JP2008161965A - Dresser for abrasive cloth - Google Patents

Dresser for abrasive cloth Download PDF

Info

Publication number
JP2008161965A
JP2008161965A JP2006352749A JP2006352749A JP2008161965A JP 2008161965 A JP2008161965 A JP 2008161965A JP 2006352749 A JP2006352749 A JP 2006352749A JP 2006352749 A JP2006352749 A JP 2006352749A JP 2008161965 A JP2008161965 A JP 2008161965A
Authority
JP
Japan
Prior art keywords
dresser
abrasive grains
pad
grinding
metal support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006352749A
Other languages
Japanese (ja)
Other versions
JP5041803B2 (en
Inventor
Hiroaki Sakamoto
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd filed Critical Nippon Steel Materials Co Ltd
Priority to JP2006352749A priority Critical patent/JP5041803B2/en
Publication of JP2008161965A publication Critical patent/JP2008161965A/en
Application granted granted Critical
Publication of JP5041803B2 publication Critical patent/JP5041803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dresser for abrasive cloth enabling uniform pad grinding all the time regardless of use time of the dresser by devising an arrangement of abrasive grains on a metallic support material. <P>SOLUTION: In the dresser, the plurality of abrasive grains are fixed to the surface of the metallic support material to form a single layer, and the dresser has a region where the surface density of the number of the abrasive grains increases as a distance from the center point of the metallic support material increases. When the surface densities of the number of the abrasive grains in regions separated from the center point of the metallic support member by distances R<SB>1</SB>, R<SB>2</SB>are represented as D<SB>1</SB>, D<SB>2</SB>, respectively, it is preferable that D<SB>2</SB>is set to be a value within ±10% of a value calculated by (R<SB>1</SB>/R<SB>2</SB>)×D<SB>1</SB>. Moreover, when the circumferential linear densities of the number of the abrasive grains in regions separated from the center point of the metallic support member by distances r<SB>1</SB>, r<SB>2</SB>are represented as d<SB>1</SB>, d<SB>2</SB>, respectively, it is preferable that d<SB>2</SB>is set to be a value within ±10% of a value calculated by (r<SB>1</SB>/r<SB>2</SB>)×d<SB>1</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は化学的かつ機械的平面研磨(Chemical Mechanical Planarization、以下CMPと略す)の工程で、研磨布の目詰まりや異物除去を行う際に使用される研磨布用ドレッサーに関する。 The present invention is chemically and mechanically planar polishing (C hemical M echanical P lanarization, hereinafter abbreviated as CMP) in the step of, regarding the dresser for a polishing cloth which is used in performing the clogging and foreign matter removal of the polishing pad.

半導体ウェーハの表面を研磨する装置、あるいは、集積回路を製造する途中の配線や絶縁層の表面を平坦化する装置、磁気ハードディスク基板に使用されるAl板やガラス板の表面を平坦化する装置、等ではCMP研磨が用いられている。このCMP研磨とは、例えば、ウレタン製の研磨パッドが貼り付けられた回転基板に、微細な砥粒を含むスラリー液を供給しながら、被研磨面を押し当てて、被研磨面を平坦化する方法である。当然のことながら、この研磨パッドの研磨能力は使用時間とともに低下していくが、この低下を抑制するために、一定時間毎に研磨パッド表層部を研削し、常に新しい面が出るようにドレッシングしている。このドレッシングに使用する部品をドレッサーと呼び、金属基板に砥粒を電着、あるいは、ろう付け等によって接合させたものである。   A device that polishes the surface of a semiconductor wafer, a device that flattens the surface of a wiring or an insulating layer in the middle of manufacturing an integrated circuit, a device that flattens the surface of an Al plate or glass plate used for a magnetic hard disk substrate, Etc., CMP polishing is used. With this CMP polishing, for example, a surface to be polished is pressed to flatten the surface to be polished while supplying a slurry liquid containing fine abrasive grains to a rotating substrate to which a urethane polishing pad is attached. Is the method. As a matter of course, the polishing ability of this polishing pad decreases with time of use, but in order to suppress this decrease, the polishing pad surface layer is ground at regular intervals and dressed so that a new surface always appears. ing. A part used for this dressing is called a dresser, and abrasive grains are joined to a metal substrate by electrodeposition or brazing.

最近では、集積回路、あるいは磁気ハードディスクの生産性を向上させるために、これらの大面積化に対応したCMP研磨装置が使用されるようになってきている。例えば、集積回路分野では直径が300mmの半導体ウェーハ上の集積回路の研磨が主流になりつつあり、また、磁気ハードディスク分野においても多数枚の同時研磨が行われている。このような場合には、研磨パッドの面積も大きくなるため、ドレッサーによるドレッシングにおいて重要なことは、大面積の研磨パッドの表層を場所によらずに如何に均一に研削することができるか、ということである。パッド表面の研削量が場所によって異なってしまうと、表面に凹凸が生じたり、微視的に見たパッドの表面構造が場所によって異なったりしてしまう。このような不均一なパッドを使ってCMP研磨を行った場合には、当然のことながら、被研磨部材であるウェーハ上の集積回路や磁気ハードディスク基板、等に不具合が生じてしまう結果となる。均一研削の他に、ドレッシングの際に重要なことは、パッドの研削レイトの確保である。この研削レイトが低下すると、CMP研磨工程のスループットが低下してしまうからである。   Recently, in order to improve the productivity of an integrated circuit or a magnetic hard disk, a CMP polishing apparatus corresponding to the increase in area has been used. For example, in the integrated circuit field, polishing of an integrated circuit on a semiconductor wafer having a diameter of 300 mm is becoming mainstream, and in the magnetic hard disk field, a large number of sheets are simultaneously polished. In such a case, since the area of the polishing pad also becomes large, what is important in dressing with a dresser is how to uniformly grind the surface layer of a large area polishing pad regardless of location. That is. If the amount of grinding on the pad surface varies depending on the location, the surface may be uneven, or the surface structure of the pad as viewed microscopically may vary depending on the location. When CMP polishing is performed using such a non-uniform pad, as a matter of course, a problem occurs in an integrated circuit, a magnetic hard disk substrate, etc. on the wafer as a member to be polished. In addition to uniform grinding, what is important during dressing is securing the pad grinding rate. This is because when the grinding rate is lowered, the throughput of the CMP polishing process is lowered.

均一なパッド研削を目的としたドレッサーとしては、以下のものが開示されている。特許文献1には、円盤状台金の表面に超砥粒を単層固着した超砥粒層を有するパッドコンディショナーであって、この砥粒層に複数の領域を設け、各領域のそれぞれの全面に超砥粒を正三角形配置させ、さらに、円盤状台金の中心軸側よりも外周側の領域の砥粒間隔を小さくしたドレッサーが開示されている。また、特許文献2には、砥粒を径の異なる複数の略同心円上に略等間隔で配置したドレッサーが開示されている。さらに、特許文献3には、ポリッシングパッド面に接する端面の内周側にエッジを鈍化した超砥粒面を設け、かつそれより外周側に鋭利なエッジを持つ超砥粒面を設けたドレッサーが開示されている。   The following are disclosed as dressers for the purpose of uniform pad grinding. Patent Document 1 discloses a pad conditioner having a superabrasive layer in which a superabrasive grain is fixed to the surface of a disk-shaped base metal, and a plurality of regions are provided in the abrasive layer. Discloses a dresser in which superabrasive grains are arranged in an equilateral triangle, and the abrasive grain spacing in the region on the outer peripheral side is smaller than the central axis side of the disk-shaped base metal. Patent Document 2 discloses a dresser in which abrasive grains are arranged at substantially equal intervals on a plurality of substantially concentric circles having different diameters. Further, Patent Document 3 discloses a dresser provided with a superabrasive surface having a blunt edge on the inner peripheral side of the end surface in contact with the polishing pad surface and a superabrasive surface having a sharp edge on the outer peripheral side. It is disclosed.

特開2006−55944号公報JP 2006-55944 A 特開2000−141204号公報JP 2000-141204 A 特開2001−113456号公報JP 2001-113456 A

前述したように、従来からパッド表面を均一に研削するドレッサーが開示されてはいるものの、どうしても使用時間の経過とともに均一なパッド研削ができなくなるという問題があった。これは、ドレッサーの使用開始から使用時間が増えていくに従って、砥粒が摩耗していくために、全体的なパッド研削レイトの低下は避けられないが、これらの砥粒の摩耗度合いがドレッサーの場所によって異なってくるために生じてしまうものである。   As described above, although a dresser that uniformly grinds the pad surface has been disclosed in the past, there has been a problem that uniform pad grinding cannot be performed over time. This is because the abrasive grains wear as the usage time increases from the start of use of the dresser, and therefore the overall pad grinding rate is inevitably lowered. It happens because it varies depending on the place.

本発明は前述の問題点に鑑み、金属製支持材上の砥粒の配置を工夫することによって、ドレッサーの使用時間によらず、常に均一なパッド研削を可能にする研磨布用ドレッサーを提供することを目的としている。   In view of the above-described problems, the present invention provides a dresser for a polishing cloth that can always perform uniform pad grinding regardless of the use time of the dresser by devising the arrangement of abrasive grains on a metal support. The purpose is that.

本発明の要旨は、以下の通りである。
(1)金属製支持材の表面に複数個の砥粒が単層に固着された研磨布用ドレッサーであって、前記金属製支持材の中心点から離れるに従って、前記砥粒数の面密度が大きくなる領域を有することを特徴とする研磨布用ドレッサー。
(2)前記砥粒数の面密度が連続的に変化していることを特徴とする前項(1)に記載の研磨布用ドレッサー。
(3)前記砥粒数の面密度が不連続的に変化していることを特徴とする前項(1)に記載の研磨布用ドレッサー。
(4)前記金属製支持材の中心点からR1及びR2の距離にある領域における砥粒数の面密度をそれぞれD1及びD2とした場合、D2が(R2/R1)×D1で計算される値の±10%以内の値であることを特徴とする前項(1)〜(3)の何れか1つに記載の研磨布用ドレッサー。
(5)前記金属製支持材の中心点からr1及びr2の距離にある領域における砥粒数の円周方向の線密度をそれぞれd1及びd2とした場合、d2が(r2/r1)×d1で計算される値の±10%以内の値であることを特徴とする前項(1)〜(3)の何れか1つに記載の研磨布用ドレッサー。
(6)前記砥粒が、ダイヤモンド、立方晶窒化ホウ素、炭化ホウ素、炭化ケイ素、又は酸化アルミニウムの少なくとも1種であることを特徴とする前項(1)〜(5)の何れか1つに記載の研磨布用ドレッサー。
(7)前記金属製支持材がステンレス鋼製であることを特徴とする前項(1)〜(6)の何れか1つに記載の研磨布用ドレッサー。
(8)前記金属製支持材の形状が円盤状であることを特徴とする前項(1)〜(7)の何れか1つに記載の研磨布用ドレッサー。
The gist of the present invention is as follows.
(1) A dresser for a polishing cloth in which a plurality of abrasive grains are fixed to a single layer on the surface of a metal support material, and the surface density of the number of abrasive grains increases as the distance from the center point of the metal support material increases. A dresser for a polishing cloth, which has a region to be enlarged.
(2) The dresser for polishing cloth according to (1) above, wherein the surface density of the number of abrasive grains continuously changes.
(3) The dresser for polishing cloth according to the above item (1), wherein the surface density of the number of abrasive grains changes discontinuously.
(4) When the surface density of the number of abrasive grains in the region at a distance of R 1 and R 2 from the center point of the metal support is D 1 and D 2 , D 2 is (R 2 / R 1 ) dresser for a polishing cloth according to any one of the above (1) to (3), which is a value within ± 10% of × value calculated by D 1.
(5) When d 1 and d 2 are linear densities in the circumferential direction of the number of abrasive grains in a region at a distance of r 1 and r 2 from the center point of the metal support, d 2 is (r 2 The dresser for polishing cloth according to any one of (1) to (3) above, wherein the value is within ± 10% of the value calculated by / r 1 ) × d 1 .
(6) The abrasive grain is at least one of diamond, cubic boron nitride, boron carbide, silicon carbide, or aluminum oxide, according to any one of (1) to (5) above, Dresser for polishing cloth.
(7) The dresser for polishing cloth according to any one of (1) to (6) above, wherein the metal support is made of stainless steel.
(8) The dresser for polishing cloth according to any one of (1) to (7), wherein the metal support member has a disk shape.

本発明によれば、パッド表面をドレッシングする場合において、パッドが大きくなり、研削するパッド面積が増えた場合においても、均一なパッド研削が可能になる。その結果、パッドの平坦性に優れたパッド表面の維持が可能になる。さらに、使用時間が経過してもその効果を維持することができる。   According to the present invention, when the pad surface is dressed, the pad becomes large, and even when the pad area to be ground is increased, uniform pad grinding is possible. As a result, it is possible to maintain the pad surface with excellent pad flatness. Furthermore, the effect can be maintained even if the usage time elapses.

本発明者は、金属製支持材の表面に砥粒を固着させる際、その砥粒の面密度、及び、砥粒の配置パターンを変えた種々のドレッサーを用いて、パッド研削レイトを詳細に評価した。具体的には、ウレタン等の樹脂製パッドを研削し、そのパッドの厚み減少量をパッド全面に亘って詳細に調べた。パッドの時間当たりの厚み減少量は、ドレッサーからパッドに加えられる荷重が大きくなるほど増加し、パッドの回転数及びドレッサーの回転数が大きくなるほど増加した。回転しているドレッサーの個々の砥粒に着目すると、金属製支持材の中心から離れるほど、その部位にある砥粒の周速度が速くなり、単位時間当たりパッド上を掃引する距離が長くなる。したがって、金属製支持材の中心から離れた部位にある砥粒ほど、使用時間に伴ってその磨耗量が大きくなる。このために砥粒の面密度を均一に配置したドレッサーを用いた場合には、ドレッサーの中心位置から離れた位置に対面するパッドの研削量が低下し、パッド表面に凹凸が生じてしまう。実際のドレッシング工程では、ドレッサーの回転に加えてパッド自体も同時に回転しているため、パッド表面に生じる凹凸は軽減されるものの、やはりどうしてもその発生を避けることはできない。   The present inventor evaluated the pad grinding rate in detail using various dressers with different surface density of the abrasive grains and the arrangement pattern of the abrasive grains when the abrasive grains are fixed to the surface of the metal support material. did. Specifically, a resin pad such as urethane was ground, and the thickness reduction amount of the pad was examined in detail over the entire pad surface. The amount of thickness reduction per time of the pad increased as the load applied to the pad from the dresser increased, and increased as the pad rotation speed and the dresser rotation speed increased. Focusing on the individual abrasive grains of the rotating dresser, the farther from the center of the metal support material, the faster the peripheral speed of the abrasive grains at that part, and the longer the distance to sweep on the pad per unit time. Therefore, the amount of wear increases with use time as the abrasive grains are located at a position farther from the center of the metal support. For this reason, when using a dresser in which the surface density of the abrasive grains is arranged uniformly, the grinding amount of the pad facing the position away from the center position of the dresser is reduced, and the pad surface is uneven. In the actual dressing process, since the pad itself is simultaneously rotated in addition to the rotation of the dresser, the unevenness generated on the pad surface is reduced, but the occurrence cannot be avoided.

本発明者は、前述した考察を基に、砥粒数の密度、及び、砥粒の配置パターンを変えた種々のドレッサーを詳細に検討し、本発明を完成させるに至った。本発明のドレッサーは、金属製支持材の表面に複数個の砥粒が単層に固着されたドレッサーであって、前記金属製支持材の中心点から離れるに従って、前記砥粒数の面密度が大きくなる領域を有している。砥粒を複数層に配置させても、実際にパッドを研削する砥粒は、最上層の砥粒であるために、単層に配置させれば十分であり、砥粒のコスト、ドレッサーの生産性も向上し好ましい。金属製支持材の中心点から離れるに従い砥粒数の面密度を大きくすることによって、パッドの厚み減少量を均一にすることが可能になる。面密度とは、金属製支持材の所定の面積の中に配置された砥粒数を数えて、その数をその面積で割った値である。その面積の中に砥粒が少なくとも3個以上入っている大きさであれば良い。3個未満では、砥粒数の面密度を求める場合に誤差が大きくなるからである。この面密度は、金属製支持材の中心から離れるに従って連続的に大きくなっても良いし、例えば、所定の間隔で同心円状に幾つかに分割し、各分割領域の中の面密度を一定とし、各分割領域の砥粒数の面密度を中心から離れるに従って大きくするというように不連続的に変化させてもよい。   Based on the above-mentioned consideration, the present inventor has studied in detail various dressers in which the density of the number of abrasive grains and the arrangement pattern of the abrasive grains are changed, and the present invention has been completed. The dresser of the present invention is a dresser in which a plurality of abrasive grains are fixed to a single layer on the surface of a metal support material, and the surface density of the number of abrasive grains increases as the distance from the center point of the metal support material increases. It has a region that grows. Even if the abrasive grains are arranged in multiple layers, the abrasive grains that actually grind the pad are the uppermost abrasive grains. Therefore, it is sufficient to arrange them in a single layer, and the cost of the abrasive grains and the production of the dresser are sufficient. The property is also improved, which is preferable. By increasing the surface density of the number of abrasive grains as the distance from the center point of the metal support material increases, it is possible to make the pad thickness reduction amount uniform. The areal density is a value obtained by counting the number of abrasive grains arranged in a predetermined area of the metal support and dividing the number by the area. Any size may be used as long as at least three abrasive grains are contained in the area. This is because if the number is less than 3, the error increases when the surface density of the number of abrasive grains is obtained. This surface density may increase continuously as the distance from the center of the metal support increases. For example, the surface density is divided into several concentric circles at a predetermined interval, and the surface density in each divided region is constant. The surface density of the number of abrasive grains in each divided region may be changed discontinuously so as to increase as the distance from the center increases.

本発明者は、さらにパッドの研削量をパッドの部位によらずにより均一にするためには、砥粒の面密度をより厳密に規定すれば良いことを見出した。金属製支持材の中心点からR1及びR2の距離にある領域における砥粒数の面密度をそれぞれD1及びD2とした場合、D2が(R2/R1)×D1で計算される値の±10%以内の値になるようにする。±10%より大きくした場合には、パッドの平坦性をより均一にすることができなくなるからである。 The present inventor has further found that in order to make the grinding amount of the pad more uniform regardless of the portion of the pad, the surface density of the abrasive grains may be more strictly defined. When the surface density of the number of abrasive grains in the region at a distance of R 1 and R 2 from the center point of the metal support material is D 1 and D 2 respectively, D 2 is (R 2 / R 1 ) × D 1 Try to be within ± 10% of the calculated value. This is because if it exceeds ± 10%, the flatness of the pad cannot be made more uniform.

本発明者は、前述したように、砥粒密度を面密度として規定した場合、十分にパッドを均一に研削できることを見出したが、砥粒密度をドレッサーが回転する円周方向の線密度として規定すれば、さらに優れた研削性能が発現することを見出した。即ち、金属製支持材の中心点からr1及びr2の距離にある領域における砥粒数の円周方向の線密度をそれぞれd1及びd2とした場合、d2が(r2/r1)×d1で計算される値の±10%以内の値になるようにする。±10%より大きくした場合には、パッドの平坦性をさらに優れた状態にすることができなくなるからである。線密度とは、中心から半径rの円を描いた場合、この円周上の所定の長さの中にある砥粒数を数えて、その長さをその砥粒数で割った値である。その長さの中に砥粒が少なくとも3個以上入っている長さであれば良い。3個未満では、砥粒数の線密度を求める場合に誤差が大きくなるからである。 As described above, the present inventor has found that when the abrasive density is defined as the surface density, the pad can be ground sufficiently uniformly, but the abrasive density is defined as the linear density in the circumferential direction where the dresser rotates. Then, it was found that even better grinding performance was exhibited. That is, when d 1 and d 2 are the line densities in the circumferential direction of the number of abrasive grains in a region at a distance of r 1 and r 2 from the center point of the metal support, d 2 is (r 2 / r 1) set to be a value within ± 10% of the value calculated by × d 1. This is because if it exceeds ± 10%, the flatness of the pad cannot be further improved. The linear density is a value obtained by counting the number of abrasive grains in a predetermined length on the circumference when a circle having a radius r is drawn from the center and dividing the length by the number of abrasive grains. . The length may be any length as long as at least three abrasive grains are included in the length. This is because if the number is less than 3, the error becomes large when the linear density of the number of abrasive grains is obtained.

砥粒の配列パタ−ンを最近接距離に位置する砥粒同士を線で結んだ場合に描かれる多角形の形で定義した場合、三角形、四角形、五角形、六角形等、種々のパタ−ンが想定可能であるが、本発明者は、前記した本発明の砥粒密度分布のドレッサーを用いて、実際にパターンを変えて、パッドの研削性能を評価した。その結果、正三角形配置の場合には、パッドの研削くずが砥粒に絡まり易く、頻度高く水等で除去すれば、研削くずも何とか除去できるが、実用上、使い難いことが分かった。これに対して、正四角形より辺数の多い多角形では、このような研削くずが砥粒に絡まることは無かった。多角形の一片の長さをLとした場合、1つの多角形の(面積/周長)は、正三角形では、0.14L、正四角形では0.25L、正六角形では0.43Lとなり、辺の数が多くなる方が砥粒間の空間がより大きくなる。正三角形パターンではこの空間が狭過ぎたために、パッド研削くずが砥粒に絡み付き易くなることが分かった。正四角形より辺数が多くなると、砥粒間に十分な空間ができ、パッド研削くずが砥粒に絡まることも抑制できるため、好ましくなる。   When defining the array pattern of abrasive grains in the shape of a polygon drawn when the abrasive grains located at the closest distance are connected by a line, various patterns such as triangles, quadrangles, pentagons, hexagons, etc. However, the present inventor evaluated the pad grinding performance by actually changing the pattern using the above-described dresser of the abrasive density distribution of the present invention. As a result, in the case of the equilateral triangle arrangement, it was found that the grinding scraps of the pad are easily entangled with the abrasive grains, and if the scraps are removed with water or the like frequently, the grinding scraps can be removed somehow, but are practically difficult to use. On the other hand, in the polygon having a larger number of sides than the regular square, such grinding waste did not get entangled with the abrasive grains. If the length of one polygon is L, the (area / circumference) of one polygon is 0.14L for a regular triangle, 0.25L for a regular square, and 0.43L for a regular hexagon. As the number increases, the space between the abrasive grains becomes larger. It was found that this space was too narrow in the equilateral triangle pattern, so that pad grinding scraps were easily entangled with the abrasive grains. When the number of sides is larger than that of a regular square, a sufficient space is formed between the abrasive grains, and it is preferable to prevent the pad grinding scraps from being entangled with the abrasive grains.

本発明の研磨布用ドレッサーを構成する砥粒は、硬度が大きく、酸性あるいはアルカリ性のスラリーとの反応が少ないものが好適であり、ダイヤモンド、立方晶窒化ホウ素、炭化ホウ素、炭化ケイ素、又は酸化アルミニウムの少なくとも1種を含んでいるものを用いる。これらの砥粒表面に、チタン、ジルコニウム、クロムから選ばれた少なくとも1種を被覆したもの、または、炭化チタン、炭化ジルコニウム、炭化クロムから選ばれた少なくとも1種を被覆したものを用いることも可能である。通常は、個々の砥粒を単独で使用するが、大きさが同程度のもので研磨布の研削能力の異なる砥粒を2種類以上混合して使用することによって、研磨布の凸凹を大きくすることなく、研削能力を上げることが可能になる。   The abrasive grains constituting the dresser for polishing cloth according to the present invention are preferably those having high hardness and little reaction with an acidic or alkaline slurry, such as diamond, cubic boron nitride, boron carbide, silicon carbide, or aluminum oxide. One containing at least one of the above is used. It is also possible to use these abrasive grain surfaces coated with at least one selected from titanium, zirconium and chromium, or coated with at least one selected from titanium carbide, zirconium carbide and chromium carbide. It is. Normally, each abrasive grain is used alone, but the unevenness of the polishing cloth is increased by using two or more kinds of abrasive grains having the same size and different grinding ability of the polishing cloth. Without increasing the grinding ability.

砥粒の大きさは、3μm以上300μm以下のものが好ましい。砥粒の大きさが3μm未満ではドレッシング後の研磨布の研磨能力が不足するため、下限を3μmとした。砥粒の大きさが300μm超の場合には、研磨布の凹凸が大きくなり過ぎて研磨に支障が生じ、研磨布の性能低下を招いてしまう。砥粒が小さくなる程、ハンドリングも含めて接合が難しくなるため、10μm程度以上の大きさの砥粒が好ましい。 The size of the abrasive grains is preferably 3 μm or more and 300 μm or less. If the abrasive grain size is less than 3 μm, the polishing ability of the polishing cloth after dressing is insufficient, so the lower limit was set to 3 μm. When the size of the abrasive grains is more than 300 μm, the unevenness of the polishing cloth becomes too large, which hinders the polishing and causes the performance of the polishing cloth to deteriorate. Since the smaller the abrasive grains, the more difficult it is to bond, including handling, abrasive grains having a size of about 10 μm or more are preferred.

本発明によるドレッサーは、以下のように製造される。先ず、金属製支持材にろう材を仮付けする。金属製支持材は、砥粒同様に、酸性あるいはアルカリ性のスラリーとの反応が少ないステンレス鋼が好ましい。代表的なステンレスであるSUS304、SUS316、SUS430、等が好適である。炭素鋼等の一般構造用鋼の表面にNi等のめっきをしたものも使用可能である。   The dresser according to the present invention is manufactured as follows. First, a brazing material is temporarily attached to a metal support material. The metal support material is preferably stainless steel that has little reaction with the acidic or alkaline slurry, like the abrasive grains. Typical stainless steels such as SUS304, SUS316, and SUS430 are suitable. The surface of general structural steel such as carbon steel plated with Ni or the like can also be used.

また、金属製支持材の形状は、特に規定するものではなく、八角形、二十角形等の多角形の形状でも良いが、金属製支持材自体が回転しながらパッドを研削するので、均一研削性を担保するためには円盤状であることが好ましい。   In addition, the shape of the metal support material is not particularly specified, and may be a polygonal shape such as an octagon or an icosahedron, but the metal support material itself grinds the pad while rotating, so uniform grinding In order to ensure the property, a disk shape is preferable.

ろう材は、Bni-2やBni-5等のJIS規格材に代表されるNi-Cr-Fe-Si-B系、Ni-Si-B系、Ni-Cr-Si-B系が適用できる。ろう材が箔の場合には、スポット溶接で仮付け可能である。粉の場合には、例えば、セルロース系のバインダー等をろう粉と混練したものを金属製支持材に塗布すればよい。砥粒は、ろう材の上に所定の密度で所定のパターン、例えば、正四角形あるいは正六角形の各頂点近傍に配置した規則パターンで配列すればよい。また、砥粒は、平方mm当たり1個〜5万個程度の密度となるように、単層で配置する。この場合、砥粒がずれないように糊等で仮止めする。次に、10-3Pa程度に真空引きした後、ろう材が溶融する温度まで昇温する。バインダー、糊等は、昇温の途中で殆どが気化してしまう。ろう材を溶融させる温度は、ろう材の融点以上であって、できるだけ低温であることが好ましい。高くても液相線温度+20℃程度以内が好ましい。温度が高い場合には金属製支持材の熱による変形が大きくなるからである。ろう付け温度における保持時間は、5〜30分程度あれば十分である。砥粒は、ろう付け以外に、Ni等の電着によって、固定させることも可能である。 As the brazing material, Ni-Cr-Fe-Si-B, Ni-Si-B, and Ni-Cr-Si-B, which are typified by JIS standard materials such as Bni-2 and Bni-5, can be applied. When the brazing material is a foil, it can be temporarily attached by spot welding. In the case of powder, for example, a kneaded cellulose-based binder or the like may be applied to a metal support. The abrasive grains may be arranged in a predetermined pattern on the brazing material at a predetermined density, for example, a regular pattern arranged in the vicinity of each vertex of a regular square or regular hexagon. Further, the abrasive grains are arranged in a single layer so as to have a density of about 1 to 50,000 per square mm. In this case, it is temporarily fixed with glue or the like so that the abrasive grains do not shift. Next, after evacuating to about 10 −3 Pa, the temperature is raised to a temperature at which the brazing material melts. Most of the binder, glue and the like are vaporized during the temperature rise. The temperature at which the brazing material is melted is preferably equal to or higher than the melting point of the brazing material and as low as possible. At most, the liquidus temperature is preferably within about + 20 ° C. This is because when the temperature is high, the metal support material is greatly deformed by heat. It is sufficient that the holding time at the brazing temperature is about 5 to 30 minutes. In addition to brazing, the abrasive grains can be fixed by electrodeposition of Ni or the like.

以下、実施例に基づいて、本発明を詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

(実施例1)
本発明の研磨布用ドレッサーのダイヤ砥粒(ダイヤモンド砥粒)の位置決めは、例えば、次のようにして決めることができる。先ず、円盤上金属製支材の中心点を通って互いに直交するX軸とY軸を引く。X軸上で+X0、+(X0+X1)、+(X0+X1+X2)、・・・、+(X0+X1+X2+・・・+Xn)、及び、-X0、-(X0+X1)、-(X0+X1+X2)、・・・、-(X0+X1+X2+・・・+Xn)を通りY軸に平行な直線を2(n+1)本引く。ただし、XN=[X0/(X0+X1+X2+・・・+XN-1)]×X1、N=1、2、3、・・・、nの関係を満たすようにする。この関係を満たすことによって、中心点からの距離が離れる程、その距離に反比例して線の間隔が狭くなる。Y軸上でも同様に+Y0、+(Y0+Y1)、+(Y0+Y1+Y2)、・・・、+(Y0+Y1+Y2+・・・+Yn)、及び、-Y0、-(Y0+Y1)、-(Y0+Y1+Y2)、・・・、-(Y0+Y1+Y2+・・・+Yn)を通りX軸に平行な直線を2(n+1)本引く。ただし、YN=[Y0/(Y0+Y1+Y2+・・・+YN-1)]×Y1の関係を満たすようにする。これらの直線がX軸、Y軸と交わる交点を含み、このX軸、Y軸にそれぞれ平行に引いた直線の交点にダイヤ砥粒を配置すれば、ダイヤ砥粒は四角形に配置される。例えば、X軸上の(X0+X1+X2+・・・+XN-1)と、(X0+X1+X2+・・・+XN-1+XN)を通りY軸に平行に引いた2本の直線と、Y軸上の(Y0+Y1+Y2+・・・+YN-1)と(Y0+Y1+Y2+・・・+YN-1+YN)を通りX軸に平行に引いた2本の直線が交わる4つの交点に、ダイヤ砥粒を配置すると、その面密度は、1/(XN×YN)であり、XN、YNは中心から離れるほど小さくなるから、ダイヤ砥粒の面密度は中心から離れるほど大きくなる。
(Example 1)
The positioning of diamond abrasive grains (diamond abrasive grains) of the dresser for polishing cloth of the present invention can be determined, for example, as follows. First, an X axis and a Y axis that are orthogonal to each other are drawn through the center point of the metal support on the disk. + X 0 on the X axis, + (X 0 + X 1 ), + (X 0 + X 1 + X 2 ), ..., + (X 0 + X 1 + X 2 + ... + X n ), And -X 0 ,-(X 0 + X 1 ),-(X 0 + X 1 + X 2 ), ...,-(X 0 + X 1 + X 2 + ... + X n ) And draw 2 (n + 1) straight lines parallel to the Y axis. However, X N = [X 0 / (X 0 + X 1 + X 2 +... + X N-1 )] × X 1 , N = 1, 2, 3,. Like that. By satisfying this relationship, as the distance from the center point increases, the line spacing decreases in inverse proportion to the distance. Similarly on the Y-axis, + Y 0 , + (Y 0 + Y 1 ), + (Y 0 + Y 1 + Y 2 ), ..., + (Y 0 + Y 1 + Y 2 + ... + Y n ), and -Y 0 ,-(Y 0 + Y 1 ),-(Y 0 + Y 1 + Y 2 ), ...,-(Y 0 + Y 1 + Y 2 + ... + Draw 2 (n + 1) straight lines passing through Y n ) and parallel to the X axis. However, Y N = [Y 0 / (Y 0 + Y 1 + Y 2 +... + Y N-1 )] × Y 1 is satisfied. If these straight lines include intersections where the X-axis and Y-axis intersect, and diamond abrasive grains are arranged at the intersections of the straight lines drawn parallel to the X-axis and Y-axis, the diamond abrasive grains are arranged in a square shape. For example, (X 0 + X 1 + X 2 + ... + X N-1 ) and (X 0 + X 1 + X 2 + ... + X N-1 + X N ) on the X axis Two straight lines drawn parallel to the Y axis, and (Y 0 + Y 1 + Y 2 + ... + Y N-1 ) and (Y 0 + Y 1 + Y 2 + on the Y axis・ When diamond abrasive grains are placed at four intersections where two straight lines passing through + Y N-1 + Y N ) and parallel to the X axis intersect, the surface density is 1 / (X N × Y N ), And X N and Y N decrease with distance from the center, so that the surface density of the diamond abrasive grains increases with distance from the center.

SUS304ステンレス製の直径120mm、厚み7mmの部材を円盤状金属製支持材に用いた。この片側の面に150μm径のダイヤ砥粒を配置した。配置する前に、上記した方法で交点をステンレス製支持材上に描いた。この際、X0=20mm、X1=1mm、及び、Y0=20mm、Y1=1mmとした。(X0,Y0)=(20,20)の点は、中心を支持材の中心とし半径が20×√2≒28mmの円上にあるから、この円よりも内側にダイヤ砥粒を配置すると配置領域が回転対称にならなくなる。したがって、半径28mmの円の外側に交点を描いた。また、支持材の半径は60mmであるが、半径方向に外側エッジから5mmの範囲にはダイヤ砥粒を配置しないようにした。したがって、交点を描く領域は、半径が28mmの円から外側であり、半径55mmの円の内側になる。このように、描いた交点の間隔は、例えば、X軸上の55mmの位置近傍では、0.36mm程度となる。 A SUS304 stainless steel member having a diameter of 120 mm and a thickness of 7 mm was used as a disk-shaped metal support. Diamond abrasive grains having a diameter of 150 μm were arranged on one side of the surface. Prior to placement, the intersection was drawn on a stainless steel support in the manner described above. At this time, X 0 = 20 mm, X 1 = 1 mm, Y 0 = 20 mm, and Y 1 = 1 mm. The point of (X0, Y0) = (20,20) is located on a circle with the center as the center of the support and a radius of 20 × √2 ≒ 28mm. The region will not be rotationally symmetric. Therefore, the intersection was drawn outside the circle with a radius of 28 mm. The support material had a radius of 60 mm, but diamond abrasive grains were not arranged in the range of 5 mm from the outer edge in the radial direction. Therefore, the region where the intersection is drawn is outside the circle with a radius of 28 mm and inside the circle with a radius of 55 mm. Thus, the interval between the drawn intersections is, for example, about 0.36 mm in the vicinity of the 55 mm position on the X axis.

実際のダイヤ砥粒は、以下ようにして配置した。先ず、前述したように描いた四角形配置を有する交点にダイヤが通り抜ける程度の穴を開けた篩を作製する。次に、ステンレス製支持材の上にスポット溶接で箔状のろう材を仮付けする。その上に篩い置いてダイヤを配置した。使用したろう材はJIS規格Bni-2箔ろうで、ろう材の厚みが50〜70μmになるようにした。ろう材の上には、ダイヤ砥粒がずれないように有機系接着剤を塗布した。その後、1000℃で真空中20分間ろう付け処理を施した。   Actual diamond abrasive grains were arranged as follows. First, a sieve having a hole through which a diamond passes at an intersection having a rectangular arrangement drawn as described above is prepared. Next, a foil-like brazing material is temporarily attached to the stainless steel support material by spot welding. A diamond was placed on the sieve. The brazing material used was JIS standard Bni-2 foil brazing, and the brazing material thickness was 50 to 70 μm. On the brazing material, an organic adhesive was applied so that the diamond abrasive grains would not shift. Thereafter, a brazing treatment was performed at 1000 ° C. in a vacuum for 20 minutes.

比較例として、X1=X2=・・・=Xn=0.54mm、Y1=Y2=・・・=Yn=0.54mmとダイヤ砥粒間隔のみを一定とし、ダイヤを半径28mmと半径55mmの同心円の間に配置した。他の条件は変えないで同様にドレッサーを作製した。この間隔は、28mm位置の最内側での間隔が0.71mm、55mm位置の最外側での間隔が0.36mmであるため、両者の平均値としたものである。したがって、全ダイヤ砥粒数は発明例と比較例ともほぼ同じである。 As a comparative example, X 1 = X 2 = ... = X n = 0.54 mm, Y 1 = Y 2 = ... = Y n = 0.54 mm and only the diamond abrasive spacing is constant, and the diamond is 28 mm in radius. They were placed between concentric circles with a radius of 55 mm. A dresser was prepared in the same manner without changing other conditions. This interval is an average value of both because the interval at the innermost side of the 28 mm position is 0.71 mm and the interval at the outermost side of the 55 mm position is 0.36 mm. Therefore, the total number of diamond abrasive grains is almost the same in both the invention example and the comparative example.

本発明のドレッサーと比較のドレッサーを用いて、実際にパッドを研削し、研削後のパッド厚みからパッドの平坦性、及び、パッド研削レイトを求めた。パッドは発砲ポリウレタン製であり、パッドの直径は250mmである。このパッドを研磨盤の上に貼り付けた。ドレッサーを回転機構とパッドの半径方向に揺動機構を有する装置に固定し、エアーシリンダーによって3kgの加重を加えて、パッドに押し付けた。ドレッサーの中心をパッド半径方向にパッド中心から45mm〜80mmの範囲で半径方向に揺動させた。パッド回転数は100rpm、ドレッサー回転数は95rpm、揺動は12往復/分とした。パッド回転方向とドレッサーの回転方向は同じである。研削全面が水の膜で覆われる程度に水を供給した。   The pad was actually ground using the dresser of the present invention and a comparative dresser, and the flatness of the pad and the pad grinding rate were determined from the pad thickness after grinding. The pad is made of foamed polyurethane and the pad diameter is 250mm. This pad was affixed on the polishing machine. The dresser was fixed to a device having a rotating mechanism and a swinging mechanism in the radial direction of the pad, applied with a load of 3 kg by an air cylinder, and pressed against the pad. The center of the dresser was rocked in the radial direction within a range of 45 mm to 80 mm from the pad center in the pad radial direction. The pad rotation speed was 100 rpm, the dresser rotation speed was 95 rpm, and the swing was 12 reciprocations / minute. The pad rotation direction and the dresser rotation direction are the same. Water was supplied to such an extent that the entire grinding surface was covered with a water film.

研削開始後5分が経過した時点で一端、研削を中断して、パッド厚みを互いに直交する2本の直径上に沿ってマイクロメーターで測定した。1つの直径を等間隔で10等分し、等分した部位のほぼ真中付近を合計で20点測定し、平均値を求めた。再び研削を続けて、10時間後、15時間後、20時間後に、同様な測定を行った。パッド厚みの平均値から、各研削時間の間における平均のパッド研削レイドを求めた。平坦度は、測定した20点の値の中で最大値から最小値を引いた値として求めた。ただし、5分後ではドレッシングの効果が十分には出ていないため、平坦度の値は求めなかった。結果を表1及び表2に示す。   When 5 minutes had elapsed after the start of grinding, the grinding was interrupted once, and the pad thickness was measured with a micrometer along two diameters orthogonal to each other. One diameter was equally divided into 10 equal parts, and a total of 20 points were measured in the vicinity of the center of the equally divided part to obtain an average value. Grinding was continued again, and the same measurement was performed after 10 hours, 15 hours, and 20 hours. The average pad grinding raid during each grinding time was determined from the average value of the pad thickness. The flatness was determined as a value obtained by subtracting the minimum value from the maximum value among the 20 measured values. However, since the effect of dressing was not sufficiently exhibited after 5 minutes, the flatness value was not obtained. The results are shown in Tables 1 and 2.

Figure 2008161965
Figure 2008161965

Figure 2008161965
Figure 2008161965

表1から、実施例No.1のドレッサーは、比較例No.2のドレッサーに比べて、パッドの均一研削能力に優れていることが分かる。さらに、使用時間が増えていっても、パッドを均一に研削する能力の劣化が少ないことが分かる。表2から、実施例No.1のドレッサーは、比較例No.2のドレッサーに比べて、パッド研削レイトも大きく、使用時間の経過に伴う研削レイト低下も少ないことが分かる。   From Table 1, it can be seen that the dresser of Example No. 1 is superior in the uniform grinding ability of the pad as compared with the dresser of Comparative Example No. 2. Furthermore, it can be seen that even when the usage time is increased, there is little deterioration in the ability to uniformly grind the pad. From Table 2, it can be seen that the dresser of Example No. 1 has a larger pad grinding rate than the dresser of Comparative Example No. 2, and a decrease in the grinding rate with the passage of use time is small.

(実施例2)
SUS304ステンレス製の直径120mm、厚み7mmの部材を円盤状金属製支持材に用いた。この片側の面に150μm径のダイヤ砥粒を配置した。ダイヤ砥粒を配置する領域は、中心を支持材の中心に一致させた半径30mmの円と半径55mmの円に囲まれた領域とした。この領域をさらに、半径が35mm、40mm、45mm及び50mmの同心円で5つの領域に分割し、分割された各領域内にダイヤ砥粒を正方形に配置した。各領域内ではダイヤ砥粒の面密度は一定とした。最内側の領域の面密度を3.6個/mm2とし、外側に向かって順番に、4.2個/mm2、4.8個/mm2、5.4個/mm2、6.0個/mm2とした。この面密度は、D2=(R2/R1)×D1で計算し、中心からの距離に比例させて増加させたものである。正方形の一片の長さは1/√(面密度)から求められる。5つの領域全てに亘って、正方形の辺が互いに平行になるようにした。各領域の境界でダイヤ砥粒が接触するような場合には、内側の領域のダイヤ砥粒を配置した。比較例として、5つに領域に分割しないで、全ての領域でダイヤ砥粒を面密度が4.8個/mm2になるように配置した。全ダイヤ砥粒数は、発明例と比較例ともほぼ同じである。
(Example 2)
A SUS304 stainless steel member having a diameter of 120 mm and a thickness of 7 mm was used as a disk-shaped metal support. Diamond abrasive grains having a diameter of 150 μm were arranged on one side of the surface. The area where the diamond abrasive grains are arranged is an area surrounded by a circle with a radius of 30 mm and a circle with a radius of 55 mm, the center of which is coincident with the center of the support material. This region was further divided into five regions by concentric circles having radii of 35 mm, 40 mm, 45 mm and 50 mm, and diamond abrasive grains were arranged in a square shape in each of the divided regions. Within each region, the surface density of the diamond abrasive grains was constant. The surface density of the innermost region as 3.6 pieces / mm 2, in order outwardly, 4.2 pieces / mm 2, 4.8 pieces / mm 2, 5.4 pieces / mm 2, was 6.0 pieces / mm 2. This areal density was calculated by D 2 = (R 2 / R 1 ) × D 1 and increased in proportion to the distance from the center. The length of a square piece can be obtained from 1 / √ (surface density). The square sides are parallel to each other over all five regions. When the diamond abrasive grains contact at the boundary of each region, the diamond abrasive particles in the inner region were arranged. As a comparative example, the diamond abrasive grains were arranged so as to have a surface density of 4.8 pieces / mm 2 in all regions without being divided into five regions. The total number of diamond abrasive grains is almost the same in both the invention example and the comparative example.

実際の配置は、実施例1と同様に、同じパターンの篩いを作製して行った。ダイヤ砥粒のろう付け方法等も実施例1と同様である。本発明のドレッサーと比較のドレッサーを用いて、実際にパッドを研削し、研削後のパット厚みからパッドの平坦性、及び、パッド研削レイトを求めた。パッドは発砲ポリウレタン製であり、パッドの直径は340mmである。このパッドを研磨盤の上に貼り付けた。ドレッサーを回転機構とパッドの半径方向に揺動機構を有する装置に固定し、エアーシリンダーによって3kgの加重を加えて、パッドに押し付けた。ドレッサーの中心をパッド半径方向にパッド中心から45mm〜125mmの範囲で半径方向に揺動させた。パッド回転数は100rpm、ドレッサー回転数は95rpm、揺動は8往復/分とした。パッド回転方向とドレッサーの回転方向は同じである。研削全面が水の膜で覆われる程度に水を供給した。   The actual arrangement was performed by producing a sieve having the same pattern as in Example 1. The diamond abrasive brazing method and the like are the same as in the first embodiment. The pad was actually ground using the dresser of the present invention and the comparative dresser, and the flatness of the pad and the pad grinding rate were determined from the pad thickness after grinding. The pad is made of foamed polyurethane and the pad diameter is 340mm. This pad was affixed on the polishing machine. The dresser was fixed to a device having a rotating mechanism and a swinging mechanism in the radial direction of the pad, applied with a load of 3 kg by an air cylinder, and pressed against the pad. The center of the dresser was swung in the radial direction within the range of 45 mm to 125 mm from the pad center in the pad radial direction. The pad rotation speed was 100 rpm, the dresser rotation speed was 95 rpm, and the swing was 8 reciprocations / minute. The pad rotation direction and the dresser rotation direction are the same. Water was supplied to such an extent that the entire grinding surface was covered with a water film.

研削開始後5分が経過した時点で一端、研削を中断して、パッド厚みを互いに直交する2本の直径上に沿ってマイクロメーターで測定した。1つの直径を等間隔で14等分し、等分した部位のほぼ真中付近を合計で28点測定し、平均値を求めた。再び研削を続けて、10時間後、15時間後、20時間後に、同様な測定を行った。パッド厚みの平均値から、各研削時間の間における平均のパッド研削レイドを求めた。平坦度は、測定した28点の値の中で最大値から最小値を引いた値として求めた。ただし、5分後ではドレッシングの効果が十分には出ていないため、平坦度の値は求めなかった。結果を表3及び表4に示す。   When 5 minutes had elapsed after the start of grinding, the grinding was interrupted once, and the pad thickness was measured with a micrometer along two diameters orthogonal to each other. One diameter was equally divided into 14 at equal intervals, and a total of 28 points were measured in the vicinity of approximately the middle of the equally divided portion to obtain an average value. Grinding was continued again, and the same measurement was performed after 10 hours, 15 hours, and 20 hours. The average pad grinding raid during each grinding time was determined from the average value of the pad thickness. The flatness was determined by subtracting the minimum value from the maximum value among the 28 measured values. However, since the effect of dressing was not sufficiently exhibited after 5 minutes, the flatness value was not obtained. The results are shown in Tables 3 and 4.

Figure 2008161965
Figure 2008161965

Figure 2008161965
Figure 2008161965

表3から、実施例No.3のドレッサーは、比較例No.4のドレッサーに比べて、パッドの均一研削能力に優れていることが分かる。さらに、使用時間が増えて行っても、パッドを均一に研削する能力の劣化が少ないことが分かる。表4から、実施例No.3のドレッサーは、比較例No.4のドレッサーに比べて、パッド研削レイトも大きく、使用時間の経過に伴う研削レイト低下も少ないことが分かる。   From Table 3, it can be seen that the dresser of Example No. 3 is superior in the uniform grinding ability of the pad as compared with the dresser of Comparative Example No. 4. Further, it can be seen that even when the usage time is increased, the deterioration of the ability to uniformly grind the pad is small. From Table 4, it can be seen that the dresser of Example No. 3 has a larger pad grinding rate than the dresser of Comparative Example No. 4, and a decrease in the grinding rate with the passage of time of use.

(実施例3)
SUS304ステンレス製の直径120mm、厚み7mmの部材を円盤状金属製支持材に用いた。この片側の面に100μm径のダイヤ砥粒を配置した。ダイヤ砥粒を配置する領域は、中心を支持材の中心に一致させた半径30mmの円と半径55mmの円に囲まれた領域とした。この領域内に内側から順に半径が30.5mm、31.0mm、31.5mm、・・・・、54.5mmと0.50mm間隔で同心円を描き、ダイヤ砥粒を半径30mmから半径55mmの51個の同心円上にそれぞれ配置した。配置は以下のようにして行った。先ず、最内側の半径30mmの円の周囲に沿って400個のダイヤ砥粒を等間隔で配置した。この場合のダイヤ砥粒の間隔は、円周に沿って約0.47mmとなり、円周上のダイヤ密度は約2.1個/mmとなる。内側から外側に向かって、同心円上のダイヤ砥粒の線密度をd2=(r2/r1)×d1で計算し、中心からの距離に比例させて増加させた。最外側の半径55mmの円上のダイヤ砥粒の線密度は、約3.9個/mmであり、ダイヤ砥粒の間隔は、円周に沿って約0.26mmとなる。比較例として、実施例3と同じ支持材の上に同様に描いた51個の同心円の全てにおいてダイヤ砥粒の線密度を3個/mmになるように配置した。全ダイヤ砥粒数は、発明例と比較例ともほぼ同じである。
(Example 3)
A SUS304 stainless steel member having a diameter of 120 mm and a thickness of 7 mm was used as a disk-shaped metal support. Diamond abrasive grains having a diameter of 100 μm were arranged on the surface on one side. The area where the diamond abrasive grains are arranged is an area surrounded by a circle with a radius of 30 mm and a circle with a radius of 55 mm, the center of which is coincident with the center of the support material. Concentric circles with a radius of 30.5mm, 31.0mm, 31.5mm, ..., 54.5mm and 0.50mm are drawn in this area from the inside, and diamond abrasive grains are placed on 51 concentric circles with a radius of 30mm to a radius of 55mm. Arranged respectively. The arrangement was performed as follows. First, 400 diamond abrasive grains were arranged at equal intervals along the circumference of a circle with an innermost radius of 30 mm. In this case, the interval between the diamond abrasive grains is about 0.47 mm along the circumference, and the diamond density on the circumference is about 2.1 pieces / mm. From the inside to the outside, the linear density of diamond grains on concentric circles was calculated as d 2 = (r 2 / r 1 ) × d 1 and increased in proportion to the distance from the center. The line density of diamond abrasive grains on a circle having an outermost radius of 55 mm is about 3.9 pieces / mm, and the distance between the diamond abrasive grains is about 0.26 mm along the circumference. As a comparative example, all 51 concentric circles drawn similarly on the same support material as in Example 3 were arranged so that the line density of diamond abrasive grains was 3 / mm. The total number of diamond abrasive grains is almost the same in both the invention example and the comparative example.

実際の配置は、実施例1と同様に、同じパタ−ンの篩いを作製して行った。ダイヤ砥粒のろう付け方法等も実施例1と同様である。本発明のドレッサーと比較のドレッサーを用いて、実施例2と同じ方法で、実際にパッドを研削し、研削後のパッド厚みからパッドの平坦性、及び、パッド研削レイトを求めた。結果を表5及び表6に示す。   The actual arrangement was performed in the same manner as in Example 1 by preparing a sieve having the same pattern. The diamond abrasive brazing method and the like are the same as in the first embodiment. Using the dresser of the present invention and the comparative dresser, the pad was actually ground by the same method as in Example 2, and the flatness of the pad and the pad grinding rate were determined from the pad thickness after grinding. The results are shown in Tables 5 and 6.

Figure 2008161965
Figure 2008161965

Figure 2008161965
Figure 2008161965

表5から、実施例No.5のドレッサーは、比較例No.6のドレッサーに比べて、パッドの均一研削能力に優れていることが分かる。さらに、使用時間が増えて行っても、パッドを均一に研削する能力の劣化が少ないことが分かる。表6から、実施例No.5のドレッサーは、比較例No.6のドレッサーに比べて、パッド研削レイトも大きく、使用時間の経過に伴う研削レイト低下も少ないことが分かる。   From Table 5, it can be seen that the dresser of Example No. 5 is superior in the uniform grinding ability of the pad as compared with the dresser of Comparative Example No. 6. Further, it can be seen that even when the usage time is increased, the deterioration of the ability to uniformly grind the pad is small. From Table 6, it can be seen that the dresser of Example No. 5 has a larger pad grinding rate than the dresser of Comparative Example No. 6, and there is little decrease in the grinding rate with the passage of time of use.

(実施例4)
実施例2と同様に、SUS304ステンレス製の直径120mm、厚み7mmの部材を円盤状金属製支持材に用いた。この片側の面に150μm径のダイヤ砥粒を配置した。ダイヤ砥粒を配置する領域は、中心を支持材の中心に一致させた半径30mmの円と半径55mmの円に囲まれた領域とした。この領域をさらに、半径が35mm、40mm、45mm及び50mmの同心円で5つの領域に分割し、分割された各領域内にダイヤ砥粒を正方形に配置した。各領域内ではダイヤ砥粒の面密度は一定とした。各領域のダイヤ砥粒の面密度を表7に示すように変化させた。表7には、D2=(R2/R1)×D1で計算した実施例No.3の面密度、及び、No.3の20時間パッド研削後の平坦性も示した。また、面密度の右側の括弧内には、上式で計算した面密度との差を%表示で示した。
Example 4
In the same manner as in Example 2, a member made of SUS304 stainless steel having a diameter of 120 mm and a thickness of 7 mm was used as a disk-shaped metal support. Diamond abrasive grains having a diameter of 150 μm were arranged on one side of the surface. The area where the diamond abrasive grains are arranged is an area surrounded by a circle with a radius of 30 mm and a circle with a radius of 55 mm, the center of which is coincident with the center of the support material. This region was further divided into five regions by concentric circles having radii of 35 mm, 40 mm, 45 mm and 50 mm, and diamond abrasive grains were arranged in a square shape in each of the divided regions. Within each region, the surface density of the diamond abrasive grains was constant. The surface density of the diamond abrasive grains in each region was changed as shown in Table 7. Table 7 also shows the surface density of Example No. 3 calculated by D 2 = (R 2 / R 1 ) × D 1 and the flatness after pad grinding of No. 3 for 20 hours. Also, in parentheses on the right side of the surface density, the difference from the surface density calculated by the above equation is shown in%.

実際の配置は、実施例1と同様に、同じパターンの篩いを作製して行った。ダイヤ砥粒のろう付け方法等も実施例1と同様である。このように作製したドレッサーを用いて、実施例2と同じ方法で、実際にパッドを研削し、研削後のパッド厚みからパッドの平坦性を求めた。20時間後の結果を表7に示した。   The actual arrangement was performed by producing a sieve having the same pattern as in Example 1. The diamond abrasive brazing method and the like are the same as in the first embodiment. Using the dresser thus produced, the pad was actually ground by the same method as in Example 2, and the flatness of the pad was determined from the pad thickness after grinding. The results after 20 hours are shown in Table 7.

Figure 2008161965
Figure 2008161965

表7の実施例No.7、No.8、No.10、及びNo.11から分かるように、円盤状金属製支持材の中心点からR1及びR2の距離にある領域における砥粒数の面密度をそれぞれD1及びD2とした場合、D2が(R2/R1)×D1で計算される値の±10%以内の値であれば、パッド研削後のパッドの平坦性に優れることが分かる。これに対して。実施例No.9、及びNo.12では、D2が(R2/R1)×D1で計算される値の±10%より大きくなっており、パッドの平坦性にやや劣っている。 As can be seen from Examples No. 7, No. 8, No. 10, and No. 11 in Table 7, the number of abrasive grains in the region at a distance of R 1 and R 2 from the center point of the disk-shaped metal support material If the surface density of the set to D 1 and D 2, respectively, if the value within ± 10% of the value D 2 is calculated by (R 2 / R 1) × D 1, the flat of the post pad grinding pad It turns out that it is excellent in property. On the contrary. In Examples No. 9 and No. 12, D 2 is larger than ± 10% of the value calculated by (R 2 / R 1 ) × D 1 , and the flatness of the pad is slightly inferior.

(実施例5)
実施例3と同様に、SUS304ステンレス製の直径120mm、厚み7mmの部材を円盤状金属製支持材に用いた。この片側の面に100μm径のダイヤ砥粒を配置した。ダイヤ砥粒を配置する領域は、中心を支持材の中心に一致させた半径30mmの円と半径55mmの円に囲まれた領域とした。この領域をさらに、半径が35mm、40mm、45mm及び50mmの同心円で5つの領域に分割し、分割された各領域内において、それぞれ半径が0.5mm間隔で同心円を描き、各々の同心円の円周上に沿ってダイヤ砥粒を等間隔で配置した。5分割した各領域の中では、同心円上に配置するダイヤ砥粒の線密度は同じ値とした。各領域のダイヤ砥粒の線密度を表8に示すように変化させた。表8の実施例No.13は、半径30〜35mmの領域における線密度を2.3個/mmとし、それより外側の各領域ではd2=(r2/r1)×d1で計算した線密度にしたものである。例えば、内側から2番目の領域の線密度は(37.5/32.5)×2.3≒2.7と計算し、rは半径方向で測定した場合の各領域の真中の値を用いた。また、実施例No.14〜No.19の線密度の右側の括弧内には、上式で計算した線密度との差を%表示で示した。
(Example 5)
In the same manner as in Example 3, a member made of SUS304 stainless steel having a diameter of 120 mm and a thickness of 7 mm was used as a disk-shaped metal support. Diamond abrasive grains having a diameter of 100 μm were arranged on the surface on one side. The area where the diamond abrasive grains are arranged is an area surrounded by a circle with a radius of 30 mm and a circle with a radius of 55 mm, the center of which is coincident with the center of the support material. This region is further divided into five regions by concentric circles with radii of 35mm, 40mm, 45mm and 50mm. In each divided region, concentric radii are drawn at intervals of 0.5mm, and on the circumference of each concentric circle. The diamond abrasive grains were arranged at equal intervals along. In each region divided into five, the linear density of the diamond abrasive grains arranged on the concentric circles was set to the same value. The linear density of diamond abrasive grains in each region was changed as shown in Table 8. In Example No. 13 in Table 8, the line density in the region with a radius of 30 to 35 mm was 2.3 pieces / mm, and in each region outside it, the line calculated as d 2 = (r 2 / r 1 ) × d 1 It is a density. For example, the linear density of the second region from the inside is calculated as (37.5 / 32.5) × 2.3≈2.7, and r is the middle value of each region when measured in the radial direction. Further, in parentheses on the right side of the line densities of Examples No. 14 to No. 19, the difference from the line density calculated by the above equation is shown in%.

実際の配置は、実施例1と同様に、同じパタ−ンの篩いを作製して行った。ダイヤ砥粒のろう付け方法等も実施例1と同様である。このように作製したドレッサーを用いて、実施例2と同じ方法で、実際にパッドを研削し、研削後のパッド厚みからパッドの平坦性を求めた。20時間後の結果を表8に示した。   The actual arrangement was performed in the same manner as in Example 1 by preparing a sieve having the same pattern. The diamond abrasive brazing method and the like are the same as in the first embodiment. Using the dresser thus produced, the pad was actually ground by the same method as in Example 2, and the flatness of the pad was determined from the pad thickness after grinding. The results after 20 hours are shown in Table 8.

Figure 2008161965
Figure 2008161965

表8の実施例No.13、No.14、No.15、No.17、及びNo.18から分かるように、円盤状金属製支持材の中心点からr1及びr2の距離にある領域における砥粒数の線密度をそれぞれd1及びd2とした場合、d2が(r2/r1)×d1で計算される値の±10%以内の値であれば、パッド研削後のパッドの平坦性に優れることが分かる。これに対して。実施例No.16及びNo.19では、d2が(r2/r1)×d1で計算される値の±10%より大きくなっており、パッドの平坦性にやや劣っている。 Example No.13 in Table 8, No.14, areas of No.15, No.17, and as can be seen from No.18, from the center point of the disk-shaped metallic support member on the distance r 1 and r 2 If the linear density of the number of abrasive grains was d 1 and d 2, respectively, if the value within ± 10% of the value d 2 is calculated in (r 2 / r 1) × d 1 in, after the pad grinding It can be seen that the pad has excellent flatness. On the contrary. In Examples No. 16 and No. 19, d 2 is larger than ± 10% of the value calculated by (r 2 / r 1 ) × d 1 , and the flatness of the pad is slightly inferior.

(実施例6)
実施例2のダイヤ砥粒を正方形に配置したNo.3のドレッサーと比較するために、5分割した各領域のダイヤ砥粒の面密度は変えないで、ダイヤ砥粒を正三角形に配置したドレッサーを作製した。正方形配置の場合の面密度は1/(L正×L正)、ただし、L正は正方形の一辺の長さである。正三角形配置の場合の面密度は(2/√3)×1/(L三×L三)、ただし、L三は正三角形の一辺の長さである。この両者を同じ値になるように、L正に合わせてL三を決めればよい。5つの領域全てに亘って、正三角形の辺が互いに平行になるようにした。各領域の境界でダイヤ砥粒が接触するような場合には、内側の領域のダイヤ砥粒を配置した。
(Example 6)
In order to compare with the No. 3 dresser in which the diamond abrasive grains of Example 2 are arranged in a square, the area density of the diamond abrasive grains in each of the five divided regions is not changed, and the dresser in which the diamond abrasive grains are arranged in an equilateral triangle. Was made. The surface density in the case of square arrangement is 1 / (L positive × L positive), where L positive is the length of one side of the square. In the case of equilateral triangle arrangement, the surface density is (2 / √3) × 1 / (L3 × L3), where L3 is the length of one side of the equilateral triangle. What is necessary is just to determine L3 according to L positive so that both may become the same value. The sides of equilateral triangles were made parallel to each other over all five regions. When the diamond abrasive grains contact at the boundary of each region, the diamond abrasive particles in the inner region were arranged.

実際の配置は、実施例1と同様に、同じパターンの篩いを作製して行った。ダイヤ砥粒のろう付け方法等も実施例1と同様である。この比較のドレッサーを用いて、実施例2と同じ方法で、実際にパッドを研削したが、研削開始後、1時間経過したあたりから、パッド研削くずがダイヤ砥粒に絡み付き、パッド研削レイトが大幅に低下したために、研削を中止した。ドレッサーを装置から取り外し、ダイヤ砥粒面を超音波洗浄器で洗浄後、再び研削を開始した。研削レイトは回復したものの、やはり研削開始から1時間経過したあたりから研削レイトが再び低下してしまった。   The actual arrangement was performed by producing a sieve having the same pattern as in Example 1. The diamond abrasive brazing method and the like are the same as in the first embodiment. Using this comparative dresser, the pad was actually ground in the same manner as in Example 2. However, pad grinding scraps entangled with the diamond abrasive grains after 1 hour from the start of grinding, resulting in a significant pad grinding rate. Grinding was stopped because of a drop to. The dresser was removed from the apparatus, the diamond abrasive grain surface was cleaned with an ultrasonic cleaner, and grinding was started again. Although the grinding rate recovered, the grinding rate decreased again after about 1 hour from the start of grinding.

(実施例7)
実施例2のNo.3のドレッサーにおいて、ダイヤ砥粒の代わりに、砥粒として、粒径が120μmの立方晶窒化ホウ素、粒径が100μmの炭化ホウ素、粒径が130μmの炭化ケイ素、粒径が120μmの酸化アルミニウム、前記炭化ホウ素と炭化ケイ素を質量で50%ずつ混合したものを用いた。
(Example 7)
In the dresser No. 3 of Example 2, instead of diamond abrasive grains, cubic boron nitride having a particle size of 120 μm, boron carbide having a particle size of 100 μm, silicon carbide having a particle size of 130 μm, particle size Used was an aluminum oxide having a thickness of 120 μm and a mixture of the above boron carbide and silicon carbide by 50% by mass.

実際の配置は、実施例1と同様に、同じパターンの篩いを作製して行った。各砥粒のろう付け方法等も実施例1と同様である。このように作製したドレッサーを用いて、実施例2と同じ方法で、実際にパッドを研削し、研削後のパッド厚みからパッドの平坦性を求めた。20時間後の結果を表9に示した。   The actual arrangement was performed by producing a sieve having the same pattern as in Example 1. The brazing method of each abrasive grain is the same as that in the first embodiment. Using the dresser thus produced, the pad was actually ground by the same method as in Example 2, and the flatness of the pad was determined from the pad thickness after grinding. The results after 20 hours are shown in Table 9.

Figure 2008161965
Figure 2008161965

発明例No.20〜24の結果から分かるように、砥粒として、立方晶窒化ホウ素、炭化ホウ素、炭化ケイ素、酸化アルミニウム、及びそれらの混合したものを用いても、パッド研削後において十分なパッド平坦性が得られた。   As can be seen from the results of Invention Examples No. 20 to 24, even when cubic boron nitride, boron carbide, silicon carbide, aluminum oxide, and a mixture thereof are used as abrasive grains, a sufficient pad after pad grinding Flatness was obtained.

(実施例8)
板厚が7mmのSUS304ステンレスで一片が70mmである正六角形の金属製支持材を作製した。この正六角形に内接する円を描いた場合には、その円の直径は約121mmとなる。この片側の面に150μm径のダイヤ砥粒を配置した。ダイヤ砥粒を配置する領域は、実施例2と同様に、中心を正六角形支持材の中心に一致させた半径30mmの円と半径55mmの円に囲まれた領域とした。この領域をさらに、実施例2のNo.3ドレッサーと同様に、半径が35mm、40mm、45mm及び50mmの同心円で5つの領域に分割し、分割された各領域内にダイヤ砥粒を正方形に配置した。各領域内でのダイヤ砥粒の面密度は実施例No.3ドレッサーと同じである。
(Example 8)
A regular hexagonal metal support having a thickness of 7 mm and a thickness of 70 mm and a piece of 70 mm was prepared. When a circle inscribed in the regular hexagon is drawn, the diameter of the circle is about 121 mm. Diamond abrasive grains having a diameter of 150 μm were arranged on one side of the surface. Similar to Example 2, the area where the diamond abrasive grains are arranged is an area surrounded by a circle with a radius of 30 mm and a circle with a radius of 55 mm, the center of which is aligned with the center of the regular hexagonal support material. Similar to the No. 3 dresser of Example 2, this region is further divided into five regions by concentric circles having radii of 35 mm, 40 mm, 45 mm and 50 mm, and diamond abrasive grains are arranged in squares in each of the divided regions. did. The surface density of the diamond abrasive grains in each region is the same as that of Example No. 3 dresser.

実際の配置は、実施例1と同様に、同じパターンの篩いを作製して行った。ダイヤ砥粒のろう付け方法等も実施例1と同様である。このように作製したドレッサーを用いて、実施例2と同じ方法で、実際にパッドを研削し、研削後のパッド厚みからパッドの平坦性を求めた。結果は、実施例2の表3及び表4に示した実施例No.3のドレッサーの平坦度、研削レイトの値を殆ど変わらなかった。正六角形の金属製支持材を用いた場合には、CMP装置のドレッサーを固定する冶具に取り付ける場合に、二つの辺を所定の部材に合わせるだけで良いために、位置合わせが容易になる。   The actual arrangement was performed by producing a sieve having the same pattern as in Example 1. The diamond abrasive brazing method and the like are the same as in the first embodiment. Using the dresser thus produced, the pad was actually ground by the same method as in Example 2, and the flatness of the pad was determined from the pad thickness after grinding. As a result, the flatness and grinding rate of the dresser of Example No. 3 shown in Tables 3 and 4 of Example 2 were hardly changed. When a regular hexagonal metal support is used, when attaching to a jig for fixing the dresser of the CMP apparatus, it is only necessary to align the two sides with a predetermined member, so that the alignment becomes easy.

Claims (8)

金属製支持材の表面に複数個の砥粒が単層に固着された研磨布用ドレッサーであって、前記金属製支持材の中心点から離れるに従って、前記砥粒数の面密度が大きくなる領域を有することを特徴とする研磨布用ドレッサー。   A polishing cloth dresser in which a plurality of abrasive grains are fixed to a single layer on the surface of a metal support material, wherein the surface density of the number of abrasive grains increases as the distance from the center point of the metal support material increases A dresser for an abrasive cloth, comprising: 前記砥粒数の面密度が連続的に変化していることを特徴とする請求項1に記載の研磨布用ドレッサー。   The dresser for polishing cloth according to claim 1, wherein the surface density of the number of abrasive grains continuously changes. 前記砥粒数の面密度が不連続的に変化していることを特徴とする請求項1に記載の研磨布用ドレッサー。   The dresser for polishing cloth according to claim 1, wherein the surface density of the number of abrasive grains changes discontinuously. 前記金属製支持材の中心点からR1及びR2の距離にある領域における砥粒数の面密度をそれぞれD1及びD2とした場合、D2が(R2/R1)×D1で計算される値の±10%以内の値であることを特徴とする請求項1〜3の何れか1項に記載の研磨布用ドレッサー。 When the surface density of the number of abrasive grains in the region at a distance of R 1 and R 2 from the center point of the metal support material is D 1 and D 2 respectively, D 2 is (R 2 / R 1 ) × D 1 The dresser for polishing cloth according to any one of claims 1 to 3, wherein the dresser is a value within ± 10% of the value calculated in (1). 前記金属製支持材の中心点からr1及びr2の距離にある領域における砥粒数の円周方向の線密度をそれぞれd1及びd2とした場合、d2が(r2/r1)×d1で計算される値の±10%以内の値であることを特徴とする請求項1〜3の何れか1項に記載の研磨布用ドレッサー。 When d 1 and d 2 are linear densities in the circumferential direction of the number of abrasive grains in a region at a distance of r 1 and r 2 from the center point of the metallic support material, d 2 is (r 2 / r 1 ) × dresser for a polishing cloth according to any one of claims 1 to 3, characterized in that a value within ± 10% of the calculated values with d 1. 前記砥粒が、ダイヤモンド、立方晶窒化ホウ素、炭化ホウ素、炭化ケイ素、又は酸化アルミニウムの少なくとも1種であることを特徴とする請求項1〜5の何れか1項に記載の研磨布用ドレッサー。   The abrasive cloth dresser according to any one of claims 1 to 5, wherein the abrasive grains are at least one of diamond, cubic boron nitride, boron carbide, silicon carbide, or aluminum oxide. 前記金属製支持材がステンレス鋼製であることを特徴とする請求項1〜6の何れか1項に記載の研磨布用ドレッサー。   The dresser for polishing cloth according to any one of claims 1 to 6, wherein the metal support is made of stainless steel. 前記金属製支持材の形状が円盤状であることを特徴とする請求項1〜7の何れか1項に記載の研磨布用ドレッサー。   The dresser for an abrasive cloth according to any one of claims 1 to 7, wherein the metal support member has a disk shape.
JP2006352749A 2006-12-27 2006-12-27 Polishing cloth dresser Expired - Fee Related JP5041803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352749A JP5041803B2 (en) 2006-12-27 2006-12-27 Polishing cloth dresser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352749A JP5041803B2 (en) 2006-12-27 2006-12-27 Polishing cloth dresser

Publications (2)

Publication Number Publication Date
JP2008161965A true JP2008161965A (en) 2008-07-17
JP5041803B2 JP5041803B2 (en) 2012-10-03

Family

ID=39692116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352749A Expired - Fee Related JP5041803B2 (en) 2006-12-27 2006-12-27 Polishing cloth dresser

Country Status (1)

Country Link
JP (1) JP5041803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602943B1 (en) 2013-01-30 2016-03-11 새솔다이아몬드공업 주식회사 Polising pad conditioner and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300601A (en) * 1998-04-25 1999-11-02 Samsung Electronics Co Ltd Cmp pad conditioning disc and conditioner, manufacture of disc, and regenerating method and cleaning method
JP2001071269A (en) * 1999-09-01 2001-03-21 Mitsubishi Materials Corp Electrodeposition grindstone
JP2002346927A (en) * 2001-03-22 2002-12-04 Mitsubishi Materials Corp Cmp conditioner
JP2003071718A (en) * 2001-08-30 2003-03-12 Nippon Steel Corp Cmp conditioner, method for arranging hard abrasive grain used in cmp conditioner and method for manufacturing cmp conditioner
JP2004017207A (en) * 2002-06-14 2004-01-22 Nikon Corp Dressing tool and dressing device
JP2006055944A (en) * 2004-08-20 2006-03-02 Allied Material Corp Cmp pad conditioner
JP2006055943A (en) * 2004-08-20 2006-03-02 Allied Material Corp Cmp pad conditioner
WO2006039457A1 (en) * 2004-09-29 2006-04-13 Chien-Min Sung Contoured cmp pad dresser and associated methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300601A (en) * 1998-04-25 1999-11-02 Samsung Electronics Co Ltd Cmp pad conditioning disc and conditioner, manufacture of disc, and regenerating method and cleaning method
JP2001071269A (en) * 1999-09-01 2001-03-21 Mitsubishi Materials Corp Electrodeposition grindstone
JP2002346927A (en) * 2001-03-22 2002-12-04 Mitsubishi Materials Corp Cmp conditioner
JP2003071718A (en) * 2001-08-30 2003-03-12 Nippon Steel Corp Cmp conditioner, method for arranging hard abrasive grain used in cmp conditioner and method for manufacturing cmp conditioner
JP2004017207A (en) * 2002-06-14 2004-01-22 Nikon Corp Dressing tool and dressing device
JP2006055944A (en) * 2004-08-20 2006-03-02 Allied Material Corp Cmp pad conditioner
JP2006055943A (en) * 2004-08-20 2006-03-02 Allied Material Corp Cmp pad conditioner
WO2006039457A1 (en) * 2004-09-29 2006-04-13 Chien-Min Sung Contoured cmp pad dresser and associated methods

Also Published As

Publication number Publication date
JP5041803B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5255860B2 (en) Polishing cloth dresser
EP2351630B1 (en) Apparatus for polishing spherical body, method for polishing spherical body and method for manufacturing spherical member
JP4216025B2 (en) Dresser for polishing cloth and dressing method for polishing cloth using the same
JP3829092B2 (en) Conditioner for polishing pad and method for producing the same
KR101293461B1 (en) Tool with sintered body polishing surface and method of manufacturing the same
JP2010274352A (en) Dresser for abrasive cloth
JP2001062734A (en) Monolayer grinding wheel
JP4624293B2 (en) CMP pad conditioner
JP5422262B2 (en) Polishing pad conditioner
JP5041803B2 (en) Polishing cloth dresser
TWM513087U (en) Flattened combinational chemical mechanical polishing dresser
TWI623382B (en) Hybrid chemical mechanical polishing dresser
JP4749700B2 (en) Polishing cloth, wafer polishing apparatus and wafer manufacturing method
JP2006055944A (en) Cmp pad conditioner
JP5809880B2 (en) Polishing cloth dresser
JP2006218577A (en) Dresser for polishing cloth
JP6666749B2 (en) Dresser for polishing cloth
KR20220105124A (en) Dresser, dressing method of polishing pad, and manufacturing method of glass substrate
JP2000301468A (en) Grinding wheel for grinding and grinding wheel for vertical line grinding
JP2012130995A (en) Dresser
JP2006055943A (en) Cmp pad conditioner
JP2004243465A (en) Diamond lapping surface plate
JP2010115768A (en) Cbn grinding wheel
JPH08192359A (en) Dresser for, forming or dressing grinding wheel and forming or dressing method of grinding wheel using the dresser
KR101009593B1 (en) Diamond conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees