JP2008159985A - Method for manufacturing semiconductor chip - Google Patents

Method for manufacturing semiconductor chip Download PDF

Info

Publication number
JP2008159985A
JP2008159985A JP2006349189A JP2006349189A JP2008159985A JP 2008159985 A JP2008159985 A JP 2008159985A JP 2006349189 A JP2006349189 A JP 2006349189A JP 2006349189 A JP2006349189 A JP 2006349189A JP 2008159985 A JP2008159985 A JP 2008159985A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
resist film
semiconductor
plasma
dicing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349189A
Other languages
Japanese (ja)
Inventor
Kiyoshi Arita
潔 有田
Hiroshi Haji
宏 土師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006349189A priority Critical patent/JP2008159985A/en
Priority to TW96150218A priority patent/TW200830392A/en
Priority to PCT/JP2007/075368 priority patent/WO2008081968A1/en
Publication of JP2008159985A publication Critical patent/JP2008159985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor chip, which reduces the time required for plasma dicing, without causing a semiconductor wafer to break or so while being transferred prior to the plasma dicing, and improves the production efficiency of semiconductor chips. <P>SOLUTION: A resist film 6 is formed on the back surface 1q of a ground semiconductor wafer 1, and then the portions 6a, 1b of margins for cutting 6a, 1b, 1c, 3a along a dicing line 2 are removed by a blade 13 which is the mechanical cutting means. The thickness t of the margin left, for cutting 1c in the thickness direction of the semiconductor wafer 1, is made small to a degree that enables the semiconductor wafer 1 to be transferred without trouble, and then all the margins left for cutting 1c, 3a are removed through plasma etching. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回路形成面に複数の半導体素子が形成された半導体ウェハを分割して複数の半導体チップを得る半導体チップの製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor chip by dividing a semiconductor wafer having a plurality of semiconductor elements formed on a circuit forming surface to obtain a plurality of semiconductor chips.

近年、半導体ウェハを個々の半導体チップに分割する新たな技術として、切断時のダメージが少ないプラズマダイシングが注目されてきている。プラズマダイシングは、半導体ウェハの回路形成面とは反対側の面(裏面)にレジスト膜を形成し、そのレジスト膜に半導体素子同士を区分するダイシングラインに沿った溝(境界溝)を形成した後、その溝が形成されたレジスト膜をマスクとして半導体ウェハにプラズマエッチングを施して半導体ウェハを個々の半導体チップに切り分けるというものである。このプラズマダイシングでは、一般にはフォトリソグラフィー技術を用いてマスクを作成するが、このフォトリソグラフィー技術を用いたマスク形成はコスト高であるため、マスクを用いることなく機械的切断手段によって半導体ウェハの表面に溝を形成し、その溝からプラズマダイシングを進行させるマスクレスタイプのプラズマダイシングが提案されている(特許文献1)。
特開2003−197569号公報
In recent years, plasma dicing with little damage during cutting has attracted attention as a new technique for dividing a semiconductor wafer into individual semiconductor chips. In plasma dicing, a resist film is formed on the surface (back surface) opposite to the circuit forming surface of the semiconductor wafer, and a groove (boundary groove) along a dicing line for separating semiconductor elements is formed in the resist film. The semiconductor wafer is subjected to plasma etching using the resist film in which the groove is formed as a mask to divide the semiconductor wafer into individual semiconductor chips. In this plasma dicing, a mask is generally formed using a photolithography technique. However, since the mask formation using this photolithography technique is expensive, it is applied to the surface of a semiconductor wafer by a mechanical cutting means without using a mask. Maskless type plasma dicing has been proposed in which grooves are formed and plasma dicing is advanced from the grooves (Patent Document 1).
JP 2003-197569 A

しかしながら、上記特許文献1に示された方法では、プラズマダイシングによるエッチングレートは通常2μm/分程度であるので、溝加工後の切り代領域の厚さが厚すぎるとダイシング工程に要する時間がかかりすぎて生産効率が悪くなるという問題点がある。一方、溝加工後の切り代領域の厚さが薄過ぎると半導体ウェハが破損し易くなり、その後の半導体ウェハの搬送(プラズマエッチングのための真空チャンバ内への搬送等)が困難になるという問題点がある。   However, in the method disclosed in Patent Document 1, since the etching rate by plasma dicing is usually about 2 μm / min, if the thickness of the cutting margin region after the groove processing is too thick, it takes too much time for the dicing process. There is a problem that production efficiency deteriorates. On the other hand, if the thickness of the cutting allowance region after the groove processing is too thin, the semiconductor wafer is likely to be damaged, and the subsequent transport of the semiconductor wafer (such as transport into a vacuum chamber for plasma etching) becomes difficult. There is a point.

そこで本発明は、プラズマダイシング前の搬送時に半導体ウェハを破損等させることなく、プラズマダイシングに要する時間を短縮させて、半導体チップの生産効率を向上させることができる半導体チップの製造方法を提供することを目的とする。   Accordingly, the present invention provides a method for manufacturing a semiconductor chip that can reduce the time required for plasma dicing and improve the production efficiency of the semiconductor chip without damaging the semiconductor wafer during transport before plasma dicing. With the goal.

請求項1に記載の半導体チップの製造方法は、回路形成面に複数の半導体素子が形成された半導体ウェハを、半導体素子同士を区分するダイシングラインに沿って分割して複数の半導体チップを得る半導体チップの製造方法であって、半導体ウェハの回路形成面とは反対側の裏面を研削する裏面研削工程と、研削された半導体ウェハの裏面にレジスト膜を形成するレジスト膜形成工程と、ダイシングラインに沿ったレジスト膜の厚さ方向の切り代領域の全部及び半導体ウェハの厚さ方向の切り代領域のレジスト膜側の一部を機械的切断手段によって除去する溝加工工程と、レジスト膜をマスクとして半導体ウェハにプラズマエッチングを施し、ダイシングラインに沿った半導体ウェハの厚さ方向の残りの切り代領域の全部を除去するプラズマダイシング工程と、プラズマダイシング工程の後、半導体ウェハからレジスト膜を除去するレジスト膜除去工程とを含む。   The semiconductor chip manufacturing method according to claim 1, wherein a semiconductor wafer in which a plurality of semiconductor elements are formed on a circuit forming surface is divided along a dicing line that separates the semiconductor elements to obtain a plurality of semiconductor chips. A chip manufacturing method comprising: a back grinding process for grinding a back surface opposite to a circuit forming surface of a semiconductor wafer; a resist film forming process for forming a resist film on the ground semiconductor wafer; and a dicing line A groove processing step for removing all of the cut margin region in the resist film thickness direction along the resist film and a part of the cut margin region in the thickness direction of the semiconductor wafer on the resist film side by a mechanical cutting means, and using the resist film as a mask Plasma that performs plasma etching on a semiconductor wafer and removes all remaining cutting margin areas in the thickness direction of the semiconductor wafer along the dicing line And Ishingu step, after the plasma dicing process, and a resist film removing step of removing the resist film from a semiconductor wafer.

請求項2に記載の半導体チップの製造方法は、請求項1に記載の半導体チップの製造方法において、溝加工工程終了後のダイシングラインに沿った半導体ウェハの厚さ方向の残りの切り代領域の厚さが50〜200μmである。   The method for manufacturing a semiconductor chip according to claim 2 is the method for manufacturing a semiconductor chip according to claim 1, wherein the remaining cutting margin region in the thickness direction of the semiconductor wafer along the dicing line after the grooving step is completed. The thickness is 50 to 200 μm.

本発明では、研削された半導体ウェハの裏面にレジスト膜を形成した後、ダイシングラインに沿った切り代領域の一部を機械的切断手段によって除去し、半導体ウェハの厚さ方向の残りの切り代領域の厚さを半導体ウェハの搬送に支障のない程度にまで薄くした後、残りの切り代領域の全部をプラズマエッチングによって除去する。このため、切り代領域の全てをプラズマエッチングによって除去して半導体ウェハを切り分ける場合よりもダイシングに要する時間を大幅に短縮させることができる。従って本発明によれば、プラズマダイシング前の搬送時に半導体ウェハを破損等させることなく、プラズマダイシングに要する時間を短縮させて、半導体チップの生産効率を大きく向上させることができる。   In the present invention, after forming a resist film on the back surface of the ground semiconductor wafer, a part of the cutting margin region along the dicing line is removed by a mechanical cutting means, and the remaining cutting margin in the thickness direction of the semiconductor wafer is removed. After reducing the thickness of the region to such an extent that does not hinder the transfer of the semiconductor wafer, the entire remaining cutting margin region is removed by plasma etching. For this reason, the time required for dicing can be significantly shortened compared to the case where the entire cutting margin region is removed by plasma etching to cut the semiconductor wafer. Therefore, according to the present invention, the semiconductor wafer production efficiency can be greatly improved by reducing the time required for plasma dicing without damaging the semiconductor wafer during transport before plasma dicing.

また、半導体ウェハにレジスト膜を形成したうえでプラズマエッチングを行うので、プラズマ雰囲気中の分解したラジカルが半導体ウェハの機械的切除部の近傍に集中してエッチングレートが向上し、高速なプラズマエッチングが実現できる。しかも、レジスト膜のレジストパターンは機械的切断手段による切り代除去とともに形成されるので、高価なフォトリソグラフィーは不要である。   In addition, since plasma etching is performed after forming a resist film on the semiconductor wafer, the decomposed radicals in the plasma atmosphere are concentrated in the vicinity of the mechanically cut portion of the semiconductor wafer, improving the etching rate and enabling high-speed plasma etching. realizable. Moreover, since the resist pattern of the resist film is formed together with the removal of the cutting allowance by the mechanical cutting means, expensive photolithography is not necessary.

また、半導体ウェハを半導体チップに切り分ける際の最終的な切断は切断時のダメージの小さいプラズマエッチングによって行われるので、レジスト膜が形成される面とは反対側の面(回路形成面)に脆弱な低誘電率層を有する半導体ウェハを切り分けるときには、本製造方法が特に有効である。   Further, since the final cutting when the semiconductor wafer is cut into semiconductor chips is performed by plasma etching with little damage at the time of cutting, it is vulnerable to a surface (circuit forming surface) opposite to the surface on which the resist film is formed. This manufacturing method is particularly effective when cutting a semiconductor wafer having a low dielectric constant layer.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態において使用するブレード切断装置の斜視図、図2は本発明の一実施の形態において使用するプラズマ処理装置の断面図、図3は本発明の一実施の形態における半導体チップの製造方法の工程手順を示すフローチャート、図4、図5及び図6は本発明の一実施の形態における半導体チップの製造方法の工程説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 is a perspective view of a blade cutting device used in an embodiment of the present invention, FIG. 2 is a cross-sectional view of a plasma processing apparatus used in an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4, FIG. 5 and FIG. 6 are process explanatory views of the semiconductor chip manufacturing method according to the embodiment of the present invention.

先ず、図1及び図2を用いて本発明の一実施の形態において使用するブレード切断装置10及びプラズマ処理装置30の構成について説明する。   First, the configuration of the blade cutting apparatus 10 and the plasma processing apparatus 30 used in the embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1において、ブレード切断装置10は加工対象である半導体ウェハ1を水平姿勢に保持するウェハ保持部11、ウェハ保持部11の上方に移動自在に設けられた移動プレート12、移動プレート12に固定されてブレード13を水平な回転軸(回転軸の延びる方向をX軸とする)まわりに回転自在に保持するブレード保持部14、移動プレート12に固定されたカメラ15のほか、移動プレート12を移動させるブレード移動機構16、ブレード13の回転駆動を行うブレード駆動機構17、ウェハ保持部11を移動(回転を含む)させるウェハ移動機構18、これらの機構16,17,18の作動制御を行う制御部19、カメラ15の撮像画像から半導体ウェハ1の位置認識を行う認識部20、制御部19に操作信号・入力信号を与える操作・入力部21、制御部19と繋がるワークデータ記憶部22等を有して成る。   In FIG. 1, a blade cutting device 10 is fixed to a wafer holding unit 11 that holds a semiconductor wafer 1 to be processed in a horizontal posture, a moving plate 12 that is movably provided above the wafer holding unit 11, and a moving plate 12. In addition to the blade holder 14 that holds the blade 13 around a horizontal rotation axis (the X axis is the direction in which the rotation axis extends), the camera 15 that is fixed to the moving plate 12, the moving plate 12 is moved. A blade moving mechanism 16, a blade driving mechanism 17 that rotates the blade 13, a wafer moving mechanism 18 that moves (including rotation) the wafer holding unit 11, and a control unit 19 that controls the operation of these mechanisms 16, 17, 18. An operation signal / input signal is given to the recognition unit 20 for recognizing the position of the semiconductor wafer 1 from the captured image of the camera 15 and the control unit 19. Comprising a work-input unit 21, such as a work data storage unit 22 connected to the control unit 19.

ウェハ保持部11は上面に半導体ウェハ1を固定保持する真空チャック等の固定保持具を有しており、半導体ウェハ1はこの固定保持具によりブレード13による溝加工が行われる面を上に向けて固定保持される。ブレード移動機構16は制御部19より制御されて移動プレート12をX軸方向及びZ軸方向(上下方向)へ移動させ、移動プレート12に固定されたブレード保持部14及びカメラ15を半導体ウェハ1の上方において移動させる。ブレード駆動機構17は制御部19より制御されてブレード13を回転軸まわりに回転駆動し、ウェハ移動機構18は制御部19より制御されてウェハ保持部11をY軸方向(X軸と直交する水平面内方向)に移動及びZ軸と平行な上下回転軸まわりに回転させる。カメラ15は直下に位置する半導体ウェハ1を赤外光により撮像する。認識部20はカ
メラ15の撮像画像から半導体ウェハ1の位置認識を行い、その結果得られた半導体ウェハ1の位置情報を制御部19へ送信する。
The wafer holding unit 11 has a fixed holding tool such as a vacuum chuck for fixing and holding the semiconductor wafer 1 on the upper surface, and the semiconductor wafer 1 faces the surface on which the groove processing by the blade 13 is performed by the fixed holding tool upward. It is held fixed. The blade moving mechanism 16 is controlled by the control unit 19 to move the moving plate 12 in the X-axis direction and the Z-axis direction (vertical direction), and the blade holding unit 14 and the camera 15 fixed to the moving plate 12 are moved to the semiconductor wafer 1. Move upward. The blade driving mechanism 17 is controlled by the control unit 19 to rotate the blade 13 around the rotation axis, and the wafer moving mechanism 18 is controlled by the control unit 19 to move the wafer holding unit 11 in the Y-axis direction (horizontal plane orthogonal to the X axis). Move inward) and rotate around a vertical rotation axis parallel to the Z axis. The camera 15 images the semiconductor wafer 1 located immediately below with infrared light. The recognition unit 20 recognizes the position of the semiconductor wafer 1 from the captured image of the camera 15 and transmits the position information of the semiconductor wafer 1 obtained as a result to the control unit 19.

制御部19は、認識部20から送信された半導体ウェハ1の位置情報に基づいて半導体ウェハ1とブレード13との位置関係を把握する。操作・入力部21はオペレータの操作に応じ、各種入力信号を制御部19に与える。ワークデータ記憶部22には半導体ウェハ1を個々の半導体チップに切り分ける際の区分線となる格子状のダイシングライン2のデータが記憶されており、制御部19はこのワークデータ記憶部22に記憶されたダイシングライン2に沿ってブレード13が半導体ウェハ1に対して相対的に移動するようにブレード移動機構16及びウェハ移動機構18の作動制御を行う。   The control unit 19 grasps the positional relationship between the semiconductor wafer 1 and the blade 13 based on the positional information of the semiconductor wafer 1 transmitted from the recognition unit 20. The operation / input unit 21 gives various input signals to the control unit 19 according to the operation of the operator. The work data storage unit 22 stores data of a lattice-shaped dicing line 2 that is a dividing line when the semiconductor wafer 1 is cut into individual semiconductor chips, and the control unit 19 stores the data in the work data storage unit 22. The blade movement mechanism 16 and the wafer movement mechanism 18 are controlled so that the blade 13 moves relative to the semiconductor wafer 1 along the dicing line 2.

図2において、プラズマ処理装置30は真空チャンバ31、真空チャンバ31内に設けられた下部電極32と上部電極33、下部電極32に高周波電圧を印加する高周波電源部34、冷媒を下部電極32内に循環させる冷却ユニット35、上部電極33内から真空チャンバ31の外部に延び、真空チャンバ31の外部において二股に分かれたガス供給路36、二股に分かれたガス供給路36の一方側の分岐路(第1分岐路36aとする)に接続された酸素ガス供給部37、二股に分かれたガス供給路36の他方側の分岐路(第2分岐路36bとする)に接続されたフッ素系ガス供給部38、第1分岐路36a中に介装された第1開閉弁39及び第1流量制御弁40、第2分岐路36b中に介装された第2開閉弁41及び第2流量制御弁42から成っている。   In FIG. 2, the plasma processing apparatus 30 includes a vacuum chamber 31, a lower electrode 32 and an upper electrode 33 provided in the vacuum chamber 31, a high-frequency power supply unit 34 for applying a high-frequency voltage to the lower electrode 32, and a refrigerant in the lower electrode 32. The cooling unit 35 to be circulated, the inside of the upper electrode 33, extends to the outside of the vacuum chamber 31, and is divided into a bifurcated gas supply path 36 and a bifurcated gas supply path 36 on one side of the bifurcated gas supply path 36. An oxygen gas supply unit 37 connected to the first branch path 36a, and a fluorine-based gas supply section 38 connected to the other branch path (referred to as the second branch path 36b) of the bifurcated gas supply path 36. The first on-off valve 39 and the first flow control valve 40 interposed in the first branch path 36a, and the second on-off valve 41 and the second flow control valve 42 interposed in the second branch path 36b. It is made.

真空チャンバ31の内部は半導体ウェハ1に対してプラズマ処理を行うための密閉空間となっている。下部電極32は真空チャンバ31内において半導体ウェハ1の保持面を上にして設けられており、上部電極33はその下面が下部電極32の上面と対向するように設けられている。   The inside of the vacuum chamber 31 is a sealed space for performing plasma processing on the semiconductor wafer 1. The lower electrode 32 is provided in the vacuum chamber 31 with the holding surface of the semiconductor wafer 1 facing upward, and the upper electrode 33 is provided such that the lower surface thereof faces the upper surface of the lower electrode 32.

下部電極32の上面には真空チャックや静電吸引機構等から成るウェハ保持機構(図示せず)と電気絶縁性材料から成るリング状のフレーム32aが設けられており、半導体ウェハ1はプラズマ処理が施される面を上に向け、フレーム32aによって周囲が囲まれるように支持されて、ウェハ保持機構によって下部電極32の上面に固定される。   On the upper surface of the lower electrode 32, a wafer holding mechanism (not shown) composed of a vacuum chuck, an electrostatic suction mechanism and the like and a ring-shaped frame 32a made of an electrically insulating material are provided. The semiconductor wafer 1 is subjected to plasma processing. The surface to be applied is faced up, supported by the frame 32a so as to be surrounded by the frame 32a, and fixed to the upper surface of the lower electrode 32 by the wafer holding mechanism.

酸素ガス供給部37内には酸素ガス(酸素を主成分とする混合ガスであってもよい)が封入されており、その酸素ガスは、第1開閉弁39が開弁されているとき(第2開閉弁41は閉弁される)、第1分岐路36a及びガス供給路36を介して上部電極33に供給される。酸素ガス供給部37から上部電極33に供給される酸素ガスの流量は、第1流量制御弁40の開度調節によって行う。また、フッ素系ガス供給部38内には例えば六弗化硫黄(SF)等のフッ素系ガスが封入されており、そのフッ素系ガスは、第2開閉弁41が開弁されているとき(第1開閉弁39は閉弁される)、第2分岐路36b及びガス供給路36を介して上部電極33に供給される。フッ素系ガス供給部38から上部電極33に供給されるフッ素系ガスの流量は、第2流量制御弁42の開度調節によって行う。 An oxygen gas (may be a mixed gas containing oxygen as a main component) is sealed in the oxygen gas supply unit 37, and the oxygen gas is supplied when the first on-off valve 39 is opened (first 2 on-off valve 41 is closed), and is supplied to upper electrode 33 via first branch path 36a and gas supply path 36. The flow rate of the oxygen gas supplied from the oxygen gas supply unit 37 to the upper electrode 33 is adjusted by adjusting the opening of the first flow control valve 40. Further, a fluorine-based gas such as sulfur hexafluoride (SF 6 ) is sealed in the fluorine-based gas supply unit 38, and the fluorine-based gas is used when the second on-off valve 41 is opened ( The first on-off valve 39 is closed), and is supplied to the upper electrode 33 via the second branch path 36 b and the gas supply path 36. The flow rate of the fluorine-based gas supplied from the fluorine-based gas supply unit 38 to the upper electrode 33 is adjusted by adjusting the opening of the second flow rate control valve 42.

上部電極33の下面には平板状の多孔質プレート33aが設けられており、ガス供給路36を介して供給された酸素ガスやフッ素系ガスは、この多孔質プレート33aを介して下部電極32の上面に均一に吹き付けられる。   A flat plate-like porous plate 33a is provided on the lower surface of the upper electrode 33, and oxygen gas and fluorine-based gas supplied through the gas supply path 36 are supplied to the lower electrode 32 through the porous plate 33a. The top surface is evenly sprayed.

次に、図3のフローチャート及び図4、図5、図6の工程説明図を参照して半導体チップの製造方法を説明する。半導体ウェハ1の回路形成面1pには低誘電率層3が設けられており、回路形成面1pには低誘電率層3を絶縁層として複数の半導体素子4が形成されている(図4(a))。   Next, a method for manufacturing a semiconductor chip will be described with reference to the flowchart in FIG. 3 and the process explanatory diagrams in FIGS. 4, 5, and 6. A low dielectric constant layer 3 is provided on the circuit formation surface 1p of the semiconductor wafer 1, and a plurality of semiconductor elements 4 are formed on the circuit formation surface 1p using the low dielectric constant layer 3 as an insulating layer (FIG. 4 ( a)).

このように、回路形成面1pに複数の半導体素子4が形成された半導体ウェハ1を、半導体素子4同士を区分するダイシングライン2に沿って分割して複数の半導体チップ1′(図6(d))を得るには、先ず図4(b)に示すように、半導体ウェハ1の回路形成面1pに粘着質のシート状の保護テープ(例えばUVテープ)5を貼り付ける(図3に示す保護テープ貼付工程S1)。   In this way, the semiconductor wafer 1 on which the plurality of semiconductor elements 4 are formed on the circuit forming surface 1p is divided along the dicing line 2 that separates the semiconductor elements 4 from each other, and a plurality of semiconductor chips 1 ′ (FIG. 6 (d) 4), first, as shown in FIG. 4B, an adhesive sheet-like protective tape (for example, UV tape) 5 is attached to the circuit forming surface 1p of the semiconductor wafer 1 (the protection shown in FIG. 3). Tape application process S1).

保護テープ貼付工程S1が終了したら、図4(c)に示すように、裏面研削装置50を用いて半導体ウェハ1の回路形成面1pとは反対側の裏面1qを研削する(図3に示す裏面研削工程S2)。   When the protective tape sticking step S1 is completed, as shown in FIG. 4C, the back surface 1q opposite to the circuit forming surface 1p of the semiconductor wafer 1 is ground using the back surface grinding device 50 (the back surface shown in FIG. 3). Grinding step S2).

裏面研削装置50は回転テーブル51とこの回転テーブル51の上方に設けられた回転砥石52から成り、回転テーブル51の上面には半導体ウェハ1が裏面1qを上方に向けて載置される。回転テーブル51に半導体ウェハ1が載置されたら、回転砥石52を半導体ウェハ1の裏面1qに上方から押し付けるとともに(図4(c)中に示す矢印A)、回転テーブル51と回転砥石52をそれぞれ上下軸まわりに回転させつつ(図4(c)中に示す矢印B,C)、回転砥石52を水平面内で揺動させる(図4(c)中に示す矢印D)。これにより半導体ウェハ1の裏面1qは研削され、半導体ウェハ1は600〜150μm程度の厚さにまで薄化される(図4(d))。なお、裏面研削後の半導体ウェハ1の裏面1qには1μm程度の深さのダメージ層(単結晶ではなくなっている層)ができるので、裏面研削装置50から取り外した半導体ウェハ1の裏面1qにポリッシングやプラズマエッチングを施してこのダメージ層を除去するようにする。   The back surface grinding device 50 includes a rotary table 51 and a rotary grindstone 52 provided above the rotary table 51, and the semiconductor wafer 1 is placed on the upper surface of the rotary table 51 with the back surface 1 q facing upward. When the semiconductor wafer 1 is placed on the rotary table 51, the rotary grindstone 52 is pressed against the back surface 1q of the semiconductor wafer 1 from above (arrow A shown in FIG. 4C), and the rotary table 51 and the rotary grindstone 52 are respectively moved. While rotating around the vertical axis (arrows B and C shown in FIG. 4C), the rotating grindstone 52 is swung in a horizontal plane (arrow D shown in FIG. 4C). Thereby, the back surface 1q of the semiconductor wafer 1 is ground, and the semiconductor wafer 1 is thinned to a thickness of about 600 to 150 μm (FIG. 4D). Since a damaged layer (a layer that is not a single crystal) having a depth of about 1 μm is formed on the back surface 1q of the semiconductor wafer 1 after the back surface grinding, polishing is performed on the back surface 1q of the semiconductor wafer 1 removed from the back surface grinding apparatus 50. The damaged layer is removed by plasma etching.

裏面研削工程S2が終了したら、図5(a)に示すように、半導体ウェハ1の裏面1qに感光性のレジスト膜6を形成する(図3に示すレジスト膜形成工程S3)。このレジスト膜6は、後に行うプラズマダイシング工程S6においてマスクとして機能するものである。   When the back surface grinding step S2 is completed, as shown in FIG. 5A, a photosensitive resist film 6 is formed on the back surface 1q of the semiconductor wafer 1 (resist film forming step S3 shown in FIG. 3). This resist film 6 functions as a mask in a plasma dicing step S6 to be performed later.

レジスト膜形成工程S3が終了したら、半導体ウェハ1をブレード切断装置10のウェハ保持部11に設置する。このとき半導体ウェハ1は、レジスト膜6が形成された裏面1qが上を向くようにする。そして、図5(b),(c)に示すように、ダイシングライン2に沿ったレジスト膜6の厚さ方向の切り代領域6aの全部と、ダイシングライン2に沿った半導体ウェハ1の厚さ方向の切り代領域1aのレジスト膜6側の一部1bを回転させたブレード13によって研削して除去する(図3に示す溝加工工程S4)。これにより半導体ウェハ1は、ダイシングライン2に沿った切り代領域1aのうち、低誘電率層3側に残った切り代領域1cによって半導体ウェハ1の面内方向に繋がった状態となる。   When the resist film forming step S3 is completed, the semiconductor wafer 1 is set on the wafer holding unit 11 of the blade cutting device 10. At this time, the semiconductor wafer 1 is set so that the back surface 1q on which the resist film 6 is formed faces upward. Then, as shown in FIGS. 5B and 5C, the entire cutting margin region 6 a in the thickness direction of the resist film 6 along the dicing line 2 and the thickness of the semiconductor wafer 1 along the dicing line 2. A portion 1b on the resist film 6 side of the direction margin region 1a is removed by grinding with the rotated blade 13 (groove processing step S4 shown in FIG. 3). As a result, the semiconductor wafer 1 is connected in the in-plane direction of the semiconductor wafer 1 by the cutting margin region 1c remaining on the low dielectric constant layer 3 side in the cutting margin region 1a along the dicing line 2.

ここで、前述のようにワークデータ記憶部22にはダイシングライン2のデータが記憶されており、制御部19はこのワークデータ記憶部22に記憶されたダイシングライン2のデータ及びカメラ15の撮像によって得られる半導体ウェハ1の位置に基づいて、移動プレート12及びウェハ保持部11を(すなわちブレード13及び半導体ウェハ1を)移動させる。回転させたブレード13を半導体ウェハ1に接触させた状態でウェハ保持部11をY軸方向に移動させることによってY軸に平行な1つのダイシングライン2に沿った溝加工を行うことができるので、この溝加工を、移動プレート12のX軸方向へのステップ状の移動と、ウェハ保持部11をZ軸まわりに90度回転させる移動とを組み合わせることにより、格子状に配置された全てのダイシングライン2に沿った溝加工を行うことができる。   Here, as described above, the data of the dicing line 2 is stored in the work data storage unit 22, and the control unit 19 uses the data of the dicing line 2 stored in the work data storage unit 22 and the imaging of the camera 15. Based on the position of the obtained semiconductor wafer 1, the moving plate 12 and the wafer holding part 11 (namely, the blade 13 and the semiconductor wafer 1) are moved. Since the wafer holding unit 11 is moved in the Y-axis direction while the rotated blade 13 is in contact with the semiconductor wafer 1, groove processing along one dicing line 2 parallel to the Y-axis can be performed. All the dicing lines arranged in a grid pattern by combining this groove processing with a step-like movement of the moving plate 12 in the X-axis direction and a movement of rotating the wafer holder 11 about 90 degrees around the Z-axis. The groove processing along 2 can be performed.

上記溝加工工程S4では、ダイシングライン2に沿った半導体ウェハ1の厚さ方向の残りの切り代領域1cの厚さt(図5(c)参照)が50〜200μm程度になるようにする。50〜200μmという値は、この溝加工工程S4の後、次に行うウェハ搬入工程S
5において半導体ウェハ1を真空チャンバ31に搬入する過程等において支障のない十分な強度を確保し得る値である。この範囲の値よりも厚さが小さいと、搬送中の半導体ウェハ1を破損等させてしまうおそれがあり、この範囲の値よりも厚さが大きいと、後に行うプラズマエッチング(プラズマダイシング工程S6)においてプラズマエッチングに要する時間が長くなってしまう不都合がある。なお、この溝加工工程S4によって、ダイシングライン2に沿ったレジスト膜6が除去されるので、レジスト膜6には後に行うプラズマエッチングで必要となるレジストパターンが形成されたことになる。
In the groove processing step S4, the thickness t (see FIG. 5C) of the remaining cutting margin region 1c in the thickness direction of the semiconductor wafer 1 along the dicing line 2 is set to about 50 to 200 μm. The value of 50 to 200 μm indicates the wafer carrying-in process S to be performed next after the groove processing process S4.
5 is a value that can ensure sufficient strength without any trouble in the process of carrying the semiconductor wafer 1 into the vacuum chamber 31. If the thickness is smaller than the value in this range, the semiconductor wafer 1 being transferred may be damaged. If the thickness is larger than the value in this range, plasma etching performed later (plasma dicing step S6). However, there is a disadvantage that the time required for plasma etching becomes long. In addition, since the resist film 6 along the dicing line 2 is removed by this groove processing step S4, a resist pattern necessary for plasma etching performed later is formed on the resist film 6.

溝加工工程S4が終了したら、半導体ウェハ1をブレード切断装置10のウェハ保持部11から取り外し、プラズマ処理装置30の真空チャンバ31内に搬入して、半導体ウェハ1を下部電極32の上面に固定する(図3におけるウェハ搬入工程S5)。このとき、半導体ウェハ1は、レジスト膜6が形成された裏面1qが上方に向くようにする。   When the grooving step S4 is completed, the semiconductor wafer 1 is removed from the wafer holder 11 of the blade cutting device 10 and carried into the vacuum chamber 31 of the plasma processing apparatus 30 to fix the semiconductor wafer 1 to the upper surface of the lower electrode 32. (Wafer carrying-in process S5 in FIG. 3). At this time, the semiconductor wafer 1 is set so that the back surface 1q on which the resist film 6 is formed faces upward.

ウェハ搬入工程S5が終了したら、レジスト膜6をマスクとして半導体ウェハ1にフッ素系ガスによるプラズマエッチングを施す(図3におけるプラズマダイシング工程S6)。   When the wafer carry-in step S5 is completed, plasma etching with a fluorine-based gas is performed on the semiconductor wafer 1 using the resist film 6 as a mask (plasma dicing step S6 in FIG. 3).

このプラズマダイシング工程S6では、先ず、第1開閉弁39を閉じた状態で第2開閉弁41を開き、フッ素系ガス供給部38から上部電極33へフッ素系ガスを供給させる。これにより上部電極33から多孔質プレート33aを介して半導体ウェハ1の上面にフッ素系ガスが吹き付けられる。この状態で高周波電源部34を駆動して下部電極32に高周波電圧を印加すると、下部電極32と上部電極33の間にフッ素系ガスのプラズマPfが発生する(図6(a))。   In the plasma dicing step S6, first, the second on-off valve 41 is opened with the first on-off valve 39 closed, and the fluorine-based gas is supplied from the fluorine-based gas supply unit 38 to the upper electrode 33. As a result, fluorine gas is blown from the upper electrode 33 onto the upper surface of the semiconductor wafer 1 through the porous plate 33a. When the high frequency power supply 34 is driven in this state and a high frequency voltage is applied to the lower electrode 32, a fluorine-based gas plasma Pf is generated between the lower electrode 32 and the upper electrode 33 (FIG. 6A).

発生したフッ素系ガスのプラズマPfは、溝加工工程S4においてレジスト膜6が除去された部分から半導体ウェハ1をエッチングするので、ダイシングライン2に沿った半導体ウェハ1の厚さ方向の残りの切り代領域(半導体ウェハ1の厚さ方向の切り代領域1c及び低誘電率層3の厚さ方向の切り代領域3a)の全部が除去され、半導体ウェハ1はダイシングライン2に沿って一括して切り分けられてレジスト膜6付きの個々の半導体チップ1′に分割される(図6(b))。なお、このフッ素系ガスのプラズマPfにより半導体ウェハ1のエッチングを行っている間は、冷却ユニット35を駆動して冷媒を下部電極32内に循環させ、プラズマの熱によって半導体ウェハ1が昇温するのを防止するようにする。   The generated fluorine-based gas plasma Pf etches the semiconductor wafer 1 from the portion where the resist film 6 has been removed in the groove processing step S4, so that the remaining cutting allowance in the thickness direction of the semiconductor wafer 1 along the dicing line 2 is obtained. All of the regions (the cutting margin region 1c in the thickness direction of the semiconductor wafer 1 and the cutting margin region 3a in the thickness direction of the low dielectric constant layer 3) are removed, and the semiconductor wafer 1 is collectively cut along the dicing line 2. Then, it is divided into individual semiconductor chips 1 ′ with a resist film 6 (FIG. 6B). During the etching of the semiconductor wafer 1 by the plasma Pf of the fluorine-based gas, the cooling unit 35 is driven to circulate the coolant in the lower electrode 32, and the temperature of the semiconductor wafer 1 is raised by the heat of the plasma. To prevent it.

プラズマダイシング工程S6が終了したら、続いて、真空チャンバ31内に酸素ガスのプラズマPoを発生させて、半導体ウェハ1(切り分けられた各半導体チップ1′が保護テープ5によって繋がった状態のもの)の上面(裏面1q)に残っているレジスト膜6の灰化除去を行う(図3に示すレジスト膜除去工程S7)。   When the plasma dicing step S6 is completed, an oxygen gas plasma Po is subsequently generated in the vacuum chamber 31, and the semiconductor wafer 1 (in a state where the separated semiconductor chips 1 'are connected by the protective tape 5). The resist film 6 remaining on the upper surface (back surface 1q) is removed by ashing (resist film removal step S7 shown in FIG. 3).

これには先ず、プラズマ処理装置30の第2開閉弁41を閉じた状態で第1開閉弁39を開き、酸素ガス供給部37から上部電極33へ酸素ガスを供給させる。これにより上部電極33から多孔質プレート33aを介して半導体ウェハ1の上面に酸素ガスが吹き付けられる。この状態で高周波電源部34を駆動して下部電極32に高周波電圧を印加すると、下部電極32と上部電極33の間に酸素ガスのプラズマPoが発生する(図6(c))。この酸素ガスのプラズマPoは有機物であるレジスト膜6を灰化するので、半導体ウェハ1の(個々の半導体チップ1′の)裏面1qからレジスト膜6が除去される(図6(d))。なお、このレジスト膜除去工程S7において、酸素ガスのプラズマPoによりレジスト膜6の灰化除去を行っている間は、冷却ユニット35を駆動して冷媒を下部電極32内に循環させ、プラズマの熱によって半導体ウェハ1が昇温するのを防止するようにする。   First, the first on-off valve 39 is opened with the second on-off valve 41 of the plasma processing apparatus 30 closed, and oxygen gas is supplied from the oxygen gas supply unit 37 to the upper electrode 33. As a result, oxygen gas is blown from the upper electrode 33 onto the upper surface of the semiconductor wafer 1 through the porous plate 33a. When the high frequency power supply 34 is driven in this state and a high frequency voltage is applied to the lower electrode 32, a plasma Po of oxygen gas is generated between the lower electrode 32 and the upper electrode 33 (FIG. 6C). Since this oxygen gas plasma Po ashes the organic resist film 6, the resist film 6 is removed from the back surface 1 q of the semiconductor wafer 1 (individual semiconductor chip 1 ′) (FIG. 6D). In the resist film removing step S7, while the resist film 6 is incinerated and removed by the plasma Po of oxygen gas, the cooling unit 35 is driven to circulate the refrigerant in the lower electrode 32, and the heat of the plasma. This prevents the temperature of the semiconductor wafer 1 from rising.

レジスト膜6が完全に灰化除去されたら、真空チャンバ31内から半導体ウェハ1(切り分けられた半導体チップ1′がUVテープ3によって繋がった状態のもの)を搬出する(図3に示すウェハ搬出工程S8)。   When the resist film 6 is completely ashed and removed, the semiconductor wafer 1 (with the cut semiconductor chips 1 'connected by the UV tape 3) is unloaded from the vacuum chamber 31 (wafer unloading step shown in FIG. 3). S8).

これにより半導体チップ1′の製造は終了し、半導体ウェハ1を真空チャンバ31から搬出した後、半導体ウェハ1の回路形成面1pに貼り付けられた保護テープ5を引き伸ばすと、切り分けられた半導体チップ1′を互いに引き離した状態にすることができる。そして、保護テープ5がUVテープであれば、その保護テープ5に紫外線を照射すればその粘着力が失われるので、半導体チップ1′はそれぞれ容易に保護テープ5から剥がすことができるようになる。   As a result, the manufacture of the semiconductor chip 1 ′ is completed. After the semiconductor wafer 1 is unloaded from the vacuum chamber 31, when the protective tape 5 attached to the circuit forming surface 1 p of the semiconductor wafer 1 is stretched, the cut semiconductor chip 1 is cut. ′ Can be separated from each other. If the protective tape 5 is a UV tape, the adhesive strength is lost if the protective tape 5 is irradiated with ultraviolet rays, so that the semiconductor chip 1 ′ can be easily peeled off from the protective tape 5.

以上説明したように、本実施の形態における半導体チップの製造方法では、研削された半導体ウェハ1の裏面1qにレジスト膜6を形成した後、ダイシングライン2に沿った切り代領域(6a,1b,1c,3a)の一部(6a,1b)を機械的切断手段であるブレード13によって除去し、半導体ウェハ1の厚さ方向の残りの切り代領域1cの厚さtを半導体ウェハ1の搬送に支障のない程度まで薄くした後、残りの切り代領域(1c,3a)の全部をプラズマエッチングによって除去する。このため、切り代領域の全て(6a,1b,1c,3a)をプラズマエッチングによって除去して半導体ウェハ1を切り分ける場合よりもダイシングに要する時間を大幅に短縮されることができる。従って本実施の形態における半導体チップの製造方法によれば、プラズマダイシング前の搬送時に半導体ウェハ1を破損等させることなく、プラズマダイシングに要する時間を短縮させて、半導体チップ1′の生産効率を大きく向上させることができる。   As described above, in the method of manufacturing a semiconductor chip in the present embodiment, after forming the resist film 6 on the back surface 1q of the ground semiconductor wafer 1, the cutting margin regions (6a, 1b, A part (6a, 1b) of 1c, 3a) is removed by the blade 13 which is a mechanical cutting means, and the thickness t of the remaining cutting margin region 1c in the thickness direction of the semiconductor wafer 1 is transferred to the semiconductor wafer 1. After thinning to the extent that there is no hindrance, the remaining cutting margin regions (1c, 3a) are all removed by plasma etching. For this reason, the time required for dicing can be significantly shortened compared with the case where all of the cutting allowance regions (6a, 1b, 1c, 3a) are removed by plasma etching and the semiconductor wafer 1 is cut. Therefore, according to the semiconductor chip manufacturing method of the present embodiment, the time required for plasma dicing is shortened and the production efficiency of the semiconductor chip 1 ′ is increased without damaging the semiconductor wafer 1 during transport before plasma dicing. Can be improved.

また、半導体ウェハ1にレジスト膜6を形成したうえでプラズマエッチングを行うので、プラズマ雰囲気中の分解したラジカルが半導体ウェハ1の機械的切除部の近傍に集中してエッチングレートが向上し(例えば20〜25μm/分)、高速なプラズマエッチングが実現できる。しかも、レジスト膜6のレジストパターンはブレード13による切り代除去とともに形成されるので、高価なフォトリソグラフィーは不要である。ここで、半導体ウェハ1にレジスト膜6を形成することなく、ダイシングライン2に沿った半導体ウェハ1の表面(裏面1q)の一部をブレード13によって切除し、その後プラズマエッチングを実行するようにしても半導体ウェハ1をダイシングライン2に沿ってダイシングすることは可能であるが(前述の特許文献1)、この場合にはプラズマ雰囲気中の分解したラジカルは半導体ウェハ1のブレード13による切除部の近傍だけでなく、半導体ウェハ1の表面(裏面1q)全体に分散されるため、半導体ウェハ1のエッチングレートは2μm/分と非常に小さくなってしまう。   Further, since the plasma etching is performed after the resist film 6 is formed on the semiconductor wafer 1, the decomposed radicals in the plasma atmosphere are concentrated in the vicinity of the mechanically cut portion of the semiconductor wafer 1 to improve the etching rate (for example, 20 High speed plasma etching can be realized. Moreover, since the resist pattern of the resist film 6 is formed along with the removal of the cutting margin by the blade 13, expensive photolithography is not necessary. Here, without forming the resist film 6 on the semiconductor wafer 1, a part of the front surface (back surface 1q) of the semiconductor wafer 1 along the dicing line 2 is removed by the blade 13, and then plasma etching is performed. Although it is possible to dice the semiconductor wafer 1 along the dicing line 2 (Patent Document 1 described above), in this case, the decomposed radicals in the plasma atmosphere are in the vicinity of the portion cut by the blade 13 of the semiconductor wafer 1. In addition, since it is dispersed over the entire front surface (back surface 1q) of the semiconductor wafer 1, the etching rate of the semiconductor wafer 1 is as extremely small as 2 μm / min.

また、半導体ウェハ1を半導体チップ1′に切り分ける際の最終的な切断は切断時のダメージの小さいプラズマエッチングによって行われるので、本実施の形態に示したように、レジスト膜6が形成される面とは反対側の面(回路形成面1p)に脆弱な低誘電率層3を有する半導体ウェハ1を切り分けるときには、本製造方法が特に有効である。   Further, since the final cutting when the semiconductor wafer 1 is cut into the semiconductor chip 1 ′ is performed by plasma etching with little damage at the time of cutting, the surface on which the resist film 6 is formed as shown in the present embodiment. This manufacturing method is particularly effective when the semiconductor wafer 1 having the fragile low dielectric constant layer 3 on the opposite surface (circuit formation surface 1p) is cut.

プラズマダイシング前の搬送時に半導体ウェハを破損等させることなく、プラズマダイシングに要する時間を短縮させて、半導体チップの生産効率を大きく向上させることができる。   The time required for plasma dicing can be shortened and the production efficiency of semiconductor chips can be greatly improved without damaging the semiconductor wafer during conveyance before plasma dicing.

本発明の一実施の形態において使用するブレード切断装置の斜視図The perspective view of the braid | blade cutting device used in one embodiment of this invention 本発明の一実施の形態において使用するプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus used in one embodiment of this invention 本発明の一実施の形態における半導体チップの製造方法の工程手順を示すフローチャートThe flowchart which shows the process sequence of the manufacturing method of the semiconductor chip in one embodiment of this invention 本発明の一実施の形態における半導体チップの製造方法の工程説明図Process explanatory drawing of the manufacturing method of the semiconductor chip in one embodiment of this invention 本発明の一実施の形態における半導体チップの製造方法の工程説明図Process explanatory drawing of the manufacturing method of the semiconductor chip in one embodiment of this invention 本発明の一実施の形態における半導体チップの製造方法の工程説明図Process explanatory drawing of the manufacturing method of the semiconductor chip in one embodiment of this invention

符号の説明Explanation of symbols

1 半導体ウェハ
1a 半導体ウェハの厚さ方向の切り代領域
1b 半導体ウェハの厚さ方向の切り代領域のレジスト膜側の一部
1c 半導体ウェハの厚さ方向の残りの切り代領域
1p 回路形成面
1q 裏面
1′ 半導体チップ
2 ダイシングライン
4 半導体素子
6 レジスト膜
6a レジスト膜の厚さ方向の切り代領域
13 ブレード(機械的切断手段)
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 1a Cutting allowance area | region of the thickness direction of a semiconductor wafer 1b A part of resist film side of the cutting allowance area | region of the thickness direction of a semiconductor wafer 1c Remaining cutting allowance area | region of the thickness direction of a semiconductor wafer 1p Circuit formation surface 1q Back surface 1 'Semiconductor chip 2 Dicing line 4 Semiconductor element 6 Resist film 6a Cutting margin area in thickness direction of resist film 13 Blade (mechanical cutting means)

Claims (2)

回路形成面に複数の半導体素子が形成された半導体ウェハを、半導体素子同士を区分するダイシングラインに沿って分割して複数の半導体チップを得る半導体チップの製造方法であって、
半導体ウェハの回路形成面とは反対側の裏面を研削する裏面研削工程と、研削された半導体ウェハの裏面にレジスト膜を形成するレジスト膜形成工程と、ダイシングラインに沿ったレジスト膜の厚さ方向の切り代領域の全部及び半導体ウェハの厚さ方向の切り代領域のレジスト膜側の一部を機械的切断手段によって除去する溝加工工程と、レジスト膜をマスクとして半導体ウェハにプラズマエッチングを施し、ダイシングラインに沿った半導体ウェハの厚さ方向の残りの切り代領域の全部を除去するプラズマダイシング工程と、プラズマダイシング工程の後、半導体ウェハからレジスト膜を除去するレジスト膜除去工程とを含むことを特徴とする半導体チップの製造方法。
A semiconductor chip manufacturing method for obtaining a plurality of semiconductor chips by dividing a semiconductor wafer in which a plurality of semiconductor elements are formed on a circuit forming surface along a dicing line that separates the semiconductor elements,
A back surface grinding process for grinding the back surface of the semiconductor wafer opposite to the circuit forming surface, a resist film forming process for forming a resist film on the back surface of the ground semiconductor wafer, and a resist film thickness direction along the dicing line A groove processing step of removing all of the cutting margin region and a portion of the cutting margin region in the thickness direction of the semiconductor wafer on the resist film side by mechanical cutting means, and performing plasma etching on the semiconductor wafer using the resist film as a mask, A plasma dicing process for removing all remaining cutting margin regions in the thickness direction of the semiconductor wafer along the dicing line, and a resist film removing process for removing the resist film from the semiconductor wafer after the plasma dicing process. A method of manufacturing a semiconductor chip.
溝加工工程終了後のダイシングラインに沿った半導体ウェハの厚さ方向の残りの切り代領域の厚さが50〜200μmであることを特徴とする請求項1に記載の半導体チップの製造方法。   2. The method of manufacturing a semiconductor chip according to claim 1, wherein the thickness of the remaining cutting allowance region in the thickness direction of the semiconductor wafer along the dicing line after completion of the groove processing step is 50 to 200 μm.
JP2006349189A 2006-12-26 2006-12-26 Method for manufacturing semiconductor chip Pending JP2008159985A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006349189A JP2008159985A (en) 2006-12-26 2006-12-26 Method for manufacturing semiconductor chip
TW96150218A TW200830392A (en) 2006-12-26 2007-12-26 Manufacturing method of semiconductor chip
PCT/JP2007/075368 WO2008081968A1 (en) 2006-12-26 2007-12-26 Manufacturing method of semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349189A JP2008159985A (en) 2006-12-26 2006-12-26 Method for manufacturing semiconductor chip

Publications (1)

Publication Number Publication Date
JP2008159985A true JP2008159985A (en) 2008-07-10

Family

ID=39232802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349189A Pending JP2008159985A (en) 2006-12-26 2006-12-26 Method for manufacturing semiconductor chip

Country Status (3)

Country Link
JP (1) JP2008159985A (en)
TW (1) TW200830392A (en)
WO (1) WO2008081968A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136573A2 (en) 2008-06-19 2009-12-23 Yamaha Corporation Loudspeaker apparatus and speaker system
KR101094450B1 (en) 2009-06-05 2011-12-15 에스티에스반도체통신 주식회사 Dicing method using a plasma etching
KR20150127538A (en) * 2014-05-07 2015-11-17 가부시기가이샤 디스코 Wafer processing method
JP2016163043A (en) * 2015-02-27 2016-09-05 株式会社ディスコ Wafer dividing method
JP2016174146A (en) * 2015-03-16 2016-09-29 株式会社ディスコ Method of dividing wafer
JP2018067645A (en) * 2016-10-20 2018-04-26 株式会社ディスコ Wafer processing method
CN108682648A (en) * 2015-01-20 2018-10-19 英飞凌科技股份有限公司 The method and semiconductor chip of cutting crystal wafer
WO2019022278A1 (en) * 2017-07-28 2019-01-31 (주) 예스티 Wafer dicing method and wafer dicing system
JP2019079884A (en) * 2017-10-23 2019-05-23 株式会社ディスコ Wafer processing method
JP2020013965A (en) * 2018-07-20 2020-01-23 株式会社ディスコ Wafer processing method
JP2020017629A (en) * 2018-07-25 2020-01-30 株式会社ディスコ Wafer processing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781310B2 (en) 2007-08-07 2010-08-24 Semiconductor Components Industries, Llc Semiconductor die singulation method
US7989319B2 (en) 2007-08-07 2011-08-02 Semiconductor Components Industries, Llc Semiconductor die singulation method
US8012857B2 (en) 2007-08-07 2011-09-06 Semiconductor Components Industries, Llc Semiconductor die singulation method
US8859396B2 (en) 2007-08-07 2014-10-14 Semiconductor Components Industries, Llc Semiconductor die singulation method
US9165833B2 (en) 2010-01-18 2015-10-20 Semiconductor Components Industries, Llc Method of forming a semiconductor die
US8384231B2 (en) 2010-01-18 2013-02-26 Semiconductor Components Industries, Llc Method of forming a semiconductor die
US9299664B2 (en) 2010-01-18 2016-03-29 Semiconductor Components Industries, Llc Method of forming an EM protected semiconductor die
CN102760699B (en) * 2011-04-27 2014-11-05 无锡华润安盛科技有限公司 Method of cutting wafer used for preparation of sensor chip into grains
US9136173B2 (en) 2012-11-07 2015-09-15 Semiconductor Components Industries, Llc Singulation method for semiconductor die having a layer of material along one major surface
US9484260B2 (en) 2012-11-07 2016-11-01 Semiconductor Components Industries, Llc Heated carrier substrate semiconductor die singulation method
US9418894B2 (en) 2014-03-21 2016-08-16 Semiconductor Components Industries, Llc Electronic die singulation method
US9385041B2 (en) 2014-08-26 2016-07-05 Semiconductor Components Industries, Llc Method for insulating singulated electronic die
DE102015216619B4 (en) 2015-08-31 2017-08-10 Disco Corporation Method for processing a wafer
US10366923B2 (en) 2016-06-02 2019-07-30 Semiconductor Components Industries, Llc Method of separating electronic devices having a back layer and apparatus
US10373869B2 (en) 2017-05-24 2019-08-06 Semiconductor Components Industries, Llc Method of separating a back layer on a substrate using exposure to reduced temperature and related apparatus
US10818551B2 (en) 2019-01-09 2020-10-27 Semiconductor Components Industries, Llc Plasma die singulation systems and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108428A (en) * 2004-10-06 2006-04-20 Disco Abrasive Syst Ltd Wafer dividing method
JP2006253402A (en) * 2005-03-10 2006-09-21 Nec Electronics Corp Manufacturing method of semiconductor device
JP2006294913A (en) * 2005-04-12 2006-10-26 Disco Abrasive Syst Ltd Cutting method of wafer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387007B2 (en) * 1999-10-26 2009-12-16 株式会社ディスコ Method for dividing semiconductor wafer
GB2420443B (en) * 2004-11-01 2009-09-16 Xsil Technology Ltd Increasing die strength by etching during or after dicing
JP2006210401A (en) * 2005-01-25 2006-08-10 Disco Abrasive Syst Ltd Method for dividing wafer
JP4288252B2 (en) * 2005-04-19 2009-07-01 パナソニック株式会社 Manufacturing method of semiconductor chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108428A (en) * 2004-10-06 2006-04-20 Disco Abrasive Syst Ltd Wafer dividing method
JP2006253402A (en) * 2005-03-10 2006-09-21 Nec Electronics Corp Manufacturing method of semiconductor device
JP2006294913A (en) * 2005-04-12 2006-10-26 Disco Abrasive Syst Ltd Cutting method of wafer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136573A2 (en) 2008-06-19 2009-12-23 Yamaha Corporation Loudspeaker apparatus and speaker system
KR101094450B1 (en) 2009-06-05 2011-12-15 에스티에스반도체통신 주식회사 Dicing method using a plasma etching
KR102251260B1 (en) * 2014-05-07 2021-05-11 가부시기가이샤 디스코 Wafer processing method
KR20150127538A (en) * 2014-05-07 2015-11-17 가부시기가이샤 디스코 Wafer processing method
JP2015213135A (en) * 2014-05-07 2015-11-26 株式会社ディスコ Method of processing wafer
CN108682648A (en) * 2015-01-20 2018-10-19 英飞凌科技股份有限公司 The method and semiconductor chip of cutting crystal wafer
CN108682648B (en) * 2015-01-20 2022-10-28 英飞凌科技股份有限公司 Method for cutting wafer and semiconductor chip
JP2016163043A (en) * 2015-02-27 2016-09-05 株式会社ディスコ Wafer dividing method
KR101798752B1 (en) 2015-02-27 2017-11-16 가부시기가이샤 디스코 Wafer dividing method
DE102015002542B4 (en) 2015-02-27 2023-07-20 Disco Corporation wafer division process
US10032669B2 (en) 2015-02-27 2018-07-24 Disco Corporation Wafer dividing method
JP2016174146A (en) * 2015-03-16 2016-09-29 株式会社ディスコ Method of dividing wafer
US10784164B2 (en) 2015-03-16 2020-09-22 Disco Corporation Method of dividing wafer
DE102015204698B4 (en) 2015-03-16 2023-07-20 Disco Corporation Process for dividing a wafer
JP2018067645A (en) * 2016-10-20 2018-04-26 株式会社ディスコ Wafer processing method
WO2019022278A1 (en) * 2017-07-28 2019-01-31 (주) 예스티 Wafer dicing method and wafer dicing system
JP2019079884A (en) * 2017-10-23 2019-05-23 株式会社ディスコ Wafer processing method
JP2020013965A (en) * 2018-07-20 2020-01-23 株式会社ディスコ Wafer processing method
JP7083716B2 (en) 2018-07-20 2022-06-13 株式会社ディスコ Wafer processing method
JP2020017629A (en) * 2018-07-25 2020-01-30 株式会社ディスコ Wafer processing method

Also Published As

Publication number Publication date
TW200830392A (en) 2008-07-16
WO2008081968A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP2008159985A (en) Method for manufacturing semiconductor chip
JP5023614B2 (en) Semiconductor chip manufacturing method and semiconductor wafer processing method
JP4018096B2 (en) Semiconductor wafer dividing method and semiconductor element manufacturing method
US9236305B2 (en) Wafer dicing with etch chamber shield ring for film frame wafer applications
JP4840174B2 (en) Manufacturing method of semiconductor chip
CN106463392B (en) Cooling pedestal for the cutting-up during plasma cutting-up with heat management
JP4544231B2 (en) Manufacturing method of semiconductor chip
TWI282118B (en) Dividing method of semiconductor wafer
JP6770858B2 (en) Dividing method
US10083867B2 (en) Method of processing a wafer
JP2015523731A (en) Laser / plasma etching wafer dicing with double-sided UV-reactive adhesive film
TW201719746A (en) Wafer dividing method
TW201834037A (en) Wafer processing method
JP6987448B2 (en) Manufacturing method for small diameter wafers
JP2009176793A (en) Method of dividing wafer
JP2018046208A (en) Wafer processing method
US9130030B1 (en) Baking tool for improved wafer coating process
JP6903375B2 (en) Device chip manufacturing method
CN109979879B (en) Semiconductor chip manufacturing method
JP6796983B2 (en) Mask forming method and wafer processing method
JP4997955B2 (en) Manufacturing method of semiconductor chip
JP2024048066A (en) Device wafer processing method
JP2023172142A (en) Chip manufacturing method
JP2020061459A (en) Wafer processing method
TW202414548A (en) Device wafer processing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090206

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Effective date: 20110427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110906

Free format text: JAPANESE INTERMEDIATE CODE: A02