JP2008159996A - Solar battery - Google Patents

Solar battery Download PDF

Info

Publication number
JP2008159996A
JP2008159996A JP2006349410A JP2006349410A JP2008159996A JP 2008159996 A JP2008159996 A JP 2008159996A JP 2006349410 A JP2006349410 A JP 2006349410A JP 2006349410 A JP2006349410 A JP 2006349410A JP 2008159996 A JP2008159996 A JP 2008159996A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
electrode layer
silicon semiconductor
particles
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006349410A
Other languages
Japanese (ja)
Other versions
JP4907333B2 (en
Inventor
Kenjiro Fukuda
憲次郎 福田
Yoji Furukubo
洋二 古久保
Toshifumi Azuma
登志文 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006349410A priority Critical patent/JP4907333B2/en
Publication of JP2008159996A publication Critical patent/JP2008159996A/en
Application granted granted Critical
Publication of JP4907333B2 publication Critical patent/JP4907333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control curvature of a silicon semiconductor substrate 11 in a solar battery, while maintaining BSF effects, the solar battery that has formed a back electrode layer on a non-euphotic side of the silicon semiconductor substrate whose principal ingredient is aluminum. <P>SOLUTION: A conductive paste applied to a backside 11b of a semiconductor substrate 11 contains at least aluminum powder and organic vehicle, where the difference d<SB>90</SB>-d<SB>10</SB>between a particle size d<SB>90</SB>of 90% of the aluminum powder and a particle size d<SB>10</SB>of 10% of the aluminum powder is 13 μm or smaller. Such an equalization of the particle sizes of aluminum powder enables neck growth to be suppressed at calcination; and since this prevents rough and large particles from forming at an early stage of sintering, the average size of joined particles primarily constituted of aluminum on the back electrode layer 14 is made 40 μm or smaller. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽電池に関する。   The present invention relates to a solar cell.

従来の太陽電池では、シリコン半導体基板の非受光面に形成される裏面電極層は、アルミニウム粉末を導電粒子として含む導体ペーストを塗布して焼成することにより得られていた。   In the conventional solar cell, the back electrode layer formed on the non-light-receiving surface of the silicon semiconductor substrate is obtained by applying and baking a conductor paste containing aluminum powder as conductive particles.

一方、太陽電池の製造原価を低減するためには、シリコン半導体基板を薄くすることが望まれる。しかし、シリコンとアルミニウムとでは熱膨張率が大きく異なるので、太陽電池においては、シリコン半導体基板を薄くするにつれて、シリコン半導体基板の反りが発生しやすくなり、製造工程における割れも発生しやすくなる。   On the other hand, in order to reduce the manufacturing cost of the solar cell, it is desired to make the silicon semiconductor substrate thin. However, since the thermal expansion coefficient differs greatly between silicon and aluminum, in a solar cell, as the silicon semiconductor substrate is made thinner, warpage of the silicon semiconductor substrate is likely to occur, and cracks in the manufacturing process are likely to occur.

このため、特許文献1では、アルミニウム粉末、ガラスフリット及び有機質ビヒクルに加えて、アルミニウム含有有機化合物を導体ペーストに含有させることにより、裏面電極層を薄くし、シリコン半導体基板の反りを抑制している。   For this reason, in Patent Document 1, in addition to the aluminum powder, glass frit, and organic vehicle, an aluminum-containing organic compound is included in the conductor paste, so that the back electrode layer is thinned and the warp of the silicon semiconductor substrate is suppressed. .

特開2000−90734号公報JP 2000-90734 A

しかし、特許文献1の技術では、裏面電極層からシリコン半導体基板へアルミニウムが拡散することによるキャリア収集効率の向上効果(BSF(Back Surface Field)効果)が十分に得られなくなるという問題がある。   However, the technique of Patent Document 1 has a problem that the effect of improving the carrier collection efficiency (BSF (Back Surface Field) effect) due to the diffusion of aluminum from the back electrode layer to the silicon semiconductor substrate cannot be obtained sufficiently.

本発明は、この問題を解決するためになされたもので、十分なBSF効果が得られるにも関わらずシリコン半導体基板等の光電変換体の反りを抑制することができる板状の太陽電池を提供することを目的とする。   The present invention has been made to solve this problem, and provides a plate-like solar cell capable of suppressing the warpage of a photoelectric conversion body such as a silicon semiconductor substrate, although a sufficient BSF effect can be obtained. The purpose is to do.

上記課題を解決するため、請求項1の発明は、板状の光電変換体と前記光電変換体の非受光面に面上のひろがりをもって形成された裏面電極層とを備える太陽電池であって、前記裏面電極層の断面に観察される、複数の構成粒子が結合したアルミニウムを主成分とする結合粒子の平均寸法が40μm以下であることを特徴とする。   In order to solve the above problems, the invention of claim 1 is a solar cell comprising a plate-like photoelectric converter and a back electrode layer formed on the non-light-receiving surface of the photoelectric converter with a spread on the surface, The average size of the binding particles mainly composed of aluminum in which a plurality of constituent particles are bonded, which is observed in the cross section of the back electrode layer, is 40 μm or less.

請求項2の発明は、前記裏面電極層の断面に観察される、前記裏面電極層のボイド率が25%以上であることを特徴とする請求項1に記載の太陽電池である。   The invention according to claim 2 is the solar cell according to claim 1, wherein the void ratio of the back electrode layer observed in the cross section of the back electrode layer is 25% or more.

請求項3の発明は、前記結合粒子を分離して得られる粒子の50%粒径d50が7μm以下であることを特徴とする請求項1又は請求項2に記載の太陽電池である。 A third aspect of the present invention is the solar cell according to the first or second aspect, wherein the 50% particle diameter d 50 of the particles obtained by separating the binding particles is 7 μm or less.

請求項1ないし請求項3の発明によれば、十分なBSF効果を得るために必要な裏面電極層の厚みを確保しつつ、光電変換体の反りを効果的に抑制することができる。   According to the first to third aspects of the invention, the warpage of the photoelectric conversion body can be effectively suppressed while ensuring the thickness of the back electrode layer necessary for obtaining a sufficient BSF effect.

<1 太陽電池の構成>
図1は、本発明の望ましい実施形態に係る太陽電池1の構成を示す図である。図1は、太陽電池1の断面構造を示す断面図となっている。
<1 Solar cell configuration>
FIG. 1 is a diagram showing a configuration of a solar cell 1 according to a preferred embodiment of the present invention. FIG. 1 is a sectional view showing a sectional structure of the solar cell 1.

図1に示すように、太陽電池1は、シリコン半導体基板11を備える。シリコン半導体基板11は、p型のシリコン半導体基板11の表面(受光面)11aの近傍をn型不純物層111とし、裏面(非受光面)11bの近傍をp+層112とすることにより得られている。シリコン半導体基板11は、pn接合を有する板状の光電変換体となっている。p+層112は、シリコン半導体基板11への光の照射により生成したキャリアの収集効率を向上させる役割を果たしている(BSF効果)。 As shown in FIG. 1, the solar cell 1 includes a silicon semiconductor substrate 11. The silicon semiconductor substrate 11 is obtained by using the n-type impurity layer 111 in the vicinity of the front surface (light receiving surface) 11a of the p-type silicon semiconductor substrate 11 and the p + layer 112 in the vicinity of the back surface (non-light receiving surface) 11b. ing. The silicon semiconductor substrate 11 is a plate-like photoelectric conversion body having a pn junction. The p + layer 112 plays a role of improving the collection efficiency of carriers generated by irradiating the silicon semiconductor substrate 11 with light (BSF effect).

シリコン半導体基板11の厚みは、特に制限されないが、典型的には、100μm〜400μmである。また、n型不純物層111の拡散深さも、特に制限されないが、典型的には、0.2μm〜0.5μmである。   The thickness of the silicon semiconductor substrate 11 is not particularly limited, but is typically 100 μm to 400 μm. Further, the diffusion depth of the n-type impurity layer 111 is not particularly limited, but is typically 0.2 μm to 0.5 μm.

シリコン半導体基板11の表面11aには、反射防止膜12と、反射防止膜12を貫通してn型不純物層111と接する格子状の表面電極13とが形成されている。   On the surface 11 a of the silicon semiconductor substrate 11, an antireflection film 12 and a lattice-shaped surface electrode 13 that penetrates the antireflection film 12 and is in contact with the n-type impurity layer 111 are formed.

また、シリコン半導体基板11の裏面11bには、裏面電極層14が略全面にひろがって形成されている。   In addition, a back electrode layer 14 is formed on the entire back surface 11b of the silicon semiconductor substrate 11 so as to spread over the entire surface.

<2 太陽電池の製造方法>
続いて、太陽電池1の製造手順について、図2を参照しながら説明する。
<2 Manufacturing method of solar cell>
Then, the manufacturing procedure of the solar cell 1 is demonstrated, referring FIG.

太陽電池1の製造にあたっては、まず、p型のシリコン半導体基板11の表面11aからドナー不純物を拡散させ、表面11aの近傍がn型不純物層111となったシリコン半導体基板11を得る(図2(A))。   In manufacturing the solar cell 1, first, donor impurities are diffused from the surface 11 a of the p-type silicon semiconductor substrate 11 to obtain the silicon semiconductor substrate 11 in which the vicinity of the surface 11 a becomes the n-type impurity layer 111 (FIG. 2 ( A)).

続いて、シリコン半導体基板11の表面11aには、酸化シリコン膜、酸化チタン膜、窒化シリコン膜等の反射防止膜12がPECVD法、蒸着法、スパッタ法などを用いて成膜されるとともに(図2(B))、銀ペースト等をスクリーン印刷して乾燥させることにより、格子状の表面電極13が形成される(図2(C))。   Subsequently, an antireflection film 12 such as a silicon oxide film, a titanium oxide film, or a silicon nitride film is formed on the surface 11a of the silicon semiconductor substrate 11 using a PECVD method, a vapor deposition method, a sputtering method, or the like (see FIG. 2 (B)), a silver paste or the like is screen-printed and dried to form a lattice-shaped surface electrode 13 (FIG. 2C).

さらに、シリコン半導体基板11の裏面11bには、アルミニウム粉末を導体粒子として含む導体ペースト(以下、単に「ペースト」)をスクリーン印刷して乾燥させることにより、裏面11bの略全面にひろがる裏面電極層14が形成される(図2(D))。   Furthermore, a back surface electrode layer 14 that spreads over substantially the entire back surface 11b is formed on the back surface 11b of the silicon semiconductor substrate 11 by screen printing and drying a conductive paste containing aluminum powder as conductive particles (hereinafter simply “paste”). Is formed (FIG. 2D).

このようにして形成された表面電極13及び裏面電極層14は、アルミニウムの融点である660℃以上の温度で焼成され、裏面電極層14からシリコン半導体基板11へのアルミニウムの拡散によりp+層112が形成される。 The front electrode 13 and the back electrode layer 14 thus formed are baked at a temperature of 660 ° C. or higher, which is the melting point of aluminum, and the p + layer 112 is diffused by diffusion of aluminum from the back electrode layer 14 to the silicon semiconductor substrate 11. Is formed.

なお、裏面に形成される電極は、裏面のほぼ全面に形成したAlを主成分とする裏面電極層14に加えて、出力を取り出すためにAgを主成分とする出力取出電極(不図示)を形成しても構わない。形成方法の一例としては、出力取出電極を形成する部位を除いた開口部を設けて裏面のほぼ全面にAlペーストをスクリーン印刷等により塗布・乾燥させ、開口部に対して銀等を主成分とする電極ペーストを一部Al電極と重なるように塗布して乾燥させ、焼成すればよい。また、裏面電極層14を酸等により除去し、その代わりに銀ペースト等により新たな裏面電極層を形成しても、p+層112によるBSF効果を有する太陽電池1を実現することができる。 The electrode formed on the back surface includes an output extraction electrode (not shown) mainly composed of Ag in order to extract output in addition to the back surface electrode layer 14 mainly composed of Al formed on almost the entire back surface. It may be formed. As an example of the forming method, an opening excluding the portion where the output extraction electrode is formed is provided, and Al paste is applied and dried on almost the entire back surface by screen printing or the like, and silver or the like is mainly contained in the opening. The electrode paste to be applied may be applied so as to partially overlap the Al electrode, dried, and fired. Further, the solar cell 1 having the BSF effect by the p + layer 112 can be realized by removing the back electrode layer 14 with an acid or the like and forming a new back electrode layer with a silver paste or the like instead.

<3 ペーストについて>
続いて、裏面電極層14の形成に用いられるペーストについて説明する。
<3 About paste>
Next, the paste used for forming the back electrode layer 14 will be described.

ペーストは、少なくともアルミニウム粉末と有機質ビヒクルとを含有しており、アルミニウム粉末の90%粒径d90と10%粒径d10との差d90−d10が13μm以下となっている。 The paste contains at least an aluminum powder and an organic vehicle, and the difference d 90 -d 10 between the 90% particle diameter d 90 and the 10% particle diameter d 10 of the aluminum powder is 13 μm or less.

このようにアルミニウム粉末の粒径を均一化すると、焼成の際のネック成長を抑制することができ、焼結初期に粗大粒子が形成されることを防ぐことができるので、裏面電極層14において、アルミニウムを主成分とする結合粒子の平均寸法を40μm以下とすることができる。そして、結合粒子の平均寸法が40μm以下となると、シリコン半導体基板11と裏面電極層14との熱膨張率の差に起因する反りを抑制することができるので、裏面電極層14を薄くしてBSF効果を低下させることなくシリコン半導体基板11の反りを抑制することができる。   When the particle size of the aluminum powder is made uniform in this way, neck growth during firing can be suppressed, and coarse particles can be prevented from being formed in the early stage of sintering. The average dimension of the binding particles containing aluminum as a main component can be 40 μm or less. When the average size of the binding particles is 40 μm or less, warpage caused by the difference in thermal expansion coefficient between the silicon semiconductor substrate 11 and the back electrode layer 14 can be suppressed. Warpage of the silicon semiconductor substrate 11 can be suppressed without reducing the effect.

ここで、結合粒子とは、一の構成粒子の一部分と他の構成粒子の一部分とが焼結により結合するネック成長により、複数の構成粒子が結合して生成された粒子である。この結合粒子は、電子顕微鏡で観察すれば、樹脂等を介して結合したように見えるペースト中の粒子とは明確に区別することができる。   Here, the binding particles are particles generated by combining a plurality of constituent particles by neck growth in which a part of one constituent particle and a part of another constituent particle are combined by sintering. When these bonded particles are observed with an electron microscope, they can be clearly distinguished from the particles in the paste that appear to be bonded via a resin or the like.

結合粒子の寸法は、裏面電極層14の断面に観察される結合粒子の最長部分の長さであり、結合粒子の平均寸法は、当該断面の45μm×30μmの長方形領域に含まれる結合粒子の寸法を平均したものである。   The size of the binding particles is the length of the longest portion of the binding particles observed in the cross section of the back electrode layer 14, and the average size of the binding particles is the size of the binding particles included in a rectangular region of 45 μm × 30 μm of the cross section. Is the average.

また、アルミニウム粉末の粒径を均一化するとともに、フィラーとなる無機化合物粉末としてガラスフリットをペーストに含有させれば、裏面電極層14のボイド率を上昇させることができる。なお、アルミニウム粉末の粒度分布やペースト組成を調整して、裏面電極層14のボイド率を25%以上とすれば、結合粒子の平均寸法をさらに小さくすることができ、シリコン半導体基板11の反りをさらに減らすことができる。   In addition, the void ratio of the back electrode layer 14 can be increased by making the particle size of the aluminum powder uniform and by including glass frit in the paste as an inorganic compound powder serving as a filler. If the void ratio of the back electrode layer 14 is adjusted to 25% or more by adjusting the particle size distribution and paste composition of the aluminum powder, the average dimension of the bonded particles can be further reduced, and the warp of the silicon semiconductor substrate 11 can be reduced. It can be further reduced.

さらに、アルミニウム粉末の粒度分布やペースト組成を調整して、結合粒子を分離して得られる粒子(以下、「分離粒子」)の50%粒径d50が7μm以下となるようにすれば、シリコン半導体基板11の反りをさらに減らすことができる。 Further, by adjusting the particle size distribution and paste composition of the aluminum powder so that the 50% particle size d 50 of particles obtained by separating the bonded particles (hereinafter referred to as “separated particles”) is 7 μm or less. The warp of the semiconductor substrate 11 can be further reduced.

分離粒子は、電極が形成されたシリコン半導体基板をイソプロピルアルコールに浸漬し、これを超音波分散器により剥離処理をした上で、この剥離した溶液(イソプロピルアルコールと電極成分の混合液)を直接マイクロトラック法で粒度測定することにより50%粒径d50を測定することができる。 The separated particles are obtained by immersing a silicon semiconductor substrate on which an electrode is formed in isopropyl alcohol, and performing an exfoliation process using an ultrasonic disperser, and then directly removing the exfoliated solution (mixed liquid of isopropyl alcohol and electrode components). By measuring the particle size by the track method, the 50% particle size d 50 can be measured.

なお、有機質ビヒクルとしては、エチルセルロースやニトロセルロースのような焼成後に灰分が残留しない繊維系樹脂、アクリル樹脂及びアルキッド樹脂等から選択される少なくとも1種類の樹脂をターピネオールやセロソルブ等の有機溶剤に溶解させたものを用いることができる。   The organic vehicle is prepared by dissolving at least one resin selected from a fiber-based resin such as ethyl cellulose and nitrocellulose, which does not retain ash after firing, an acrylic resin, and an alkyd resin, in an organic solvent such as terpineol or cellosolve. Can be used.

また、ガラスフリットとしては、B−Si−Pb系、B−Si−Bi系、B−Si−Zn系及びSi−Bi−Pb系等のものを用いることができる。   As the glass frit, B-Si-Pb, B-Si-Bi, B-Si-Zn, Si-Bi-Pb, or the like can be used.

以下では、本発明の実施例について説明する。   Examples of the present invention will be described below.

まず、アルミニウム粉末100重量部に対して、B−Si−Pb系のガラスフリット0〜5.0重量部とニトロセルロースをターピネオールに溶解させた有機質ビヒクル5.0〜10.0重量部とを含有する14種類のペーストを準備し、当該ペーストを用いて、図1に示す断面構造を有する太陽電池1の試料1〜14を作製した。試料1〜14の作製に用いたペーストに含まれるアルミニウム粉末の粒度分布と当該ペーストの組成とは表1に一覧で示されている。   First, 0 to 5.0 parts by weight of a B-Si-Pb glass frit and 5.0 to 10.0 parts by weight of an organic vehicle in which nitrocellulose is dissolved in terpineol with respect to 100 parts by weight of aluminum powder 14 types of pastes were prepared, and samples 1 to 14 of the solar cell 1 having the cross-sectional structure shown in FIG. 1 were prepared using the pastes. Table 1 shows a list of the particle size distribution of the aluminum powder contained in the paste used for preparing Samples 1 to 14 and the composition of the paste.

Figure 2008159996
Figure 2008159996

試料1〜試料14の作製にあたっては、厚みが300μmで、50mm×50mmの大きさの正方形板形状のシリコン半導体基板11を用いた。また、試料1〜14の作製にあたっては、180メッシュのスクリーン印刷用の製版を用いて、焼成後の裏面電極層14の厚みが45μm〜55μmとなるようにペーストを印刷し、赤外線焼成炉を用いて、焼成時間5分ピーク温度800℃の条件で焼成を行った。   In the preparation of Sample 1 to Sample 14, a silicon semiconductor substrate 11 having a thickness of 300 μm and a square plate shape having a size of 50 mm × 50 mm was used. Moreover, in producing Samples 1 to 14, a 180-mesh screen printing plate making was used, the paste was printed so that the thickness of the back electrode layer 14 after firing was 45 μm to 55 μm, and an infrared firing furnace was used. The firing was performed under the conditions of a firing time of 5 minutes and a peak temperature of 800 ° C.

このようにして得られた試料1〜14について、結合粒子の平均寸法、裏面電極層14のボイド率、分離粒子の50%粒径d50及びシリコン半導体基板11の反りを評価した結果を表1に示す。なお、試料1〜6は、本発明の範囲外の試料となっている。 Samples 1 to 14 obtained in this manner, Table 1 Average size of bound particles, the void ratio of the back electrode layer 14, the results of evaluation of the 50% warp of d 50 value, and the silicon semiconductor substrate 11 of the separating particles Shown in Samples 1 to 6 are samples outside the scope of the present invention.

結合粒子の平均寸法及び裏面電極層14のボイド率は、評価対象の試料を樹脂に埋め込み、裏面電極層14の断面が観察できるようにクロスセクションした後に、裏面電極層14の断面を電子顕微鏡を用いて2000倍の倍率で観察することにより評価した。   The average size of the binding particles and the void ratio of the back electrode layer 14 are obtained by embedding the sample to be evaluated in a resin and performing a cross section so that the cross section of the back electrode layer 14 can be observed. It was evaluated by observing at a magnification of 2000 times.

分離粒子の50%粒径d50は、評価対象の試料を水に浸漬し、約10分間超音波処理して得られた分離粒子の粒度分布をレーザー回折散乱法で測定することにより評価した。 The 50% particle size d 50 of the separated particles was evaluated by measuring the particle size distribution of the separated particles obtained by immersing the sample to be evaluated in water and sonicating for about 10 minutes by a laser diffraction scattering method.

シリコン半導体基板11の反りは、3次元形状測定器を用いて、平面上に載置されたシリコン半導体基板11の最も低い部分と最も高い部分との高さの差を測定することにより評価した。   The warpage of the silicon semiconductor substrate 11 was evaluated by measuring the height difference between the lowest portion and the highest portion of the silicon semiconductor substrate 11 placed on a plane using a three-dimensional shape measuring instrument.

表1に示す評価結果から明らかなように、アルミニウム粉末のd90−d10が13μmより大きくなる試料1〜試料6では、結合粒子の平均粒径が40μmより大きくなっており、シリコン半導体基板11の反りが3mm以上となる。 As is apparent from the evaluation results shown in Table 1, in Samples 1 to 6, in which d 90 -d 10 of the aluminum powder is larger than 13 μm, the average particle diameter of the binding particles is larger than 40 μm, and the silicon semiconductor substrate 11 The warpage is 3 mm or more.

一方、アルミニウム粉末のd90−d10が13μm以下となる試料7〜試料14では、結合粒子の平均粒径が40μm以下となっており、シリコン半導体基板11の反りも3mmを下回っている。 On the other hand, in Samples 7 to 14 in which d 90 -d 10 of the aluminum powder is 13 μm or less, the average particle size of the binding particles is 40 μm or less, and the warp of the silicon semiconductor substrate 11 is also less than 3 mm.

また、アルミニウム粉末の粒度分布と有機質ビヒクルの含有量とを一定としたままガラスフリットの添加量を0.0重量部〜5.0重量部の範囲内で変化させた試料8〜11の評価結果から明らかなように、ガラスフリットの含有量を増加させることにより、裏面電極層14のボイド率を上昇させることができ、シリコン半導体基板11の反りをさらに抑制することができる。特に、ガラスフリットの含有量を3.0重量部以上とした試料10〜11では、ボイド率が25%以上となり、シリコン半導体基板11の反りも1mm以下に抑制できている。   Evaluation results of Samples 8 to 11 in which the addition amount of the glass frit was changed within the range of 0.0 parts by weight to 5.0 parts by weight while keeping the particle size distribution of the aluminum powder and the content of the organic vehicle constant. As is apparent from the above, by increasing the glass frit content, the void ratio of the back electrode layer 14 can be increased, and the warpage of the silicon semiconductor substrate 11 can be further suppressed. In particular, in samples 10 to 11 in which the glass frit content is 3.0 parts by weight or more, the void ratio is 25% or more, and the warp of the silicon semiconductor substrate 11 can be suppressed to 1 mm or less.

さらに、アルミニウム粉末の粒度分布とガラスフリットの含有量とを一定としたまま有機質ビヒクルの含有量を5.0重量部〜10.0重量部の範囲内で変化させた試料10及び12の評価結果から明らかなように、有機質ビヒクルの含有量を増加させることにより、裏面電極層14のボイド率を上昇させることができ、シリコン半導体基板11の反りをさらに抑制することができる。   Further, the evaluation results of Samples 10 and 12 in which the content of the organic vehicle was changed within the range of 5.0 parts by weight to 10.0 parts by weight while keeping the particle size distribution of the aluminum powder and the content of the glass frit constant. As can be seen from the above, by increasing the content of the organic vehicle, the void ratio of the back electrode layer 14 can be increased, and the warpage of the silicon semiconductor substrate 11 can be further suppressed.

本発明の望ましい実施形態に係る太陽電池1の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the solar cell 1 which concerns on desirable embodiment of this invention. 太陽電池1の製造手順を説明する図である。3 is a diagram for explaining a manufacturing procedure of the solar cell 1. FIG.

符号の説明Explanation of symbols

1 太陽電池
11 シリコン半導体基板
111 n型不純物層
112 p+
14 裏面電極層
DESCRIPTION OF SYMBOLS 1 Solar cell 11 Silicon semiconductor substrate 111 N-type impurity layer 112 p + layer 14 Back surface electrode layer

Claims (3)

板状の光電変換体と前記光電変換体の非受光面に面上のひろがりをもって形成された裏面電極層とを備える太陽電池であって、
前記裏面電極層の断面に観察される、複数の構成粒子が結合したアルミニウムを主成分とする結合粒子の平均寸法が40μm以下であることを特徴とする太陽電池。
A solar cell comprising a plate-like photoelectric converter and a back electrode layer formed on the non-light-receiving surface of the photoelectric converter with a spread on the surface,
The solar cell, wherein an average dimension of bonded particles mainly composed of aluminum to which a plurality of constituent particles are bonded, observed in a cross section of the back electrode layer, is 40 μm or less.
前記裏面電極層の断面に観察される、前記裏面電極のボイド率が25%以上であることを特徴とする請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein a void ratio of the back surface electrode observed in a cross section of the back surface electrode layer is 25% or more. 前記結合粒子を分離して得られる粒子の50%粒径d50が7μm以下であることを特徴とする請求項1又は請求項2に記載の太陽電池。 3. The solar cell according to claim 1, wherein a 50% particle diameter d 50 of particles obtained by separating the binding particles is 7 μm or less.
JP2006349410A 2006-12-26 2006-12-26 Solar cell Expired - Fee Related JP4907333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349410A JP4907333B2 (en) 2006-12-26 2006-12-26 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349410A JP4907333B2 (en) 2006-12-26 2006-12-26 Solar cell

Publications (2)

Publication Number Publication Date
JP2008159996A true JP2008159996A (en) 2008-07-10
JP4907333B2 JP4907333B2 (en) 2012-03-28

Family

ID=39660556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349410A Expired - Fee Related JP4907333B2 (en) 2006-12-26 2006-12-26 Solar cell

Country Status (1)

Country Link
JP (1) JP4907333B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065383B1 (en) 2009-12-25 2011-09-16 삼성에스디아이 주식회사 Electrode Substrate and Photoelectric Conversion Element
US11302831B2 (en) 2018-03-22 2022-04-12 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773731A (en) * 1993-09-06 1995-03-17 Dai Ichi Kogyo Seiyaku Co Ltd Thick film conductive paste composition
JPH10326522A (en) * 1997-03-24 1998-12-08 Murata Mfg Co Ltd Conductive composition for solar battery
JP2001202822A (en) * 2000-01-21 2001-07-27 Murata Mfg Co Ltd Conductive paste
JP2004134775A (en) * 2002-09-19 2004-04-30 Murata Mfg Co Ltd Conductive paste
JP2004235267A (en) * 2003-01-28 2004-08-19 Kyocera Corp Solar cell element
JP2005191107A (en) * 2003-12-24 2005-07-14 Kyocera Corp Manufacturing method for solar cell device
JP2005243500A (en) * 2004-02-27 2005-09-08 Kyocera Chemical Corp Conductive paste, solar cell and manufacturing method of solar cell
JP2007026934A (en) * 2005-07-19 2007-02-01 Kyocera Corp Conductive paste and solar cell element produced using same
JP2007273781A (en) * 2006-03-31 2007-10-18 Kyocera Corp Manufacturing method of conductive paste for photoelectric conversion element, the photoelectric conversion element, and manufacturing method of the photoelectric conversion element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773731A (en) * 1993-09-06 1995-03-17 Dai Ichi Kogyo Seiyaku Co Ltd Thick film conductive paste composition
JPH10326522A (en) * 1997-03-24 1998-12-08 Murata Mfg Co Ltd Conductive composition for solar battery
JP2001202822A (en) * 2000-01-21 2001-07-27 Murata Mfg Co Ltd Conductive paste
JP2004134775A (en) * 2002-09-19 2004-04-30 Murata Mfg Co Ltd Conductive paste
JP2004235267A (en) * 2003-01-28 2004-08-19 Kyocera Corp Solar cell element
JP2005191107A (en) * 2003-12-24 2005-07-14 Kyocera Corp Manufacturing method for solar cell device
JP2005243500A (en) * 2004-02-27 2005-09-08 Kyocera Chemical Corp Conductive paste, solar cell and manufacturing method of solar cell
JP2007026934A (en) * 2005-07-19 2007-02-01 Kyocera Corp Conductive paste and solar cell element produced using same
JP2007273781A (en) * 2006-03-31 2007-10-18 Kyocera Corp Manufacturing method of conductive paste for photoelectric conversion element, the photoelectric conversion element, and manufacturing method of the photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065383B1 (en) 2009-12-25 2011-09-16 삼성에스디아이 주식회사 Electrode Substrate and Photoelectric Conversion Element
US11302831B2 (en) 2018-03-22 2022-04-12 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Also Published As

Publication number Publication date
JP4907333B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP3910072B2 (en) Paste composition and solar cell using the same
TWI363378B (en)
US20110146781A1 (en) Process of forming a grid cathode on the front-side of a silicon wafer
TWI401808B (en) Paste composition, electrode and solar cell including the same
JP5542212B2 (en) Silver paste composition and solar cell using the same
CN101051657A (en) Solar cell and its method of manufacture
JP2009124148A (en) Solar cell
JP2000090734A (en) Conductive paste, and solar battery using it
RU2462788C2 (en) Paste-like composition and solar cell
JP2015050277A (en) Solar cell and process of manufacturing the same
WO2012083273A1 (en) Silicon-free aluminum paste composition for forming an aluminum back electrode with large silicon particles
JP2008306023A (en) Paste composition and solar battery element
JP2008166344A (en) Conductive paste for photoelectric converting element, photoelectric converting element, and method for manufacturing photoelectric converting element
JP4907333B2 (en) Solar cell
CN113169236A (en) Aluminum paste for producing silicon solar cell back contacts with back dielectric passivation
JP2011066353A (en) Aluminum paste for solar cell
US20120160314A1 (en) Process for the formation of a silver back anode of a silicon solar cell
JP2006066748A (en) Semiconductor device, solar battery, and manufacturing methods thereof
JP2008159912A (en) Manufacturing method of conductive paste for photoelectric conversion element, photoelectric conversion element, and manufacturing method thereof
JP2004152827A (en) Solar cell device and its manufacturing method
JP2007234625A (en) Photoelectric conversion element, conductive paste therefor, and method of manufacturing photoelectric conversion element
KR20090089617A (en) Metal paste composition for front electrode of silicon solar cell, method of preparing the same and silicon solar cell comprising the same
JP5289705B2 (en) Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element
JP2004235267A (en) Solar cell element
TWI807034B (en) Manufacturing method of crystalline solar cell unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees