JP2008159300A - Manufacturing method of positive active material for nonaqueous secondary battery - Google Patents

Manufacturing method of positive active material for nonaqueous secondary battery Download PDF

Info

Publication number
JP2008159300A
JP2008159300A JP2006344189A JP2006344189A JP2008159300A JP 2008159300 A JP2008159300 A JP 2008159300A JP 2006344189 A JP2006344189 A JP 2006344189A JP 2006344189 A JP2006344189 A JP 2006344189A JP 2008159300 A JP2008159300 A JP 2008159300A
Authority
JP
Japan
Prior art keywords
mixture
compound
active material
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344189A
Other languages
Japanese (ja)
Inventor
Katsuyuki Shioda
克幸 塩田
Yoshihiro Kawakami
義博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006344189A priority Critical patent/JP2008159300A/en
Publication of JP2008159300A publication Critical patent/JP2008159300A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive active material for a nonaqueous secondary battery having high capacity at least similar to the conventional active material simply even in a device and operation. <P>SOLUTION: In the manufacturing method of the positive active material for the nonaqueous secondary battery by baking a mixture of metal element compounds, the mixture obtained by conducting mixing, drying, and crushing at the same time with crushing media and a vibration dryer, and preferably, mixing, drying and crushing are conducted in a state in which no places condensing moisture are present in the vibration dryer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水二次電池用正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for a non-aqueous secondary battery.

非水二次電池用正極活物質は、携帯電話やノートパソコン等の携帯用電子機器用の電源である非水二次電池に用いられている。   A positive electrode active material for a non-aqueous secondary battery is used in a non-aqueous secondary battery that is a power source for portable electronic devices such as a mobile phone and a notebook computer.

非水二次電池の正極活物質には、Ni、Co、Mn、Fe、V等の遷移金属を中心とした元素のいずれか1種以上とLiの複合酸化物が用いられており、その製造方法として、金属元素の化合物を、混合機を用いて予め該混合物を得、次に乾燥させた後、粉砕メディアと攪拌翼を供えた攪拌型粉砕機によって乾式で粉砕し、得られた粉砕物を焼成する方法が知られている(特許文献1参照。)。
この方法は、金属元素の化合物を、ボールミルを用いて混合および粉砕する際には、付着水分や結晶水、分解反応によって生成する水がボールミルで凝縮し、粉末の固着を起こし不均一な混合となることがある。不均一な混合物を用いて作製した正極活物質は、不均一性を解消できず、充放電容量などの振れが大きく、性能が安定しなくなる。従って、不均一な混合物とならないように予備混合、乾燥、粉砕を単独で行うものである。
The positive electrode active material of the non-aqueous secondary battery uses a composite oxide of Li and any one or more of elements centering on transition metals such as Ni, Co, Mn, Fe, V, etc. As a method, a compound of a metal element is obtained in advance using a mixer, and then the mixture is dried, then dried, and then pulverized in a dry manner by a stirring pulverizer provided with a pulverization medium and a stirring blade, and the pulverized product obtained Is known (see Patent Document 1).
In this method, when a compound of a metal element is mixed and pulverized using a ball mill, the adhering moisture, crystal water, and water generated by a decomposition reaction are condensed in the ball mill, causing powder to stick and causing uneven mixing. May be. A positive electrode active material produced using a non-uniform mixture cannot eliminate non-uniformity, has large fluctuations such as charge / discharge capacity, and becomes unstable in performance. Therefore, premixing, drying, and pulverization are performed independently so as not to form a heterogeneous mixture.

しかしながら、この方法は性能の良い正極活物質が得られるものの、予備混合、乾燥、粉砕を個別に行うため、装置が複雑になり、また金属元素化合物等の投入、取り出し等の操作も煩雑で、生産性が不十分であること、また、Ni、Co等を含有する粉末の飛散が避けられず、多くの作業環境対策を必要とするという問題を有している。
特開2005−276824号公報
However, although this method can obtain a positive electrode active material with good performance, premixing, drying, and pulverization are performed separately, so the apparatus becomes complicated, and operations such as charging and unloading of metal element compounds are complicated, There is a problem that productivity is insufficient, and scattering of powder containing Ni, Co, etc. is unavoidable, and many work environment measures are required.
JP 2005-276824 A

本発明の目的は、少なくとも従来と同様の高い放電容量を示す非水二次電池用正極活物質を、簡単な装置で、操作も簡単に製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a positive electrode active material for a non-aqueous secondary battery that exhibits at least the same high discharge capacity as in the past with a simple apparatus and easy operation.

このような事情に鑑みて、本発明者らは、金属元素化合物の混合物を焼成することによる非水二次電池用正極活物質の製造方法について鋭意検討を行った。その結果、金属元素化合物の混合物として、粉砕メディアと振動乾燥機を用いて混合、乾燥、粉砕を同時に行うことによって、従来と同様の高い放電容量を示す非水二次電池用正極活物質を、簡単な装置で、操作上も簡単に製造できることを見出し、本発明を完成させるに至った。   In view of such circumstances, the present inventors have intensively studied a method for producing a positive electrode active material for a non-aqueous secondary battery by firing a mixture of metal element compounds. As a result, as a mixture of metal element compounds, a positive electrode active material for a non-aqueous secondary battery exhibiting a high discharge capacity similar to the conventional one is obtained by simultaneously performing mixing, drying, and pulverization using a pulverization medium and a vibration dryer. It has been found that a simple device can be easily manufactured in terms of operation, and the present invention has been completed.

本発明の製造方法によれば、従来と同様の高い放電容量を示す非水二次電池用正極活物質を、工程が簡略化されたために装置が簡単になり、操作も簡単になり、また多くの作業環境対策をせずに、製造することができるので、本発明は工業的に極めて重要である。   According to the production method of the present invention, the positive electrode active material for a non-aqueous secondary battery exhibiting the same high discharge capacity as in the prior art has a simplified apparatus, simplified operation, and much The present invention is extremely important industrially because it can be manufactured without taking the above-mentioned measures for the working environment.

次に、本発明を詳細に説明する。
本発明の非水二次電池用正極活物質の製造方法は、金属元素化合物の混合物を焼成することによる非水二次電池用正極活物質の製造方法において、該混合物として、粉砕メディアと振動乾燥機によって混合、乾燥、粉砕を同時に行って得られる混合物を用いることを特徴とする。更に、混合、乾燥、粉砕を、振動乾燥機内に水分が凝縮する個所を無くして行うことを特徴とする。
Next, the present invention will be described in detail.
The method for producing a positive electrode active material for a non-aqueous secondary battery according to the present invention is a method for producing a positive electrode active material for a non-aqueous secondary battery by firing a mixture of metal element compounds. It is characterized by using a mixture obtained by simultaneous mixing, drying and pulverization by a machine. Further, mixing, drying, and pulverization are performed without a portion where moisture is condensed in the vibration dryer.

本発明の製造方法において用いる振動乾燥機は、間接加熱で乾燥を行うと共に振動させることによって内部に入れた粉砕メディアと被粉砕物(金属元素化合物)を振動させ、粉砕メディアによる圧縮・衝撃・せん断・摩擦等の作用によって粉砕を行う装置であり、例えば、中央化工機株式会社製の振動乾燥機(商品名)が挙げられる。   The vibration drier used in the production method of the present invention vibrates the pulverized media and the object to be crushed (metal element compound) inside by drying and vibrating by indirect heating, and compressing, impacting and shearing by the pulverized media. A device that performs pulverization by the action of friction, for example, a vibration dryer (trade name) manufactured by Chuo Kakohki Co., Ltd.

この振動乾燥機に入れる粉砕メディアは、通常はアルミナ、ジルコニア、炭化珪素等のセラミックス製のボールである。ボールの寸法は、通常は直径が3mm〜30mmのものが用いられる。この粉砕メディアの量は、通常は振動乾燥機の容積の30〜80%の体積となる量である。   The grinding media to be put into the vibration dryer is usually a ceramic ball such as alumina, zirconia or silicon carbide. As the dimensions of the balls, those having a diameter of 3 mm to 30 mm are usually used. The amount of the grinding media is usually an amount that is 30 to 80% of the volume of the vibration dryer.

また、乾燥機の内壁に好適な材質としても、例えば、アルミナ、ジルコニア、炭化珪素等のセラミックスが挙げられるが、熱伝導及び強度を増すために内壁は金属製が望ましいがセラミックスで被覆されていてもよい。   Further, examples of suitable materials for the inner wall of the dryer include ceramics such as alumina, zirconia, and silicon carbide. The inner wall is preferably made of metal to increase heat conduction and strength, but is coated with ceramics. Also good.

本発明の製造方法においては、金属元素化合物の混合物であって、焼成により非水二次電池用正極活物質を形成し得る混合物を、上記振動乾燥機に粉砕メディアと共に入れ、振動だけで粉粒体を流動化させ、間接加熱し、乾式で乾燥、混合、粉砕を同時に行う。
乾燥、混合、粉砕は、常圧下または減圧下に行う。また窒素、空気等のイナートガスの通気下に行っても良い。
In the production method of the present invention, a mixture of metal element compounds, which can form a positive electrode active material for a non-aqueous secondary battery by firing, is put together with pulverization media in the above-mentioned vibration dryer, and the particles are obtained only by vibration. The body is fluidized, heated indirectly, and dried, mixed, and pulverized simultaneously.
Drying, mixing, and pulverization are performed under normal pressure or reduced pressure. Moreover, you may carry out by ventilation | gas_flowing of inert gas, such as nitrogen and air.

上記の振動乾燥機は回分式と連続式のどちらでも用いることができるが、金属元素化合物の粒度が、大きく異なる混合物の場合は、連続式の振動乾燥機を用いると偏析の可能性があり、組成が不均一になる恐れがあることから回分式の振動乾燥機を用いるのが望ましい。   The above-mentioned vibration dryer can be used in either a batch type or a continuous type, but in the case of a mixture in which the particle size of the metal element compound is greatly different, there is a possibility of segregation if a continuous type vibration dryer is used, It is desirable to use a batch-type vibration dryer because the composition may become non-uniform.

本発明の製造方法において、乾燥温度は、通常は水分が十分蒸発するのに必要な温度であり、例えば常圧下でイナートガスを同伴させない場合は約100℃以上であり、また、金属元素化合物が分解しないように、用いた全ての金属元素化合物の分解温度未満の温度であり、通常、約100℃〜150℃の温度範囲が好ましい。減圧下では操作圧力における水分の沸点以上であり、イナートガスを通気させる場合はイナートガスの分圧を考慮した温度範囲で行われる。また、乾燥時間は、通常、約1〜40時間の範囲である。   In the production method of the present invention, the drying temperature is usually a temperature necessary for sufficient evaporation of water, for example, about 100 ° C. or higher when no inert gas is accompanied under normal pressure, and the metal element compound is decomposed. The temperature is lower than the decomposition temperature of all the metal element compounds used, and a temperature range of about 100 ° C. to 150 ° C. is usually preferable. Under reduced pressure, the boiling point is higher than the boiling point of water at the operating pressure. When the inert gas is vented, it is performed in a temperature range that takes into account the partial pressure of the inert gas. The drying time is usually in the range of about 1 to 40 hours.

本発明の製造方法において、水分が振動乾燥機内において凝縮すると、一部の金属元素化合物の混合物が固着し、均一な混合ができないことがある。不均一な混合物を用いて作製した正極活物質は、不均一性を解消できず、充放電容量や、過充電や短絡時に生じる熱暴走反応時の発熱量などの振れが大きく、性能が安定しなくなるので好ましくない。
従って、乾燥機内で水分が凝縮する個所が無いように保温およびトレース等により結露しない対策を講じることが望ましい。例えば、覗き窓は周囲を保温しただけでは不十分であり、無くしてしまうとか、温風等を吹き込む等の対策が必要である。
In the production method of the present invention, when water is condensed in the vibration dryer, a mixture of some metal element compounds may be fixed and uniform mixing may not be possible. The positive electrode active material produced using a heterogeneous mixture cannot eliminate the non-uniformity, and the fluctuation in charge / discharge capacity and the amount of heat generated during a thermal runaway reaction that occurs during overcharge or short-circuiting are large, resulting in stable performance. Since it disappears, it is not preferable.
Therefore, it is desirable to take measures to prevent dew condensation by keeping heat, tracing, etc. so that there is no place where moisture condenses in the dryer. For example, it is not enough to keep the surroundings of the observation window warm, and it is necessary to take measures such as eliminating it or blowing in warm air.

金属元素化合物の混合物としては、非水二次電池がリチウム二次電池である場合は、混合物が、(a)ニッケル化合物および/またはコバルト化合物とリチウム化合物とを含有する混合物かまたは、(b)ニッケル化合物および/またはコバルト化合物とリチウム化合物とマンガン化合物とを含有する混合物が好ましい。ここで、前記の(b)ニッケル化合物および/またはコバルト化合物とリチウム化合物とマンガン化合物とを含有する混合物とは、(b−1)リチウム化合物、ニッケル化合物およびマンガン化合物を含有する混合物、(b−2)リチウム化合物、コバルト化合物およびマンガン化合物を含有する混合物、または(b−3)リチウム化合物、ニッケル化合物、コバルト化合物およびマンガン化合物を含有する混合物のことを示す。前記の(b)で表される混合物の中でも、(b−1)で表される混合物または(b−3)で表される混合物がさらに好ましく、(b−3)で表される混合物が最も好ましい。また、上述の混合物に、さらに、B、Al、Ga、In、Si、Zr、Sn、Ti、V、Cr、Fe、Cu、AgおよびZnからなる群より選ばれる1種以上の元素の化合物を、例えば酸化物換算で20重量%程度までの範囲で含有をさせてもよい。   As the mixture of metal element compounds, when the non-aqueous secondary battery is a lithium secondary battery, the mixture is (a) a mixture containing a nickel compound and / or a cobalt compound and a lithium compound, or (b) A mixture containing a nickel compound and / or a cobalt compound, a lithium compound and a manganese compound is preferred. Here, (b) the mixture containing a nickel compound and / or a cobalt compound, a lithium compound and a manganese compound is (b-1) a mixture containing a lithium compound, a nickel compound and a manganese compound, (b- 2) A mixture containing a lithium compound, a cobalt compound and a manganese compound, or (b-3) a mixture containing a lithium compound, a nickel compound, a cobalt compound and a manganese compound. Among the mixture represented by (b), the mixture represented by (b-1) or the mixture represented by (b-3) is more preferable, and the mixture represented by (b-3) is the most. preferable. In addition, a compound of one or more elements selected from the group consisting of B, Al, Ga, In, Si, Zr, Sn, Ti, V, Cr, Fe, Cu, Ag, and Zn is further added to the above mixture. For example, you may make it contain in the range to about 20 weight% in conversion of an oxide.

出発原料となる金属元素化合物としては、酸化物、水酸化物、オキシ水酸化物、硝酸塩、炭酸塩等の金属元素化合物を用いることができる。焼成時に排気の処理が不要なので、工業的には酸化物、水酸化物、オキシ水酸化物が好ましい。   As the metal element compound used as a starting material, metal element compounds such as oxides, hydroxides, oxyhydroxides, nitrates and carbonates can be used. Industrially, oxides, hydroxides, and oxyhydroxides are preferred because no exhaust treatment is required during firing.

乾燥、混合、粉砕して得られた混合物の平均粒径は、振動乾燥機の振幅、金属元素化合物の供給量、粉砕メディアの種類、数量、混合・粉砕時間によって調整することができる。混合物の平均粒径は、約0.1μm〜20μmの範囲とすることが好ましく、約1μm〜10μmの範囲とすることがさらに好ましい。混合物の平均粒径を約1μmより小さくすると、混合物のかさ密度が小さくなり、後工程での生産効率が低下する傾向があり、約20μmより大きくなると、混合および粉砕が不十分になる傾向がある。ここで、平均粒径は、レーザー回折散乱法粒度分布測定装置により測定される値を用いることができる。   The average particle diameter of the mixture obtained by drying, mixing, and pulverization can be adjusted by the amplitude of the vibration dryer, the supply amount of the metal element compound, the type and quantity of the pulverization media, and the mixing / pulverization time. The average particle size of the mixture is preferably in the range of about 0.1 μm to 20 μm, and more preferably in the range of about 1 μm to 10 μm. If the average particle size of the mixture is smaller than about 1 μm, the bulk density of the mixture tends to be small, and the production efficiency in the subsequent process tends to decrease. If the average particle size is larger than about 20 μm, mixing and pulverization tend to be insufficient. . Here, the value measured by the laser diffraction scattering method particle size distribution measuring apparatus can be used for the average particle diameter.

本発明の製造方法において、投入された金属元素化合物は、振動乾燥機内に滞留する間に乾燥・混合および粉砕される。所定の平均粒径まで粉砕され、排出セパレーター(粉砕メディアが通らない間隙の格子や孔を有した格子または孔板などからなる。)によって粉砕メディアと分離され排出される。   In the production method of the present invention, the charged metal element compound is dried, mixed and pulverized while it stays in the vibration dryer. The powder is pulverized to a predetermined average particle size, separated from the pulverized media by a discharge separator (consisting of a lattice or a hole plate having a gap lattice or a hole through which the pulverized media cannot pass) and discharged.

振動乾燥機においては、金属元素化合物は粉砕メディアと共に乾燥、混合および粉砕が同時に行われるので、特定の成分の分離は生じず、金属元素化合物は均質に混合される。また、工程が簡素化され、簡単な装置、簡単な操作で、また少ない作業環境対策で、製造することができる。   In the vibration drier, the metal element compound is dried, mixed and pulverized simultaneously with the pulverization media, so that the separation of specific components does not occur, and the metal element compound is homogeneously mixed. Further, the process can be simplified, and it can be manufactured with a simple apparatus, a simple operation, and a small work environment.

上記により得られる金属元素化合物の混合物を焼成することによって、本発明の非水二次電池用正極活物質を得ることができる。この焼成時の最高到達温度、焼成時間、焼成雰囲気等の条件としては、例えば、該混合物が(a)ニッケル化合物および/またはコバルト化合物とリチウム化合物とを含有する混合物であるときは、最高到達温度としては、好ましくは400〜1000℃であり、600〜900℃がさらに好ましく、700〜800℃が特に好ましい。また、このときの焼成時間は、通常2〜30時間であり、焼成雰囲気としては、窒素、アルゴンなどの不活性雰囲気;空気、酸素、酸素含有アルゴン、酸素含有窒素などの酸化性雰囲気;水素含有窒素、水素含有アルゴンなどの還元性雰囲気などのいずれも用いることができるが、酸化性雰囲気が好ましく、90体積%以上の酸素を含有する雰囲気がさらに好ましい。また、例えば、該混合物が(b)ニッケル化合物および/またはコバルト化合物とリチウム化合物とマンガン化合物とを含有する混合物であるときは、最高到達温度としては、好ましくは600〜1200℃であり、さらに好ましくは900〜1150℃であり、特に好ましくは980〜1100℃である。また、このときの焼成時間は、通常2〜30時間であり、焼成雰囲気としては、窒素、アルゴンなどの不活性雰囲気;空気、酸素、酸素含有アルゴン、酸素含有窒素などの酸化性雰囲気;水素含有窒素、水素含有アルゴンなどの還元性雰囲気などのいずれも用いることができるが、酸化性雰囲気が好ましく、空気がさらに好ましい。   The positive electrode active material for non-aqueous secondary batteries of the present invention can be obtained by firing the mixture of metal element compounds obtained as described above. Examples of conditions such as the maximum temperature achieved during firing, the firing time, and the firing atmosphere include, for example, when the mixture is a mixture containing (a) a nickel compound and / or a cobalt compound and a lithium compound, Is preferably 400 to 1000 ° C, more preferably 600 to 900 ° C, and particularly preferably 700 to 800 ° C. The firing time at this time is usually 2 to 30 hours, and the firing atmosphere is an inert atmosphere such as nitrogen or argon; an oxidizing atmosphere such as air, oxygen, oxygen-containing argon or oxygen-containing nitrogen; Any reducing atmosphere such as nitrogen or hydrogen-containing argon can be used, but an oxidizing atmosphere is preferable, and an atmosphere containing 90% by volume or more of oxygen is more preferable. For example, when the mixture is a mixture containing (b) a nickel compound and / or a cobalt compound, a lithium compound, and a manganese compound, the maximum temperature is preferably 600 to 1200 ° C., more preferably Is 900-1150 degreeC, Most preferably, it is 980-1100 degreeC. The firing time at this time is usually 2 to 30 hours, and the firing atmosphere is an inert atmosphere such as nitrogen or argon; an oxidizing atmosphere such as air, oxygen, oxygen-containing argon or oxygen-containing nitrogen; Any of reducing atmospheres such as nitrogen and hydrogen-containing argon can be used, but an oxidizing atmosphere is preferable, and air is more preferable.

次に、本発明の製造方法により製造された非水二次電池用正極活物質を用いてなる非水二次電池の例として、本発明の製造方法により製造され、リチウム二次電池用である正極活物質を用いてなるリチウム二次電池について説明する。   Next, as an example of a non-aqueous secondary battery using the positive electrode active material for a non-aqueous secondary battery manufactured by the manufacturing method of the present invention, the non-aqueous secondary battery manufactured by the manufacturing method of the present invention is used for a lithium secondary battery. A lithium secondary battery using a positive electrode active material will be described.

リチウム二次電池の正極は、本発明の非水二次電池用活物質を含み、さらに導電材となる炭素質材料、バインダーなどを含む正極合剤を正極集電体に担持させて製造することができる。   The positive electrode of the lithium secondary battery is produced by supporting the positive electrode mixture containing the active material for non-aqueous secondary battery of the present invention and further containing a carbonaceous material as a conductive material and a binder on the positive electrode current collector. Can do.

また、必要に応じ、コバルト酸リチウム、ニッケル酸リチウム、スピネル型リチウムマンガン酸化物、オリビン型リン酸鉄リチウム、およびそれらの構成元素の一部を他元素で置換したもの等、本発明の非水二次電池用活物質以外の活物質を本発明の製造方法で得られる正極活物質に混合することができる。   Further, the non-aqueous solution of the present invention, such as lithium cobaltate, lithium nickelate, spinel-type lithium manganese oxide, olivine-type lithium iron phosphate, and some of those constituent elements substituted with other elements as necessary. Active materials other than the active material for secondary batteries can be mixed with the positive electrode active material obtained by the production method of the present invention.

該炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどが挙げられる。導電材として、それぞれ単独で用いてもよいし、例えば人造黒鉛とカーボンブラックとを混合して用いてもよい。   Examples of the carbonaceous material include natural graphite, artificial graphite, cokes, and carbon black. As the conductive material, each may be used alone, for example, artificial graphite and carbon black may be mixed and used.

バインダーとしては通常は熱可塑性樹脂が用いられ、具体的には、ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などが挙げられる。これらをそれぞれ単独で用いてもよいし、二種以上を混合して用いてもよい。   As the binder, a thermoplastic resin is usually used. Specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), and tetrafluoroethylene. -Hexafluoropropylene / vinylidene fluoride copolymer, hexafluoropropylene / vinylidene fluoride copolymer, tetrafluoroethylene / perfluorovinyl ether copolymer, and the like. These may be used alone or in combination of two or more.

また、バインダーとしてフッ素樹脂とポリオレフィン樹脂とを、正極合剤中の該フッ素樹脂の割合が1〜10重量%であり、該ポリオレフィン樹脂の割合が0.1〜2重量%となるように、本発明の正極活物質と組み合わせて用いると、集電体との結着性に優れ、また外部加熱に対する安全性をさらに向上できるので好ましい。   Further, a fluororesin and a polyolefin resin are used as binders, so that the ratio of the fluororesin in the positive electrode mixture is 1 to 10% by weight and the ratio of the polyolefin resin is 0.1 to 2% by weight. Use in combination with the positive electrode active material of the invention is preferable because it has excellent binding properties with the current collector and can further improve the safety against external heating.

正極集電体の材質としては、Al、Ni、ステンレスなどを用いることができるが、薄膜に加工しやすく、安価であるという点でAlが好ましい。正極集電体に正極合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し、正極集電体上に塗布乾燥後プレスするなどして固着する方法が挙げられる。   As the material of the positive electrode current collector, Al, Ni, stainless steel, or the like can be used, but Al is preferable in that it can be easily processed into a thin film and is inexpensive. Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure molding, or a method of pasting using a solvent or the like, and applying and drying and pressing on the positive electrode current collector. .

本発明の非水二次電池の一つであるリチウム二次電池の負極としては、例えばリチウム金属、リチウム合金またはリチウムイオンをドープ・脱ドープ可能な材料などを用いることができる。リチウムイオンをドープ・脱ドープ可能な材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素質材料;正極よりも低い電位でリチウムイオンのドープ・脱ドープが行える酸化物、硫化物等のカルコゲン化合物が挙げられる。   As a negative electrode of a lithium secondary battery which is one of the non-aqueous secondary batteries of the present invention, for example, a lithium metal, a lithium alloy, or a material capable of doping and dedoping lithium ions can be used. Materials that can be doped / undoped with lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds; lower potential than the positive electrode And chalcogen compounds such as oxides and sulfides capable of doping and dedoping lithium ions.

炭素質材料の形状は、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよく、必要に応じてバインダーとして熱可塑性樹脂を添加することができる。熱可塑性樹脂としては、PVDF、ポリエチレン、ポリプロピレンなどが挙げられる。   The shape of the carbonaceous material may be, for example, a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder. A thermoplastic resin can be added as a binder. Examples of the thermoplastic resin include PVDF, polyethylene, and polypropylene.

負極として用いられる酸化物、硫化物等のカルコゲン化合物としては、例えば周期律表の第13、14、15族元素の酸化物などが挙げられる。これらについても、必要に応じて導電材として炭素質材料を、バインダーとして熱可塑性樹脂を添加することができる。   Examples of the chalcogen compounds such as oxides and sulfides used as the negative electrode include oxides of Group 13, 14, and 15 elements of the periodic table. Also in these cases, a carbonaceous material can be added as a conductive material and a thermoplastic resin can be added as a binder, if necessary.

負極集電体としては、Cu、Ni、ステンレスなどを用いることができるが、特にリチウム二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工しやすいという点でCuが好ましい。該負極集電体に負極活物質を含む合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し、負極集電体上に塗布乾燥後プレスするなどして固着する方法が挙げられる。   As the negative electrode current collector, Cu, Ni, stainless steel, or the like can be used. In particular, in a lithium secondary battery, Cu is preferable because it is difficult to form an alloy with lithium and it can be easily processed into a thin film. The negative electrode current collector is loaded with a mixture containing the negative electrode active material by pressure molding, or pasted using a solvent, and fixed on the negative electrode current collector by coating, drying and pressing. The method of doing is mentioned.

本発明の非水二次電池の一つであるリチウム二次電池で用いるセパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミドなどの材質からなり多孔質膜、不織布、織布などの形態を有する材料を用いることができる。該セパレーターの厚みは電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄いほど好ましく、10〜200μm程度が好ましい。   As the separator used in the lithium secondary battery which is one of the non-aqueous secondary batteries of the present invention, for example, a porous film made of a material such as polyolefin resin such as polyethylene and polypropylene, fluororesin, nylon, and aromatic aramid, A material having a form such as a nonwoven fabric or a woven fabric can be used. The thickness of the separator is preferably as thin as possible as long as the mechanical strength is maintained in that the volume energy density of the battery is increased and the internal resistance is reduced, and is preferably about 10 to 200 μm.

本発明の非水二次電池の一つであるリチウム二次電池で用いる電解質としては、例えばリチウム塩を有機溶媒に溶解させた非水電解質溶液、または固体電解質のいずれかから選ばれる公知のものを用いることができる。リチウム塩としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、Li210Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl4、LiB(C242などのうち一種あるいは二種以上の混合物が挙げられる。 As the electrolyte used in the lithium secondary battery which is one of the non-aqueous secondary batteries of the present invention, for example, a known one selected from a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent or a solid electrolyte Can be used. Examples of the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , One or a mixture of two or more of lower aliphatic carboxylic acid lithium salts, LiAlCl 4 , LiB (C 2 O 4 ) 2, etc. may be mentioned.

本発明の非水二次電池の一つであるリチウム二次電池で用いる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトン、エチレンサルファイト、プロピレンサルファイト、ジメチルサルファイト、ジエチルサルファイトなどの含硫黄化合物、または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができ、通常はこれらのうちの二種以上を混合して用いる。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。   Examples of the organic solvent used in the lithium secondary battery which is one of the non-aqueous secondary batteries of the present invention include propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl- Carbonates such as 1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2, Ethers such as 3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethyl sulfoxide, 1,3-propane sultone, ethylene sulfite, propylene sulphone Sulfur-containing compounds such as phyte, dimethyl sulfite and diethyl sulfite, or those obtained by further introducing a fluorine substituent into the above organic solvent can be used. Usually, two or more of these are used in combination. Among these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate or cyclic carbonate and ether is more preferable.

環状カーボネートと非環状カーボネートの混合溶媒としては、動作温度範囲が広く、負荷特性に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。   The mixed solvent of cyclic carbonate and non-cyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material. In addition, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.

また、特に優れた安全性向上効果が得られる点で、LiPF6等のフッ素を含むリチウム塩および/またはフッ素置換基を有する有機溶媒を含む電解質を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル等のフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、大電流放電特性にも優れており、さらに好ましい。 Further, in view of particularly excellent safety improving effect is obtained, it is preferable to use an electrolyte containing an organic solvent having a lithium salt and / or fluorine substituent containing fluorine such as LiPF 6. A mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate has excellent high-current discharge characteristics, preferable.

固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの高分子電解質を用いることができる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。Li2S−SiS2、Li2S−GeS2、Li2S−P25、Li2S−B23などの硫化物電解質、またはLi2S−SiS2−Li3PO4、Li2S−SiS2−Li2SO4などの硫化物を含む無機化合物電解質を用いると、安全性を高めることができることがある。 As the solid electrolyte, for example, a polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound including at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Moreover, what is called a gel type which hold | maintained the nonaqueous electrolyte solution in the polymer | macromolecule can also be used. Sulfide electrolytes such as Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , or Li 2 S—SiS 2 —Li 3 PO 4 , When an inorganic compound electrolyte containing a sulfide such as Li 2 S—SiS 2 —Li 2 SO 4 is used, safety may be improved.

なお、本発明の非水二次電池の形状は特に限定されず、ペーパー型、コイン型、円筒型、角型などのいずれであってもよい。   The shape of the non-aqueous secondary battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, and the like.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、特に断らない限り、充放電試験用の電極と平板型電池の作製、および電池の安全性評価としての発熱量の測定は下記の方法によった。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these. Unless otherwise specified, the following methods were used to produce electrodes for charge / discharge tests and flat batteries, and to measure the amount of heat generated as a safety evaluation of the batteries.

(1)充放電試験用の電極と平板型電池の作製
正極活物質であり、アルカリ金属イオンをドープ・脱ドープ可能な化合物と導電材アセチレンブラックの混合物に、バインダーとしてPVDFの1−メチル−2−ピロリドン(以下、NMPということがある。)溶液を、活物質:導電材:バインダー=86:10:4(重量比)の組成となるように加えて混練することによりペーストとし、集電体となる#100ステンレスメッシュに該ペーストを塗布して150℃で8時間真空乾燥を行い、正極を得た。
(1) Preparation of electrode for charge / discharge test and flat battery A positive electrode active material, a mixture of a compound capable of doping and dedoping alkali metal ions and conductive material acetylene black, 1-methyl-2 of PVDF as a binder -A pyrrolidone (hereinafter also referred to as NMP) solution was added to a composition of active material: conductive material: binder = 86: 10: 4 (weight ratio) and kneaded to obtain a paste, and a current collector The paste was applied to # 100 stainless steel mesh to be vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode.

得られた正極に、電解液としてエチレンカーボネート(以下、ECということがある。)とジメチルカーボネート(以下、DMCということがある。)とエチルメチルカーボネート(以下、EMCということがある。)との30:35:35混合液にLiPF6を1モル/リットルとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)、セパレーターとしてポリプロピレン多孔質膜を、また、負極として金属リチウムを組み合わせて平板型電池を作製した。 On the obtained positive electrode, ethylene carbonate (hereinafter may be referred to as EC), dimethyl carbonate (hereinafter may be referred to as DMC) and ethyl methyl carbonate (hereinafter may be referred to as EMC) as electrolytes. LiPF 6 dissolved in a 30:35:35 mixture at 1 mol / liter (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC), a polypropylene porous membrane as a separator, and a metal as a negative electrode A flat battery was prepared by combining lithium.

実施例1
(1)正極活物質の合成
水酸化リチウム(LiOH・H2O、本荘ケミカル株式会社製、平均粒径250μm)と、水酸化ニッケル(Ni(OH)2:関西触媒化学(株)製、平均粒径25μm)と、四三酸化コバルト(Co、正同化学工業(株)製、平均粒径1.0μm)を、各金属元素のモル比がLi:Ni:Co=1.02:0.90:0.10となるよう計量し、振動乾燥機(中央化工機株式会社製、VH30型)にて下記の条件で振動させながら温度を上げ、混合、乾燥、粉砕を同時に行い、金属元素化合物の混合物1を得た。なお、振動乾燥機は覗き窓を無くし、保温、トレースによって水分が凝縮する個所を無くして行った。
粉砕メディア : 25mmφアルミナボール (20kg)
計量金属元素化合物 : 16kg
イナートガス量 : 窒素 10L/分
圧力 : 大気圧
乾燥温度 : 内温 101〜107℃
運転時間 : 6時間

得られた金属元素化合物の混合物1の重量は13.4kgであった。
Example 1
(1) Synthesis of positive electrode active material Lithium hydroxide (LiOH · H 2 O, manufactured by Honjo Chemical Co., Ltd., average particle size 250 μm) and nickel hydroxide (Ni (OH) 2 : manufactured by Kansai Catalysts Chemical Co., Ltd., average Particle size 25 μm), cobalt trioxide (Co 3 O 4 , manufactured by Shodo Chemical Industry Co., Ltd., average particle size 1.0 μm), and the molar ratio of each metal element is Li: Ni: Co = 1.02. : 0.90: 0.10 Weighed to increase the temperature while vibrating under the following conditions in a vibration dryer (Chuo Kako Co., Ltd., VH30 type), mixing, drying and grinding simultaneously, A mixture 1 of metal element compounds was obtained. Note that the vibration drier was removed without the observation window and without the location where moisture was condensed by heat insulation and tracing.
Grinding media: 25mmφ alumina balls (20kg)
Weighing metal element compound: 16kg
Inert gas volume: Nitrogen 10L / min Pressure: Atmospheric pressure
Drying temperature: Internal temperature 101-107 ° C
Driving time: 6 hours

The weight of the obtained mixture 1 of metal element compounds was 13.4 kg.

この金属元素化合物の混合物1の粒度分布を、ヘキサメタリン酸ナトリウム0.2重量%水溶液を分散媒として用い、レーザー回折散乱法粒度分布測定装置SALD1100型(株式会社島津製作所製)により測定した。粒度分布を体積基準で微粒側から積算した場合の50%粒子径D50は、9.8μmであった。
この金属元素化合物の混合物1をアルミナ炉芯管を有した管状炉に入れ、酸素気流中において720℃で15時間保持して焼成することで、非水二次電池用正極活物質となる粉末状の化合物(以下、化合物Aと呼ぶ)を得た。得られた化合物Aは、粉末X線回折によりα−NaFeO2型構造を有することを確認した。
The particle size distribution of the metal element compound mixture 1 was measured with a laser diffraction scattering method particle size distribution analyzer SALD1100 (manufactured by Shimadzu Corporation) using a 0.2% by weight aqueous solution of sodium hexametaphosphate as a dispersion medium. The 50% particle diameter D50 when the particle size distribution was integrated from the fine particle side on a volume basis was 9.8 μm.
The mixture 1 of the metal element compound is put into a tubular furnace having an alumina furnace core tube, and is held in an oxygen stream at 720 ° C. for 15 hours and fired, thereby forming a powder that becomes a positive electrode active material for a non-aqueous secondary battery. (Hereinafter referred to as Compound A). The obtained compound A was confirmed to have an α-NaFeO 2 type structure by powder X-ray diffraction.

(2)リチウム二次電池の正極活物質とした場合の充放電性能評価
得られた化合物Aを用いて上記の方法によって平板型電池を作製し、以下の条件で定電流定電圧充電、定電流放電による充放電試験を実施した。
充電最大電圧4.3V、充電時間8時間、充電電流0.8mA/cm2
放電最小電圧3.0V、放電電流0.8mA/cm2
1サイクル目の充電容量、放電容量は、それぞれ246、213mAh/gと高容量であった。10および20サイクル目の放電容量は、それぞれ197および185mAh/gと高容量で良好なサイクル特性を示した。この特性は、従来の方法で得られた正極活物質を用いた時(特許文献1)の特性と同等であった。
(2) Charging / discharging performance evaluation when used as a positive electrode active material of a lithium secondary battery A flat battery was prepared by the above method using the obtained compound A, and was subjected to constant current and constant voltage charging and constant current under the following conditions. A charge / discharge test by discharging was performed.
Charging maximum voltage 4.3V, charging time 8 hours, charging current 0.8mA / cm 2
Discharge minimum voltage 3.0V, discharge current 0.8mA / cm 2
The charge capacity and discharge capacity at the first cycle were as high as 246 and 213 mAh / g, respectively. The discharge capacities at the 10th and 20th cycles were as high as 197 and 185 mAh / g, respectively, and showed good cycle characteristics. This characteristic was equivalent to the characteristic when the positive electrode active material obtained by the conventional method was used (Patent Document 1).

実施例2
(1)正極活物質の合成
実施例1と同様に水酸化リチウム、水酸化ニッケルと四三酸化コバルトを計量し、振動乾燥機(中央化工機株式会社製、VH30型)にて下記の条件で振動させながら温度を上げ混合、乾燥、粉砕を同時に行い、金属元素化合物の混合物2を得た。
粉砕メディア : 25mmφアルミナボール (20kg)
計量金属元素化合物 : 16kg
圧力 : 60Torr
乾燥温度 : 内温 70〜87℃
運転時間 : 6時間

得られた金属元素化合物の混合物2の重量は13.6kgであった。
この金属元素化合物の混合物2用いて実施例1と同様にして、非水二次電池用正極活物質となる粉末状の化合物(以下、化合物Bと呼ぶ)を得た。
Example 2
(1) Synthesis of positive electrode active material Lithium hydroxide, nickel hydroxide and cobalt tetroxide were weighed in the same manner as in Example 1, and the following conditions were used with a vibration dryer (Chuo Kako Co., Ltd., model VH30). Mixing, drying, and pulverization were simultaneously performed while raising the temperature while vibrating to obtain a mixture 2 of metal element compounds.
Grinding media: 25mmφ alumina balls (20kg)
Weighing metal element compound: 16kg
Pressure: 60 Torr
Drying temperature: Internal temperature 70-87 ° C
Driving time: 6 hours

The weight of the obtained mixture 2 of metal element compounds was 13.6 kg.
Using this mixture 2 of metal element compounds, in the same manner as in Example 1, a powdery compound (hereinafter referred to as Compound B) serving as a positive electrode active material for a non-aqueous secondary battery was obtained.

(2)リチウム二次電池の正極活物質とした場合の充放電性能評価
得られた化合物Bを用いて上記の方法によって平板型電池を作製し、以下の条件で定電流定電圧充電、定電流放電による充放電試験を実施した。
充電最大電圧4.3V、充電時間8時間、充電電流0.8mA/cm2
放電最小電圧3.0V、放電電流0.8mA/cm2
1サイクル目の充電容量、放電容量は、それぞれ248、213mAh/gと高容量であった。10および20サイクル目の放電容量は、それぞれ205および192mAh/gと高容量で良好なサイクル特性を示した。
(2) Charging / discharging performance evaluation when used as a positive electrode active material of a lithium secondary battery A flat battery was prepared by the above method using the obtained compound B, and constant current constant voltage charging and constant current were performed under the following conditions. A charge / discharge test by discharging was performed.
Charging maximum voltage 4.3V, charging time 8 hours, charging current 0.8mA / cm 2
Discharge minimum voltage 3.0V, discharge current 0.8mA / cm 2
The charge capacity and discharge capacity at the first cycle were as high as 248 and 213 mAh / g, respectively. The discharge capacities at the 10th and 20th cycles were as high as 205 and 192 mAh / g, respectively, and showed good cycle characteristics.

Claims (5)

金属元素化合物の混合物を焼成することによる非水二次電池用正極活物質の製造方法において、該混合物として、粉砕メディアと振動乾燥機によって混合、乾燥、粉砕を同時に行って得られる混合物を用いることを特徴とする非水二次電池用正極活物質の製造方法。   In the method for producing a positive electrode active material for a non-aqueous secondary battery by firing a mixture of metal element compounds, as the mixture, a mixture obtained by simultaneously mixing, drying, and pulverizing with a pulverizing medium and a vibration dryer is used. A method for producing a positive electrode active material for a non-aqueous secondary battery. 混合、乾燥、粉砕を、振動乾燥機内に水分が凝縮する個所を無くして行うことを特徴とする請求項1記載の製造方法。   2. The production method according to claim 1, wherein the mixing, drying, and pulverization are performed without a portion where moisture is condensed in the vibration dryer. 混合、乾燥、粉砕を、イナートガスの通気下または減圧下に行うことを特徴とする請求項1または2記載の製造方法。   3. The production method according to claim 1, wherein the mixing, drying, and pulverization are performed under a flow of inert gas or under reduced pressure. 混合物が、ニッケル化合物および/またはコバルト化合物とリチウム化合物とを含有する混合物である請求項1〜3のいずれかに記載の製造方法。   The method according to any one of claims 1 to 3, wherein the mixture is a mixture containing a nickel compound and / or a cobalt compound and a lithium compound. 混合物が、ニッケル化合物および/またはコバルト化合物とリチウム化合物とマンガン化合物とを含有する混合物である請求項1〜3のいずれかに記載の製造方法。
The manufacturing method according to claim 1, wherein the mixture is a mixture containing a nickel compound and / or a cobalt compound, a lithium compound, and a manganese compound.
JP2006344189A 2006-12-21 2006-12-21 Manufacturing method of positive active material for nonaqueous secondary battery Pending JP2008159300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344189A JP2008159300A (en) 2006-12-21 2006-12-21 Manufacturing method of positive active material for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344189A JP2008159300A (en) 2006-12-21 2006-12-21 Manufacturing method of positive active material for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2008159300A true JP2008159300A (en) 2008-07-10

Family

ID=39659988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344189A Pending JP2008159300A (en) 2006-12-21 2006-12-21 Manufacturing method of positive active material for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2008159300A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052988A (en) * 2008-08-28 2010-03-11 Sumitomo Metal Mining Co Ltd Method of producing lithium-nickel composite oxide
JP2011173773A (en) * 2010-02-25 2011-09-08 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel composite oxide
JP2015214472A (en) * 2014-04-23 2015-12-03 出光興産株式会社 Method for producing a dried lithium halide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137554A (en) * 2001-10-31 2003-05-14 Mitsubishi Chemicals Corp Method for producing lithium/transition metal-base complex oxide powder and lithium/transition metal-base complex oxide powder
JP2004346334A (en) * 2004-08-16 2004-12-09 Mitsui Mining & Smelting Co Ltd Method for producing cerium-based abrasive particle
JP2005276824A (en) * 2004-02-27 2005-10-06 Sumitomo Chemical Co Ltd Nonaqueous secondary battery positive electrode active material and its manufacturing method
JP2006084143A (en) * 2004-09-16 2006-03-30 Ngk Spark Plug Co Ltd Horizontal vibration drier and powder discharging method using the drier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137554A (en) * 2001-10-31 2003-05-14 Mitsubishi Chemicals Corp Method for producing lithium/transition metal-base complex oxide powder and lithium/transition metal-base complex oxide powder
JP2005276824A (en) * 2004-02-27 2005-10-06 Sumitomo Chemical Co Ltd Nonaqueous secondary battery positive electrode active material and its manufacturing method
JP2004346334A (en) * 2004-08-16 2004-12-09 Mitsui Mining & Smelting Co Ltd Method for producing cerium-based abrasive particle
JP2006084143A (en) * 2004-09-16 2006-03-30 Ngk Spark Plug Co Ltd Horizontal vibration drier and powder discharging method using the drier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052988A (en) * 2008-08-28 2010-03-11 Sumitomo Metal Mining Co Ltd Method of producing lithium-nickel composite oxide
JP2011173773A (en) * 2010-02-25 2011-09-08 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel composite oxide
JP2015214472A (en) * 2014-04-23 2015-12-03 出光興産株式会社 Method for producing a dried lithium halide

Similar Documents

Publication Publication Date Title
CN109643798B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4872150B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery using the same
WO2015182665A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP4985524B2 (en) Lithium secondary battery
JPWO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2019187953A1 (en) Lithium composite metal compound, lithium-secondary-battery positive electrode active material, lithium-secondary-battery positive electrode, lithium secondary battery, and lithium composite metal compound production method
CN109476506B (en) Method for producing lithium-nickel composite oxide
CN110462897B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5250948B2 (en) Nonaqueous electrolyte secondary battery
US20090104526A1 (en) Powder for positive electrode and positive electrode mix
US20090050841A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP5546009B2 (en) Cathode active material for lithium battery, method for producing the same, and lithium battery using the same
JP2007053081A (en) Positive active material for nonaqueous electrolyte secondary battery
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
JP6799551B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP2008159300A (en) Manufacturing method of positive active material for nonaqueous secondary battery
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP2010009948A (en) Nonaqueous electrolyte secondary battery
JP5332121B2 (en) Positive electrode active material powder
JP6360374B2 (en) Method for producing lithium-containing composite metal oxide
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP5168757B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP4994725B2 (en) Method for producing lithium composite metal oxide

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120