれば特に高価な合金元素を添加せずとも、高強度で衝撃吸収性能に優れたステンレス鋼板を提供することができ、特に自動車、バス、鉄道等の運輸に関わる構造部材に適用することにより、軽量化による環境対策、衝突安全性向上など産業上有用な著しい効果を奏する。   As is clear from the above description, according to the present invention, it is possible to provide a stainless steel plate having high strength and excellent shock absorption performance, without adding particularly expensive alloy elements, particularly automobiles, buses, railways, etc. By applying it to structural members related to transportation, there are significant industrially useful effects such as environmental measures by weight reduction and collision safety improvement.

以下に本発明の限定理由について説明する。   The reason for limitation of the present invention will be described below.

Cは、成形性と耐食性を劣化させ、過度な添加は硬質なマルテンサイト相が生成し、製造性を劣化させるとともに、延性を著しく低下させて、部材加工が出来なくなるため、その含有量は少ないほど良く、上限を0.1%とした。一方、過度な低減は変態点を消失させ、本発明のポイントとなるマルテンサイト相が生成しなくなる他、精錬コストの増加に繋がるため、下限を0.001%とした。更に望ましくは、0.005〜0.1%が良い。   C deteriorates formability and corrosion resistance, and excessive addition produces a hard martensite phase, which deteriorates manufacturability and significantly lowers ductility, making it impossible to process parts, so its content is small. The upper limit was made 0.1%. On the other hand, excessive reduction causes the transformation point to disappear, the martensite phase that is the point of the present invention is not generated, and the refining cost is increased, so the lower limit was made 0.001%. More preferably, 0.005 to 0.1% is good.

Nは高強度化に有効であるが、過度な添加は硬質なマルテンサイト相を形成し製造性を劣化させるとともに、延性を著しく低下させるため上限を0.5%とした。一方、過度な低減は変態点を消失させ、本発明のポイントとなるマルテンサイト相が生成しなくなる他、精錬コストの増加に繋がるため、下限を0.001%とした。更に望ましくは、0.005〜0.2%が良い。   N is effective for increasing the strength, but excessive addition forms a hard martensite phase and deteriorates manufacturability and remarkably lowers ductility, so the upper limit was made 0.5%. On the other hand, excessive reduction causes the transformation point to disappear, the martensite phase that is the point of the present invention is not generated, and the refining cost is increased, so the lower limit was made 0.001%. More preferably, 0.005 to 0.2% is good.

Siは、脱酸元素であるとともに、固溶強化元素で高強度化に有効な元素であるが、1%超の添加は急激に延性を低下させるため、上限を1%とした。一方、0.1%未満の低減は精錬コストの増加に繋がるため、0.1〜1%とした。更に望ましくは、0.2〜0.5%が良い。   Si is a deoxidizing element and is a solid solution strengthening element that is effective for increasing the strength. However, the addition of more than 1% rapidly reduces the ductility, so the upper limit was made 1%. On the other hand, a reduction of less than 0.1% leads to an increase in refining costs, so it was set to 0.1 to 1%. More preferably, the content is 0.2 to 0.5%.

Mnは、脱酸元素であるとともに、固溶強化元素である。また、オーステナイト生成元素であるため、熱処理によるマルテンサイト生成を容易にする。これらの効果は0.1%から発現するため、下限を0.1%とした。一方、過度な添加は延性を著しく低下させる他、MnSを形成して耐食性を低下させるため、上限を10%とした。更に望ましくは、0.1〜6%である。
Crは、耐食性の観点から10%を下限とした。一方、30%超の添加は靭性が著しく低下し、製造性を劣化させたり、溶接部の衝撃特性が劣化するため、10〜30%とした。製造コストや耐銹性を考慮すると、更に望ましくは11〜25%が良い。
Mn is a deoxidizing element and a solid solution strengthening element. Moreover, since it is an austenite generating element, it makes it easy to generate martensite by heat treatment. Since these effects are manifested from 0.1%, the lower limit was made 0.1%. On the other hand, excessive addition significantly lowers the ductility and also forms MnS to lower the corrosion resistance, so the upper limit was made 10%. More preferably, it is 0.1 to 6%.
For Cr, the lower limit is 10% from the viewpoint of corrosion resistance. On the other hand, addition over 30% significantly reduces toughness, deteriorates manufacturability, and deteriorates impact characteristics of the welded portion. Considering the manufacturing cost and weather resistance, more preferably 11 to 25%.

NiとCuは、オーステナイト生成元素であり、マルテンサイト生成を容易にする他、靭性向上、耐銹性の向上に有効である。過度な添加はコスト増となる他、応力腐食割れの発生をもたらす可能性があるため、上限を5%とした。望ましくは、Ni、Cuともに0.5〜3%が良い。   Ni and Cu are austenite-generating elements, and are effective in improving toughness and weathering resistance in addition to facilitating martensite generation. Excessive addition increases the cost and may cause stress corrosion cracking, so the upper limit was made 5%. Desirably, 0.5 to 3% is good for both Ni and Cu.

Ti,NbおよびVは、C,Nと結合しCr炭窒化物の生成を防止し、溶接部の粒界腐食を抑制する。但し、フェライト生成元素であり、過度な添加はマルテンサイト相が形成しなくなる他、延性を低下させるため、上限を0.5%とした。望ましくは0.05〜0.3%が良い。   Ti, Nb and V combine with C and N to prevent the formation of Cr carbonitride and suppress the intergranular corrosion of the weld. However, it is a ferrite-forming element, and excessive addition makes it impossible to form a martensite phase and lowers the ductility, so the upper limit was made 0.5%. 0.05 to 0.3% is desirable.

Moは耐食性を向上させ、固溶強化元素であり、使用環境による耐食性レベルに応じて適宜添加すれば良い。過度な添加は加工性の劣化やコスト増になるため、上限を2%とした。望ましくは、0.5〜1.8%が良い。   Mo improves corrosion resistance and is a solid solution strengthening element, and may be added as appropriate according to the level of corrosion resistance depending on the use environment. Excessive addition causes deterioration of workability and cost increase, so the upper limit was made 2%. Desirably, 0.5 to 1.8% is good.

Alは脱酸元素として添加される他、窒化物を形成し加工性向上させたり、固溶強化に有効な元素である。過度な添加は、表面疵の発生や溶接性の劣化をもたらすために上限を5%とした。望ましくは、0.05〜1%が良い。   In addition to being added as a deoxidizing element, Al is an element effective for forming a nitride to improve workability and strengthening solid solution. Excessive addition causes generation of surface flaws and deterioration of weldability, so the upper limit was made 5%. Desirably, 0.05 to 1% is good.

Bは、高強度化に有効な元素である他、2次加工割れを抑制する元素である。過度な添加は、溶接部の耐食性の劣化やコスト増につながるため、上限を0.0030%とした。更に望ましくは0.0003〜0.0010%が良い。   B is an element effective for increasing the strength and is an element that suppresses secondary processing cracks. Excessive addition leads to deterioration of the corrosion resistance of the weld and an increase in cost, so the upper limit was made 0.0030%. More desirably, the content is 0.0003 to 0.0010%.

本発明においては、高速で衝撃を受ける際の衝撃吸収エネルギーがポイントである。車両衝突時の衝撃は、構造部材に加えられるため、部材を形成する材料の衝撃吸収能が重要である。これまで、高歪み速度での衝撃吸収エネルギー、変形応力の上昇を考慮したフェライト相を母相とする高強度ステンレス鋼の提供は試みが無く、更に車両設計までなされていない状態であった。車両用の構造部材は、ハット型成形品に代表される角形断面が大半で、この様な高速圧壊変形における吸収エネルギーは、10%までの歪み域で吸収される。また、車両衝突時の歪み速度は10/secという極めて高歪み速度に対応する。これらより、高速変形特性評価として、10/secで引張試験を行い、動的引張試験とした。この際、10%歪みまでの吸収エネルギーを応力、歪みから求めた。これは部材形状に依存するが、「自動車材料の高速変形に関する研究会成果報告書」日本鉄鋼協会編,p12に記載されている様に、自動車のフロントサイドメンバー等の部位で適用されるものである。また、動的引張試験における耐力を求め、動的耐力を得た。一方、通常の引張試験(歪み速度10-3〜-2/sec)で得られる耐力を求め、静的耐力とした。 In the present invention, the impact absorption energy when receiving an impact at a high speed is a point. Since the impact at the time of the vehicle collision is applied to the structural member, the impact absorbing ability of the material forming the member is important. Until now, there has been no attempt to provide high-strength stainless steel having a ferrite phase as a parent phase in consideration of an increase in shock absorption energy and deformation stress at a high strain rate, and there has been no vehicle design. Most structural members for vehicles have a square cross section typified by a hat-shaped molded product, and the absorbed energy in such high-speed crushing deformation is absorbed in a strain region of up to 10%. Moreover, the distortion speed at the time of a vehicle collision corresponds to an extremely high distortion speed of 10 3 / sec. From these, as a high-speed deformation characteristic evaluation, a tensile test was performed at 10 3 / sec to obtain a dynamic tensile test. At this time, the absorbed energy up to 10% strain was determined from the stress and strain. Although this depends on the shape of the member, it is applied to parts such as front side members of automobiles, as described in the “Study Group Report on High Speed Deformation of Automotive Materials” edited by the Japan Iron and Steel Institute, p12. is there. Moreover, the yield strength in the dynamic tensile test was calculated | required and the dynamic yield strength was obtained. On the other hand, the yield strength obtained by a normal tensile test (strain rate of 10 −3 to −2 / sec) was obtained and defined as static strength.

10%歪みまでの衝撃吸収エネルギーは大きい方が好ましいが、種々の材料試験を重ねた結果、50MJ/m以上であれば安定してその特性を示すことが判明したため、10%歪みまでの衝撃吸収エネルギー50MJ/m以上とした。この上限は特に定めることなく、本発明の効果を得ることが出来るので、上限値は定めない。
静動比は、加工硬化の変形速度依存性を示す指標であり、動的引張試験における耐力と静的引張試験における耐力の比率、即ちここでは(10/secの歪み速度で動的引張試験をした際の耐力)/(10-2/secの歪み速度で静的引張試験をした際の耐力)とした。静動比は、自動車の衝突の様な高速で変形した際にどれ位硬化するかを示すため、この値は大きい値ほど衝撃吸収構造用部材として好ましい。例えば、「自動車材料の高速変形に関する研究会成果報告書」日本鉄鋼協会編,平成13年,p13、Fig.8に従来鋼(普通鋼)の静的耐力と静動比の関係が記載されているが、静的耐力が約400MPa超の場合、静動比は1.3以下となっている。本発明では静動比について1.3以上と規定し、従来鋼では到達出来なかった高衝撃吸収エネルギー−高静動比を有する鋼を提供する。尚、上限は特に定めることなく、本発明の効果を得ることが出来るので、上限値は定めない。
Although it is preferable that the impact absorption energy up to 10% strain is large, as a result of repeated various material tests, it has been found that if it is 50 MJ / m 3 or more, the characteristics are stably exhibited, and impact up to 10% strain is obtained. The absorbed energy was 50 MJ / m 3 or more. This upper limit is not particularly defined, and the effect of the present invention can be obtained, so the upper limit is not defined.
The static ratio is an index indicating the deformation rate dependency of work hardening, and is the ratio of the yield strength in the dynamic tensile test to the yield strength in the static tensile test, that is, the dynamic tensile test at a strain rate of (10 3 / sec) Yield strength at the time of static tensile test at a strain rate of 10 −2 / sec). Since the static motion ratio indicates how hard it is to be cured when it is deformed at a high speed such as an automobile collision, a larger value is preferable as a member for an impact absorbing structure. For example, “Research Report on High-Speed Deformation of Automotive Materials” edited by Japan Iron and Steel Association, 2001, p13, Fig. 8, describes the relationship between static strength and static-dynamic ratio of conventional steel (ordinary steel). However, when the static yield strength is more than about 400 MPa, the static / dynamic ratio is 1.3 or less. In the present invention, the static ratio is defined as 1.3 or more, and a steel having a high impact absorption energy-high static ratio that cannot be achieved by conventional steel is provided. In addition, since the effect of this invention can be acquired, without setting an upper limit in particular, an upper limit is not determined.

上記の高い衝撃収集エネルギーを得るためには、軟質なフェライト母相中に第2相としてオーステナイト相あるいはマルテンサイト相が5%以上存在する必要があることが判明した。図1に歪み速度10/secで引張試験した時の応力−歪み曲線について示す。ここで鋼A、鋼Bおよび鋼Cは第2相であるマルテンサイト相がそれぞれ0%、10%および50%である。具体的な鋼組成は、鋼A:17.9%Cr−0.006%C−0.010%N−0.1%Si−0.1%Mn−0.02%P−1%Ni−1.1%Mo−0.15%Ti、鋼B:17.9%Cr−0.005%C−0.013%N−0.1%Si−0.1%Mn−0.03%P−3%Ni−0.2%Ti、鋼C:0.007%C−0.011%N−0.1%Si−0.1%Mn−0.02%P−5%Ni−1.1%Mo−0.14%Tiであり、熱延・冷延・焼鈍を施した1.5mm厚の冷延鋼板である。これより、第2相生成量の増加に伴い動的耐力が著しく増加している。図2に第2相生成量と高速引張試験における10%歪みまでの衝撃吸収エネルギーの関係を示す。軟質なフェライト母相に第2相を5%以上存在させることにより、衝撃吸収エネルギーが50MJ/m以上となる。これは、高速変形時の転位の移動を妨げ、高耐力、高強度化し、吸収エネルギーを飛躍的に増加させる効果を有する。この第2相の生成量は、上記の化学成分に応じて焼鈍条件(加熱温度)によって調整されるものである。即ち、冷延板焼鈍工程の加熱時にオーステナイト相(冷却後にオーステナイト相もしくはマルテンサイト相)の生成量が、5%以上になる温度域に加熱した後、冷却すれば良い。本成分範囲においては、加熱速度、保定時間および冷却速度は特に規定しなくても良い。 In order to obtain the above high energy collection energy, it has been found that the austenite phase or the martensite phase needs to be present at 5% or more as the second phase in the soft ferrite matrix. FIG. 1 shows a stress-strain curve when a tensile test is performed at a strain rate of 10 3 / sec. Here, steel A, steel B, and steel C have 0%, 10%, and 50% of the martensite phase as the second phase, respectively. The specific steel composition is steel A: 17.9% Cr-0.006% C-0.010% N-0.1% Si-0.1% Mn-0.02% P-1% Ni- 1.1% Mo-0.15% Ti, Steel B: 17.9% Cr-0.005% C-0.013% N-0.1% Si-0.1% Mn-0.03% P -3% Ni-0.2% Ti, Steel C: 0.007% C-0.011% N-0.1% Si-0.1% Mn-0.02% P-5% Ni-1. It is a 1% Mo-0.14% Ti, 1.5 mm thick cold rolled steel sheet that has been hot rolled, cold rolled, and annealed. From this, the dynamic yield strength is remarkably increasing with the increase in the amount of second phase generation. FIG. 2 shows the relationship between the amount of second phase generated and the impact absorption energy up to 10% strain in the high-speed tensile test. When 5% or more of the second phase is present in the soft ferrite matrix, the impact absorption energy is 50 MJ / m 3 or more. This has the effect of preventing the movement of dislocations during high-speed deformation, increasing the yield strength and strength, and dramatically increasing the absorbed energy. The production amount of the second phase is adjusted by the annealing conditions (heating temperature) according to the chemical components. That is, the heating may be performed after heating to a temperature range in which the amount of austenite phase (austenite phase or martensite phase after cooling) is 5% or more during heating in the cold rolled sheet annealing step. In this component range, the heating rate, the retention time, and the cooling rate do not have to be specified.

次に、静的引張試験における耐力と動的引張試験における耐力の比率について説明する。この値は大きいほど衝突吸収構造体として好ましいが、種々の試験の結果1.3以上であれば良いことが判明した。静的耐力は、構造部材の成形加工に影響し、動的耐力は衝突時の吸収特性に影響する。高速変形する際に、急激に加工硬化する効果が第2相の存在で得られるため、動的変形応力の確保が可能となる。   Next, the ratio of the yield strength in the static tensile test and the yield strength in the dynamic tensile test will be described. A larger value is preferable as a collision-absorbing structure, but as a result of various tests, it has been found that a value of 1.3 or more is sufficient. The static yield strength affects the forming process of the structural member, and the dynamic yield strength affects the absorption characteristics at the time of collision. Since the effect of abrupt work hardening is obtained in the presence of the second phase during high-speed deformation, dynamic deformation stress can be ensured.

以下に、本発明を実施例により具体的に説明するが、本発明の技術的範囲は、本実施例に限定されるものでない。表1に示す化学組成の鋼を溶製してスラブに鋳造し、スラブを熱間圧延した後、焼鈍・酸洗を施し、1.5mm厚まで冷間圧延し、焼鈍・酸洗を施して製品板とした。このようにして得られた製品板に対して、上記の静的引張試験と動的引張試験を行った。また、金属組織については、板厚中心層近傍の組織をエッチングにより現出させ、第2相については画像解析装置で生成比率を求めた。 EXAMPLES The present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited to the examples. After the steel having the chemical composition shown in Table 1 is melted and cast into a slab, the slab is hot-rolled, then annealed and pickled, cold-rolled to a thickness of 1.5 mm, annealed and pickled. A product plate was used. The product plate thus obtained was subjected to the static tensile test and the dynamic tensile test. As for the metal structure, the structure in the vicinity of the plate thickness center layer was revealed by etching, and the generation ratio of the second phase was determined by an image analysis apparatus.

表1から明らかなように、本発明で規定する成分組成を有する鋼は比較鋼に比べて衝撃吸収エネルギーが高く、衝撃吸収特性に優れている。   As is apparent from Table 1, steel having the component composition defined in the present invention has higher shock absorption energy and superior shock absorption characteristics than the comparative steel.

なお、本発明における鋼板の製造方法については特に規定せず、熱延鋼板、冷延鋼板いずれでも構わない。熱延条件や熱延板厚、熱延板および冷延板焼鈍雰囲気などは適宜選択すれば良い。冷延におけるパススケジュールや冷延率、ロール径についても特別な設備を必要とせず、既設設備を効率的に使用すれば良い。また、冷延・焼鈍後に調質圧延やテンションレベラーを付与しても構わない。更に、製品板厚についても、要求部材厚に応じて選択すれば良い。   In addition, about the manufacturing method of the steel plate in this invention, it does not prescribe | regulate in particular, Any of a hot-rolled steel plate and a cold-rolled steel plate may be sufficient. The hot-rolling conditions, hot-rolled sheet thickness, hot-rolled sheet, cold-rolled sheet annealing atmosphere, and the like may be appropriately selected. No special equipment is required for the pass schedule, cold rolling rate, and roll diameter in cold rolling, and existing equipment may be used efficiently. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Further, the product plate thickness may be selected according to the required member thickness.

Figure 2008163359
Figure 2008163359

高速引張試験における応力−歪み曲線に及ぼす第2相量の影響を示す図である。It is a figure which shows the influence of the 2nd phase amount which acts on the stress-strain curve in a high-speed tension test. 第2相生成量と高速引張試験における10%歪みまでの衝撃吸収エネルギーの関係を示す図である。It is a figure which shows the relationship between the 2nd phase production | generation amount and the impact absorption energy to 10% distortion in a high-speed tension test.

Claims (5)

質量%にて、
C:0.001〜0.1%、
N:0.001〜0.5%、
Si:0.1〜1%、
Mn:0.1〜10%、
Cr:10〜30%を含有し、残部がFeおよび不可避的不純物からなり、母相をフェライト相とし、オーステナイト相またはマルテンサイト相が5%以上存在し、動的引張試験における10%歪みまでの衝撃吸収エネルギーが50MJ/m以上であることを特徴とする衝撃吸収特性に優れた構造部材用ステンレス鋼板。
In mass%
C: 0.001 to 0.1%,
N: 0.001 to 0.5%
Si: 0.1 to 1%,
Mn: 0.1 to 10%,
Cr: 10 to 30%, the balance is Fe and inevitable impurities, the parent phase is a ferrite phase, the austenite phase or the martensite phase is present 5% or more, up to 10% strain in the dynamic tensile test A stainless steel plate for structural members excellent in impact absorption characteristics, characterized in that the impact absorption energy is 50 MJ / m 3 or more.
質量%にて、
Ni:5%以下、
Cu:5%以下の1種または2種を含有することを特徴とする請求項1に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
In mass%
Ni: 5% or less,
The stainless steel plate for structural members having excellent shock absorption characteristics according to claim 1, characterized by containing one or two of Cu: 5% or less.
質量%にて、
Ti:0.5%以下、
Nb:0.5%以下、
V:0.5%以下の1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
In mass%
Ti: 0.5% or less,
Nb: 0.5% or less,
V: 0.5% or less of one type or two or more types, The stainless steel plate for structural members excellent in impact absorption characteristics according to claim 1 or 2.
質量%にて、
Mo:2%以下、
Al:5%以下、
B:0.0030%以下の1種または2種以上を含有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
In mass%
Mo: 2% or less,
Al: 5% or less,
B: 0.0030% or less of 1 type or 2 types or more, The stainless steel plate for structural members excellent in the impact-absorbing property as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
静的引張試験における耐力と動的引張試験における耐力の比率が1.3以上であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。   The structural member having excellent shock absorption characteristics according to any one of claims 1 to 4, wherein a ratio of a proof stress in a static tensile test and a proof stress in a dynamic tensile test is 1.3 or more. Stainless steel plate.
JP2006350723A 2006-12-27 2006-12-27 Stainless steel plate for structural members with excellent shock absorption characteristics Active JP5220311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350723A JP5220311B2 (en) 2006-12-27 2006-12-27 Stainless steel plate for structural members with excellent shock absorption characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350723A JP5220311B2 (en) 2006-12-27 2006-12-27 Stainless steel plate for structural members with excellent shock absorption characteristics

Publications (2)

Publication Number Publication Date
JP2008163359A true JP2008163359A (en) 2008-07-17
JP5220311B2 JP5220311B2 (en) 2013-06-26

Family

ID=39693213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350723A Active JP5220311B2 (en) 2006-12-27 2006-12-27 Stainless steel plate for structural members with excellent shock absorption characteristics

Country Status (1)

Country Link
JP (1) JP5220311B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303733B2 (en) 2008-01-22 2012-11-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural component excellent in workability and impact-absorbing property and method for producing the same
JP5900717B1 (en) * 2014-12-11 2016-04-06 Jfeスチール株式会社 Stainless steel sheet and manufacturing method thereof
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
JP2017512907A (en) * 2014-04-01 2017-05-25 エイティーアイ・プロパティーズ・エルエルシー Duplex stainless steel
CN108179364A (en) * 2017-12-28 2018-06-19 钢铁研究总院 A kind of structural alloy steel with high impact absorption energy and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220074A (en) * 2015-10-22 2016-01-06 山西太钢不锈钢股份有限公司 Chrome ferritic high temperature steel making method in a kind of boiler swing pipe tray use
JP2018150573A (en) * 2017-03-10 2018-09-27 セイコーインスツル株式会社 Metallic elasticity element and diaphram using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199309A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Stainless steel excellent in workability and its production
JP2005171377A (en) * 2003-05-14 2005-06-30 Jfe Steel Kk High-strength stainless steel sheet and manufacturing method therefor
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2006200035A (en) * 2004-03-16 2006-08-03 Jfe Steel Kk Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199309A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Stainless steel excellent in workability and its production
JP2005171377A (en) * 2003-05-14 2005-06-30 Jfe Steel Kk High-strength stainless steel sheet and manufacturing method therefor
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2006200035A (en) * 2004-03-16 2006-08-03 Jfe Steel Kk Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303733B2 (en) 2008-01-22 2012-11-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural component excellent in workability and impact-absorbing property and method for producing the same
JP2017512907A (en) * 2014-04-01 2017-05-25 エイティーアイ・プロパティーズ・エルエルシー Duplex stainless steel
JP5900717B1 (en) * 2014-12-11 2016-04-06 Jfeスチール株式会社 Stainless steel sheet and manufacturing method thereof
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
US10626486B2 (en) 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor
CN108179364A (en) * 2017-12-28 2018-06-19 钢铁研究总院 A kind of structural alloy steel with high impact absorption energy and preparation method thereof
CN108179364B (en) * 2017-12-28 2019-05-31 钢铁研究总院 A kind of structural alloy steel and preparation method thereof with high impact absorption energy

Also Published As

Publication number Publication date
JP5220311B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5388589B2 (en) Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP5165236B2 (en) Stainless steel plate for structural members with excellent shock absorption characteristics
JP5544633B2 (en) Austenitic stainless steel sheet for structural members with excellent shock absorption characteristics
JP5597006B2 (en) High strength and high ductility austenitic stainless steel sheet for structural members and method for producing the same
RU2562654C2 (en) Hot-stamped article, method of its production, power absorbing element and method of its production
JP5385760B2 (en) Cold-formed square steel pipe with excellent earthquake resistance
JP3793350B2 (en) Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP5220311B2 (en) Stainless steel plate for structural members with excellent shock absorption characteristics
JP6628561B2 (en) Stainless steel sheet for structural member excellent in workability and method for producing the same
JPH1161326A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
JPH05195149A (en) Ultrahigh strength cold rolled steel sheet excellent in bendability and shock resistance
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP3401427B2 (en) High-strength steel sheet with excellent impact resistance
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JPH1180879A (en) Stain-induced transformation type high strength steel plate excellent in dynamic deformability
JP5091733B2 (en) Stainless steel for low Ni body parts with excellent workability and shock absorption performance
JP5421615B2 (en) Ni-saving stainless steel automotive parts
US20210071278A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
JP2010180462A (en) Cold-rolled steel sheet and method for producing the same
JPH10317096A (en) High strength steel sheet for automobile use, excellent in collision-proof stability, and its production
JP2004190086A (en) Resistance welded steel tube to be induction-hardened
JP2004346430A (en) Method for producing high-tension steel plate for working
JPH06212254A (en) Production of low yield ratio high tensile strength steel sheet excellent in damping capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5220311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250