JP2008160989A - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
JP2008160989A
JP2008160989A JP2006347771A JP2006347771A JP2008160989A JP 2008160989 A JP2008160989 A JP 2008160989A JP 2006347771 A JP2006347771 A JP 2006347771A JP 2006347771 A JP2006347771 A JP 2006347771A JP 2008160989 A JP2008160989 A JP 2008160989A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
metal powder
motor according
elastic member
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006347771A
Other languages
Japanese (ja)
Other versions
JP2008160989A5 (en
Inventor
Hiroyuki Seki
裕之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006347771A priority Critical patent/JP2008160989A/en
Publication of JP2008160989A publication Critical patent/JP2008160989A/en
Publication of JP2008160989A5 publication Critical patent/JP2008160989A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic motor that reduces cost, while reducing the vibration loss in each of the mating face of functional members. <P>SOLUTION: The ultrasonic motor is provided with a conversion device 13 for converting electrical energy into mechanical energy, and assembling members comprising a plurality of functional members 11, 12, 13, 14, and 15 incorporated into the conversion device 13. Three functional members 11, 12, and 13 of the assembling members are respectively molded by a metallic-powder injection molding method that uses a material, formed by mixing a metal powder corresponding to their each function with a binder, as well as, and made into a sintered body 20, formed by being simultaneously integrated in a sintering step, after molding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、カメラレンズ、時計のカレンダー、複写機の感光ドラムの駆動に用いられる超音波モータに関する。   The present invention relates to an ultrasonic motor used for driving, for example, a camera lens, a timepiece calendar, and a photosensitive drum of a copying machine.

従来のこの種の超音波モータとしては、例えば、図7〜図9に示すものがある(特許文献1)。この超音波モータは、カメラレンズのオートフォーカス駆動に用いられる短軸型棒状超音波モータであり、図7および図8に示すように、弾性部材1、第1の挟持部材2、積層圧電素子3、第2の挟持部材4、およびシャフト5を備える。   As this type of conventional ultrasonic motor, for example, there are those shown in FIGS. 7 to 9 (Patent Document 1). This ultrasonic motor is a short-axis rod-shaped ultrasonic motor used for autofocus driving of a camera lens. As shown in FIGS. 7 and 8, the elastic member 1, the first clamping member 2, and the laminated piezoelectric element 3 are used. , A second clamping member 4 and a shaft 5.

弾性部材1、第1の挟持部材2、積層圧電素子3、第2の挟持部材4は、図の上方から下方に向けて順番に略同軸配置されており、中央部に貫通配置されたシャフト5の下端が第2の挟持部材4に螺合されている(図9(a)参照)。これにより、弾性部材1、第1の挟持部材2、および積層圧電素子3が所定の圧縮力で締め付けられる。   The elastic member 1, the first clamping member 2, the laminated piezoelectric element 3, and the second clamping member 4 are arranged substantially coaxially in order from the upper side to the lower side of the drawing, and the shaft 5 is arranged to penetrate through the central portion. Is screwed into the second clamping member 4 (see FIG. 9A). Thereby, the elastic member 1, the 1st clamping member 2, and the laminated piezoelectric element 3 are fastened with predetermined | prescribed compressive force.

弾性部材1の周囲には、ロータ7が配置されている。ロータ7の下端面は、第1の挟持部材2の上面に形成された摩擦部2aに接触している。また、ロータ7の上端面には、ロータ7と一体に回転する出力ギア8が凹凸嵌合されている。ギア8はフランジ10によりシャフト5のスラスト方向(軸方向)に位置が固定されており、ロータ7とギア8の間には、ロータ7に対して第1の挟持部材2側への付勢力を付与するためのバネ9が設けられている。   A rotor 7 is disposed around the elastic member 1. The lower end surface of the rotor 7 is in contact with the friction portion 2 a formed on the upper surface of the first clamping member 2. An output gear 8 that rotates integrally with the rotor 7 is concavo-convexly fitted to the upper end surface of the rotor 7. The position of the gear 8 is fixed in the thrust direction (axial direction) of the shaft 5 by the flange 10. Between the rotor 7 and the gear 8, a biasing force toward the first clamping member 2 is applied to the rotor 7. A spring 9 for application is provided.

積層圧電素子3は2つの電極郡を有しており、不図示の電源からそれぞれの電極郡に位相の異なる交流電界を印加すると、図9(b)に示す曲げ振動が直交するように2つ励起される(もう一方は紙面に垂直な方向の曲げ振動)。この印加電界の位相を調整することにより、2つの直交する曲げ振動間に90°の時間的な位相を与えることができる。   The laminated piezoelectric element 3 has two electrode groups. When an alternating electric field having a different phase is applied to each electrode group from a power source (not shown), the two are arranged so that the bending vibrations shown in FIG. Excited (the other is bending vibration in a direction perpendicular to the paper surface). By adjusting the phase of this applied electric field, a 90 ° temporal phase can be given between two orthogonal bending vibrations.

この結果、ロータ7が接触する第1の挟持部材2上には楕円運動が形成され、耐摩耗性を有する摩擦部2aに押圧されたロータ7は該楕円振動により摩擦駆動されるため、該ロータ7、ギア8、バネ9が一体となって回転する。   As a result, an elliptical motion is formed on the first clamping member 2 with which the rotor 7 comes into contact, and the rotor 7 pressed against the friction part 2a having wear resistance is frictionally driven by the elliptical vibration. 7, the gear 8 and the spring 9 rotate together.

この超音波モータは軸方向の長さが、対応する部材に同一符号を付した図10に示す棒状超音波モータに比べて、軸方向長さが非常に短いにもかかわらず、出力的にはトルク、回転数ともにほぼ同等の性能を有しており、優れたモータである。   Although this ultrasonic motor has an axial length that is very short compared to the rod-shaped ultrasonic motor shown in FIG. It has excellent performance in both torque and rotation speed and is an excellent motor.

一方で、小さい(短い)超音波モータであるため、図10に示す超音波モータと同等の出力を出すために振動部分には大きな振動歪みが生じる。特に、弾性部材1のくびれ部には大きな応力が発生するため、弾性部材1は高歪みでも振動減衰の小さな材料(高Q材)が使用されている。また、第1の挟持部材2は、所定の圧縮力で積層圧電素子3を挟持する機能が要求されるため、中心部をシャフト5によって加圧されたときに適切な曲げ剛性を有し、積層圧電素子3を外周部まで加圧できる必要がある。また、第1の挟持部材2の一部には摩擦部2aが形成されているため、耐摩耗処理がし易い(可能な)材質であることが要求される。   On the other hand, since it is a small (short) ultrasonic motor, a large vibration distortion is generated in the vibration portion in order to produce an output equivalent to the ultrasonic motor shown in FIG. In particular, since a large stress is generated in the constricted portion of the elastic member 1, the elastic member 1 is made of a material (high Q material) having a small vibration damping even with a high strain. In addition, since the first clamping member 2 is required to have a function of clamping the laminated piezoelectric element 3 with a predetermined compressive force, the first clamping member 2 has an appropriate bending rigidity when the central portion is pressed by the shaft 5 and is laminated. It is necessary to pressurize the piezoelectric element 3 to the outer peripheral portion. Moreover, since the friction part 2a is formed in a part of the 1st clamping member 2, it is requested | required that it should be a material which is easy to perform an abrasion-resistant process.

また、シャフト5には、弾性部材1から第2の挟持部材4までを適切な圧縮力で保持するために、該圧縮力に耐えうる適正な強度が求められる。更には、シャフト5のフランジ10側の細い小径部分には振動部分の振動を阻害しないため、適切な強度と低減衰性能が要求される。   Moreover, in order to hold | maintain from the elastic member 1 to the 2nd clamping member 4 with an appropriate compressive force, the shaft 5 is required to have an appropriate strength that can withstand the compressive force. Furthermore, since the thin small diameter portion on the flange 10 side of the shaft 5 does not inhibit the vibration of the vibration portion, appropriate strength and low damping performance are required.

このように、弾性部材1、第1の挟持部材2、第2の挟持部材4、およびシャフト5にはそれぞれ異なる特殊な機能(性能)が要求され、従来においては、それぞれの機能に合うように部材ごとに材料を選定している。
特開2006−180589号公報
As described above, the elastic member 1, the first clamping member 2, the second clamping member 4, and the shaft 5 are required to have different special functions (performances), and conventionally, to meet the respective functions. Materials are selected for each member.
JP 2006-180589 A

しかし、上記特許文献1では、部材同士の分割面(合わせ面)ができるため、積層圧電素子3により弾性部材1に所定の振動が励起されると、その振動歪みによりこの合わせ面での振動損失が非常に大きくなる。特に、短軸型の超音波モータは、高出力を出すため非常に大きな振動応力が発生し、この振動応力が弾性部材1と第1の挟持部材2との合わせ面近傍に集中する。   However, in the above-mentioned Patent Document 1, since a split surface (mating surface) between members is formed, when a predetermined vibration is excited in the elastic member 1 by the laminated piezoelectric element 3, vibration loss at the mating surface is caused by the vibration distortion. Becomes very large. In particular, the short-axis type ultrasonic motor generates a very high vibration stress in order to produce a high output, and this vibration stress is concentrated in the vicinity of the mating surface between the elastic member 1 and the first clamping member 2.

弾性部材1と第1の挟持部材2との合わせ面を無くすように、例えば弾性部材1と第1の挟持部材2とを一体化した部材に変えようとすると、この一体化部材の加工工数が非常に増大し、部材コストが増大してしまう。特に、弾性部材1と第1の挟持部材2とに要求される機能を共に満足する材料は、高硬度の材料であることが多いため、加工性が悪くコストアップの原因になる。   If, for example, the elastic member 1 and the first clamping member 2 are changed to an integrated member so as to eliminate the mating surface between the elastic member 1 and the first clamping member 2, the number of processing steps of the integrated member is reduced. This greatly increases the member cost. In particular, a material that satisfies both of the functions required for the elastic member 1 and the first clamping member 2 is often a high-hardness material, which results in poor workability and increases costs.

そこで、本発明は、機能部材の合わせ面での振動損失を低減することができるとともに、低コスト化を図ることができる超音波モータを提供することを目的とする。   Therefore, an object of the present invention is to provide an ultrasonic motor that can reduce vibration loss on the mating surfaces of the functional members and can reduce the cost.

上記目的を達成するために、本発明は、電気エネルギーを機械エネルギーに変換する変換素子と、該変換素子に組み込まれる複数の機能部材からなる組合せ部材と、を備える超音波モータであって、前記組合せ部材のうちの少なくとも2つの機能部材が、それぞれの機能に応じた金属粉末とバインダーとを混合した材料を用いた金属粉末射出成型法により成形されるとともに、成形後の焼結工程で同時に焼結されて一体化された焼結体とされる、ことを特徴とする。   In order to achieve the above object, the present invention provides an ultrasonic motor comprising a conversion element that converts electrical energy into mechanical energy, and a combination member that includes a plurality of functional members incorporated in the conversion element. At least two functional members of the combination member are molded by a metal powder injection molding method using a material in which a metal powder and a binder corresponding to each function are mixed, and simultaneously fired in a sintering step after molding. It is characterized in that it is a sintered body that is joined and integrated.

本発明によれば、変換素子に接合される組合せ部材のうちの少なくとも2つの機能部材を、それぞれの機能に応じた金属粉末とバインダーとを混合した材料を用いた金属粉末射出成型法により成形する。そして、複数の成形体を焼結工程で同時に焼結して一体化した焼結体としている。これにより、機能部材の合わせ面での振動損失を低減することができ、モータ効率を向上させることができる。また、複雑な形状の機能部材でも、複数の機能部材の成形体を組み合わせ、かつ同時焼結で一体化することで、加工コストを大幅に削減することができる。   According to the present invention, at least two functional members of the combination members to be joined to the conversion element are molded by a metal powder injection molding method using a material in which a metal powder and a binder corresponding to each function are mixed. . And it is set as the sintered compact which sintered and integrated the some molded object simultaneously by the sintering process. Thereby, the vibration loss in the mating surface of a functional member can be reduced, and motor efficiency can be improved. Further, even with a functional member having a complicated shape, the processing cost can be greatly reduced by combining a plurality of functional member molded bodies and integrating them by simultaneous sintering.

以下、本発明の実施の形態を図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施形態である超音波モータを説明するための断面図、図2は本発明の第1の実施形態である超音波モータの製造方法を説明するための図である。   FIG. 1 is a cross-sectional view for explaining an ultrasonic motor according to a first embodiment of the present invention, and FIG. 2 is a view for explaining a method for manufacturing the ultrasonic motor according to the first embodiment of the present invention. is there.

本発明の第1の実施形態である超音波モータは、図1に示すように、弾性部材11、第1の挟持部材12、積層圧電素子(変換素子)13、第2の挟持部材14、およびシャフト(締結部材)15を備える。   As shown in FIG. 1, the ultrasonic motor according to the first embodiment of the present invention includes an elastic member 11, a first holding member 12, a laminated piezoelectric element (conversion element) 13, a second holding member 14, and A shaft (fastening member) 15 is provided.

弾性部材11、第1の挟持部材12、積層圧電素子13、第2の挟持部材14は、図の上方から下方に向けて順番に略同軸配置されており、中央部に貫通配置されたシャフト15の下端が第2の挟持部材14に溶接等により固定されている。   The elastic member 11, the first clamping member 12, the laminated piezoelectric element 13, and the second clamping member 14 are arranged substantially coaxially in this order from the upper side to the lower side of the drawing, and the shaft 15 is arranged to penetrate through the central portion. Is fixed to the second clamping member 14 by welding or the like.

弾性部材11の周囲には、ロータ17が配置されている。ロータ17の下端面は、第1の挟持部材12の上面に形成された摩擦部12cに接触しており、該接触部分の接触幅は小さく、かつ適度なバネ性を有している。また、ロータ17の上端面には、ロータ17と一体に回転する出力ギア18が凹凸嵌合されている。   A rotor 17 is disposed around the elastic member 11. The lower end surface of the rotor 17 is in contact with the friction portion 12c formed on the upper surface of the first clamping member 12, and the contact width of the contact portion is small and has an appropriate spring property. An output gear 18 that rotates integrally with the rotor 17 is concavo-convexly fitted to the upper end surface of the rotor 17.

ギア18は、フランジ21によりシャフト15のスラスト方向(軸方向)に位置が固定されており、ロータ17とギア18との間には、ロータ17に対して第1の挟持部材12側への付勢力を付与するためのバネ19が設けられている。フランジ21は、バネ19の反力を受けるため、シャフト15の上端にカシメ固定されている。なお、超音波モータの基本的動作については、従来例(図9)で説明した内容と同様なので説明を省略する。   The position of the gear 18 is fixed in the thrust direction (axial direction) of the shaft 15 by the flange 21, and the gap between the rotor 17 and the gear 18 is attached to the first holding member 12 side with respect to the rotor 17. A spring 19 is provided for applying a force. The flange 21 is caulked and fixed to the upper end of the shaft 15 to receive the reaction force of the spring 19. Since the basic operation of the ultrasonic motor is the same as that described in the conventional example (FIG. 9), the description thereof is omitted.

ここで、この実施形態では、弾性部材11、第1の挟持部材12、およびシャフト15の3つの機能部材を、それぞれの機能に応じた金属粉末と樹脂等のバインダーとを混合した材料を用いた金属粉末射出成型法(MIM法)により成形する(図2(a)参照)。そして、複数の機能部材の成形体を焼結工程で同時に焼結して一体化した焼結体20としている(図2(b)参照)。   Here, in this embodiment, the material which mixed the metal powder and binders, such as resin according to each function, was used for the three functional members of the elastic member 11, the 1st clamping member 12, and the shaft 15. Molding is performed by a metal powder injection molding method (MIM method) (see FIG. 2A). And it is set as the sintered compact 20 which sintered and integrated simultaneously the molded object of the several functional member by the sintering process (refer FIG.2 (b)).

焼結体20のシャフト15の下端は、積層圧電素子13の中央の穴を貫通して、上述したように、第2の挟持部材14に溶接等により固定されている。これにより、焼結体20の第1の挟持部材12と第2の挟持部材14との間に積層圧電素子13を所定の圧縮力で挟持して、振動子を構成している。   The lower end of the shaft 15 of the sintered body 20 passes through the central hole of the multilayer piezoelectric element 13 and is fixed to the second holding member 14 by welding or the like as described above. Accordingly, the laminated piezoelectric element 13 is sandwiched between the first sandwiching member 12 and the second sandwiching member 14 of the sintered body 20 with a predetermined compressive force to constitute a vibrator.

金属粉末射出成型法により成形された弾性部材11の成形体は、図2に示すように、下端面が平坦な接合面11aとされ、該接合面11aが第1の挟持部材12の成形体の上面に接合される。シャフト15の成形体は、軸方向の略中央部に突き当て用の段部15aを有しており、この段部15aが弾性部材11の成形体に設けられた突き当て面11bに接合される。また、シャフト15の成形体の下端部(溶接部)は溶接性を考慮して、図2(b)に示すように、先端を尖らせた円錐部、または 図2(c)に示すように、複数の円錐部等が設けられている。   As shown in FIG. 2, the molded body of the elastic member 11 molded by the metal powder injection molding method has a flat lower end surface as a bonding surface 11 a, and the bonding surface 11 a is a molded body of the first clamping member 12. Bonded to the top surface. The molded body of the shaft 15 has an abutting step portion 15 a at a substantially central portion in the axial direction, and the step portion 15 a is joined to an abutting surface 11 b provided on the molded body of the elastic member 11. . Further, the lower end portion (welded portion) of the molded body of the shaft 15 is considered to be weldable, as shown in FIG. 2 (b), as shown in FIG. 2 (b), or as shown in FIG. 2 (c). A plurality of conical portions and the like are provided.

弾性部材11、第1の挟持部材12、およびシャフト15は、機能的にそれぞれ異なる特性が要求される。弾性部材11は、特に大きく曲げ振動を生じる部材であるので、高歪みでも振動減衰が小さい材料(高Q材)が適している。また、第1の挟持部材12は、ロータ17と接触して摩擦駆動力を発生する摩擦部12cが形成されるので、耐摩耗性が要求される。また、第1の挟持部材12は、シャフト15および第2の挟持部材14により積層圧電素子13を所定の圧縮力で挟持するため、適切な曲げ剛性も必要となる。さらに、シャフト15は、第1の挟持部材12および第2の挟持部材14とともに積層圧電素子13を所定の圧縮力で挟持して固定する機能が要求されるため、適正な材料強度が必要であると同時に溶接性の良い部材である必要がある。   The elastic member 11, the first clamping member 12, and the shaft 15 are required to have functionally different characteristics. Since the elastic member 11 is a member that generates a large bending vibration, a material (high Q material) having a small vibration attenuation even with a high strain is suitable. Further, since the first clamping member 12 is formed with a friction portion 12c that contacts the rotor 17 and generates a friction driving force, wear resistance is required. Further, since the first sandwiching member 12 sandwiches the laminated piezoelectric element 13 with a predetermined compressive force by the shaft 15 and the second sandwiching member 14, an appropriate bending rigidity is also required. Furthermore, since the shaft 15 is required to have a function of holding and fixing the laminated piezoelectric element 13 with a predetermined compressive force together with the first holding member 12 and the second holding member 14, an appropriate material strength is required. At the same time, it must be a member with good weldability.

そこで、この実施形態では、弾性部材11および第1の挟持部材12の成形体には、焼き入れ等の熱処理により材料の硬度を増すことができると共に機械的Q値を上げることができるマルテンサイト系ステンレス鋼材(SUS440C)の金属粉末を用いている。また、シャフト15の成形体には、溶接性に優れるオーステナイト系ステンレス鋼材(SUS303)の金属粉末を用いている。   Therefore, in this embodiment, the molded body of the elastic member 11 and the first sandwiching member 12 can have a martensite system that can increase the hardness of the material and increase the mechanical Q value by a heat treatment such as quenching. Stainless steel (SUS440C) metal powder is used. Further, a metal powder of an austenitic stainless steel material (SUS303) having excellent weldability is used for the formed body of the shaft 15.

ここで、異種金属からなる複数の成形体を同時焼結する方法として、金属粉末の粒度(粒径)等を調整することによって焼結の進行度を調整し、異種材料同士を同時に焼結可能とする公知技術を採用している(例えば、特開2001−140002号公報、特開平8−98459号公報など参照)。   Here, as a method of simultaneously sintering a plurality of compacts made of different metals, the degree of sintering can be adjusted by adjusting the particle size (particle size) of the metal powder, and different materials can be sintered simultaneously. (See, for example, Japanese Patent Application Laid-Open Nos. 2001-140002 and Hei 8-98459).

特開2001−140002号公報によれば、金属粉末の粒度が小さいと同じ温度でも焼結進行速度が速くなり、粒度が大きいと遅くなることが開示されている。すなわち、焼結温度が高い方の金属粉末の粒度を小さくし、焼結温度が低い方の金属粉末の粒度を大きくしておけば、同じ温度で焼結しても温度による焼結進行速度の差を埋めることができ、同時焼結が可能となる。   According to Japanese Patent Laid-Open No. 2001-140002, it is disclosed that when the particle size of the metal powder is small, the sintering progress speed is increased even at the same temperature, and when the particle size is large, the metal powder is delayed. In other words, if the particle size of the metal powder with the higher sintering temperature is made smaller and the particle size of the metal powder with the lower sintering temperature is made larger, even if sintering is performed at the same temperature, The difference can be filled and simultaneous sintering becomes possible.

この実施形態では、焼結温度が高いSUS440Cの金属粉末の粒度を小さくし、SUS303の金属粉末の粒度を大きく設定することにより、弾性部材11、第1の挟持部材12、およびシャフト15の成形体を同時焼結して一体化された焼結体20を得ている。   In this embodiment, the compact of the elastic member 11, the first clamping member 12, and the shaft 15 is formed by reducing the particle size of the metal powder of SUS440C having a high sintering temperature and increasing the particle size of the metal powder of SUS303. Are sintered together to obtain an integrated sintered body 20.

このようにして得られた焼結体20には、焼結後に焼き入れ等の熱処理を施し、マルテンサイト系ステンレス鋼部分を硬質化した。また、摩擦部12cには、さらに耐摩耗性を向上させるためにイオン窒化処理を施した。   The sintered body 20 thus obtained was subjected to a heat treatment such as quenching after sintering to harden the martensitic stainless steel portion. The friction portion 12c was subjected to ion nitriding treatment to further improve the wear resistance.

以上説明したように、この実施形態では、弾性部材11、第1の挟持部材12、およびシャフト15の3つの機能部材を、それぞれの機能に応じた金属粉末と樹脂等のバインダーとを混合した材料を用いた金属粉末射出成型法により成形する。そして、複数の機能部材からなる成形体を焼結工程で同時に焼結して一体化した焼結体20とし、焼結体20のシャフト15を積層圧電素子13の中央の穴に貫通させ、第1の挟持部材12と第2の挟持部材14との間に積層圧電素子13を所定の圧縮力で挟持する。   As described above, in this embodiment, the three functional members of the elastic member 11, the first clamping member 12, and the shaft 15 are made of a material in which a metal powder and a binder such as a resin are mixed according to their functions. The metal powder is molded by an injection molding method. Then, a molded body composed of a plurality of functional members is simultaneously sintered and integrated into a sintered body 20 in the sintering step, and the shaft 15 of the sintered body 20 is passed through the central hole of the laminated piezoelectric element 13 to obtain a first The laminated piezoelectric element 13 is sandwiched between the first sandwiching member 12 and the second sandwiching member 14 with a predetermined compressive force.

これにより、機能部材の合わせ面での振動損失を低減することができ、モータ効率を向上させることができる。また、複雑な形状の機能部材でも、複数の機能部材の成形体を組み合わせ、かつ同時焼結で一体化しているので、加工コストを大幅に削減することができる。   Thereby, the vibration loss in the mating surface of a functional member can be reduced, and motor efficiency can be improved. In addition, even in the case of a functional member having a complicated shape, the processing cost can be greatly reduced because the molded bodies of a plurality of functional members are combined and integrated by simultaneous sintering.

次に、図3を参照して、本発明の第2の実施形態である超音波モータについて説明する。図3は本発明の第2の実施形態である超音波モータを説明するための図であり、(a)は振動子の断面図、(b)は各機能部材の成形体を示す断面図である。なお、上記第1の実施形態に対して重複又は相当する部分については、図に同一符号を付して、その説明を省略する。   Next, with reference to FIG. 3, the ultrasonic motor which is the 2nd Embodiment of this invention is demonstrated. 3A and 3B are views for explaining an ultrasonic motor according to a second embodiment of the present invention. FIG. 3A is a cross-sectional view of a vibrator, and FIG. 3B is a cross-sectional view showing a molded body of each functional member. is there. In addition, about the part which overlaps with the said 1st Embodiment or is corresponded, the same code | symbol is attached | subjected to a figure, and the description is abbreviate | omitted.

本発明の第2の実施形態である超音波モータは、図3(b)に示すように、弾性部材11および第1の挟持部材12を、同一の金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。また、シャフト15を、機能に応じた金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。次に、弾性部材11および第1の挟持部材12の成形体とシャフト15の成形体とを焼結工程で同時に焼結して一体化した焼結体20としている(図3(a)参照)。   As shown in FIG. 3B, the ultrasonic motor according to the second embodiment of the present invention is made of a material obtained by mixing the elastic member 11 and the first holding member 12 with the same metal powder and resin binder. Molded integrally by the metal powder injection molding method used. Further, the shaft 15 is integrally formed by a metal powder injection molding method using a material in which a metal powder corresponding to a function and a resin binder are mixed. Next, the molded body of the elastic member 11 and the first holding member 12 and the molded body of the shaft 15 are simultaneously sintered and integrated in the sintering process to obtain a sintered body 20 (see FIG. 3A). .

ここで、弾性部材11および第1の挟持部材12の成形体は、マルテンサイト系ステンレス鋼材(SUS420j2)の金属粉末を用い、シャフト15の成形体には、オーステナイト系ステンレス鋼材(SUS316)の金属粉末を用いた。また、上記第1の実施形態と同様に、焼結温度が高いSUS420j2の金属粉末の粒度をSUS316よりも小さくして異種金属からなる2つの成形体の同時焼結を行った。   Here, the molded body of the elastic member 11 and the first clamping member 12 uses a metal powder of martensitic stainless steel (SUS420j2), and the molded body of the shaft 15 includes a metal powder of austenitic stainless steel (SUS316). Was used. Similarly to the first embodiment, two compacts made of dissimilar metals were simultaneously sintered by making the particle size of the metal powder of SUS420j2 having a high sintering temperature smaller than that of SUS316.

そして、図3(a)に示すように、焼結体20のシャフト15の下端を、積層圧電素子13の中央の穴に貫通させて第2の挟持部材14に溶接等により固定する。これにより、第1の挟持部材12と第2の挟持部材14との間に積層圧電素子13を所定の圧縮力で挟持して、振動子を構成している。その他の構成および作用効果は、上記第1の実施形態と同様である。   Then, as shown in FIG. 3A, the lower end of the shaft 15 of the sintered body 20 is passed through the central hole of the laminated piezoelectric element 13 and fixed to the second holding member 14 by welding or the like. Thereby, the laminated piezoelectric element 13 is sandwiched between the first sandwiching member 12 and the second sandwiching member 14 with a predetermined compressive force to constitute a vibrator. Other configurations and operational effects are the same as those of the first embodiment.

次に、図4を参照して、本発明の第3の実施形態である超音波モータについて説明する。図4は本発明の第3の実施形態である超音波モータを説明するための図であり、(a)は各機能部材の成形体を示す断面図、(b)は振動子の断面図である。なお、上記第1の実施形態に対して重複又は相当する部分については、図に同一符号を付して、その説明を省略する。   Next, with reference to FIG. 4, the ultrasonic motor which is the 3rd Embodiment of this invention is demonstrated. 4A and 4B are diagrams for explaining an ultrasonic motor according to a third embodiment of the present invention. FIG. 4A is a sectional view showing a molded body of each functional member, and FIG. 4B is a sectional view of a vibrator. is there. In addition, about the part which overlaps with the said 1st Embodiment or is corresponded, the same code | symbol is attached | subjected to a figure, and the description is abbreviate | omitted.

本発明の第3の実施形態である超音波モータは、図4(a)に示すように、シャフト15をシャフト上分割体15aとシャフト下分割体15bとに2つに分割している。   In the ultrasonic motor according to the third embodiment of the present invention, as shown in FIG. 4A, the shaft 15 is divided into two parts, an upper shaft divided body 15a and a lower shaft divided body 15b.

そして、シャフト上分割体15aおよび弾性部材11を、同一の金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。また、シャフト下分割体15bを、その機能に応じた金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。さらに、上面側の外周縁に摩擦部12cが設けられる第1の挟持部材12を、金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により成形する。   Then, the shaft upper divided body 15a and the elastic member 11 are integrally formed by a metal powder injection molding method using a material in which the same metal powder and a resin binder are mixed. Further, the lower shaft divided body 15b is integrally formed by a metal powder injection molding method using a material in which a metal powder and a resin binder corresponding to the function are mixed. Further, the first holding member 12 provided with the friction portion 12c on the outer peripheral edge on the upper surface side is molded by a metal powder injection molding method using a material in which a metal powder and a resin binder are mixed.

第1の挟持部材12の成形体の上面中央部には、シャフト上分割体15aおよび弾性部材11の成形体の下端に設けられた凸部11aが嵌合される凹部12aが形成されている。第1の挟持部材12の成形体の下面中央部には、シャフト下分割体15bの上端が嵌合される凹部12bが形成されている。   At the center of the upper surface of the molded body of the first clamping member 12, a concave portion 12 a into which the upper shaft divided body 15 a and the convex portion 11 a provided at the lower end of the molded body of the elastic member 11 are fitted is formed. A concave portion 12b into which the upper end of the lower shaft divided body 15b is fitted is formed at the center of the lower surface of the molded body of the first holding member 12.

次に、シャフト上分割体15aおよび弾性部材11の成形体とシャフト下分割体15bの成形体と第1の挟持部材12の成形体とを互いに嵌合した状態で焼結工程で同時に焼結して一体化した焼結体20としている(図4(b)参照)。   Next, the molded body of the upper shaft divided body 15a and the elastic member 11, the molded body of the lower shaft divided body 15b, and the molded body of the first sandwiching member 12 are simultaneously sintered in the sintering process in a state of being fitted to each other. Thus, the sintered body 20 is integrated (see FIG. 4B).

ここで、シャフト上分割体15aおよび弾性部材11の成形体には、マルテンサイト系ステンレス鋼材(SUS420j2)の金属粉末を用いている。また、摩擦部12cが形成される第1の挟持部材12には、耐摩耗性に優れたマルテンサイト系ステンレス鋼材(SUS440C)の金属粉末を用いている。さらに、シャフト下分割体15bの成形体には、溶接性に優れたオーステナイト系ステンレス鋼材(SUS303)の金属粉末を用いている。   Here, the metal powder of the martensitic stainless steel material (SUS420j2) is used for the molded body of the shaft upper divided body 15a and the elastic member 11. In addition, a metal powder of martensitic stainless steel (SUS440C) having excellent wear resistance is used for the first clamping member 12 in which the friction portion 12c is formed. Furthermore, a metal powder of an austenitic stainless steel material (SUS303) excellent in weldability is used for the formed body of the shaft lower divided body 15b.

そして、図4(b)に示すように、焼結体20のシャフト下分割体15bを、積層圧電素子13の中央の穴および第2の挟持部材14の中央の穴に貫通させ、シャフト下分割体15bの先端と第2の挟持部材14の中央の穴の内径部とを溶接等により固定する。これにより、第1の挟持部材12と第2の挟持部材14との間に積層圧電素子13を所定の圧縮力で挟持して、振動子を構成している。その他の構成および作用効果は、上記第1の実施形態と同様である。   Then, as shown in FIG. 4 (b), the lower shaft divided body 15b of the sintered body 20 is passed through the central hole of the laminated piezoelectric element 13 and the central hole of the second sandwiching member 14, thereby dividing the lower shaft part. The tip of the body 15b and the inner diameter portion of the central hole of the second clamping member 14 are fixed by welding or the like. Thereby, the laminated piezoelectric element 13 is sandwiched between the first sandwiching member 12 and the second sandwiching member 14 with a predetermined compressive force to constitute a vibrator. Other configurations and operational effects are the same as those of the first embodiment.

次に、図5を参照して、本発明の第4の実施形態である超音波モータについて説明する。図5は本発明の第4の実施形態である超音波モータを説明するための図であり、(a)は振動子の断面図、(b)は各部材の成形体を示す断面図である。なお、上記第1の実施形態に対して重複又は相当する部分については、図に同一符号を付して、その説明を省略する。   Next, with reference to FIG. 5, the ultrasonic motor which is the 4th Embodiment of this invention is demonstrated. FIGS. 5A and 5B are diagrams for explaining an ultrasonic motor according to a fourth embodiment of the present invention. FIG. 5A is a cross-sectional view of a vibrator, and FIG. 5B is a cross-sectional view showing a molded body of each member. . In addition, about the part which overlaps with the said 1st Embodiment or is corresponded, the same code | symbol is attached | subjected to a figure, and the description is abbreviate | omitted.

本発明の第4の実施形態である超音波モータは、図5(b)に示すように、弾性部材11および第1の挟持部材12を、同一の金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。また、摩擦部材16を、その機能に応じた金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。さらに、シャフト15を、その機能に応じた金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。   As shown in FIG. 5B, the ultrasonic motor according to the fourth embodiment of the present invention is made of a material in which the elastic member 11 and the first holding member 12 are mixed with the same metal powder and resin binder. Molded integrally by the metal powder injection molding method used. Further, the friction member 16 is integrally formed by a metal powder injection molding method using a material in which a metal powder corresponding to its function and a resin binder are mixed. Further, the shaft 15 is integrally formed by a metal powder injection molding method using a material in which a metal powder corresponding to its function and a resin binder are mixed.

次に、弾性部材11および第1の挟持部材12の成形体と摩擦部材16の成形体とシャフト15の成形体とを焼結工程で同時に焼結して一体化した焼結体20としている(図5(a)参照)。   Next, the molded body of the elastic member 11 and the first clamping member 12, the molded body of the friction member 16, and the molded body of the shaft 15 are simultaneously sintered and integrated in the sintering process to form a sintered body 20 ( (See FIG. 5 (a)).

ここで、弾性部材11および第1の挟持部材12の成形体、摩擦部材16の成形体には、マルテンサイト系ステンレス鋼材(SUS440C)の金属粉末を用い、シャフト15の成形体には、オーステナイト系ステンレス鋼材(SUS316)の金属粉末を用いた。   Here, a metal powder of martensitic stainless steel (SUS440C) is used for the molded body of the elastic member 11 and the first clamping member 12 and the molded body of the friction member 16, and an austenitic system is used for the molded body of the shaft 15. Stainless steel (SUS316) metal powder was used.

そして、図5(a)に示すように、焼結体20のシャフト15の下端部を積層圧電素子13の中央の穴に貫通させ、シャフト15の下端部に形成した雄ねじを第2の挟持部材14の中央部に形成した雌ねじに螺合して締め付け固定する。これにより、第1の挟持部材12と第2の挟持部材14との間に積層圧電素子13を所定の圧縮力で挟持して、振動子を構成している。なお、シャフト15の雄ねじおよび第2の挟持部材14の雌ねじは、射出成形時に型で成形してもよいし、焼結後の後加工(例えば旋盤加工等)で形成してもよい。その他の構成および作用効果は、上記第1の実施形態と同様である。   Then, as shown in FIG. 5A, the lower end portion of the shaft 15 of the sintered body 20 is passed through the central hole of the laminated piezoelectric element 13, and the male screw formed at the lower end portion of the shaft 15 is used as the second clamping member. 14 is screwed into a female screw formed at the center of the screw 14 and fixed. Thereby, the laminated piezoelectric element 13 is sandwiched between the first sandwiching member 12 and the second sandwiching member 14 with a predetermined compressive force to constitute a vibrator. Note that the male screw of the shaft 15 and the female screw of the second holding member 14 may be formed by a mold at the time of injection molding, or may be formed by post-processing (for example, lathe processing) after sintering. Other configurations and operational effects are the same as those of the first embodiment.

次に、図6を参照して、本発明の第5の実施形態である超音波モータについて説明する。図6は本発明の第5の実施形態である超音波モータを説明するための図であり、(a)は超音波モータの断面図、(b)は振動子の断面図である。なお、上記第1の実施形態に対して重複又は相当する部分については、図に同一符号を付して、その説明を省略する。   Next, with reference to FIG. 6, the ultrasonic motor which is the 5th Embodiment of this invention is demonstrated. 6A and 6B are diagrams for explaining an ultrasonic motor according to a fifth embodiment of the present invention. FIG. 6A is a cross-sectional view of the ultrasonic motor, and FIG. 6B is a cross-sectional view of the vibrator. In addition, about the part which overlaps with the said 1st Embodiment or is corresponded, the same code | symbol is attached | subjected to a figure, and the description is abbreviate | omitted.

本発明の第5の実施形態である超音波モータは、図6(a)に示すように、上記第1の実施形態の第1の挟持部材12に相当する部分が摩擦部材22とされ、シャフト15に相当する部分が支持シャフト25とされている。即ち、上記第1実施形態の第2の挟持部材14は省略され、摩擦部材22の下面に積層圧電素子13が接合されて、更なる短軸化を図った例である。従って、支持シャフト25の下端は、摩擦部材22の下面から突出することなく、モータ回転部の支持部材として機能する。また、摩擦部材22の上面の周囲には、摩擦部22aが設けられている。   In the ultrasonic motor according to the fifth embodiment of the present invention, as shown in FIG. 6A, the portion corresponding to the first clamping member 12 of the first embodiment is a friction member 22, and the shaft A portion corresponding to 15 is a support shaft 25. That is, in this example, the second clamping member 14 of the first embodiment is omitted, and the laminated piezoelectric element 13 is joined to the lower surface of the friction member 22 to further shorten the axis. Therefore, the lower end of the support shaft 25 functions as a support member for the motor rotating portion without protruding from the lower surface of the friction member 22. A friction portion 22 a is provided around the upper surface of the friction member 22.

そして、弾性部材11および摩擦部22aを有する摩擦部材22を、同一の金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。また、支持シャフト25を、その機能に応じた金属粉末と樹脂バインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形する。   Then, the friction member 22 having the elastic member 11 and the friction portion 22a is integrally formed by a metal powder injection molding method using a material in which the same metal powder and a resin binder are mixed. Further, the support shaft 25 is integrally formed by a metal powder injection molding method using a material in which a metal powder corresponding to its function and a resin binder are mixed.

次に、弾性部材11および摩擦部材22の成形体と支持シャフト25の成形体とを焼結工程で同時に焼結して一体化した焼結体20としている。   Next, the molded body of the elastic member 11 and the friction member 22 and the molded body of the support shaft 25 are simultaneously sintered and integrated into a sintered body 20 in the sintering process.

ここで弾性部材11および摩擦部材22の成形体には、マルテンサイト系ステンレス鋼材(SUS440CあるいはSUS420j2)の金属粉末を用い、支持シャフト25の成形体には、オーステナイト系ステンレス鋼材(SUS303)の金属粉末を用いている。その他の構成および作用効果は、上記第1の実施形態と同様である。   Here, a metal powder of martensitic stainless steel (SUS440C or SUS420j2) is used for the molded body of the elastic member 11 and the friction member 22, and a metal powder of austenitic stainless steel (SUS303) is used for the molded body of the support shaft 25. Is used. Other configurations and operational effects are the same as those of the first embodiment.

本発明の第1の実施形態である超音波モータを説明するための断面図である。It is sectional drawing for demonstrating the ultrasonic motor which is the 1st Embodiment of this invention. 本発明の第1の実施形態である超音波モータの製造方法を説明するための図であり、(a)は各部材の成形体を示す断面図、(b)は成形体の同時焼結後の断面図、(c)はシャフト下端部の形状の変形例を示す図である。It is a figure for demonstrating the manufacturing method of the ultrasonic motor which is the 1st Embodiment of this invention, (a) is sectional drawing which shows the molded object of each member, (b) is after simultaneous sintering of a molded object (C) is a figure which shows the modification of the shape of the lower end part of a shaft. 本発明の第2の実施形態である超音波モータを説明するための図であり、(a)は振動子の断面図、(b)は各部材の成形体を示す断面図である。It is a figure for demonstrating the ultrasonic motor which is the 2nd Embodiment of this invention, (a) is sectional drawing of a vibrator | oscillator, (b) is sectional drawing which shows the molded object of each member. 本発明の第3の実施形態である超音波モータを説明するための図であり、(a)は各部材の成形体を示す断面図、(b)は振動子の断面図である。It is a figure for demonstrating the ultrasonic motor which is the 3rd Embodiment of this invention, (a) is sectional drawing which shows the molded object of each member, (b) is sectional drawing of a vibrator | oscillator. 本発明の第4の実施形態である超音波モータを説明するための図であり、(a)は振動子の断面図、(b)は各部材の成形体を示す断面図である。It is a figure for demonstrating the ultrasonic motor which is the 4th Embodiment of this invention, (a) is sectional drawing of a vibrator | oscillator, (b) is sectional drawing which shows the molded object of each member. 本発明の第5の実施形態である超音波モータを説明するための図であり、(a)は超音波モータの断面図、(b)は振動子の断面図である。It is a figure for demonstrating the ultrasonic motor which is the 5th Embodiment of this invention, (a) is sectional drawing of an ultrasonic motor, (b) is sectional drawing of a vibrator | oscillator. 従来の短軸型棒状超音波モータの斜視図である。It is a perspective view of the conventional short axis type bar-shaped ultrasonic motor. 図7に示す超音波モータの断面図である。It is sectional drawing of the ultrasonic motor shown in FIG. (a)は図7に示す超音波モータの振動子の断面図、(b)は振動子の振動モード図である。(A) is sectional drawing of the vibrator | oscillator of the ultrasonic motor shown in FIG. 7, (b) is a vibration mode figure of a vibrator | oscillator. 従来の棒状超音波モータの断面図である。It is sectional drawing of the conventional rod-shaped ultrasonic motor.

符号の説明Explanation of symbols

11 弾性部材
12 第1の挟持部材
12c 摩擦部
13 積層圧電素子(変換素子)
14 第2の挟持部材
15 シャフト(締結部材)
16 摩擦部材
17 ロータ
18 ギア
19 バネ
21 フランジ
22 摩擦部材
22a 摩擦部
25 支持シャフト(支持部材)
11 Elastic member 12 First clamping member 12c Friction part 13 Multilayer piezoelectric element (conversion element)
14 Second clamping member 15 Shaft (fastening member)
16 Friction member 17 Rotor 18 Gear 19 Spring 21 Flange 22 Friction member 22a Friction part 25 Support shaft (support member)

Claims (14)

電気エネルギーを機械エネルギーに変換する変換素子と、該変換素子に組み込まれる複数の機能部材からなる組合せ部材と、を備える超音波モータであって、
前記組合せ部材のうちの少なくとも2つの機能部材が、それぞれの機能に応じた金属粉末とバインダーとを混合した材料を用いた金属粉末射出成型法により成形されるとともに、成形後の焼結工程で同時に焼結されて一体化された焼結体とされる、ことを特徴とする超音波モータ。
An ultrasonic motor comprising: a conversion element that converts electrical energy into mechanical energy; and a combination member composed of a plurality of functional members incorporated in the conversion element,
At least two functional members of the combination members are molded by a metal powder injection molding method using a material in which a metal powder and a binder corresponding to each function are mixed, and simultaneously in the sintering step after molding. An ultrasonic motor characterized by being sintered and integrated into a sintered body.
前記組合せ部材は、前記機能部材として、前記変換素子を挟持する第1および第2の挟持部材と、該変換素子により振動が励起される弾性部材、前記変換素子と、前記第1の挟持部材、前記第2の挟持部材および前記弾性部材を締結する締結部材とを備える、ことを特徴とする請求項1に記載の超音波モータ。   The combination member includes, as the functional member, first and second clamping members that sandwich the conversion element, an elastic member in which vibration is excited by the conversion element, the conversion element, and the first clamping member, The ultrasonic motor according to claim 1, further comprising a fastening member that fastens the second clamping member and the elastic member. 前記一体化された焼結体は、前記弾性部材、前記第1の挟持部材および前記締結部材のうちの少なくとも2つの機能部材を備える、ことを特徴とする請求項2に記載の超音波モータ。   The ultrasonic motor according to claim 2, wherein the integrated sintered body includes at least two functional members of the elastic member, the first clamping member, and the fastening member. 前記弾性部材、前記第1の挟持部材はマルテンサイト系ステンレス鋼材の金属粉末が用いられ、前記締結部材はオーステナイト系ステンレス鋼材の金属粉末が用いられる、ことを特徴とする請求項2又は3に記載の超音波モータ。   The metal material of a martensitic stainless steel material is used for the elastic member and the first clamping member, and the metal powder of an austenitic stainless steel material is used for the fastening member. Ultrasonic motor. 前記マルテンサイト系ステンレス鋼材が、SUS440CまたはSUS420j2であり、前記オーステナイト系ステンレス鋼材が、SUS303またはSUS316である、ことを特徴とする請求項4に記載の超音波モータ。   The ultrasonic motor according to claim 4, wherein the martensitic stainless steel material is SUS440C or SUS420j2, and the austenitic stainless steel material is SUS303 or SUS316. 前記一体化された焼結体は、焼結後、焼き入れ処理が施される、ことを特徴とする請求項1〜5のいずれか一項に記載の超音波モータ。   The ultrasonic motor according to claim 1, wherein the integrated sintered body is subjected to a quenching treatment after sintering. 前記第1の挟持部材には摩擦部が設けられ、該摩擦部は、窒化処理が施される、ことを特徴とする請求項2〜6のいずれか一項に記載の超音波モータ。   The ultrasonic motor according to claim 2, wherein the first clamping member is provided with a friction portion, and the friction portion is subjected to nitriding treatment. 前記締結部材は、前記第2の挟持部材に溶接により固定される、ことを特徴とする請求項2〜7のいずれか一項に記載の超音波モータ。   The ultrasonic motor according to claim 2, wherein the fastening member is fixed to the second holding member by welding. 前記組合せ部材は、前記機能部材として、前記変換素子により振動が励起される弾性部材と、該変換素子に接合されて、前記弾性部材の振動が伝達されるとともに、摩擦部が設けられた摩擦部材と、少なくとも該弾性部材および前記摩擦部材のいずれかに接合されて、モータ回転部を支持する支持部材と、を備えることを特徴とする請求項1に記載の超音波モータ。   The combination member includes, as the functional member, an elastic member that is excited by vibration by the conversion element, and a friction member that is joined to the conversion element to transmit vibration of the elastic member and that is provided with a friction portion. The ultrasonic motor according to claim 1, further comprising: a support member that is bonded to at least one of the elastic member and the friction member and supports the motor rotation unit. 前記弾性部材および前記摩擦部材が、同一の金属粉末とバインダーとを混合した材料を用いた金属粉末射出成型法により一体に成形される、ことを特徴とする請求項9に記載の超音波モータ。   The ultrasonic motor according to claim 9, wherein the elastic member and the friction member are integrally formed by a metal powder injection molding method using a material in which the same metal powder and a binder are mixed. 前記弾性部材および前記摩擦部材は、マルテンサイト系ステンレス鋼材の金属粉末が用いられる、ことを特徴とする請求項10に記載の超音波モータ。   The ultrasonic motor according to claim 10, wherein the elastic member and the friction member are made of martensitic stainless steel metal powder. 前記マルテンサイト系ステンレス鋼材は、SUS420j2またはSUS440Cである、ことを特徴とする請求項11に記載の超音波モータ。   The ultrasonic motor according to claim 11, wherein the martensitic stainless steel material is SUS420j2 or SUS440C. 前記一体化された焼結体は、焼結後、焼き入れ処理が施される、請求項9〜12に記載の超音波モータ。   The ultrasonic motor according to claim 9, wherein the integrated sintered body is subjected to a quenching process after sintering. 前記一体化された焼結体は、少なくとも前記摩擦部に窒化処理が施される、ことを特徴とする請求項9〜13に記載の超音波モータ。   The ultrasonic motor according to claim 9, wherein the integrated sintered body is subjected to nitriding treatment at least on the friction portion.
JP2006347771A 2006-12-25 2006-12-25 Ultrasonic motor Pending JP2008160989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347771A JP2008160989A (en) 2006-12-25 2006-12-25 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347771A JP2008160989A (en) 2006-12-25 2006-12-25 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2008160989A true JP2008160989A (en) 2008-07-10
JP2008160989A5 JP2008160989A5 (en) 2010-02-12

Family

ID=39661252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347771A Pending JP2008160989A (en) 2006-12-25 2006-12-25 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2008160989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647108A (en) * 2012-04-10 2012-08-22 上海交通大学 Traveling wave ultrasonic motor similar to the gear transmission and control method thereof
JP2014036548A (en) * 2012-08-10 2014-02-24 Canon Inc Vibration type actuator and imaging device
EP3255300A1 (en) * 2016-06-10 2017-12-13 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
JP2017225333A (en) * 2016-06-10 2017-12-21 キヤノン株式会社 Friction material, method for producing friction material, vibration type actuator and electronic equipment
CN109217713A (en) * 2017-07-05 2019-01-15 佳能株式会社 Use the vibrating driver, electronic device and movable body of sintered body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898459A (en) * 1994-09-28 1996-04-12 Higashifuji Seisakusho:Kk Manufacture of oscillator for oscillation generator in small radio paging unit
JPH08103088A (en) * 1994-08-04 1996-04-16 Canon Inc Vibration actuator
JPH1084682A (en) * 1996-09-09 1998-03-31 Canon Inc Vibration wave driving device and equipment having vibration wave driving device
JP2000308375A (en) * 1999-04-20 2000-11-02 Canon Inc Vibrator for ultrasonic motor and ultrasonic motor using the same, and apparatus
JP2001140002A (en) * 1999-11-12 2001-05-22 Denso Corp Manufacturing method of metal composite sintered body
JP2003209984A (en) * 2001-11-06 2003-07-25 Canon Inc Oscillator, its manufacturing method, oscillation wave driver, and apparatus comprising it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103088A (en) * 1994-08-04 1996-04-16 Canon Inc Vibration actuator
JPH0898459A (en) * 1994-09-28 1996-04-12 Higashifuji Seisakusho:Kk Manufacture of oscillator for oscillation generator in small radio paging unit
JPH1084682A (en) * 1996-09-09 1998-03-31 Canon Inc Vibration wave driving device and equipment having vibration wave driving device
JP2000308375A (en) * 1999-04-20 2000-11-02 Canon Inc Vibrator for ultrasonic motor and ultrasonic motor using the same, and apparatus
JP2001140002A (en) * 1999-11-12 2001-05-22 Denso Corp Manufacturing method of metal composite sintered body
JP2003209984A (en) * 2001-11-06 2003-07-25 Canon Inc Oscillator, its manufacturing method, oscillation wave driver, and apparatus comprising it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647108A (en) * 2012-04-10 2012-08-22 上海交通大学 Traveling wave ultrasonic motor similar to the gear transmission and control method thereof
JP2014036548A (en) * 2012-08-10 2014-02-24 Canon Inc Vibration type actuator and imaging device
EP3255300A1 (en) * 2016-06-10 2017-12-13 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
CN107493032A (en) * 2016-06-10 2017-12-19 佳能株式会社 Contact the friction member of opposed member, the method for manufacture friction members, vibration-type actuator and electronic installation
JP2017225333A (en) * 2016-06-10 2017-12-21 キヤノン株式会社 Friction material, method for producing friction material, vibration type actuator and electronic equipment
US10530277B2 (en) 2016-06-10 2020-01-07 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
CN107493032B (en) * 2016-06-10 2020-01-14 佳能株式会社 Friction member contacting opposing member, method of manufacturing friction member, vibration-type actuator, and electronic device
US11664746B2 (en) 2016-06-10 2023-05-30 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
CN109217713A (en) * 2017-07-05 2019-01-15 佳能株式会社 Use the vibrating driver, electronic device and movable body of sintered body
US11108342B2 (en) 2017-07-05 2021-08-31 Canon Kabushikikaisha Vibration-type driving apparatus using sintered body impregnated with resin, electronic apparatus, and movable body

Similar Documents

Publication Publication Date Title
US11664746B2 (en) Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
JP2008160989A (en) Ultrasonic motor
JP3450524B2 (en) Vibration actuator
EP1531500B1 (en) Vibration wave driving apparatus
JP2003199376A (en) Vibrating piece and vibration wave drive unit
US11165370B2 (en) Vibration actuator
US6628046B2 (en) Vibration type actuator
JP6304973B2 (en) Ultrasonic motor
US11012004B2 (en) Vibration actuator and electronic device including the same
JP4095282B2 (en) Vibration wave drive
JP4844135B2 (en) Vibration actuator device, lens barrel and camera system
JP6611446B2 (en) Vibration type driving device and imaging device
JP4316350B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JPH02311184A (en) Ultrasonic motor
JP5066826B2 (en) Drive device, electronic device, and drive device manufacturing method
JP2019216573A (en) Vibration wave motor and device having the same
JP5736647B2 (en) Vibration wave motor, lens barrel and camera
JP2010193591A (en) Ultrasonic motor
JP4136037B2 (en) Vibration type actuator and method for assembling vibration type actuator
JP2000308375A (en) Vibrator for ultrasonic motor and ultrasonic motor using the same, and apparatus
JP2009136066A (en) Ultrasonic motor
JPH10337051A (en) Oscillatory actuator
JP2018023181A (en) Vibration type actuator component, vibration type actuator, and electronic device
JP2018191382A (en) Vibration type actuator and electronic apparatus
JP2016048986A (en) Vibration actuator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507