JP2008162864A - Method for producing fine particle and fine particle produced thereby - Google Patents

Method for producing fine particle and fine particle produced thereby Download PDF

Info

Publication number
JP2008162864A
JP2008162864A JP2006356176A JP2006356176A JP2008162864A JP 2008162864 A JP2008162864 A JP 2008162864A JP 2006356176 A JP2006356176 A JP 2006356176A JP 2006356176 A JP2006356176 A JP 2006356176A JP 2008162864 A JP2008162864 A JP 2008162864A
Authority
JP
Japan
Prior art keywords
fine particles
particle
oxide
temperature
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006356176A
Other languages
Japanese (ja)
Other versions
JP5428016B2 (en
Inventor
Masafumi Ajiri
雅文 阿尻
Satoshi Ohara
智 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006356176A priority Critical patent/JP5428016B2/en
Publication of JP2008162864A publication Critical patent/JP2008162864A/en
Application granted granted Critical
Publication of JP5428016B2 publication Critical patent/JP5428016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fine particle, in which a solid fine particle such as a hydroxide or an oxide is used as a starting raw material, so that an influence of the ion to be produced when metal salt is hydrolyzed can be eliminated. <P>SOLUTION: The fine particle of a compound oxide having target composition can be synthesized at the temperature lower than usual by contacting one compound oxide with another compound oxide in high-temperature and high-pressure water such as supercritical water to quickly heat and heat-treat the compound oxide by restraining the precipitation of a single oxide during the time to heat the compound oxide in the case of a compound oxide system. A highly-crystalline fine particle can be synthesized by heat-treating a seed particle or a particle of the initial stage of growth while restraining the crystal growth of the particle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

特許(特許文献1)および特許(特許文献2,3)に記載の方法では、原料を金属塩水溶液としているが、加水分解により生成するイオンの影響により、生成物中へのイオンの混入、結晶性の低下(OH基の含有)、合成条件の最適化が困難であることが課題となっていた。特に、複合金属酸化物系については、組成制御が極めて困難であった。
微粒子を合成しつつ有機修飾をおこなう方法においても、加水分解により生成するイオンの影響により、有機修飾反応条件の最適化が困難であった。また、合成に高温場が必要な、複合酸化物系の場合、有機修飾剤の分解や修飾反応条件との不整合が問題となっていた。
In the methods described in Patents (Patent Document 1) and Patents (Patent Documents 2 and 3), the raw material is an aqueous metal salt solution. Due to the influence of ions generated by hydrolysis, ions are mixed into the product, crystals The problem is that it is difficult to optimize the synthesis conditions and the deterioration of the property (contains OH groups). In particular, it was extremely difficult to control the composition of the composite metal oxide system.
Even in the method of performing organic modification while synthesizing fine particles, it is difficult to optimize the organic modification reaction conditions due to the influence of ions generated by hydrolysis. Further, in the case of a complex oxide system that requires a high temperature field for synthesis, decomposition of the organic modifier and inconsistency with modification reaction conditions have been problems.

特許第3047110号「金属酸化物微粒子の製造方法」Japanese Patent No. 3047110 "Method for producing metal oxide fine particles" 特許第2777044号「バリウムフエライト微粒子の製造方法」Japanese Patent No. 2777044 “Method for producing barium ferrite fine particles” 特許第3628354号「バリウムフェライト微粒子の製造方法」Patent No. 3628354 “Method for producing fine barium ferrite particles” 特願2004−003517「有機修飾微粒子」Japanese Patent Application No. 2004-003517 “Organic Modified Fine Particles”

水酸化物または酸化物等の固体微粒子を出発原料とすることで、金属塩の加水分解により生じるイオンの影響を排除することを可能とする。
超臨界水中等の高温・高圧水中と接触させることで、急速に昇温・熱処理することにより、複合酸化物系の場合の昇温中の単一酸化物の析出を抑制し、通常よりも低温において目的組成の複合酸化物微粒子を合成することを可能とする。また、粒子の結晶成長を抑制しつつ、核あるいは成長の初期段階の粒子を熱処理することで、高結晶性の微粒子合成を可能とする。
By using solid fine particles such as hydroxide or oxide as a starting material, it is possible to eliminate the influence of ions generated by hydrolysis of metal salts.
By contacting with high temperature and high pressure water such as supercritical water, rapid heating and heat treatment suppresses the precipitation of single oxide during heating in the case of complex oxide system, and lower temperature than usual. It is possible to synthesize composite oxide fine particles having a desired composition. Further, it is possible to synthesize highly crystalline fine particles by heat-treating the nuclei or the particles at the initial stage of growth while suppressing the crystal growth of the particles.

特許(非特許文献4)に記載の有機修飾微粒子合成を、特に金属水酸化物ゾルを原料とすることで、共存イオンの影響を排除するとともに、有機修飾反応の最適化を可能とする。さらに、流通系粒子合成法において、有機修飾剤を粒子合成後段で供給することで、有機修飾反応条件と粒子合成反応条件の最適条件を分離することで、高温安定相の微粒子を合成しつつその表面を有機修飾することを可能とする。特に、粒子合成直後に有機修飾をおこなうことで、粒子生成直後の表面水酸基と有機修飾基との反応をより効果的に生じさせる。また、流通系装置において、有機修飾剤の滞在時間を、有機修飾反応の時定数より長く、かつ有機修飾剤の分解反応の時定数よりも短く設定することで、分解を抑制しつつ効果的に有機修飾をおこなうことと可能とする。   The organic modified fine particle synthesis described in the patent (Non-Patent Document 4), in particular, using a metal hydroxide sol as a raw material, eliminates the influence of coexisting ions and enables optimization of the organic modification reaction. Furthermore, in the flow-through particle synthesis method, by supplying the organic modifier in the latter stage of the particle synthesis, the optimum conditions of the organic modification reaction condition and the particle synthesis reaction condition are separated, and the high-temperature stable phase fine particles are synthesized. The surface can be organically modified. In particular, by performing organic modification immediately after particle synthesis, the reaction between the surface hydroxyl group immediately after particle generation and the organic modifying group is more effectively generated. Moreover, in the distribution system device, the residence time of the organic modifier is set longer than the time constant of the organic modifier reaction and shorter than the time constant of the decomposition reaction of the organic modifier, thereby effectively suppressing the degradation. It is possible to perform organic modification.

(1)水酸化物ゾル等の固体微粒子を水中に分散させた出発原料を、流通式反応装置中で、急速昇温・熱処理することにより、高結晶性の酸化物微粒子を合成する方法。
(2)前記(1)に記載の方法において、熱処理条件を、温度は200℃以上、好ましくは300℃以上、圧力は10MPa以上、好ましくは20MPa以上とする合成方法。より好ましくは、超臨界状態である、温度が374℃以上、圧力が22.1MPa以上とする。
(3)前記(1)に記載の方法において、急速昇温を原料スラリーと超臨界水中等の高温・高圧水中で混合させ、急速昇温・熱処理する方法
(4)前記(3)に記載の方法において、急速昇温に要する時間が2分以内、好ましくは10秒以内、より好ましくは1秒以内とする合成方法。
(5)2種類以上の水酸化物ゾルの混合物を出発原料とし、前記(2)〜(4)の条件で熱処理することにより、高結晶性の複合酸化物ナノ粒子を合成する方法。
(6)酸化物微粒子等を水中に分散させたスラリーを、前記(2)〜(5)の条件で熱処理し、酸化物ナノ粒子のサイズを抑制しながら、結晶性を改善する方法。
(7)前記(1)〜(6)に記載の方法において、酸化または還元雰囲気を制御することにより、酸化物ナノ粒子の酸素量や金属イオンの価数を制御する方法。
(8)前記(7)に記載の方法において、雰囲気制御剤として、過酸化水素水、ギ酸、アンモニア等を用いる方法。
(9)前記(1)〜(8)に記載の方法において、有機修飾剤を用いる方法。
(10)前記(9)に記載の方法において、有機修飾剤がカルボン酸、アミン、アルコール、アルデヒド、リン酸、硫酸、チオールである方法。
(11)前記(9)(10)に記載の方法において、有機修飾剤を微粒子生成直後に供給する方法。
(12)前記(9)〜(11)に記載の方法において、反応部後段を急速に冷却する方法。
(13)前記(12)に記載の方法において、冷水を直接供給することで急速冷却する方法。
(14)前記(12)および(13)に記載の方法において、有機修飾反応の時間を1分以内、好ましくは10秒以内とする方法。
(15)前記(9)〜(14)に記載の方法において、有機修飾反応の温度を200℃から500℃の範囲、好ましくは、250℃から450℃とする方法。
(16)前記(9)〜(15)に記載の方法において、粒子合成部から有機修飾剤の供給部までの粒子滞在時間を5分以内、好ましくは1分以内、さらに好ましくは10秒以内とする方法。
(17)前記(1)〜(16)に記載の方法により合成された金属および金属酸化物微粒子。
(18)前記(17)に記載の微粒子であって、粒子径が50nm以下、好ましくは30nm以下の微粒子、より好ましくは10nm以下の微粒子。
(19)前記(17)(18)に記載の微粒子であって、結晶性の高い微粒子。
(20)前記(19)に記載の微粒子であって、単結晶の微粒子。
(21)前記(17)〜(20)に記載の微粒子であって、水酸基含有率が10wt%以下、好ましくは5wt%以下、より好ましくは2wt%以下の微粒子。
(22)前記(9)〜(16)に記載の方法によって合成された微粒子であって、粒子表面に有機修飾基が強結合した微粒子。
(23)前記(22)に記載の微粒子であって、粒子が高温安定相の微粒子。
(24)前記(23)に記載の、複合酸化物微粒子。
(1) A method of synthesizing highly crystalline oxide fine particles by rapidly heating and heat-treating a starting material in which solid fine particles such as hydroxide sol are dispersed in water in a flow reactor.
(2) The method according to (1), wherein the heat treatment is performed at a temperature of 200 ° C. or higher, preferably 300 ° C. or higher, and a pressure of 10 MPa or higher, preferably 20 MPa or higher. More preferably, the temperature is 374 ° C. or higher and the pressure is 22.1 MPa or higher in a supercritical state.
(3) The method according to (1), wherein the rapid temperature increase is mixed with the raw slurry and high-temperature / high-pressure water such as supercritical water, and then the temperature is rapidly increased / heat treated. (4) The method according to (3) In the method, the time required for rapid temperature increase is within 2 minutes, preferably within 10 seconds, more preferably within 1 second.
(5) A method of synthesizing highly crystalline composite oxide nanoparticles by using a mixture of two or more hydroxide sols as a starting material and heat-treating under the conditions (2) to (4).
(6) A method in which a slurry in which oxide fine particles and the like are dispersed in water is heat-treated under the above conditions (2) to (5) to improve the crystallinity while suppressing the size of the oxide nanoparticles.
(7) The method according to any one of (1) to (6), wherein the oxygen amount of the oxide nanoparticles and the valence of the metal ion are controlled by controlling the oxidizing or reducing atmosphere.
(8) A method of using hydrogen peroxide, formic acid, ammonia or the like as the atmosphere control agent in the method according to (7).
(9) A method using an organic modifier in the method according to the above (1) to (8).
(10) The method according to (9), wherein the organic modifier is carboxylic acid, amine, alcohol, aldehyde, phosphoric acid, sulfuric acid, or thiol.
(11) The method according to (9) or (10), wherein the organic modifier is supplied immediately after the fine particles are generated.
(12) The method according to any one of (9) to (11), wherein the latter stage of the reaction unit is rapidly cooled.
(13) The method according to (12), wherein rapid cooling is performed by directly supplying cold water.
(14) The method according to (12) and (13), wherein the organic modification reaction time is within 1 minute, preferably within 10 seconds.
(15) The method according to the above (9) to (14), wherein the temperature of the organic modification reaction is in the range of 200 ° C. to 500 ° C., preferably 250 ° C. to 450 ° C.
(16) In the method according to the above (9) to (15), the particle residence time from the particle synthesis unit to the organic modifier supply unit is within 5 minutes, preferably within 1 minute, more preferably within 10 seconds. how to.
(17) Metal and metal oxide fine particles synthesized by the method according to (1) to (16).
(18) The fine particles according to (17), wherein the fine particles have a particle size of 50 nm or less, preferably 30 nm or less, more preferably 10 nm or less.
(19) The fine particles according to (17) and (18), wherein the fine particles have high crystallinity.
(20) The fine particles according to (19) above, which are single crystal fine particles.
(21) The fine particles according to (17) to (20), wherein the content of hydroxyl group is 10 wt% or less, preferably 5 wt% or less, more preferably 2 wt% or less.
(22) Fine particles synthesized by the method according to (9) to (16), wherein the organic modifying group is strongly bonded to the particle surface.
(23) The fine particle according to (22), wherein the particle is a high-temperature stable phase fine particle.
(24) The composite oxide fine particles according to (23).

1.酸化物微粒子(ZnO)
濃度が0.01M以下のZn(NO3)2を原料として、亜臨界、超臨界水熱合成を行ったところ、ZnO微粒子を合成できた。しかし、濃度を0.1M以上とすると、生成物は得られなかった。これは、加水分解により生成するHNO3により、ZnOが再溶解したものと推察された。
一方、水酸化物または酸化物等の固体微粒子を出発原料とした場合、金属塩の加水分解により生じるHNO3の影響を排除することができ、その結果、高濃度下(Zn(OH)2濃度=0.1M、超臨界水熱条件=400℃−30MPa−10分)であっても、ZnO微粒子(図1)を合成できた。
1. Fine oxide particles (ZnO)
When subcritical and supercritical hydrothermal synthesis was performed using Zn (NO 3 ) 2 having a concentration of 0.01 M or less as a raw material, ZnO fine particles could be synthesized. However, when the concentration was 0.1M or more, no product was obtained. This is presumed that ZnO was redissolved by HNO 3 produced by hydrolysis.
On the other hand, when solid fine particles such as hydroxides or oxides are used as starting materials, the influence of HNO 3 caused by hydrolysis of metal salts can be eliminated, and as a result, under high concentrations (Zn (OH) 2 concentration = 0.1M, supercritical hydrothermal condition = 400 ° C.-30 MPa-10 minutes), ZnO fine particles (FIG. 1) could be synthesized.

2.複合酸化物微粒子(フェライト系)
濃度が0.2 MのFe(OH)3および0.3 MのMg(OH)2を出発原料として、バッチ法によりマグネシウムフェライトを合成した場合、昇温中に単一成分の酸化物微粒子が析出し、目的組成の複合酸化物微粒子を得るには600℃以上の高温が必要であった。
一方、急速に昇温・熱処理することにより、昇温中の単一酸化物微粒子の析出を抑制し、450℃程度の低温において目的組成の複合酸化物微粒子(図2)が合成できた。
2. Composite oxide fine particles (ferrite type)
When magnesium ferrite was synthesized by the batch method using 0.2 M Fe (OH) 3 and 0.3 M Mg (OH) 2 as starting materials, single-component oxide fine particles were precipitated during the temperature rise. A high temperature of 600 ° C. or higher was necessary to obtain composite oxide fine particles having a composition.
On the other hand, by rapidly heating and heat-treating, precipitation of single oxide fine particles during the temperature rise was suppressed, and composite oxide fine particles having the target composition (FIG. 2) could be synthesized at a low temperature of about 450 ° C.

濃度が0.4 MのAl(OH)3および0.2 MのMg(OH)2を出発原料として、バッチ法によりマグネシウムアルミネートを合成した場合、昇温中に単一成分の酸化物微粒子が析出し、目的組成の複合酸化物微粒子を得るには600℃以上の高温が必要であった。
一方、急速に昇温・熱処理することにより、昇温中の単一酸化物微粒子の析出を抑制し、500℃程度の低温において目的組成の複合酸化物微粒子(図3)が合成できた。
When magnesium aluminate is synthesized by batch method using 0.4M Al (OH) 3 and 0.2M Mg (OH) 2 as starting materials, single-component oxide fine particles during temperature rise In order to obtain composite oxide fine particles having the target composition, a high temperature of 600 ° C. or higher was required.
On the other hand, by rapidly heating and heat-treating, precipitation of single oxide fine particles during the temperature rise was suppressed, and composite oxide fine particles having the target composition (FIG. 3) could be synthesized at a low temperature of about 500 ° C.

3.複合酸化物微粒子(ガーネット系)
濃度が0.05 MのAl(OH)3および0.03 MのY(OH)3あるいはLu(OH)3を出発原料として、バッチ法によりYAGやLuAG等のガーネット系複合酸化物を合成した場合、昇温中に単一成分の酸化物微粒子が析出し、目的組成の複合酸化物微粒子を得るには450℃以上の高温が必要であった。
一方、急速に昇温・熱処理することにより、昇温中の単一酸化物微粒子の析出を抑制し、350℃以上の温度において目的組成の複合酸化物微粒子が合成できた。
3. Complex oxide fine particles (garnet)
When synthesizing garnet-based composite oxides such as YAG and LuAG by the batch method using 0.05 (M) Al (OH) 3 and 0.03 M Y (OH) 3 or Lu (OH) 3 as starting materials, the temperature rises. Single-component oxide fine particles precipitated therein, and a high temperature of 450 ° C. or higher was required to obtain composite oxide fine particles having the target composition.
On the other hand, by rapidly heating and heat-treating, the precipitation of single oxide fine particles during the temperature rise was suppressed, and composite oxide fine particles having the desired composition could be synthesized at a temperature of 350 ° C. or higher.

4.高結晶性酸化物微粒子
バッチ法により上記の酸化物微粒子および複合酸化物微粒子を合成した場合、昇温中に微粒子の結晶成長が起こり、また、その時に微粒子内に5wt.%以上の水酸基が取り込まれ、高結晶性の微粒子の合成が困難であった。
一方、図6に示す流通式装置を用いて急速に昇温・熱処理することにより、粒子の結晶成長を抑制しつつ、核あるいは成長の初期段階の粒子を熱処理することで、水酸基含有率が5wt.%以下の高結晶性の酸化物および複合酸化物微粒子が合成できた。
4). Highly crystalline oxide fine particles When the above-mentioned oxide fine particles and composite oxide fine particles are synthesized by the batch method, crystal growth of the fine particles occurs during the temperature rise, and more than 5 wt.% Hydroxyl groups are taken into the fine particles at that time. Therefore, it was difficult to synthesize highly crystalline fine particles.
On the other hand, by rapidly heating and heat-treating using the flow-type apparatus shown in FIG. 6, while suppressing the crystal growth of the particles and heat-treating the particles at the initial stage of the nucleus or the growth, the hydroxyl group content is 5 wt. Highly crystalline oxides and composite oxide fine particles of less than.% Were synthesized.

5.有機修飾微粒子
0.02 M硝酸セリウム(III)水溶液に、ヘキサン酸を表面修飾剤として加え,400 ℃−40 MPaで10分間超臨界水熱合成を行なった。その結果、共存イオンの影響により修飾率は10wt.%以下であった。
一方、0.02 M硝酸セリウム(III)水溶液10 ml に0.04 M水酸化ナトリウム水溶液10 mlを加えて,水酸化セリウムを調製した。この水酸化セリウム懸濁液に、ヘキサン酸を表面修飾剤として加え,400 ℃−40 MPaで10分間超臨界水熱合成を行なった。その結果、10wt.%以上の修飾率が達成できた。
5. Organic modified fine particles
Hexanoic acid was added as a surface modifier to a 0.02 M aqueous solution of cerium (III) nitrate, and supercritical hydrothermal synthesis was performed at 400 ° C-40 MPa for 10 minutes. As a result, the modification rate was 10 wt.% Or less due to the influence of coexisting ions.
On the other hand, 10 ml of 0.04 M sodium hydroxide aqueous solution was added to 10 ml of 0.02 M cerium (III) nitrate aqueous solution to prepare cerium hydroxide. To this cerium hydroxide suspension, hexanoic acid was added as a surface modifier, and supercritical hydrothermal synthesis was performed at 400 ° C.-40 MPa for 10 minutes. As a result, a modification rate of 10 wt.% Or more was achieved.

硫酸チタニル水溶液10 ml に水酸化ナトリウム水溶液10 mlを加えて,水酸化チタンゾルを調製した。この水酸化チタンゾル懸濁液を0.01Mに調整し、デシルフォスフォン酸ジエチル0.2Mを表面修飾剤として加え,400 ℃−30 MPaで超臨界水熱合成を行なった。その結果、10wt.%以上の修飾率が達成でき5nm以下の単結晶酸化チタンナノ粒子を合成できた。   Titanium hydroxide sol was prepared by adding 10 ml of sodium hydroxide aqueous solution to 10 ml of titanyl sulfate aqueous solution. This titanium hydroxide sol suspension was adjusted to 0.01 M, and 0.2 M diethyl decyl phosphonate was added as a surface modifier, and supercritical hydrothermal synthesis was performed at 400 ° C. to 30 MPa. As a result, a modification rate of 10 wt.% Or more was achieved, and single crystal titanium oxide nanoparticles of 5 nm or less were synthesized.

6.有機修飾高温安定相酸化物微粒子
流通系粒子合成法において高温安定相酸化物微粒子を有機表面修飾する場合、有機修飾剤を粒子合成と同時に供給すると、有機修飾剤が分解し修飾率は5wt.%以下であった。
一方、有機修飾剤を粒子合成後段で供給することで、微粒子合成反応条件(400℃以上)と有機修飾反応条件(400℃以下)の最適条件を分離することで、高温安定相の微粒子(フェライト系、ガーネット系等)を合成し、その後、微粒子表面を有機修飾することを可能とし、5wt.%以上の修飾率が達成できた。する。特に、粒子合成直後に有機修飾をおこなうことで、粒子生成直後の表面水酸基と有機修飾基との反応をより効果的に生じさせ、また、流通系装置において、有機修飾剤の滞在時間を、有機修飾反応の時定数より長く、かつ有機修飾剤の分解反応の時定数よりも短く設定することで、分解を抑制しつつ効果的に有機修飾をおこなうことと可能とし、10wt.%以上の修飾率が達成できた。
6). Organically modified high-temperature stable phase oxide fine particles When modifying the organic surface of high-temperature stable phase oxide fine particles in the flow-through particle synthesis method, if the organic modifier is supplied at the same time as the particle synthesis, the organic modifier decomposes and the modification rate is 5 wt.%. It was the following.
On the other hand, by supplying the organic modifier in the latter stage of the particle synthesis, the optimum conditions of the fine particle synthesis reaction condition (400 ° C. or higher) and the organic modification reaction condition (400 ° C. or lower) are separated, so that the high temperature stable phase fine particles System, garnet system, etc.) and then the surface of the fine particles can be organically modified, achieving a modification rate of 5 wt.% Or more. To do. In particular, by performing organic modification immediately after particle synthesis, the reaction between the surface hydroxyl group immediately after particle generation and the organic modifying group is caused more effectively. By setting it longer than the time constant of the modification reaction and shorter than the time constant of the decomposition reaction of the organic modifier, it is possible to effectively perform organic modification while suppressing decomposition, and a modification rate of 10 wt.% Or more Was achieved.

水酸化物原料から超臨界水熱合成したZnO微粒子。ZnO fine particles synthesized by supercritical hydrothermal from hydroxide raw material. 急速昇温し超臨界水熱合成されたマグネシウムフェライト微粒子。Magnesium ferrite fine particles that are rapidly heated and supercritical hydrothermally synthesized. マグネシウムアルミネートの合成。Synthesis of magnesium aluminate. YAGの合成。YAG synthesis. LuAGの合成。Synthesis of LuAG. 流通式超臨界水熱合成装置。Distribution supercritical hydrothermal synthesizer. 合成されたセリア粒子のTGAによる修飾量の評価(重量変化が数10wt%)。Evaluation of amount of modification of synthesized ceria particles by TGA (weight change of several tens wt%). 5nm以下の表面修飾酸化チタンナノ粒子の合成。Synthesis of surface-modified titanium oxide nanoparticles of 5nm or less. 修飾剤の供給方法と生成物、a)修飾基の分解により、副生物が混入し、変色した生成物、b)反応後段での有機修飾剤導入(280℃)により、分解を抑制した良好な修飾。Product and method of supplying the modifier, a) Product discolored by by-products due to degradation of the modifying group, b) Good degradation with suppressed degradation by introduction of organic modifier (280 ° C) in the latter stage of the reaction Qualification.

Claims (24)

水酸化物ゾル等の固体微粒子を水中に分散させた出発原料を、流通式反応装置中で、急速昇温・熱処理し、高結晶性の酸化物微粒子を合成することを特徴とする微粒子製造方法。   A method for producing fine particles characterized in that high-crystalline oxide fine particles are synthesized by rapidly heating and heat-treating a starting material in which solid fine particles such as hydroxide sol are dispersed in water in a flow reactor. . 請求項1に記載の方法において、熱処理条件としての温度が、200℃以上、好ましくは300℃以上、より好ましくは、超臨界状態である温度が374℃以上であり、圧力が、10MPa以上、好ましくは20MPa以上、より好ましくは22.1MPa以上である微粒子製造方法。   In the method according to claim 1, the temperature as the heat treatment condition is 200 ° C or higher, preferably 300 ° C or higher, more preferably the temperature in the supercritical state is 374 ° C or higher, and the pressure is 10 MPa or higher, preferably Is a method for producing fine particles of 20 MPa or more, more preferably 22.1 MPa or more. 請求項1に記載の方法において、急速昇温を原料スラリーと超臨界水中等の高温・高圧水中で混合させ、急速昇温・熱処理する微粒子製造方法。   2. The method for producing fine particles according to claim 1, wherein the rapid temperature increase is mixed in the raw slurry and high-temperature / high-pressure water such as supercritical water, and then the temperature is rapidly increased and heat-treated. 請求項3に記載の方法において、急速昇温に要する時間が2分以内、好ましくは10秒以内、より好ましくは1秒以内とする微粒子製造方法。   4. The method for producing fine particles according to claim 3, wherein the time required for rapid temperature increase is within 2 minutes, preferably within 10 seconds, more preferably within 1 second. 2種類以上の水酸化物ゾルの混合物を出発原料とし、請求項2〜4のいずれかの条件で熱処理することにより、高結晶性の複合酸化物ナノ粒子を合成する微粒子製造方法。   A fine particle production method for synthesizing highly crystalline composite oxide nanoparticles by heat-treating a mixture of two or more types of hydroxide sol as a starting material under the conditions of any one of claims 2 to 4. 酸化物微粒子等を水中に分散させたスラリーを、請求項2〜5のいずれかの条件で熱処理し、酸化物ナノ粒子のサイズを抑制しながら、結晶性を改善する微粒子製造方法。   A method for producing fine particles, in which a slurry in which oxide fine particles and the like are dispersed in water is heat-treated under the conditions of any one of claims 2 to 5 to improve the crystallinity while suppressing the size of the oxide nanoparticles. 請求項1〜6のいずれかに記載の方法において、酸化または還元雰囲気を制御することにより、酸化物ナノ粒子の酸素量や金属イオンの価数を制御する微粒子製造方法。   The method according to any one of claims 1 to 6, wherein the oxygen content of the oxide nanoparticles and the valence of the metal ions are controlled by controlling the oxidizing or reducing atmosphere. 請求項7に記載の方法において、雰囲気制御剤として、過酸化水素水、ギ酸、アンモニア等を用いる微粒子製造方法。   8. The method for producing fine particles according to claim 7, wherein hydrogen peroxide water, formic acid, ammonia or the like is used as the atmosphere control agent. 請求項1〜8のいずれかに記載の方法において、有機修飾剤を用いる微粒子製造方法。   9. The method for producing fine particles according to claim 1, wherein an organic modifier is used. 請求項9に記載の方法において、有機修飾剤がカルボン酸、アミン、アルコール、アルデヒド、リン酸、硫酸、チオールである微粒子製造方法。   The method according to claim 9, wherein the organic modifier is carboxylic acid, amine, alcohol, aldehyde, phosphoric acid, sulfuric acid, thiol. 請求項9または10に記載の方法において、有機修飾剤を微粒子生成直後に供給する微粒子製造方法。   The method according to claim 9 or 10, wherein the organic modifier is supplied immediately after the fine particles are generated. 請求項9〜11のいずれかに記載の方法において、反応部後段を急速に冷却する微粒子製造方法。   12. The method for producing fine particles according to claim 9, wherein the latter stage of the reaction part is rapidly cooled. 請求項12に記載の方法において、冷水を直接供給することで急速冷却する微粒子製造方法。   The method according to claim 12, wherein the fine particles are rapidly cooled by directly supplying cold water. 請求項12または13に記載の方法において、有機修飾反応の時間を1分以内、好ましくは10秒以内とする微粒子製造方法。   The method according to claim 12 or 13, wherein the organic modification reaction time is within 1 minute, preferably within 10 seconds. 請求項9〜14のいずれかに記載の方法において、有機修飾反応の温度を200℃から500℃の範囲、好ましくは、250℃から450℃とする微粒子製造方法。   The method according to any one of claims 9 to 14, wherein the temperature of the organic modification reaction is in the range of 200 ° C to 500 ° C, preferably 250 ° C to 450 ° C. 請求項9〜15のいずれかに記載の方法において、粒子合成部から有機修飾剤の供給部までの粒子滞在時間を5分以内、好ましくは1分以内、さらに好ましくは10秒以内とする微粒子製造方法。   16. The method according to claim 9, wherein the particle residence time from the particle synthesis unit to the organic modifier supply unit is within 5 minutes, preferably within 1 minute, more preferably within 10 seconds. Method. 請求項1〜16のいずれかに記載の方法により合成された酸化物微粒子。   The oxide fine particle synthesize | combined by the method in any one of Claims 1-16. 請求項17に記載の微粒子であって、粒子径が50nm以下、好ましくは30nm以下の微粒子、より好ましくは10nm以下の酸化物微粒子。   18. The fine particles according to claim 17, wherein the fine particles have a particle size of 50 nm or less, preferably 30 nm or less, more preferably 10 nm or less. 請求項17または18に記載の微粒子であって、結晶性の高い酸化物微粒子。   The fine particle according to claim 17 or 18, wherein the oxide fine particle has high crystallinity. 請求項19に記載の微粒子であって、単結晶の酸化物微粒子。   20. The fine particle according to claim 19, wherein the oxide is a single crystal oxide fine particle. 請求項17〜20のいずれかに記載の微粒子であって、水酸基含有率が10wt%以下、好ましくは5wt%以下、より好ましくは2wt%以下の酸化物微粒子。   21. Fine particles according to any one of claims 17 to 20, having a hydroxyl group content of 10 wt% or less, preferably 5 wt% or less, more preferably 2 wt% or less. 請求項9〜16のいずれかに記載の方法によって合成された微粒子であって、粒子表面に有機修飾基が強結合した酸化物微粒子。   A fine particle synthesized by the method according to any one of claims 9 to 16, wherein an organic fine group is strongly bonded to the particle surface. 請求項22に記載の微粒子であって、粒子が高温安定相の酸化物微粒子。   The fine particles according to claim 22, wherein the particles are high-temperature stable phase oxide fine particles. 請求項23に記載の、複合酸化物微粒子。   The composite oxide fine particles according to claim 23.
JP2006356176A 2006-12-28 2006-12-28 Fine particle production method and fine particles produced by the method Active JP5428016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356176A JP5428016B2 (en) 2006-12-28 2006-12-28 Fine particle production method and fine particles produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356176A JP5428016B2 (en) 2006-12-28 2006-12-28 Fine particle production method and fine particles produced by the method

Publications (2)

Publication Number Publication Date
JP2008162864A true JP2008162864A (en) 2008-07-17
JP5428016B2 JP5428016B2 (en) 2014-02-26

Family

ID=39692834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356176A Active JP5428016B2 (en) 2006-12-28 2006-12-28 Fine particle production method and fine particles produced by the method

Country Status (1)

Country Link
JP (1) JP5428016B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111694A (en) * 2010-11-19 2012-06-14 Tohoku Univ Water-dispersible stealth nanoparticle
JP2012153588A (en) * 2011-01-28 2012-08-16 Idemitsu Kosan Co Ltd Method for manufacturing high crystallinity metal oxide fine particle, and high crystallinity metal oxide fine particle obtained by the method
JP2015091747A (en) * 2013-09-30 2015-05-14 富士フイルム株式会社 Ferromagnetic hexagonal ferrite powder, method for producing the same, and magnetic recording medium
JP2015093790A (en) * 2013-11-11 2015-05-18 住友ベークライト株式会社 Method for manufacturing organic compound modification inorganic filler and organic compound modification inorganic filler
WO2015149517A1 (en) * 2014-04-02 2015-10-08 西安交通大学 Supercritical hydrothermal synthesis method for metal or metal oxide nanoparticles
US9387175B2 (en) 2011-08-12 2016-07-12 Tohoku University Agent for evading immune response
JPWO2015046496A1 (en) * 2013-09-30 2017-03-09 富士フイルム株式会社 Method for producing metal oxide particles and method for producing magnetic recording medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047110B2 (en) * 1990-06-15 2000-05-29 株式会社東北テクノアーチ Method for producing metal oxide fine particles
JP2001163700A (en) * 1999-12-08 2001-06-19 Tohoku Techno Arch Co Ltd Lithium-based composite metal oxide and method of producing the same
JP2003261329A (en) * 2002-03-08 2003-09-16 National Institute Of Advanced Industrial & Technology Barium titanate superfine particle having high crystallinity and production method therefor
JP2005194148A (en) * 2004-01-08 2005-07-21 Tohoku Techno Arch Co Ltd Organically modified fine particles
JP2005255450A (en) * 2004-03-10 2005-09-22 National Institute Of Advanced Industrial & Technology Zirconium oxide crystal particle and method for producing the same
JP2005289737A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Barium titanate minute particle and its manufacturing method
JP2006282503A (en) * 2006-04-10 2006-10-19 Tohoku Techno Arch Co Ltd Organically modified fine particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047110B2 (en) * 1990-06-15 2000-05-29 株式会社東北テクノアーチ Method for producing metal oxide fine particles
JP2001163700A (en) * 1999-12-08 2001-06-19 Tohoku Techno Arch Co Ltd Lithium-based composite metal oxide and method of producing the same
JP2003261329A (en) * 2002-03-08 2003-09-16 National Institute Of Advanced Industrial & Technology Barium titanate superfine particle having high crystallinity and production method therefor
JP2005194148A (en) * 2004-01-08 2005-07-21 Tohoku Techno Arch Co Ltd Organically modified fine particles
JP2005255450A (en) * 2004-03-10 2005-09-22 National Institute Of Advanced Industrial & Technology Zirconium oxide crystal particle and method for producing the same
JP2005289737A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Barium titanate minute particle and its manufacturing method
JP2006282503A (en) * 2006-04-10 2006-10-19 Tohoku Techno Arch Co Ltd Organically modified fine particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011069494; 芳賀沼司 他: '超臨界水熱合成法による蛍光体微粒子YAG:Tbの合成' 高圧討論会講演要旨集 Vol.41st, pp.98, 20001020, 日本高圧力学会 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111694A (en) * 2010-11-19 2012-06-14 Tohoku Univ Water-dispersible stealth nanoparticle
JP2012153588A (en) * 2011-01-28 2012-08-16 Idemitsu Kosan Co Ltd Method for manufacturing high crystallinity metal oxide fine particle, and high crystallinity metal oxide fine particle obtained by the method
US9387175B2 (en) 2011-08-12 2016-07-12 Tohoku University Agent for evading immune response
JP2015091747A (en) * 2013-09-30 2015-05-14 富士フイルム株式会社 Ferromagnetic hexagonal ferrite powder, method for producing the same, and magnetic recording medium
US9502066B2 (en) 2013-09-30 2016-11-22 Fujifilm Corporation Ferromagnetic hexagonal ferrite powder, method of manufacturing the same, and magnetic recording medium
JPWO2015046496A1 (en) * 2013-09-30 2017-03-09 富士フイルム株式会社 Method for producing metal oxide particles and method for producing magnetic recording medium
US10734144B2 (en) 2013-09-30 2020-08-04 Fujifilm Corporation Production method for metal oxide particles, metal oxide powder, and magnetic recording medium
JP2015093790A (en) * 2013-11-11 2015-05-18 住友ベークライト株式会社 Method for manufacturing organic compound modification inorganic filler and organic compound modification inorganic filler
WO2015149517A1 (en) * 2014-04-02 2015-10-08 西安交通大学 Supercritical hydrothermal synthesis method for metal or metal oxide nanoparticles

Also Published As

Publication number Publication date
JP5428016B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5428016B2 (en) Fine particle production method and fine particles produced by the method
Barreto et al. Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development
JP4118818B2 (en) Method for producing single crystal cerium oxide powder
JP5836472B2 (en) Crystalline cerium oxide and method for producing the same
Arami et al. Rapid formation of hydroxyapatite nanostrips via microwave irradiation
Chen et al. A novel preparation of nanosized hexagonal Mg (OH) 2 as a flame retardant
JP4399592B2 (en) Zirconium oxide crystal particles and production method thereof
CN108675336A (en) The method that microwave cooperates with auxiliary liquid phase synthesis nanometer rare earth oxide ball with the double outfields of ultrasonic wave
Li et al. Ultraviolet-assisted synthesis of hourglass-like ZnO microstructure through an ultrasonic and microwave combined technology
CN111825111B (en) Preparation method for improving thermal stability of magnesium-aluminum hydrotalcite
KR102396183B1 (en) Process for the continuous preparation of phyllomineral synthetic particles
Kuznetsova et al. Influence of microwave and ultrasonic treatment on the formation of CoFe 2 O 4 under hydrothermal conditions
KR100873945B1 (en) Fine cerium oxide powder and preparing method the same and cmp slurry comprising the same
JPH03170325A (en) Production of magnesium hydroxide
JP6159284B2 (en) Method for producing metal oxide fine particles, metal oxide fine particles, and powder, dispersion, dispersion and coated substrate
CN112661195B (en) Preparation method of subminiature magnetic ferroferric oxide nanoparticles
Egorysheva et al. Crystallization in the Bi 2 O 3-Fe 2 O 3-NaOH system upon microwave-assisted hydrothermal synthesis
KR100787346B1 (en) Method for preparing cerium oxide
RU2598728C1 (en) Method of producing nanostructured powder of zirconium tungstate
JP2010235368A (en) Zirconia particle, method of preparing the same and dispersion liquid containing zirconia particle
JP6124832B2 (en) Infrared shielding material fine particle production method, infrared shielding material fine particle dispersion production method, infrared shielding material fine particle, infrared shielding material fine particle powder, infrared shielding material fine particle dispersion, infrared shielding material fine particle dispersion, and coated substrate
JP2006248862A (en) Sol comprising al-o-based particle as dispersoid, its production method, and alumina particle
JP6167069B2 (en) Infrared shielding material fine particle production method and infrared shielding material fine particle dispersion production method
JPH0431313A (en) Production of fine particle of alumina
JP2022520238A (en) How to make synthetic minerals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121213

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130222

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5428016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250