JP2008159894A - 発光素子及び照明装置 - Google Patents

発光素子及び照明装置 Download PDF

Info

Publication number
JP2008159894A
JP2008159894A JP2006347752A JP2006347752A JP2008159894A JP 2008159894 A JP2008159894 A JP 2008159894A JP 2006347752 A JP2006347752 A JP 2006347752A JP 2006347752 A JP2006347752 A JP 2006347752A JP 2008159894 A JP2008159894 A JP 2008159894A
Authority
JP
Japan
Prior art keywords
light
layer
semiconductor layer
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006347752A
Other languages
English (en)
Inventor
Yoshiyuki Kawaguchi
義之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006347752A priority Critical patent/JP2008159894A/ja
Publication of JP2008159894A publication Critical patent/JP2008159894A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】 光取り出し効率を飛躍的に向上させることが可能な発光素子及び照明装置を提供すること。
【解決手段】 発光素子は、n側電極としての導電性基板10上に発光層7bを含む半導体層7を有し、半導体層7の導電性基板10と反対側の主面に、p側電極としての複数の開口部11を有する透明導電層8が形成されており、導電性基板10は開口部11と対向する部分を残してその他の部分が除去されている。
【選択図】 図4

Description

本発明は、窒化物ガリウム系化合物半導体を利用した発光ダイオード(LED:Light Emitting Diode)等の発光素子に関するものである。
近年、紫外光領域から青色光までの光を発光する発光素子として、AlGaIn1−x−yN(0≦x≦1,0≦y≦1,0≦x+y≦1)で表される窒化ガリウム系化合物半導体や窒化物系半導体を用いた発光素子が注目されている。
このような窒化ガリウム系化合物半導体を用いた発光素子は、蛍光体と組み合わせることにより白色の光を発光することが可能であり、また、省エネルギーかつ長寿命であることから、白熱電球や蛍光ランプの代替品として有望視されると共に実用化が始まっている。しかしながら、窒化ガリウム系化合物半導体を用いた発光素子の発光効率は、蛍光灯に比較すると低いため、更なる高効率化が求められており、そのための様々な研究が行われている。
ところで、発光素子の発光効率である外部量子効率は、発光層で電気エネルギーが光エネルギーに変換される割合を示す内部量子効率と、変換された光エネルギーが外部へ放出される割合を示す光取り出し効率との積によって決定される。
内部量子効率は、発光素子を形成する窒化ガリウム系化合物半導体層の結晶性に大きく影響を受ける。内部量子効率を向上させる方法として、サファイア等から成る基板上に非晶質または多結晶のAlN系またはAlGaN系の材料のバッファ層を形成し、このバッファ層上に窒化ガリウム系化合物半導体層を成長させることにより、基板と窒化ガリウム系化合物半導体層との格子不整合を緩和させ、窒化ガリウム系化合物半導体層の結晶性を向上させるという方法が、知られている(例えば、下記の特許文献1を参照)。
一方、光取り出し効率の向上に関しても種々の技術が公開されており、発光素子または電極の表面に凹凸構造を形成することによって外部との屈折率差を緩和し、内部全反射を抑制する方法(例えば、特許文献2,3を参照)や、電極を櫛形にパターン化したり、複数の開口部を設けて網目状とすることによって、電極での光吸収を低減するという方法(例えば、特許文献4,5を参照)がある。
従来の発光素子の一例の断面図を図1に示す。基板1上にn型窒化ガリウム系化合物半導体層2a、窒化ガリウム系化合物半導体層からなる発光層2b及びp型窒化ガリウム系化合物半導体層2cより成る半導体層2が形成されていると共に、n型窒化ガリウム系化合物半導体層2a上とp型窒化ガリウム系化合物半導体層2c上に、それぞれn型電極3及びp型電極4が形成されている。
p型電極4としては発光した光に対して透明な導電層が用いられ、p型電極4は、p型窒化ガリウム系化合物半導体層2c上に電流を均一に拡散させるために、p型窒化ガリウム系化合物半導体層2cの上面の全面に形成される。n型電極3及びp型電極4の一部には、外部から電流を注入するために、それぞれn型パッド電極5、p型パッド電極6が設けられており、ワイヤーボンディングによってパッケージと接続される。
窒化ガリウム系化合物半導体層の形成に使用される基板1としては、一般的に広く使用されている絶縁性のサファイアから成る基板の他に、導電性の炭化ケイ素(SiC)や窒化ガリウム(GaN)等から成る基板も用いられる。導電性の基板を用いる場合、n型電極3の代わりに基板1自体をn型電極として利用することも可能である。
特開平2−229476号公報 特開2005−259970号公報 特開2006−128227号公報 特開2003−133589号公報 特開2004−55646号公報
図1の従来の発光素子においては、サファイアから成る基板1の屈折率が、発光層2bで発光した光の波長を400nmとした場合に約1.78であるのに対し、窒化ガリウム系化合物半導体の屈折率が約2.55と高い。そのため、発光層2bで発光した光のうち、サファイア製の基板1への入射角が臨界角θの約44°(θ=arcsin(1.78/2.55))を超える角度で入射する光は、各窒化ガリウム系化合物半導体層を積層してなる半導体層2の内部で全反射を繰り返す。従って、光は半導体層2で全反射を繰り返す過程で大部分が半導体層2に吸収され、残った光が半導体層2の端部から外部へ向かって放射されるため、発光量が低下するという問題点がある。
さらに、半導体層2と外部との境界より外側が空気(屈折率≒1)である場合、これらの媒質間の屈折率差がさらに大きくなり、境界で半導体層2側に反射される光の量が一層増えるため、光取り出し効率はさらに悪くなる。
上記の問題点を解決するために、特許文献2の方法を用いて発光素子の光取り出し効率を向上させる場合、p型窒化ガリウム系化合物半導体層の一方主面に形成された凹凸構造により、p型窒化ガリウム系化合物半導体層とp型電極としての透明導電層との界面における反射を抑制することによって光取り出し効率を向上させているが、透明導電層と空気の屈折率差が大きいため、これらの界面で反射する光の量が多くなる。その結果、反射した光は再び透明導電層内あるいは半導体層内に戻って吸収されるため、光取り出し効率を高めるには限界がある。
また、特許文献3の方法では、p型電極としての透明導電層上に凹凸構造を形成することによって、透明導電層と空気との界面での反射を抑制し、光取り出し効率を改善しているが、透明導電層に凹凸構造を形成する場合、凹凸構造を形成する分だけ透明導電層の厚みが増えるため、外部へ取り出される前に透明導電層内で吸収される光の量が多くなるという問題点がある。
また、特許文献4,5の方法では、p型電極としての透明導電層を細分化し、分岐状または網目状とすることによって、透明導電層内で吸収される光の量を低減し、光取り出し効率を改善しているが、透明導電層から半導体層へ注入された電流は半導体層全面に十分に広がらず、透明導電層の直下に集中するため、発光層では光吸収のある透明導電層の直下に発光のピークを有した発光分布になる。従って、発光した大部分の光は直上の透明導電層による光吸収を受けることになるため、透明導電層の細分化により形成された開口部による光取り出し効率の改善には限界がある。
従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、光取り出し効率を飛躍的に向上させることが可能な発光素子及び照明装置を提供することである。
本発明の発光素子は、一方の電極としての導電性基板上に発光層を含む半導体層を有し、前記半導体層の前記導電性基板と対向する側の主面に、他方の電極としての複数の開口部を有する透明導電層が形成されており、前記導電性基板は、前記開口部と対向する部分以外の部分が除去されていることを特徴とする。
また、本発明の発光素子は好ましくは、前記半導体層は、n型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体から成る発光層及びp型窒化ガリウム系化合物半導体層が積層された積層体を含むことを特徴とする。
本発明の発光素子は好ましくは、前記導電性基板と前記半導体層の間に光反射層が形成されていることを特徴とする。
本発明の発光素子は好ましくは、前記半導体層は、前記主面の前記開口部より露出した部分に凹凸構造が形成されていることを特徴とする。
本発明の発光素子は好ましくは、前記半導体層は、前記主面の前記開口部より露出した部分に反射防止層が形成されていることを特徴とする。
本発明の発光素子は好ましくは、前記透明導電層がITO層であることを特徴とする。
本発明の発光素子は好ましくは、前記導電性基板は、化学式XB(ただし、XはZr,Ti,Mg,Al及びHfのうちの少なくとも1種を含む。)で表される二硼化物単結晶から成ることを特徴とする。
本発明の照明装置は、本発明の発光素子と、前記発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備していることを特徴とする。
本発明の発光素子は、一方の電極としての導電性基板上に発光層を含む半導体層を有し、半導体層の導電性基板と対向する側の主面に、他方の電極としての複数の開口部を有する透明導電層が形成されており、導電性基板は、開口部と対向する部分以外の部分が除去されていることから、以下のような作用効果を奏する。即ち、透明導電層から半導体層へ注入された電流は、従来、図2に示されるように、透明導電層の直下へほとんど広がることなく流れていたのに対し、本発明においては、透明導電層から導電性基板へ向かう電流の経路(パス)は、図3のように、透明導電層から開口部と対向する導電性基板の部位へと変化する。例えば、図3に示すように縦断面における電流パスはY字状のものとなる。これにより、発光層では開口部の直下近傍で発光のピークを有する発光分布となるため、開口部から光を効果的に外部へ取り出すことが可能となり、光取り出し効率を飛躍的に向上させることが可能となる。
また、本発明の発光素子は好ましくは、半導体層は、n型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体から成る発光層及びp型窒化ガリウム系化合物半導体層が積層された積層体を含むことから、ZrB単結晶等から成る導電性基板と格子整合性が良好な窒化ガリウム系化合物半導体層を用いることによって、窒化ガリウム系化合物半導体層の結晶性が高まり、発光効率が高い発光素子となる。
また、本発明の発光素子は好ましくは、導電性基板と半導体層の間に光反射層が形成されていることにより、発光層で発光した光のうち、導電性基板側へ向かう光は光反射層で開口部を有する透明導電層側へと反射されて、光取り出し方向に有効に光を集めることができ、光取り出し効率をより一層向上させることが可能となる。
また、本発明の発光素子は好ましくは、半導体層は、前記主面の開口部より露出した部分に凹凸構造が形成されていることにより、露出した半導体層と外部の屈折率差が緩和されて、これらの界面における反射量が減少するため、開口部から光をより効果的に外部へ取り出すことが可能となる。
また、本発明の発光素子は好ましくは、半導体層は、主面の開口部より露出した部分に反射防止層が形成されていることにより、開口部より露出した界面と外部との界面における反射量が減少するため、開口部から光をより効果的に外部へ取り出すことが可能となる。
また、本発明の発光素子は好ましくは、透明導電層は、ITO層であることによって、紫外光から青色光の領域にかけての透過率が高くなり、光吸収を抑制できるとともに、窒化物ガリウム系化合物半導体との良好なオーミック接触が形成できる。
また、本発明の発光素子は好ましくは、導電性基板は、化学式XB(ただし、XはZr,Ti,Mg,Al及びHfのうちの少なくとも1種を含む。)で表される二硼化物単結晶から成ることによって、窒化ガリウム系化合物半導体との格子定数の差及び熱膨張係数の差が小さくなるため、導電性基板上に形成される窒化ガリウム系化合物半導体の結晶性が向上する。その結果、内部量子効率の高い発光素子を構成できるだけでなく、フッ酸と硝酸の混合液であるフッ硝酸を用いたウェットエッチングによって、導電性基板の除去を容易に行える。
本発明の照明装置は、本発明の発光素子と、発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備していることから、従来の蛍光灯等よりも消費電力が小さく、小型化されたものとなり、よって小型で高輝度の照明装置となる。
以下、本発明の発光素子の実施の形態について、図面を参照しつつ詳細に説明する。
図4は、本発明の発光素子について実施の形態の一例を示す模式的な断面図である。図4において、7は窒化ガリウム系化合物半導体層を複数層積層して成る半導体層(積層体)であり、7aはn型窒化ガリウム系化合物半導体層、7bは窒化ガリウム系化合物半導体層からなる発光層、7cはp型窒化ガリウム系化合物半導体層である。また、同図において、導電性基板10をn側電極として、あるいはn側電極を形成するためのn側導電層として用いており、8はp側電極としての、あるいはp側電極を形成するための透明導電層(p側導電層)である。
本発明の発光素子は、n側電極としての導電性基板10上に発光層7bを含む半導体層7を有し、半導体層7の導電性基板10と反対側の主面に、p側電極としての複数の開口部11を有する透明導電層8が形成されており、導電性基板10は開口部11と対向する部分以外の部分が除去されている構成である。
なお、導電性基板10は、図8に示すように、例えば透明導電層8の平面視形状が格子状である場合には、開口部11と対向する部分以外の部分が除去されていることから、直方体状のブロックが並んだ構成となる。従って、図4に示すように、n側電極としての導電性基板10に電流を入力するには、外部のパッケージ基板や回路基板等の基板15上に形成された銀(Ag)ペースト等からなるn側電極14に、導電性基板10を直接接続することによって行う。これにより、ブロック状に個々に分離された導電性基板10への電流注入を共通に行う。
また、透明導電層8の開口部11の平面視形状は、円形、楕円形、三角形、五角形以上の多角形等の形状とすることができ、この場合、導電性基板10は、円柱状、楕円柱状、三角柱状、多角柱状等のブロックが並んだ構成となる。
本発明の発光素子において、半導体層は、n型窒化ガリウム系化合物半導体層7a、窒化ガリウム系化合物半導体からなる発光層7b及びp型窒化ガリウム系化合物半導体層7cで構成される積層体を含むことが好ましい。窒化ガリウム系化合物半導体層は、ZrB単結晶等から成る導電性基板と格子整合性が良好であるため、窒化ガリウム系化合物半導体層の結晶性が高まり、発光効率が高い発光素子となる。
透明導電層8としては、酸化インジウム錫(ITO),酸化錫(SnO),酸化亜鉛(ZnO)等の金属酸化物系から成るものが使用されるが、特に酸化インジウム錫(ITO)は紫外光から青色の光に対して高い透過率を有するだけでなく、p型窒化ガリウム系化合物半導体層7cと良好なオーミック接触が取れるために好適である。
本発明の半導体層7は、導電性基板10上に形成された光反射層13上にエピタキシャル成長される。光反射層13により、導電性基板10側へ向かう光は光取り出し方向である透明導電層8側に反射されるために、光取り出し方向へと有効に光を集めることが可能になる。光反射層13としては、屈折率の高い層と低い層を複数層重ねることによって、光の干渉効果によるブラッグ反射により高屈折率層及び低屈折率層の各層で反射が強め合う分布型ブラッグ反射鏡(DBR:Distributed Bragg Reflectors)を用いる。例えば、厚みが41.5nmのGaN層と厚みが38.5nmのAl0.52Ga0.48N層を20組積層した周期構造のDBRを形成することによって、発光波長400nmの光に対して非常に良好な反射率を有する光反射層13が形成される。
また、本発明の半導体層7は、開口部11より露出した部分に凹凸構造12が形成されていることがよい。凹凸構造12の大きさは、突起同士の平均の間隔が媒質(例えば透明導電層8)中の実効波長と同程度かそれ以下、また、高さについても前記実効波長と同程度かそれ以上のものであることが好ましい。このサイズであれば、半導体層7と外部(空気)との屈折率差が緩和されて光の反射が抑制されるとともに、光散乱の効果が得られる。また、臨界角を超えて全反射し半導体層7の内部に閉じ込められていた光に対しても、光の進行方向が変化するために、臨界角以内に入る割合が増加することによって、光取り出し量が向上する。
凹凸構造12は以下のようにして形成される。まず、導電性基板10上に光反射層13、n型窒化ガリウム系化合物半導体層7a、発光層7b、p型窒化ガリウム系化合物半導体層7c及び透明導電層8をこの順で成膜し、透明導電層8の表面上に開口部11のパターンを有するレジスト層から成るマスクを形成して、例えば透明導電層8としてITO層を形成する場合は、塩酸(HCl)と塩化第二鉄(FeCl)の混合液を用いたウェットエッチングによって複数の開口部11を形成する。次に、透明導電層8の開口部11により露出した部分にレジスト層や金属層等からなるマスクを形成した後、ClやBCl等の塩素系ガスを用いた反応性イオンエッチング(RIE:Riactive Ion Ettching)法等のドライエッチング法により、凹凸構造12を比較的容易に形成することができる。
また、凹凸構造12の代わりに、開口部11により露出した部分に反射防止層を形成してもよい。この場合、反射防止層としては、半導体層7の屈折率と外部の空気の屈折率の中間の屈折率を有する透明層を用いる。そのような透明層の材質としては、SiO,MgO,HfO等が好適である。さらに、これらの材質の透明層を屈折率が大きいものから小さいものへと複数層重ねることによって、より反射を抑制することも可能である。
本発明の半導体層7は、発光層7bを、n型窒化ガリウム系化合物半導体層7aとp型窒化ガリウム系化合物半導体層7cとで挟んだ構成であるが、例えば、n型窒化ガリウム系化合物半導体層7aは、第1のn型クラッド層としてのGaN層、第2のn型クラッド層としてのIn0.02Ga0.98N層の積層体等からなる。このn型窒化ガリウム系化合物半導体層7aの厚みは2μm〜3μm程度である。
また、例えば、p型窒化ガリウム系化合物半導体層7cは、第1のp型クラッド層としてのAl0.15Ga0.85N層、第2のp型クラッド層としてのAl0.2Ga0.8N層、p型コンタクト層としてのGaN層の積層体等からなる。このp型窒化ガリウム系化合物半導体層7cの厚みは200nm〜300nm程度である。
また、例えば、発光層7bは、禁制帯幅の広い障壁層としてのIn0.01Ga0.99N層と、禁制帯幅の狭い井戸層としてのIn0.11Ga0.89N層とを、交互に例えば3回繰り返し規則的に積層した多重量子井戸構造(MQW:Muliti Quantum Well)等からなる。この発光層7bの厚みは25nm〜150nm程度である。
本発明のn型窒化ガリウム系化合物半導体層7a、発光層7b、p型窒化ガリウム系化合物半導体層7cを含む半導体層7の成長方法は、有機金属気相成長法(MOVPE)法が用いられるが、その他分子線エピタキシー(MBE)法やハイドライド気相成長(HVPE)法、パルスレーザデポジション(PLD)法等が挙げられる。
また、p側の透明導電層8上には、外部との電気的接続をとるための導線等を接続するp側パッド電極9が設けられている。p側パッド電極9としては、例えばチタン(Ti)層、またはチタン(Ti)層を下地層として金(Au)層を積層したもの等を用いればよい。
また、半導体層7は、SiC等から成る導電性基板10上に窒化ガリウム系化合物半導体から成るバッファ層を介して形成してもよく、また、化学式XB(ただし、XはZr,Ti,Mg,Al及びHfのうちの少なくとも1種を含む。)で表される二ホウ化物単結晶から成る導電性基板10上に直接形成してもよい。
化学式XBで表される二硼化物単結晶から成る導電性基板10を使用することがよく、その場合、窒化ガリウム系化合物半導体との格子定数差が0.57%、熱膨張係数差も2.7×10-6/Kと小さい導電性基板10であるため、転位密度が低く、残留歪の小さい窒化ガリウム系化合物半導体層を得ることが可能となる。
化学式XB(ただし、XはZr,Ti,Mg,Al及びHfのうちの少なくとも1種を含む。)で表される二硼化物単結晶から成る基板は、ZrB単結晶,TiB単結晶,HfB単結晶等からなるが、窒化ガリウム系化合物半導体との格子整合性及び熱膨張係数の整合性の点で優れていることを考慮すると、ZrB単結晶からなるものを使用することが好ましい。また、ZrB単結晶において、Zrの一部がTiやHfに置換されているものであってもよい。また、ZrB単結晶において、その結晶性また格子定数が大きく変化しない程度に不純物としてTi,Hf,Mg,Al等を含んでいても構わない。
なお、本発明の窒化ガリウム系化合物半導体を適用した発光素子は、発光ダイオード(LED)として使用することができる。
また、本発明の上記の発光素子(LED)は次のように動作する。即ち、発光層7bを含む半導体層7にバイアス電流を流して、発光層7bで波長350〜400nm程度の紫外光〜近紫外光や紫光を発生させ、発光素子の外側にその紫外光〜近紫外光や紫光を取り出すように動作する。
また、本発明の発光素子は照明装置に適用できるものであり、その照明装置は、本発明の発光素子と、発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備している構成である。この構成により、輝度及び照度の高い照明装置を得ることができる。この照明装置は、本発明の発光素子を透明樹脂等で覆うか内包するようにし、その透明樹脂等に蛍光体や燐光体を混入させた構成とすればよく、蛍光体や燐光体によって発光素子の紫外光〜近紫外光を白色光等に変換するものとすることができる。また、集光性を高めるために透明樹脂等に凹面鏡等の光反射部材を設けることもできる。このような照明装置は、従来の蛍光灯等よりも消費電力が小さく、小型であることから、小型で高輝度の照明装置として有効である。
本発明の発光素子の実施例について以下に説明する。本発明の発光素子の効果を確認するために、光線追跡法を用いて、光取り出し効率のコンピュータシミュレーションを実施した。
図5,図6はそれぞれ、従来の発光素子の一例におけるシミュレーションモデルの断面図と、本発明の発光素子の一例におけるシミュレーションモデルの断面図を示したものである。図5及び図6の発光素子は、複数の開口部11を有するp側電極としての透明導電層8がp型窒化ガリウム系化合物半導体層7cの上面に形成されている。さらに、導電性基板10とn型窒化ガリウム系化合物半導体層7aの間には光反射層13が設けられている。n側電極としての導電性基板10は、図6のモデルのみ開口部11と対向する部分が残されてその他の部分が除去されている。
図5の従来の発光素子では、透明導電層8から注入された電流はほとんど広がることなく透明導電層8の直下に集中することから、図7のように、光源は透明導電層8の直下に位置するものとした。
一方、図6の本発明の発光素子では、電流パスが開口部11と対向する導電性基板10側へと変化し、発光層7bでは開口部11の直下近傍で発光のピークを有する発光分布となるため、図8に示されるように、光源は開口部11の直下に位置するものとした。
また、光源以外の領域では、両者のモデルでほぼ同様な電流広がりとなり、同一の発光分布であると仮定できるため、今回のシミュレーションモデルには含めず、両者のモデルにおいて発光位置の明確な差異に着目した解析を実施した。
また、発光素子のサイズは平面視で一辺が350μmの正方形とし、発光波長は400nmであるとして、光線は発光層7bに配置されたそれぞれの光源から等方的に放射されるものとした。開口率(平面視で発光素子面積における開口部11面積の占める割合)は50%とした。
さらに、n型窒化ガリウム系化合物半導体層7a、発光層7b及びp型窒化ガリウム系化合物半導体層7cからなる半導体層7(厚み3.2μm)の屈折率を2.5(n型窒化ガリウム系化合物半導体層7a、発光層7b及びp型窒化ガリウム系化合物半導体層7cについて、屈折率の変化はほとんどないため、全て同じ屈折率とした)、酸化インジウム錫(ITO)層からなる透明導電層8(厚み0.25μm)の屈折率を2.06、アルミニウム(Al)からなる光反射層13(厚み0.5μm)の屈折率を0.49、ZrB単結晶から成る導電性基板10(厚み250μm)の屈折率を1.93として計算を行った。
図9に、光取り出し効率をコンピューターシミュレーションによって求めた結果のグラフを示す。図9より、本発明の実施例の発光素子の光取り出し効率は、従来の発光素子と比較して約1.3倍向上しており、本発明の有効性が明確に示されていることが分かる。
従来の発光素子の一例を示す断面図である。 従来の発光素子の一例における電流分布の模式的断面図である。 本発明の発光素子の一例における電流分布の模式的断面図である。 本発明の発光素子について実施の形態の一例を示す断面図である。 従来の発光素子の一例におけるシミュレーションモデルを示す断面図である。 本発明の発光素子の一例におけるシミュレーションモデルを示す断面図である。 従来の発光素子の一例におけるシミュレーションモデルにおける光源位置を示す平面図である。 本発明の発光素子の一例におけるシミュレーションモデルにおける光源位置を示す平面図である。 本発明の実施例の発光素子及び従来の発光素子について、光取り出し効率をコンピューターシミュレーションにより求めた結果のグラフである。
符号の説明
7:半導体層
7a:n型窒化ガリウム系化合物半導体層
7b:発光層
7c:p型窒化ガリウム系化合物半導体層
8:透明導電層
9:p側パッド電極
10:導電性基板
11:開口部
12:凹凸構造
13:光反射層

Claims (8)

  1. 一方の電極としての導電性基板上に発光層を含む半導体層を有し、前記半導体層の前記導電性基板と対向する側の主面に、他方の電極としての複数の開口部を有する透明導電層が形成されており、前記導電性基板は、前記開口部と対向する部分以外の部分が除去されていることを特徴とする発光素子。
  2. 前記半導体層は、n型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体から成る発光層及びp型窒化ガリウム系化合物半導体層が積層された積層体を含むことを特徴とする請求項1記載の発光素子。
  3. 前記導電性基板と前記半導体層の間に光反射層が形成されていることを特徴とする請求項1または2記載の発光素子。
  4. 前記半導体層は、前記主面の前記開口部より露出した部分に凹凸構造が形成されていることを特徴とする請求項1乃至3のいずれか記載の発光素子。
  5. 前記半導体層は、前記主面の前記開口部より露出した部分に反射防止層が形成されていることを特徴とする請求項1乃至4のいずれか記載の発光素子。
  6. 前記透明導電層がITO層であることを特徴とする請求項1乃至5のいずれか記載の発光素子。
  7. 前記導電性基板は、化学式XB(ただし、XはZr,Ti,Mg,Al及びHfのうちの少なくとも1種を含む。)で表される二硼化物単結晶から成ることを特徴とする請求項1乃至6のいずれか記載の発光素子。
  8. 請求項1乃至7のいずれかの発光素子と、前記発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備していることを特徴とする照明装置。
JP2006347752A 2006-12-25 2006-12-25 発光素子及び照明装置 Withdrawn JP2008159894A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347752A JP2008159894A (ja) 2006-12-25 2006-12-25 発光素子及び照明装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347752A JP2008159894A (ja) 2006-12-25 2006-12-25 発光素子及び照明装置

Publications (1)

Publication Number Publication Date
JP2008159894A true JP2008159894A (ja) 2008-07-10

Family

ID=39660474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347752A Withdrawn JP2008159894A (ja) 2006-12-25 2006-12-25 発光素子及び照明装置

Country Status (1)

Country Link
JP (1) JP2008159894A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046372A2 (ko) * 2009-10-14 2011-04-21 주식회사 에피밸리 3족 질화물 반도체 발광소자
WO2013112200A1 (en) * 2012-01-26 2013-08-01 Bridgelux. Inc. Gold micromask for roughening to promote light extraction in an led
KR101330786B1 (ko) * 2011-04-06 2013-11-18 희성전자 주식회사 방열 구조를 갖는 발광다이오드 소자 및 그 제조 방법
CN103456855A (zh) * 2013-09-17 2013-12-18 聚灿光电科技(苏州)有限公司 一种led表面粗化芯片以及制作方法
US9806231B2 (en) 2010-08-23 2017-10-31 Intellectual Discovery Co., Ltd. Semiconductor light-emitting device having a photonic crystal pattern formed thereon, and method for manufacturing same
KR101805121B1 (ko) * 2010-12-03 2017-12-05 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 조명 시스템

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046372A2 (ko) * 2009-10-14 2011-04-21 주식회사 에피밸리 3족 질화물 반도체 발광소자
WO2011046372A3 (ko) * 2009-10-14 2011-07-07 주식회사 에피밸리 3족 질화물 반도체 발광소자
US9806231B2 (en) 2010-08-23 2017-10-31 Intellectual Discovery Co., Ltd. Semiconductor light-emitting device having a photonic crystal pattern formed thereon, and method for manufacturing same
KR101805121B1 (ko) * 2010-12-03 2017-12-05 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 조명 시스템
KR101330786B1 (ko) * 2011-04-06 2013-11-18 희성전자 주식회사 방열 구조를 갖는 발광다이오드 소자 및 그 제조 방법
US8759127B2 (en) 2011-08-31 2014-06-24 Toshiba Techno Center Inc. Gold micromask for roughening to promote light extraction in an LED
WO2013112200A1 (en) * 2012-01-26 2013-08-01 Bridgelux. Inc. Gold micromask for roughening to promote light extraction in an led
CN103456855A (zh) * 2013-09-17 2013-12-18 聚灿光电科技(苏州)有限公司 一种led表面粗化芯片以及制作方法

Similar Documents

Publication Publication Date Title
TWI464914B (zh) 發光二極體
JP5391469B2 (ja) 窒化物半導体発光素子およびその製造方法
US20110133208A1 (en) Semiconductor element
US20100148199A1 (en) Light emitting device with fine pattern
JP2007019488A (ja) 半導体発光素子
JP2005116794A (ja) 窒化物半導体発光素子
KR101259482B1 (ko) 고효율 발광다이오드
JP2008159894A (ja) 発光素子及び照明装置
CN103380551A (zh) 半导体发光元件以及使用它的发光装置
JP5227334B2 (ja) 発光素子及び照明装置
JP5116291B2 (ja) 発光素子及び照明装置
KR20140100379A (ko) 반도체 발광소자
WO2014192226A1 (ja) 発光素子
JP5989318B2 (ja) 半導体発光素子及びその製造方法
KR101317632B1 (ko) 질화물계 발광 소자 및 그 제조방법
JP2009032958A (ja) 発光素子及び照明装置
JP2009059851A (ja) 半導体発光ダイオード
JP2011513985A (ja) 発光素子
KR20110093006A (ko) 질화물 반도체 발광소자
JP5037980B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法
JP2007250714A (ja) 発光素子
JP2009289947A (ja) 発光素子及び照明装置
KR20170038439A (ko) 발광소자
KR20060032167A (ko) 질화갈륨계 반도체 발광소자
KR101886631B1 (ko) 반도체 발광 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111202