JP2008161657A - Method and device for monitoring unrestraint life rhythm - Google Patents

Method and device for monitoring unrestraint life rhythm Download PDF

Info

Publication number
JP2008161657A
JP2008161657A JP2007025772A JP2007025772A JP2008161657A JP 2008161657 A JP2008161657 A JP 2008161657A JP 2007025772 A JP2007025772 A JP 2007025772A JP 2007025772 A JP2007025772 A JP 2007025772A JP 2008161657 A JP2008161657 A JP 2008161657A
Authority
JP
Japan
Prior art keywords
signal
series data
time
heart rate
blood oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007025772A
Other languages
Japanese (ja)
Inventor
Masafumi Matsumura
雅史 松村
Tokuo Saeki
徳夫 佐伯
Toshiaki Katahira
利昭 片平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007025772A priority Critical patent/JP2008161657A/en
Publication of JP2008161657A publication Critical patent/JP2008161657A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To detect explosive laughter period information, speech period information, snore period information, and sleep apnea period information in a daily life, leading to obtaining life rhythm, with the use of simple method and device even in a home without a feeling of being retrained in daily actions. <P>SOLUTION: The oral cavity sound signal, the heartbeat signal, or the blood oxygen level signal of an unrestraint health management object person are detected respectively for a long period of time by using an oral cavity sound sensor, a heartbeat sensor, and further a blood oxygen level sensor. The oral cavity sound signal is binarized and, then, converted into oral cavity sound time sequential data. The heartbeat signal is converted into heartbeat interval time sequential data and heart rate time sequential data. The blood oxygen level signal is converted into blood oxygen level time sequential data. Explosive laughter periods, speech periods, snore periods, and sleep apnea periods are identified and detected in the daily life of the health management object person, thereby monitoring the life rhythm of the health management object person. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、日常生活の中で身体から発する心拍(脈拍でもある)、口腔音(咽喉音)、音声、更には動脈血酸素飽和度(血中酸素濃度)(「SpO2」と略する)などの生体信号を、普段の日常活動を妨げることなく、長時間にわたって継続的に検出し計測して生体情報として収集し集積し、その生体情報から生活リズムに関わる情報を生成し提供するための、無拘束生活リズムモニタ方法と、その方法に用いる無拘束生活リズムモニタ装置に関するものである。そして特に、いびき(鼾)音を含む口腔音と心拍、あるいは、いびき(鼾)音を含む口腔音と心拍とSpO2を、生体信号として長時間にわたって継続して検出し、計測し、収集し、それらのデータから、日常生活における爆笑区間(大笑いしていた時間帯)、会話区間(会話していた時間帯)、いびき区間(いびきを掻いた時間帯)、無呼吸区間(呼吸が止まっていた時間帯)を、それぞれ識別認識して生活リズム情報(例えば、爆笑、会話、いびき、無呼吸の発生回数、発生時刻、持続時間など)として集積し、あるいは、SpO2と脈拍数(PR)(心拍数(HR)でもある)の時間的推移から睡眠時無呼吸症候群(SAS:Sleep Apnea Syndrome)を早期に感知し、あるいは心拍数を基に消費カロリーや適正運動量を算出し、それらの健康維持に関わる各種の生活イベント情報、生活リズム情報を総合的に提供するための無拘束生活リズムモニタ方法・装置に関するものである。   This invention includes heartbeats (also pulse), oral sounds (throat sounds), voices, and arterial oxygen saturation (blood oxygen concentration) (abbreviated as “SpO2”), etc. Biosignals are continuously detected and measured over a long period of time without interfering with daily activities, collected and accumulated as biological information, and information related to life rhythm is generated and provided from the biological information. The present invention relates to a restricted life rhythm monitoring method and an unrestricted life rhythm monitoring device used in the method. And in particular, oral sounds and heartbeats that include snoring (鼾) sounds, or oral sounds and heartbeats and SpO2 that include snoring (鼾) sounds, continuously detected over a long period of time as biological signals, measured, collected, From these data, the laughter section (the time period during which you laughed loudly), the conversation section (the time period during which you were speaking), the snoring section (the time period during which you snore), and the apnea section (where breathing stopped) The time period is identified and recognized and accumulated as life rhythm information (for example, laughter, conversation, snoring, apnea occurrence, occurrence time, duration, etc.), or SpO2 and pulse rate (PR) (heart rate) The number (HR) is also measured over time, and sleep apnea syndrome (SAS) is detected early, or calories burned and appropriate exercise amount are calculated based on heart rate to maintain their health. Various life involved Event information, the present invention relates to an unconstrained life rhythm monitoring method and equipment in order to provide comprehensive life rhythm information.

社会の高齢化が急速に進む中で、生活習慣病やそれに深く関わるメタボリック・シンドロームの予防と早期発見・診療が重要な政策課題の一つになっている。そして生活習慣病やメタボリック・シンドロームの予防・診療のためには、生活者各人と医療関係者の双方において、日常生活の中で現れる生体情報の把握が必要であることは言うまでもない。一方近年、爆笑することが、ストレス解消のみならず、糖尿病などの生活習慣病や、肥満などのメタボリック症候群の改善と健康増進に効果を奏するとして注目されている。すなわち、日常生活における笑いや会話の回数・時間が、心の健康管理情報として有用であることが指摘されており、生活習慣病の予防・治療への活用が期待されている。また睡眠中の無呼吸症候群が日常生活に及ぼす障害についても社会的関心が高まっている。睡眠時無呼吸症候群の患者は増加しているが、自覚症状が少ないために放置されて高血圧症や心不全症などの合併症の誘因にもなっていることから、睡眠時無呼吸症候群を日常生活の中で早期に感知できる手段が求められている。なおまた、これらと関連して、日常生活における消費カロリーや適正運動量に対する関心も衰えていない。このような背景から、爆笑状態、会話状態、いびき症状、睡眠時無呼吸症状の把握や、消費カロリーや適正運動量などの、日常の健康維持に有用な生活イベント情報や、生活リズム情報や、各種の健康バロメータ数値を、自宅でも簡単に且つ総合的に常時得られる方法と装置が求められている。   As society ages rapidly, the prevention, early detection and treatment of lifestyle-related diseases and the metabolic syndromes that are closely related to them are becoming important policy issues. Needless to say, in order to prevent and treat lifestyle-related diseases and metabolic syndrome, it is necessary for each person and medical personnel to grasp biological information that appears in daily life. On the other hand, in recent years, laughter has attracted attention as an effect not only for relieving stress, but also for improving lifestyle diseases such as diabetes and metabolic syndrome such as obesity and promoting health. That is, it has been pointed out that the number and time of laughter and conversation in daily life are useful as mental health management information, and is expected to be used for the prevention and treatment of lifestyle-related diseases. There is also increasing social interest in the obstacles that sleep apnea syndrome affects in daily life. The number of patients with sleep apnea syndrome is increasing, but they are left unattended because they have few subjective symptoms, leading to complications such as hypertension and heart failure. There is a need for a means that can be sensed at an early stage. In addition, in relation to these, interest in calorie consumption and appropriate exercise amount in daily life has not diminished. Against this background, life event information useful for daily health maintenance, life rhythm information, such as grasping laughter state, conversation state, snoring symptoms, sleep apnea symptoms, calorie consumption and proper exercise amount, etc. Therefore, there is a need for a method and apparatus that can easily and comprehensively obtain health barometer values at home.

従来、特開2004−243023号公開特許公報(特許文献1)に示されるように、喉頭部に配置したマイクロフォンで長時間にわたって取得した音声信号から、一定の周波数帯域の信号のみを抽出する手段によって、笑いがあった区間を判別検出し、その笑い区間の情報を心の健康に関する健康情報として提供する装置が提示されている。また、例えば特開平5−212126号公開特許公報(特許文献2)に示されるように、心拍数と消費カロリーとの相関関係に基づいて、測定心拍数に対応した消費カロリーを演算して、心拍数と同時に消費カロリーを表示するカロリー計付き心拍測定装置が従来から提示されている。また例えば、刊行物「在宅看護における携帯用パルスオキシメータ導入の基礎的研究」(日本呼吸管理学会誌V0l.2, No.2, 1993(非特許文献1)や、刊行物「オキシメータによる在宅呼吸モニターリング」(日本呼吸管理学会誌V0l.9, No.3, 2000(非特許文献2)などにも示されるように、睡眠時無呼吸症候群の診断手段として、手指型パルスオキシメータを用いてSpO2を計測し、そのSpO2と脈拍数・心拍数の関係から睡眠時無呼吸症候群を検知することが従来から知られている。しかし、特許文献1,2で提示されたような従来の装置では、音声信号を検知して笑い区間情報のみを生成して提供し、あるいは心拍信号を検知して消費カロリー情報のみを生成し提供できるに過ぎず、昨今高い関心をもって求められている生活リズムの把握に繋がる爆笑区間情報、会話区間情報、いびき区間情報、無呼吸区間情報、加えて消費カロリーや適正運動量などの多種の健康維持情報を必要に応じて簡単且つ総合的に提供することはできない。また、非特許文献1,2に示されるような手指型パルスオキシメータでSpO2を長時間にわたって計測しようとせれば、手指にパルスオキシメータを装着せねばならぬことから、日常頻繁に使う手指の拘束感が強く、日常生活の中での長時間にわたる生体信号の計測には馴染まない難点がある。なお、パルスオキシメータには、身体の動脈に向けて光を発する発光体(発光ダイオード)とその発光を動脈血管中の血液を透して受光する受光体(フォトダイオード)から成る血中酸素濃度センサと、その血中酸素濃度センサからの発光・受光信号に基づいて動脈血管中の血液の光透過度を算出しその光透過度から血中酸素濃度(SpO2)を算出する血中酸素濃度信号処理部が含まれている。
特開2004−243023号公開特許公報 特開平5−212136号公開特許公報 「在宅看護における携帯用パルスオキシメータ導入の基礎的研究」日本呼吸管理学会誌V0l.2, No.2, 1993 「オキシメータによる在宅呼吸モニターリング」日本呼吸管理学会誌V0l.9, No.3, 2000
Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 2004-243023 (Patent Document 1), by means of extracting only a signal in a certain frequency band from an audio signal acquired over a long period of time with a microphone placed on the larynx. An apparatus is provided that discriminates and detects a section in which laughter occurred and provides information on the laughter section as health information relating to mental health. For example, as disclosed in Japanese Patent Application Laid-Open No. 5-212126 (Patent Document 2), the calorie consumption corresponding to the measured heart rate is calculated based on the correlation between the heart rate and the calorie consumption, and the heart rate is calculated. 2. Description of the Related Art A heart rate measuring device with a calorimeter that displays calorie consumption at the same time as a number has been conventionally presented. Also, for example, the publication “Basic research on the introduction of portable pulse oximeters in home nursing” (Japanese Society for Respiratory Management V0l.2, No.2, 1993 (Non-patent Document 1)) Respiratory monitoring "(as shown in the Japanese Society for Respiratory Management V0l.9, No.3, 2000 (Non-Patent Document 2)) As a diagnostic tool for sleep apnea syndrome, a finger-type pulse oximeter is used. It is conventionally known to measure SpO2 and detect sleep apnea syndrome from the relationship between SpO2 and pulse rate / heart rate. However, it is only possible to generate and provide only laughing section information by detecting an audio signal, or to generate and provide only calorie consumption information by detecting a heartbeat signal. LOL ward which leads to grasp Information, conversation section information, snoring section information, apnea section information, and various health maintenance information such as calorie consumption and appropriate exercise amount cannot be provided simply and comprehensively as needed. If you want to measure SpO2 for a long time with a finger type pulse oximeter as shown in 1 or 2, you will have to attach a pulse oximeter to your finger, so there is a strong sense of restraint on the fingers that you use frequently every day, However, pulse oximeters are not compatible with the measurement of biological signals over a long period of time in daily life.The pulse oximeter has a light emitter (light emitting diode) that emits light toward the arteries of the body and the light emitted from the arterial blood vessels. Blood oxygen concentration sensor consisting of a photoreceptor (photodiode) that receives light through the blood in the blood, and in the arterial blood vessels based on light emission and light reception signals from the blood oxygen concentration sensor Blood oxygen level signal processing unit for calculating a blood oxygen concentration (SpO2) from the calculated the light transmittance of the light transmittance of the blood contains.
Japanese Patent Laid-Open No. 2004-243023 Japanese Patent Laid-Open No. 5-212136 "Fundamental study on introduction of portable pulse oximeter in home nursing" Journal of Japanese Society for Respiratory Management V0l.2, No.2, 1993 "Home breathing monitoring with oximeter" Journal of Japan Respiratory Management Society V0l.9, No.3, 2000

この発明は、上記のような従来の健康管理情報の生成・提供のための方法・装置における難点を改善しようとするもので、日常生活の行動を妨げない状態を保ちながら、生活リズムの把握に繋がる日常生活中の爆笑区間情報、会話区間情報、いびき区間情報、無呼吸区間情報や、加えて消費カロリー情報や適正運動量情報など、健康維持管理に関わる多種の情報を、簡易な方法・装置でもって生成し提供しようとするものである。 The present invention is intended to improve the difficulties in the conventional methods and apparatuses for generating and providing health management information as described above, and for grasping life rhythms while maintaining a state that does not interfere with daily activities. Simple methods and devices for various information related to health maintenance such as laughter section information, conversation section information, snoring section information, apnea section information, and calorie consumption information and appropriate exercise amount information in daily life This is what we want to generate and provide.

上記の課題を解決するために、この発明では、口腔音センサと心拍センサ(脈拍センサでもある)を用いて、長時間にわたって、健康管理対象者の口腔音信号と心拍信号(脈拍信号でもある)をそれぞれ検出し、その口腔音信号を2値化した後さらに口腔音時系列データに変換すると共に、心拍信号を心拍間隔時系列データに変換し、それらの口腔音時系列データのパターンと心拍間隔時系列データのパターンから、健康管理対象者の日常生活における爆笑区間、会話区間、いびき区間および睡眠時無呼吸区間を識別検出する。 In order to solve the above-described problems, in the present invention, an oral sound sensor and a heart rate sensor (also a pulse sensor) are used for a long time, and an oral sound signal and a heart rate signal (also a pulse signal) of a health care subject are used. Are detected, and the mouth sound signal is binarized and further converted into mouth sound time series data, and the heart beat signal is converted into heart time interval time series data. From the time-series data pattern, a laughter section, a conversation section, a snoring section, and a sleep apnea section in the daily life of the health care subject are identified and detected.

また前記の課題を解決するために、この発明では、無拘束状態の健康管理対象者の口腔音信号と心拍信号をそれぞれ長時間にわたって検出する口腔音センサならびに心拍センサを含む生体信号検出部と、検出した口腔音信号を2値化し更に口腔音時系列データに変換する口腔音信号処理部ならびに検出した心拍信号を心拍間隔時系列データに変換する心拍信号処理部を有して、口腔音時系列データと心拍間隔時系列データを基に健康管理対象者の爆笑区間識別パターン情報、会話区間識別パターン情報、いびき区間識別パターン情報、睡眠時無呼吸区間識別パターン情報を出力する生体情報処理部を備えた無拘束生活リズムモニタ装置を用いる。 In order to solve the above-mentioned problem, in the present invention, an oral sound sensor and a biological signal detection unit including a heart rate sensor for detecting an oral sound signal and a heart rate signal of an unconstrained health care target person for a long time, An oral sound signal processing unit that binarizes the detected oral sound signal and further converts it into oral sound time series data, and a heart beat signal processing unit that converts the detected heart beat signal into heartbeat interval time series data, A biological information processing unit that outputs laughter section identification pattern information, conversation section identification pattern information, snoring section identification pattern information, and sleep apnea section identification pattern information of a health care target person based on data and heartbeat interval time-series data A non-restrained life rhythm monitor device is used.

そして、この発明に係る生活リズムモニタ方法・装置を用いれば、日常生活の行動が妨げない状態を保ちながら、昨今関心が高まっている生活リズムの把握に繋がる日常生活中の爆笑区間情報、会話区間情報、いびき区間情報、睡眠時無呼吸区間情報など、健康維持管理に大きく関わる多様な情報を、在宅でも簡単に得られ、とりわけ、在宅では計測・判断が困難であった無呼吸症候群の兆光候を早期に発見することができる。 And by using the life rhythm monitoring method and apparatus according to the present invention, laughter section information and conversation section in daily life that leads to grasping of life rhythms that have recently been gaining interest while maintaining a state in which the behavior of daily life is not hindered Various information related to health maintenance management such as information, snoring interval information, sleep apnea interval information, etc. can be easily obtained even at home, especially the signs of apnea syndrome that was difficult to measure and judge at home Can detect symptoms early.

この発明の最良の実施形態の一つは、口腔音センサと心拍センサと血中酸素濃度センサを用いて、長時間にわたって、健康管理対象者の口腔音信号と心拍信号と血中酸素濃度信号を検出し、その口腔音信号を2値化した後さらに口腔音時系列データに変換し、その心拍信号を心拍間隔時系列データならびに心拍数時系列データに変換し、血中酸素濃度信号を血中酸素濃度時系列データに変換し、その口腔音時系列データのパターンと心拍間隔時系列データのパターンから、健康管理対象者の日常生活における爆笑区間、会話区間、いびき区間を識別検知し、且つ心拍数時系列データと血中酸素濃度時系列データを基に、健康管理対象者の睡眠時無呼吸症候群を検知する無拘束生活リズムモニタ方法である。   One of the best embodiments of the present invention is to use an oral sound sensor, a heart rate sensor, and a blood oxygen concentration sensor to obtain an oral sound signal, a heart rate signal, and a blood oxygen concentration signal of a health care subject over a long period of time. Detecting and binarizing the oral sound signal, further converting it into oral sound time-series data, converting the heartbeat signal into heartbeat interval time-series data and heart rate time-series data, and converting the blood oxygen concentration signal into the blood Convert to oxygen concentration time series data, and identify and detect laughter sections, conversation sections, and snoring sections in daily life of health care subjects from the pattern of oral sound time series data and heartbeat interval time series data, and heart rate This is an unrestrained life rhythm monitoring method for detecting sleep apnea syndrome of a health care subject based on several time series data and blood oxygen concentration time series data.

またこの発明の最良の実施形態の他の一つは、 健康管理対象者の口腔音信号と心拍信号と血中酸素濃度信号をそれぞれ長時間にわたって検出する口腔音センサ、心拍センサ、血中酸素濃度センサを含む生体信号検出部と、検出した口腔音信号を2値化し更に口腔音時系列データに変換する口腔音信号処理部と、検出した心拍信号を心拍間隔時系列データならびに心拍数時系列データに変換する心拍信号処理部と、検出した血中酸素濃度信号を血中酸素濃度時系列データに変換する血中酸素濃度信号処理部を有して、その口腔音時系列データと心拍間隔時系列データを基に健康管理対象者の爆笑区間識別パターン情報、会話区間識別パターン情報、いびき区間識別パターン情報を出力し、心拍数時系列データと血中酸素濃度時系列データを基に健康管理対象者の睡眠時無呼吸区間識別パターン情報を出力する生体情報処理部を備え、且つ、その生体信号検出部として、健康管理対象者の首周りに着脱自在に装着されてその首周りに接するネックバンドに、その首周りに近接して口腔音信号を検出する口腔音センサと、その首周りに近接して心拍信号を検出する心拍センサと、その首周りの頚動脈に近接して血中酸素濃度信号を検出する血中酸素濃度センサを保持させた生体信号検出部を用いた無拘束生活リズムモニタ装置である。 Another embodiment of the present invention is that an oral sound sensor, a heart rate sensor, and a blood oxygen concentration for detecting a mouth sound signal, a heart rate signal, and a blood oxygen concentration signal of a health care subject over a long period of time, respectively. A biological signal detection unit including a sensor, an oral sound signal processing unit that binarizes the detected oral sound signal and further converts it into oral sound time-series data, and heart rate interval time-series data and heart rate time-series data of the detected heart beat signal A heart rate signal processing unit that converts the detected blood oxygen concentration signal into a blood oxygen concentration time series data, and the oral sound time series data and heart rate interval time series Based on the data, it outputs laughter section identification pattern information, conversation section identification pattern information, and snoring section identification pattern information of health care subjects, based on heart rate time series data and blood oxygen concentration time series data. A biological information processing unit that outputs sleep apnea section identification pattern information of a health care target person is provided, and as the biological signal detection part, it is detachably mounted around the neck of the health care target person and around the neck An oral sound sensor for detecting an oral sound signal in the vicinity of the neck band in contact with the neck band, a heart rate sensor for detecting a heart rate signal in the vicinity of the neck, and blood in the vicinity of the carotid artery around the neck It is an unrestrained life rhythm monitor device using a biological signal detection unit that holds a blood oxygen concentration sensor that detects an oxygen concentration signal.

以下、図面を参考にして、この発明の実施例を説明する。この発明に係る無拘束生活リズムモニタ装置は、図1に示すように、生体信号検出部1と生体情報処理部2を主要部として成り、また必要に応じて、生体情報処理部2の制御処理部24に転送制御モデム28を介してパソコン3を有線または無線で接続して、モニタ装置としてのシステムが構成される。生体信号検出部1は、口腔音センサ(マイクロフォン)11と、心拍センサ(心電センサ)12と、血中酸素濃度センサ13を備え、生体情報処理部2は、口腔音信号処理部21、心拍信号処理部22、制御スイッチ23、制御処理部24、メモリ25、表示制御部26、表示パネル27、転送制御モデム28、血中酸素濃度信号処理部29等から成っている。なお、血中酸素濃度センサ13の機能と血中酸素濃度信号処理部29の機能は、従来周知のパルスオキシメータにおいても既に存在する。また、口腔音信号処理部21は、図2に示すように、一定周波数帯域幅(例えば、300Hz〜2kHzの信号を通過させる帯域フィルタ回路211、A/D変換回路212、2値化処理回路213および符合化処理回路214が順次縦続接続されて成り、口腔音センサ11で集音した口腔音に基づく口腔音信号が、生体情報処理部2の口腔音信号処理部21に入力され、口腔音信号処理部21において、口腔音信号の有音区間の検出と符号化処理が行われる。すなわち、口腔音信号処理部21に入力された音声信号は、爆笑音や会話音やいびき音などの音声信号のみを取り出すために帯域フィルタ回路211で、口腔音信号から不要信号成分を除去した後、A/D変換回路212でディジタルデータに変換され、そのディジタルデータを2値化処理回路213で2値化信号に変換され、符号化処理回路214を通って符号化データとして出力される。 Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the unconstrained life rhythm monitor device according to the present invention includes a biological signal detection unit 1 and a biological information processing unit 2 as main parts, and if necessary, a control process of the biological information processing unit 2 A personal computer 3 is connected to the unit 24 via a transfer control modem 28 in a wired or wireless manner to constitute a system as a monitor device. The biological signal detection unit 1 includes an oral sound sensor (microphone) 11, a heart rate sensor (electrocardiographic sensor) 12, and a blood oxygen concentration sensor 13, and the biological information processing unit 2 includes an oral sound signal processing unit 21, a heart rate The signal processing unit 22, control switch 23, control processing unit 24, memory 25, display control unit 26, display panel 27, transfer control modem 28, blood oxygen concentration signal processing unit 29, and the like are included. The function of the blood oxygen concentration sensor 13 and the function of the blood oxygen concentration signal processing unit 29 already exist in a conventionally known pulse oximeter. In addition, as shown in FIG. 2, the oral sound signal processing unit 21 includes a band-pass filter circuit 211 that passes a signal having a constant frequency bandwidth (for example, 300 Hz to 2 kHz, an A / D conversion circuit 212, and a binarization processing circuit 213. And the encoding processing circuit 214 are sequentially connected in cascade, and the oral sound signal based on the oral sound collected by the oral sound sensor 11 is input to the oral sound signal processing unit 21 of the biological information processing unit 2 to obtain the oral sound signal. The processing unit 21 performs detection and coding processing of a sound section of the oral sound signal, that is, the audio signal input to the oral sound signal processing unit 21 is an audio signal such as a laughing sound, a conversation sound, or a snoring sound. The band filter circuit 211 removes unnecessary signal components from the oral sound signal so that only the digital data is converted into digital data by the A / D conversion circuit 212. Is converted into a binary signal by the processing circuit 213, is output through the encoding processing circuit 214 as the coded data.

なお、口腔音信号の2値化信号への変換処理は、次式に準じて行われる。
|G| >または=M ならば P=1 ・・・ (式 11.1)
|G| <M ならば P=0 ・・・ (式 11.2)
但し、G:音声信号の入力振幅値
M:閾値
P:出力
The conversion process of the oral sound signal into the binarized signal is performed according to the following equation.
If | G |> or = M, then P = 1 (Formula 11.1)
If | G | <M then P = 0 (Equation 11.2)
Where G: input amplitude value of audio signal M: threshold P: output

口腔音信号は、上記の2値化信号への変換後に、"0","1" の時系列信号となるので、符号化処理回路214で同一符号の継続数を計数する。このときの継続数はミリ秒(mS)単位の時間長となっているので、計数値を符号化して口腔音時系列データを生成しメモリ25に保存する。この符号化処理によりデータ容量はA/D変換データ量よりも大幅に減少し、必要なメモリ容量も小さくできる。また、口腔音信号の2値化信号への変換は非可逆変換であることから、変換された口腔音2値化信号を元の音声信号に復号することは出来ず、したがって健康管理対象者からの発声言語情報が外部に対して秘匿処理されたことにもなる。なお、図3(a)は、口腔音センサ11で集音して生体情報処理部2の口腔音信号処理部21に入力される口腔音信号波形を示し、図3(b)は、口腔音信号処理部21において変換された口腔音2値化信号波形を示している。 Since the oral sound signal becomes a time-series signal of “0” and “1” after conversion into the above binary signal, the encoding processing circuit 214 counts the number of continuations of the same code. Since the number of continuations at this time is a time length in units of milliseconds (mS), the count value is encoded to generate oral sound time series data and stored in the memory 25. By this encoding process, the data capacity is significantly reduced from the A / D conversion data amount, and the required memory capacity can be reduced. Further, since the conversion of the oral sound signal into the binarized signal is an irreversible conversion, the converted oral sound binarized signal cannot be decoded into the original audio signal. The utterance language information is concealed from the outside. 3A shows an oral sound signal waveform collected by the oral sound sensor 11 and input to the oral sound signal processing unit 21 of the biological information processing unit 2, and FIG. The oral sound binarized signal waveform converted in the signal processing unit 21 is shown.

一方、生体信号検出部1の心拍センサ12で検出した心拍信号は、心拍信号処理部22に入って心拍間隔符号化処理がなされる。その心拍間隔符号化処理は、図7に示すように、心電パルス間隔をミリ秒(mS)単位で計数し、その係数値を符号化して心拍間隔時系列データを生成している。なお通常、心拍数は1分間の拍数で表わしているから、心拍間隔時系列データを心拍間隔の積算値が1分になる毎に区切って、その間に発生するパルス数を計数して心拍数とする。そして、この計数処理を繰り返して心拍数時系列データを生成し、メモリ25に保存する。また、上記の心拍数時系列データは、心拍数の変動を示す時系列データになる。また心拍センサ12で計測した心電値から心拍間隔を検出して心拍間隔時系列データに変換して保存する。更にまた、上記の心拍間隔時系列データから心拍変動係数を算出して心拍変動係数時系列データを作成保存する。同時にまた、心拍間隔の変動検定により不整脈検出も行うことができる。 On the other hand, the heartbeat signal detected by the heartbeat sensor 12 of the biological signal detection unit 1 enters the heartbeat signal processing unit 22 and is subjected to heartbeat interval encoding processing. In the heartbeat interval encoding process, as shown in FIG. 7, the electrocardiographic pulse interval is counted in milliseconds (mS), and the coefficient value is encoded to generate heartbeat interval time-series data. Since the heart rate is usually expressed in beats per minute, the heart rate interval time-series data is divided every time the accumulated value of the heart rate interval becomes 1 minute, and the number of pulses generated during that interval is counted. And Then, the counting process is repeated to generate heart rate time-series data, which is stored in the memory 25. The heart rate time-series data is time-series data indicating heart rate fluctuations. Further, the heartbeat interval is detected from the electrocardiogram value measured by the heartbeat sensor 12 and converted into heartbeat interval time series data and stored. Furthermore, a heart rate variability coefficient is calculated from the above heart rate interval time series data, and heart rate variability coefficient time series data is created and stored. At the same time, arrhythmia can also be detected by heartbeat interval variation test.

また、血中酸素濃度センサ13で検出された血中酸素濃度信号も、血中酸素濃度信号処理部29でデータ処理されてメモリ25に保存される。そして、この発明の他の実施例として、血中酸素濃度センサ13で検出・測定した血中酸素濃度の時間的推移と、心拍センサ12で検出・測定した心拍数・脈拍数の時間的推移の相互関係のから、無呼吸症候群の早期発見と、無呼吸症候群の発症予防を可能にする。図8は、夜間の就眠中に、心拍センサ12で検出・測定した脈拍数(PR)データと、同時に血中酸素濃度センサ13で検出・測定した血中酸素濃度(SpO2)データと、同時に口腔音センサ11で検出・測定した音声データを、測定時刻を合わせた状態で並べて示したものである。そして、図8(a)は血中酸素濃度(SpO2)と脈拍数(PR)の時間的推移を示し、図8は(b)は睡眠中の口腔音声の時間的変化を示したものであり、図8(b)に現れた白黒縦縞の白色縞の時間帯は、無呼吸区間を示している。なお、図8(c)はその音声データの2値化データを示し、図8(d)は図8(b)中の一つの無呼吸時間帯を時間軸方向に拡大したものである。そして、図8(a)(b)から明らかなように、無呼吸区間付近で、SpO2の値が下降し、PRの値が上昇する変動が見られる。したがって、睡眠中におけるSpO2とPRの相互の変動関係を見張ることにより、睡眠時の無呼吸症候群の早期発見と、それを手がかりにした無呼吸症候群の発症予防を可能にできるものである。   The blood oxygen concentration signal detected by the blood oxygen concentration sensor 13 is also processed by the blood oxygen concentration signal processing unit 29 and stored in the memory 25. As another embodiment of the present invention, the temporal transition of the blood oxygen concentration detected and measured by the blood oxygen concentration sensor 13 and the temporal transition of the heart rate and pulse rate detected and measured by the heart rate sensor 12 are as follows. Because of the interrelationship, it enables early detection of apnea syndrome and prevention of apnea syndrome. FIG. 8 shows pulse rate (PR) data detected and measured by the heart rate sensor 12 during sleep at night, and blood oxygen concentration (SpO2) data detected and measured by the blood oxygen concentration sensor 13 at the same time, and the oral cavity at the same time. The audio data detected and measured by the sound sensor 11 are shown side by side in a state where the measurement times are matched. FIG. 8 (a) shows the temporal transition of blood oxygen concentration (SpO2) and pulse rate (PR), and FIG. 8 (b) shows the temporal change of oral sound during sleep. A time zone of white stripes of black and white vertical stripes appearing in FIG. 8B shows an apnea section. FIG. 8C shows the binarized data of the audio data, and FIG. 8D is an enlarged view of one apnea time zone in FIG. 8B in the time axis direction. As is apparent from FIGS. 8A and 8B, there is a fluctuation in which the SpO2 value decreases and the PR value increases near the apnea interval. Therefore, by keeping an eye on the mutual relationship between SpO2 and PR during sleep, early detection of sleep apnea syndrome and prevention of the development of apnea syndrome based on it can be made possible.

生体信号検出部1の構造は、図9に示すように、健康管理対象者の首周りに着脱自在に
装着されてその首周りに接するネックバンドBに、その首周りに近接して口腔音信号を検出する口腔音センサ11と、その首周りに近接して心拍信号を検出する心拍センサ12と、その首周りの頚動脈に近接して血中酸素濃度信号を検出する血中酸素濃度センサ13をそれぞれ保持させた構造である。そして、ネックバンドB、口腔音センサ11、心拍信号センサ12、血中酸素濃度センサ13は共に小型軽量で、違和感なく簡単に身体へ着脱でき、普段の日常生活行動の妨げには全くならないものである。なお、この発明に係る無拘束生活リズムモニタ方法・装置としては、血中酸素濃度センサ13ならびに血中酸素濃度信号処理部を除いたものを実用に供することも可能で、その場合には、生体信号検出部1に血中酸素濃度センサ13は含まれず、したがって生体情報処理部2に血中酸素濃度信号処理部29は含まれず、ネックバンドBにも血中酸素濃度センサ13は存しない。
As shown in FIG. 9, the structure of the biological signal detection unit 1 is such that an oral sound signal is attached to a neck band B that is detachably attached to and around the neck of a health care subject and close to the neck. An oral sound sensor 11 for detecting a heartbeat, a heartbeat sensor 12 for detecting a heartbeat signal in the vicinity of the neck, and a blood oxygen concentration sensor 13 for detecting a blood oxygen concentration signal in the vicinity of the carotid artery around the neck. Each structure is held. The neckband B, the oral sound sensor 11, the heart rate signal sensor 12, and the blood oxygen concentration sensor 13 are all small and light, can be easily attached to and detached from the body without any sense of incongruity, and do not interfere with daily activities of daily life. is there. In addition, as an unconstrained life rhythm monitoring method and apparatus according to the present invention, it is possible to use a device excluding the blood oxygen concentration sensor 13 and the blood oxygen concentration signal processing unit in practical use. The signal detection unit 1 does not include the blood oxygen concentration sensor 13, and thus the biological information processing unit 2 does not include the blood oxygen concentration signal processing unit 29, and the blood oxygen concentration sensor 13 does not exist in the neckband B.

次に、口腔音時系列データと心拍間隔時系列データから、爆笑区間、発声区間、いびき区間、および無呼吸区間をそれぞれの発生パターンの特徴から識別検出する。前記の2値化時系列データを解析すると、爆笑区間では、同じ笑い声(/ha/等)が同じ間隔で繰り返し発声されるため、図4に示すように、有音区間(有音レベル時間巾)Tpと無音区間(無音レベル時間巾)Tqを1組Tとする同じパターンが複数回反復される特徴がある。会話区間では、異なる単音が連続して発声され、図5に示すように、有音区間(有音レベル区間)と無音区間(無音レベル区間)が不規則な間隔で続くパターンとなる。そして、いびき区間では、図6に示すように、いびき音を示す有音レベル(呼気)と次のいびき音を発声するまでの長い無音レベル(吐息)が続くパターンが繰返される特徴がある。また、このいびき音に挟まれる無音レベルの時間の大小と前記心拍間隔時系列データから心拍変動を検定し、無呼吸が発生していることを検出する。 Next, from the oral sound time-series data and the heartbeat interval time-series data, the laughter section, the utterance section, the snoring section, and the apnea section are identified and detected from the characteristics of the respective generation patterns. When the binary time-series data is analyzed, the same laughter (/ ha / etc.) Is repeatedly uttered at the same interval in the laughter interval, so as shown in FIG. ) The same pattern with Tp and silent section (silence level duration) Tq as one set T is characterized by being repeated multiple times. In the conversation section, different single sounds are continuously uttered, and as shown in FIG. 5, the sound section (sound level section) and the silence section (silence level section) follow at irregular intervals. In the snoring section, as shown in FIG. 6, there is a characteristic that a pattern in which a sound level (exhalation) indicating a snoring sound and a long silence level (sighing) until the next snoring sound is repeated is repeated. Further, heart rate variability is tested from the amount of time of the silence level sandwiched between the snoring sounds and the time interval data of the heartbeat interval to detect the occurrence of apnea.

前記爆笑区間と前記会話区間の検出アルゴリズムは、図4と図5に示す2値化信号の有音レベル時間巾Tpと無音レベル時間巾Tqの生起パターンから判定する。すなわち、爆笑区間と会話区間の判定は、有音区間中に式1に示す有音レベルTpと無音レベルTqのペアTが、式2に示すように類似の時間幅(約1秒以内)で4回以上連続して発生し、同時にこの間で式3に示すTpiとTiの比も類似の値となるときは前記爆笑区間とする。
Ti=Tpi+Tqi ・・・ (式1)
Ti≒Ti+1≒Ti+2≒Ti+3 ≦ 1秒 ・・・(式2)
Tpi/Ti≒Tpi+1/Ti+1≒Tpi+2/Ti+2≒Tpi+3/Ti+3 ・・・(式3)
式2と式3を同時に満足し、かつこの区間における前記心拍間隔が変動していることを検定して爆笑区間と判定する。式2と式3を同時に満足しない有音区間は前記会話区間とする。
The detection algorithm for the laughter section and the conversation section is determined from the occurrence patterns of the sound level duration Tp and the silence level duration Tq of the binary signal shown in FIGS. In other words, the determination of the laughter section and the conversation section is performed with a similar time width (within about 1 second) as shown in Expression 2 in which the pair T of the sound level Tp and the silence level Tq shown in Expression 1 during the sound section. If it occurs four or more times continuously and at the same time the ratio of Tpi and Ti shown in Equation 3 becomes a similar value, the laughter interval is set.
Ti = Tpi + Tqi (Formula 1)
Ti ≒ Ti + 1 ≒ Ti + 2 ≒ Ti + 3 ≤ 1 second (Formula 2)
Tpi / Ti ≒ Tpi + 1 / Ti + 1 ≒ Tpi + 2 / Ti + 2 ≒ Tpi + 3 / Ti + 3 (Equation 3)
It is determined that it is a laughter section by verifying that Expression 2 and Expression 3 are satisfied at the same time and that the heartbeat interval in this section is fluctuating. A voiced section that does not satisfy Expression 2 and Expression 3 at the same time is defined as the conversation section.

就眠中のいびき区間と無呼吸区間の検出アルゴリズムは図6に示す2値化信号の生起パターンから判定する。いびきと区間と無呼吸区間の判定は、式1に示すTiが5秒以上あり、同時に無音レベルTqiが3秒〜10秒であり、これが5回以上連続生起するときはいびき区間とする。またこの間での無音レベルTqiが30秒以上のときは無呼吸区間とする。
20秒>Ti>5秒 ・・・ (式4)
Ti≒Ti+1≒Ti+2≒Ti+3≒Ti+4 ・・・ (式5)
そして、式4と式5を同時に満足する区間をいびき区間と判定する。
The detection algorithm for the snoring interval and apnea interval during sleep is determined from the occurrence pattern of the binarized signal shown in FIG. The snoring, the interval, and the apnea interval are determined as follows. When Ti shown in Equation 1 is 5 seconds or more and the silence level Tqi is 3 seconds to 10 seconds at the same time and this occurs continuously 5 times or more, it is determined as the snoring interval. In addition, when the silent level Tqi during this period is 30 seconds or more, an apnea section is set.
20 seconds>Ti> 5 seconds (Formula 4)
Ti ≒ Ti + 1 ≒ Ti + 2 ≒ Ti + 3 ≒ Ti + 4 (Formula 5)
Then, a section that satisfies Expression 4 and Expression 5 at the same time is determined as a snoring section.

いびき区間と判定された後に、無音区間Tqiが30秒以上になるときは、無呼吸区間として検出する。
Tqi>30秒 ・・・ (式6)
この無呼吸区間では心拍が上昇するので、検出した無呼吸区間における心拍間隔の変動を検定し、変動が大きいときに無呼吸症候群が発生していると判定する。このように口腔音時系列データと心拍間隔時系列データとを解析して、爆笑区間、発声区間、いびき区間、および無呼吸区間のそれぞれの発生パターンの特徴に該当する区間を検出識別し、これらの発生区間を決定して発生時刻と累積回数や累積時間を算出する。
When the silent section Tqi is 30 seconds or more after the snore section is determined, it is detected as an apnea section.
Tqi> 30 seconds (Formula 6)
Since the heart rate rises in this apnea section, the fluctuation of the heart beat interval in the detected apnea section is examined, and it is determined that the apnea syndrome has occurred when the fluctuation is large. Analyzing oral sound time-series data and heart-beat interval time-series data in this way, it detects and identifies sections corresponding to the characteristics of each occurrence pattern of laughter section, vocal section, snoring section, and apnea section. The generation | occurrence | production area is determined, generation | occurrence | production time, the accumulation frequency, and accumulation time are calculated.

更に前記心拍間隔時系列データからは1分あたりの心拍数を算出して心拍数(拍/分)を求め、心拍数時系列デーを作成する。また心拍数と消費カロリーは比例関係にあり、式7に示す換算式を用いて心拍数Hから消費カロリーEを算出できる。
消費カロリーE(kcal)=5α心拍数(拍/分)+β ・・・ (式7)
ここで式1のα,βは個人別にトレッドミルなどを用いて行う運動負荷試験で計測する心拍数Hと酸素摂取量Vは最大運動量以下では比例関係にあるため、式2および式3を用いて算出できる個人属数データである。前記運動負荷試験で負荷(走行測度)を変えて計測した前記心拍数Hと前記酸素摂取量Vは2点のデータ(H1,V1)と(H2,V2)から式2及び式3を用いて前記α及び前記βを算出する。
α=(V2−V1)/(H2−H1) ・・・ (式8)
β=(V2×H1−V1×H2)/(H2−H1) ・・・ (式9)
前記心拍数と使用者の前記個人属性データ(α,β)から式1を用いて1日の消費カロリーを算出する。また前記心拍数が使用者の年齢、性別で定まる目標心拍数を超える時間を積算し適正運動量を算出する。そして、前記目標心拍数は式10に示すKarvonenの公式を適用して求める。
目標心拍数=[(220−年齢)−安静時心拍数]×運動強度%+安静時心拍数
・・・ (式10)
これらの処理で口腔音と心拍数から得られた生体情報を健康管理対象者の生活パターンが容易に把握できるように数表やグラフで表示する無拘束生活リズムモニタ装置を提供する。
Further, from the heartbeat interval time series data, a heart rate per minute is calculated to obtain a heart rate (beats / minute), and heart rate time series data is created. The heart rate and the calorie consumption are in a proportional relationship, and the calorie consumption E can be calculated from the heart rate H using the conversion formula shown in Equation 7.
Calorie consumption E (kcal) = 5α Heart rate (beats / minute) + β (Expression 7)
Here, α and β in Equation 1 are proportional to each other below the maximum amount of exercise because heart rate H and oxygen intake V measured in an exercise load test using a treadmill or the like are individually used. It is the personal genus data that can be calculated. The heart rate H and the oxygen uptake V measured by changing the load (running measure) in the exercise load test are obtained from two data (H1, V1) and (H2, V2) using Equations 2 and 3. The α and the β are calculated.
α = (V2−V1) / (H2−H1) (Equation 8)
β = (V2 × H1−V1 × H2) / (H2−H1) (Equation 9)
The daily calorie consumption is calculated by using Equation 1 from the heart rate and the personal attribute data (α, β) of the user. Also, the appropriate amount of exercise is calculated by integrating the time over which the heart rate exceeds the target heart rate determined by the age and sex of the user. The target heart rate is obtained by applying Karvonen's formula shown in Equation 10.
Target heart rate = [(220-age)-resting heart rate] x exercise intensity% + resting heart rate
(Equation 10)
Provided is an unconstrained life rhythm monitor device that displays biological information obtained from oral sound and heart rate by these processes in a numerical table or graph so that the life pattern of a health care target person can be easily grasped.

心拍信号処理部22での心拍間隔符号化処理は、図7のように心電パルス間隔を(mS)単位で計数し、この計数値を符号化し前記心拍間隔時系列データを生成する。通常心拍数は1分間の拍数で表しているから、前記心拍間隔時系列データを心拍間隔の積算値が1分になる毎に区切り、この間で発生するパルス数を計数して心拍数とする。この計数処理を繰返して心拍数時系列データを生成し、メモリ部25に保存する。前記心拍数時系列データは心拍数の変動を示す時系列データになる。 In the heartbeat interval encoding process in the heartbeat signal processing unit 22, the electrocardiographic pulse interval is counted in units of (mS) as shown in FIG. 7, and the count value is encoded to generate the heartbeat interval time series data. Since the normal heart rate is represented by the number of beats per minute, the heart rate interval time-series data is divided every time the integrated value of the heart rate interval becomes 1 minute, and the number of pulses generated during this interval is counted to obtain the heart rate. . This counting process is repeated to generate heart rate time series data, which is stored in the memory unit 25. The heart rate time-series data is time-series data indicating fluctuations in heart rate.

制御処理部24では、前記口腔音時系列データと前記心拍間隔時系列データを用いて、式1から式6までのアルゴリズムを適用し、爆笑区間、会話区間、いびき区間および無呼吸区間を判定抽出し、式7から式10までの計算式により前記心拍数時系列データから消費カロリーと適正運動量を算出する。先ず前記口腔音時系列データを解析して、図4、図5、および図6に示す2値化信号系列の生起パターンに該当する区間をそれぞれ抽出し、前記心拍間隔時系列データからこの区間の心拍変動を検定する。式1から式6までのアルゴリズムを適用した解析処理により、爆笑区間、会話区間、いびき区間および無呼吸区間を判定抽出し、発生時刻と継続時間を算出する。またそれぞれの回数を累積し、1日の発生回数を算出する。これらの数値は、爆笑回数、会話時間、いびき回数および無呼吸回数としてメモリ25に保存する。 The control processing unit 24 applies the algorithm from Equation 1 to Equation 6 using the oral sound time series data and the heartbeat interval time series data to determine and extract the laughter section, the conversation section, the snoring section, and the apnea section. Then, the calorie consumption and the appropriate amount of exercise are calculated from the heart rate time-series data using the formulas 7 to 10. First, the mouth sound time-series data is analyzed, and sections corresponding to the occurrence patterns of the binarized signal series shown in FIGS. 4, 5, and 6 are respectively extracted, and the section of this section is extracted from the heartbeat interval time-series data. Test heart rate variability. By the analysis process to which the algorithms from Equation 1 to Equation 6 are applied, the laughter interval, the conversation interval, the snoring interval, and the apnea interval are determined and extracted, and the occurrence time and duration are calculated. The number of occurrences is calculated by accumulating each number of times. These numerical values are stored in the memory 25 as the number of laughter, conversation time, snoring, and apnea.

また、心拍数時系列データから前記の式7を用いて消費カロリーを算出し、これを1時間単位で累積しメモリ25に保存する。式1で用いている個人属性データ(α,β)はパソコン3で個人の運動負荷試験で得られた計測値から式8と式9で算出し、この数値を生体情報処理部2に転送保存しておく。また同様の手段で目標心拍数も式10で算出してパソコン3に個人属性データとして入力し、生体情報処理部2に転送保存しておく。前記心拍数時系列データで前記目標心拍数より大きい心拍数となる時間長の累積を算出して適正運動量としメモリ部25に保存する。 Further, calorie consumption is calculated from the heart rate time series data using the above-described equation 7, and this is accumulated in units of one hour and stored in the memory 25. The personal attribute data (α, β) used in Equation 1 is calculated by Equation 8 and Equation 9 from the measured values obtained in the personal exercise test on the personal computer 3, and this numerical value is transferred and stored in the biological information processing unit 2. Keep it. Further, the target heart rate is also calculated by the same means using Equation 10 and input to the personal computer 3 as personal attribute data, and transferred and stored in the biological information processing unit 2. Accumulation of the time length for which the heart rate is greater than the target heart rate is calculated from the heart rate time-series data and stored in the memory unit 25 as an appropriate amount of exercise.

メモリ22に保存している爆笑回数、会話時間、いびき回数、無呼吸回数、消費カロリーおよび適正運動量などの生活イベント情報は表示パネル27に図10に示すように表示される。この表示は各種の情報を複数枚の画面に分けておき、制御スイッチ23の中の表示ボタンを押すたびに画面を順次切り替えて表示するようにして小さな表示パネル27でも多種の情報が表示できるようにしている。なお、これらの表示制御は表示制御部26で行っている。 The life event information stored in the memory 22 such as the number of laughter, conversation time, snoring, apnea, calorie consumption, and appropriate amount of exercise is displayed on the display panel 27 as shown in FIG. In this display, various types of information are divided into a plurality of screens, and each time the display button in the control switch 23 is pressed, the screens are sequentially switched so that various types of information can be displayed on the small display panel 27. I have to. These display controls are performed by the display control unit 26.

なお、生体情報処理部2とパソコン3はデータ転送ができるように有線または無線で連結し、データの算出処理に必要な個人属性データα,βなどはパソコン3に入力保存し、図1に示す転送制御モデム28を介して生体情報処理部2に転送設定する。また生体情報処理部2で計測保存している心拍間隔時系列データと口腔音時系列データは転送制御モデム28を介してパソコン3に取り込む。パソコン3では図11に示すように、これらのファイルは個人別フォルダに日別計測データファイルとして編集保存し、ファイル管理を行う。そして、取り込んだデータファイルを解析処理し、図4,図5,図6に示すそれぞれの特徴パターンに該当する区間を検定抽出し、爆笑区間、会話区間、いびき区間および無呼吸区間をそれぞれ識別判定する。これらの解析処理で得られる各種の生体情報は生体情報表示処理により多様な表やグラフ図形でパソコン3のモニタに表示される。 The biometric information processing unit 2 and the personal computer 3 are connected by wire or wireless so that data can be transferred, and personal attribute data α, β and the like necessary for data calculation processing are input and stored in the personal computer 3 and shown in FIG. Transfer setting is made to the biometric information processing unit 2 via the transfer control modem 28. The heartbeat interval time series data and oral sound time series data measured and stored by the biological information processing unit 2 are taken into the personal computer 3 via the transfer control modem 28. As shown in FIG. 11, the personal computer 3 edits and saves these files as daily measurement data files in individual folders and performs file management. Then, the captured data file is analyzed, and the sections corresponding to the feature patterns shown in FIGS. 4, 5, and 6 are extracted. The laughter section, the conversation section, the snoring section, and the apnea section are identified and determined. To do. Various types of biological information obtained by these analysis processes are displayed on the monitor of the personal computer 3 in various tables and graphs by the biological information display process.

上記のように、この発明に係る生活リズムモニタ方法・装置を用いれば、自分の健康維持に関わるバロメータ数値や生体情報を、自宅において、日常生活の活動が拘束されることなく、自分自身で、長期にわたって継続して計測し把握管理することができるようになり、生活環境病やメタボリック症候群の予防や、従来は在宅判定が困難といわれた無呼吸症状の早期発見に効を奏することから、高齢化か進む社会の中で、この発明の効用の認識・評価が高まって需要が拡大すると考えられ、保健・医療機関や、保健・医療サービス業界に於いてはもとより、保健・医療機器の製造・販売・サービス関係の業界において、この発明の利用の可能性は今後極めて高くなると考えられる。 As described above, by using the life rhythm monitoring method and apparatus according to the present invention, the barometer numerical value and biological information related to the maintenance of one's own health can be used at home without being restricted in activities of daily life, Because it is possible to measure, grasp and manage continuously over a long period of time, it is effective for prevention of living environment diseases and metabolic syndrome, and early detection of apnea symptoms that were previously difficult to determine at home. In a society that is becoming increasingly popular, the recognition and evaluation of the utility of this invention is expected to increase, leading to an increase in demand. Not only in the health / medical institutions and the health / medical services industry, In the sales and service related industries, the possibility of using the present invention will be extremely high in the future.

この発明に係る無拘束生活リズムモニタ装置の構成を示すブロック図The block diagram which shows the structure of the unrestrained life rhythm monitor apparatus based on this invention 同無拘束生活リズムモニタ装置の口腔音信号処理部の構成を示すブロック図The block diagram which shows the structure of the oral-sound signal processing part of the same unrestrained life rhythm monitor apparatus 同無拘束生活リズムモニタ装置における口腔音信号波形図Oral sound signal waveform diagram in the unrestrained life rhythm monitor device 同無拘束生活リズムモニタ装置で生成される爆笑区間識別パターン波形図LOL section identification pattern waveform diagram generated by the unrestrained life rhythm monitor device 同無拘束生活リズムモニタ装置で生成される会話区間識別パターン波形図Conversation section identification pattern waveform diagram generated by the unrestrained life rhythm monitor device 同無拘束生活リズムモニタ装置で生成されるいびき区間識別パターン波形図Snoring section identification pattern waveform diagram generated by the unrestrained life rhythm monitor device 同無拘束生活リズムモニタ装置で生成される心拍間隔時系列データの波形図Waveform diagram of heartbeat interval time-series data generated by the unconstrained life rhythm monitor device この発明に係る拘束生活リズムモニタ方法による無睡眠時呼吸症候群検知説明図Non-sleep respiratory syndrome detection explanatory diagram by the restraint life rhythm monitoring method according to the present invention 同無拘束生活リズムモニタ装置の生体信号検出部の構造を示す斜視図The perspective view which shows the structure of the biosignal detection part of the same unrestrained life rhythm monitor apparatus 同無拘束生活リズムモニタ装置の表示パネルのイベント表示例図Event display example diagram of the display panel of the same unrestrained life rhythm monitor device 同無拘束生活リズムモニタ装置のコンピュータ処理機能説明図Computer processing function explanatory diagram of the unrestrained life rhythm monitor device

符号の説明Explanation of symbols

1:生体信号検出部
2:生体情報処理部
3:パソコン
11:口腔音センサ(マイクロフォン)
12:心拍センサ(心電センサ)
13:血中酸素濃度センサ
21:口腔音信号処理部
22:心拍信号処理部
23:制御スイッチ
24:制御処理部
25:メモリ
26:表示制御部
27:表示パネル
28:転送制御モデム
211:帯域フィルタ回路
212:A/D変換回路
213:2値化処理回路
214:符号化処理回路
B:ネックバンド
1: Biological signal detection unit 2: Biological information processing unit 3: Personal computer 11: Oral sound sensor (microphone)
12: Heart rate sensor (electrocardiographic sensor)
13: Blood oxygen concentration sensor 21: Oral sound signal processor 22: Heartbeat signal processor 23: Control switch 24: Control processor 25: Memory 26: Display controller 27: Display panel 28: Transfer control modem 211: Band filter Circuit 212: A / D conversion circuit 213: Binary processing circuit 214: Encoding processing circuit B: Neckband

Claims (7)

口腔音センサと心拍センサを用いて、長時間にわたって、無拘束状態の健康管理対象者の口腔音信号と心拍信号をそれぞれ検出し、前記口腔音信号を2値化した後さらに口腔音時系列データに変換すると共に、前記心拍信号を心拍間隔時系列データに変換し、前記口腔音時系列データのパターンと前記心拍間隔時系列データのパターンから、前記健康管理対象者の日常生活における爆笑区間、会話区間、いびき区間および睡眠時無呼吸区間を識別検知することを特徴とする無拘束生活リズムモニタ方法。   Using an oral sound sensor and a heart rate sensor, the oral sound signal and the heart rate signal of a health care subject in an unconstrained state are detected for a long time, respectively, and after the binarized sound signal is binarized, further oral sound time-series data And converting the heartbeat signal into heartbeat interval time-series data, and from the oral sound time-series data pattern and the heartbeat interval time-series data pattern, An unrestrained life rhythm monitoring method characterized by discriminating and detecting a section, a snoring section, and a sleep apnea section. 口腔音センサと心拍センサと血中酸素濃度センサを用いて、長時間にわたって、無拘束状態の健康管理対象者の口腔音信号と心拍信号と血中酸素濃度信号を検出し、前記口腔音信号を2値化した後さらに口腔音時系列データに変換し、前記心拍信号を心拍間隔時系列データならびに心拍数時系列データに変換し、血中酸素濃度信号を血中酸素濃度時系列データに変換し、前記口腔音時系列データのパターンと前記心拍間隔時系列データのパターンから、前記健康管理対象者の日常生活における爆笑区間、会話区間、いびき区間を識別検知し、且つ前記心拍数時系列データと前記血中酸素濃度時系列データを基に前記健康管理対象者の睡眠時無呼吸症候群を検知することを特徴とする無拘束生活リズムモニタ方法。   Using an oral sound sensor, a heart rate sensor, and a blood oxygen concentration sensor, the oral sound signal, heart rate signal, and blood oxygen concentration signal of an unrestrained health care subject are detected for a long time, and the oral sound signal is detected. After binarization, it is further converted into oral sound time-series data, the heartbeat signal is converted into heartbeat interval time-series data and heart rate time-series data, and the blood oxygen concentration signal is converted into blood oxygen concentration time-series data. , From the pattern of the oral sound time-series data and the pattern of the heart-beat interval time-series data, the laughter section, the conversation section, the snoring section in the daily life of the health care subject is identified and detected, and the heart rate time-series data and An unrestrained life rhythm monitoring method, wherein sleep apnea syndrome of the health care subject is detected based on the blood oxygen concentration time-series data. 無拘束状態の健康管理対象者の口腔音信号と心拍信号をそれぞれ長時間にわたって検出する口腔音センサならびに心拍センサを含む生体信号検出部と;検出した前記口腔音信号を2値化し更に口腔音時系列データに変換する口腔音信号処理部ならびに検出した前記心拍信号を心拍間隔時系列データに変換する心拍信号処理部を有し、前記口腔音時系列データと前記心拍間隔時系列データを基に前記健康管理対象者の爆笑区間識別パターン情報、会話区間識別パターン情報、いびき区間識別パターン情報、睡眠時無呼吸区間識別パターン情報を出力する生体情報処理部を備えたことを特徴とする無拘束生活リズムモニタ装置。   An oral sound sensor for detecting a mouth sound signal and a heart rate signal of a health care subject in an unconstrained state over a long period of time, and a biological signal detection unit including the heart rate sensor; and binarizing the detected mouth sound signal; An oral sound signal processing unit for converting into series data and a heart rate signal processing unit for converting the detected heart rate signal into heart rate interval time series data, and based on the oral sound time series data and the heart rate interval time series data Unconstrained life rhythm characterized by having a biological information processing unit that outputs laughter section identification pattern information, conversation section identification pattern information, snoring section identification pattern information, and sleep apnea section identification pattern information of a health care subject Monitor device. 無拘束状態の健康管理対象者の口腔音信号と心拍信号と血中酸素濃度信号をそれぞれ長時間にわたって検出する口腔音センサ、心拍センサ、血中酸素濃度センサを含む生体信号検出部と;検出した前記口腔音信号を2値化し更に口腔音時系列データに変換する口腔音信号処理部と、検出した前記心拍信号を心拍間隔時系列データならびに心拍数時系列データに変換する心拍信号処理部と、検出した前記血中酸素濃度信号を血中酸素濃度時系列データに変換する血中酸素濃度信号処理部を有して、前記口腔音時系列データと前記心拍間隔時系列データを基に前記健康管理対象者の爆笑区間識別パターン情報、会話区間識別パターン情報、いびき区間識別パターン情報を出力し、心拍数時系列データと前記血中酸素濃度時系列データを基に前記健康管理対象者の睡眠時無呼吸区間識別パターン情報を出力する生体情報処理部を備えたことを特徴とする無拘束生活リズムモニタ装置。   A biosignal detection unit including an oral sound sensor, a heart rate sensor, and a blood oxygen concentration sensor for detecting an oral sound signal, a heartbeat signal, and a blood oxygen concentration signal of a health care subject in an unconstrained state over a long period of time; An oral sound signal processing unit that binarizes the oral sound signal and further converts it into oral sound time-series data; a heartbeat signal processing unit that converts the detected heartbeat signal into heartbeat interval time-series data and heart rate time-series data; A blood oxygen concentration signal processing unit for converting the detected blood oxygen concentration signal into blood oxygen concentration time-series data, and the health management based on the oral sound time-series data and the heartbeat interval time-series data The laughter section identification pattern information, the conversation section identification pattern information, and the snoring section identification pattern information of the subject are output, and the health information is based on the heart rate time series data and the blood oxygen concentration time series data. Unrestrained life rhythm monitoring apparatus comprising the biological information processor for outputting a sleep apnea interval identification pattern information of the management subject. 健康管理対象者の個人属性データを入力保存してその個人属性データを生体情報処理部の制御処理部に転送設定し且つその制御処理部から口腔音時系列データと心拍間隔時系列データを取り込んで個人の生体情報を受信しモニタするパソコンを、有線または無線で、転送制御モデムを介して前記制御処理部に接続されることを特徴とする請求項3または請求項4に記載の無拘束生活リズムモニタ装置。 The personal attribute data of the health care subject is input and stored, the personal attribute data is transferred and set to the control processing unit of the biological information processing unit, and the oral sound time series data and heartbeat interval time series data are taken from the control processing unit. 5. The unrestrained life rhythm according to claim 3 or 4, wherein a personal computer that receives and monitors personal biometric information is connected to the control processing unit via a transfer control modem in a wired or wireless manner. Monitor device. 健康管理対象者の首周りに着脱自在に装着されてその首周りに接するネックバンドに、その首周りに近接して口腔音信号を検出する口腔音センサと、その首周りに近接して心拍信号を検出する心拍センサを保持させた生体信号検出部を用いたことを特徴とする請求項3に記載の無拘束生活リズムモニタ装置。   An oral sound sensor that detects an oral sound signal in the vicinity of the neck band that is detachably attached to and around the neck of a health care subject, and a heart rate signal in the vicinity of the neck The unconstrained life rhythm monitor apparatus according to claim 3, wherein a biological signal detection unit holding a heartbeat sensor for detecting a signal is used. 健康管理対象者の首周りに着脱自在に装着されてその首周りに接するネックバンドに、その首周りに近接して口腔音信号を検出する口腔音センサと、その首周りに近接して心拍信号を検出する心拍センサと、その首周りの頚動脈に近接して血中酸素濃度信号を検出する血中酸素濃度センサを保持させた生体信号検出部を用いたことを特徴とする請求項4に記載の無拘束生活リズムモニタ装置。   An oral sound sensor that detects an oral sound signal in the vicinity of the neck band that is detachably attached to and around the neck of a health care subject, and a heart rate signal in the vicinity of the neck 5. A heartbeat sensor for detecting blood pressure and a biological signal detection unit holding a blood oxygen concentration sensor for detecting a blood oxygen concentration signal in the vicinity of the carotid artery around the neck. Non-restrained life rhythm monitor device.
JP2007025772A 2006-12-05 2007-02-05 Method and device for monitoring unrestraint life rhythm Pending JP2008161657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025772A JP2008161657A (en) 2006-12-05 2007-02-05 Method and device for monitoring unrestraint life rhythm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006357104 2006-12-05
JP2007025772A JP2008161657A (en) 2006-12-05 2007-02-05 Method and device for monitoring unrestraint life rhythm

Publications (1)

Publication Number Publication Date
JP2008161657A true JP2008161657A (en) 2008-07-17

Family

ID=39691878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025772A Pending JP2008161657A (en) 2006-12-05 2007-02-05 Method and device for monitoring unrestraint life rhythm

Country Status (1)

Country Link
JP (1) JP2008161657A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110160615A1 (en) * 2009-12-29 2011-06-30 Empire Technology Development Llc Swallowing Frequency Measurement
US8077297B2 (en) 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8295567B2 (en) 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8827917B2 (en) 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US8929963B2 (en) 2011-07-14 2015-01-06 Covidien Lp Devices and methods for reducing wireless communication in a patient monitoring system
JP2017046927A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Neck band type biological information detection device
US9693718B2 (en) 2008-03-31 2017-07-04 Covidien Lp System and method for facilitating sensor and monitor communication
WO2018225213A1 (en) * 2017-06-08 2018-12-13 株式会社E3 Apnea detection device
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
JP2019180626A (en) * 2018-04-05 2019-10-24 ダイキン工業株式会社 Apnea determination device
JP2021022821A (en) * 2019-07-26 2021-02-18 株式会社oneA Respiratory sound measuring device during sleep

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9693718B2 (en) 2008-03-31 2017-07-04 Covidien Lp System and method for facilitating sensor and monitor communication
US8077297B2 (en) 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8289501B2 (en) 2008-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8295567B2 (en) 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8483459B2 (en) 2008-06-30 2013-07-09 Nèllcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8827917B2 (en) 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US9113815B2 (en) 2008-06-30 2015-08-25 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US20110160615A1 (en) * 2009-12-29 2011-06-30 Empire Technology Development Llc Swallowing Frequency Measurement
US8929963B2 (en) 2011-07-14 2015-01-06 Covidien Lp Devices and methods for reducing wireless communication in a patient monitoring system
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
JP2017046927A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Neck band type biological information detection device
US10405798B2 (en) 2015-09-02 2019-09-10 Toyota Jidosha Kabushiki Kaisha Bio-information detecting apparatus
WO2018225213A1 (en) * 2017-06-08 2018-12-13 株式会社E3 Apnea detection device
JP2019180626A (en) * 2018-04-05 2019-10-24 ダイキン工業株式会社 Apnea determination device
JP7044970B2 (en) 2018-04-05 2022-03-31 ダイキン工業株式会社 Apnea determination device
JP2021022821A (en) * 2019-07-26 2021-02-18 株式会社oneA Respiratory sound measuring device during sleep
JP7345825B2 (en) 2019-07-26 2023-09-19 株式会社oneA Breathing sound measuring device during sleep

Similar Documents

Publication Publication Date Title
JP2008161657A (en) Method and device for monitoring unrestraint life rhythm
CN108882870B (en) Biological information analysis device, system, and program
US9833184B2 (en) Identification of emotional states using physiological responses
JP5961235B2 (en) Sleep / wake state evaluation method and system
JP3824615B2 (en) Sleep apnea diagnostic apparatus and method
JP4595651B2 (en) Biological sensor, sleep information processing method, and sleep information processing apparatus
US11751803B2 (en) Sleep apnea detection system and method
CN107072594B (en) Method and apparatus for assessing respiratory distress
KR20180029072A (en) Biological data processing
KR20140058441A (en) System and method for determining sleep and sleep stages of a person
JP3301294B2 (en) Health condition management device
EP3536225A1 (en) Sleep apnea detection system and method
KR20170109554A (en) A method and apparatus for deriving a mental state of a subject
WO2014012839A1 (en) A method and system for determining the state of a person
JP6831382B2 (en) A method for evaluating the reliability of blood pressure measurement and a device for implementing it
JP3562469B2 (en) Health condition management device
ES2684533A1 (en) Method for the exploration of obstructive sleep apnea based on the oxygen saturation signal (Machine-translation by Google Translate, not legally binding)
US20220218273A1 (en) System and Method for Noninvasive Sleep Monitoring and Reporting
Almazaydeh et al. A highly Reliable and Fully Automated Classification System for Sleep Apnea Detection
Singh et al. Detecting obstructive sleep apnea by extracting multimodal HRV features using ensemble subspace discriminant classifier
KR102013815B1 (en) Apparatus and method for analyzing respiration
El Ouahabi et al. Identification of Apnea Based on Voice Activity Detection (VAD)
WO2023025770A1 (en) Sleep stage determining system
WO2022152657A1 (en) Blood pressure estimation
Jobbágy et al. Home health monitoring