JP2008158293A - Hydrophilic antireflection structure - Google Patents

Hydrophilic antireflection structure Download PDF

Info

Publication number
JP2008158293A
JP2008158293A JP2006347426A JP2006347426A JP2008158293A JP 2008158293 A JP2008158293 A JP 2008158293A JP 2006347426 A JP2006347426 A JP 2006347426A JP 2006347426 A JP2006347426 A JP 2006347426A JP 2008158293 A JP2008158293 A JP 2008158293A
Authority
JP
Japan
Prior art keywords
hydrophilic
contact angle
antireflection structure
fine
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006347426A
Other languages
Japanese (ja)
Other versions
JP2008158293A5 (en
Inventor
Motohiko Kuroda
元彦 黒田
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006347426A priority Critical patent/JP2008158293A/en
Publication of JP2008158293A publication Critical patent/JP2008158293A/en
Publication of JP2008158293A5 publication Critical patent/JP2008158293A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophilic antireflection structure having both of an antireflection function and hydrophilicity and capable of unnecessitating a meter hood or a defroster by being applied to, for example, a front window panel, and to provide a structure such as a car component having the hydrophilic antireflection structure. <P>SOLUTION: The antireflection fine structure comprises, for example, a great number of conical fine projections 1 having a bottom diameter D of 50 to 380 nm and an aspect ratio (H/D) of 1 to 10 arranged in a pitch P of 50 to 380 nm, wherein the contact angle of the surfaces of the fine projections 1 with water is controlled to <90°. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光の反射防止機能と、表面に付着した水が薄膜状に濡れ広がる親水性とを併せ持つ微細構造に係わり、このような微細構造を備え、低反射防曇パネルとして、例えば、車両、船舶、航空機などの各種ウィンドウパネルや、ミラー表面に好適に使用することができる親水性反射防止構造と、このような親水性反射防止構造を備えた構造体、例えば自動車用部品に関するものである。   The present invention relates to a fine structure having both the antireflection function of light and the hydrophilicity in which water adhering to the surface spreads in a thin film shape, and has such a fine structure as a low reflection antifogging panel, for example, a vehicle The present invention relates to a hydrophilic antireflection structure that can be suitably used for various window panels such as ships and aircraft, and mirror surfaces, and a structure including such a hydrophilic antireflection structure, for example, an automotive part. .

液晶ディスプレイやCRTディスプレイなど各種のディスプレイ装置、例えば家庭用テレビの画面に外光や室内の照明などの影が映り込むと、本来の映像の視認性が著しく低下することがある。
また、自動車の運転席には、スピードメータや燃料計などといった各種の計器類をまとめて収納したディスプレイ部があり、このディスプレイ部の像がフロントウィンドウに映り込むことによって、ドライバーの前方視界が妨げられることがある。
When shadows such as external light and indoor lighting are reflected on various display devices such as a liquid crystal display and a CRT display, for example, a home television screen, the visibility of the original image may be significantly reduced.
In addition, the driver's seat of the car has a display unit that houses various instruments such as speedometers and fuel gauges. The image of this display unit is reflected on the front window, which obstructs the driver's front view. May be.

このような光の反射を防止するための構造としては、例えば特許文献1、2に見られるような多層膜構造を用いた光学素子を用いる方法が従来から知られている。
このような光学素子は、通常、屈折率の異なる各種の膜を多層膜として基体上に積層したものであって、このような積層多層膜の総合的な光学特性を利用して、反射防止機能を実現している。
特開平11−312330号公報 特開2000−76685号公報
As a structure for preventing such reflection of light, for example, a method using an optical element using a multilayer film structure as disclosed in Patent Documents 1 and 2 is conventionally known.
Such an optical element is usually formed by laminating various films having different refractive indexes on a substrate as a multilayer film, and an anti-reflection function utilizing the comprehensive optical characteristics of such a multilayer multilayer film. Is realized.
JP 11-312330 A JP 2000-76685 A

一方、自動車や船舶、航空機等のフロントウィンドウにおいては、室内外の温度差による結露によって曇りが生じ、前方視界における障害物等の視認性が損なわれることがある。そのため、曇りを除去するための装置(デフロスター)を設置している。   On the other hand, in front windows of automobiles, ships, aircraft, etc., cloudiness may occur due to condensation due to temperature differences between the inside and outside of the room, and the visibility of obstacles and the like in the forward field of view may be impaired. Therefore, an apparatus (defroster) for removing fogging is installed.

このようなデフロスターを設置することなく、フロントウィンドウの曇りを除去する方法としては、フロントウィンドウに親水性の材料を用いる方法が知られている。
すなわち、曇りの発生はパネル上に微小な水滴が付着することによって起こるため、パネル表面を親水性にし、水滴を形成させないようにすることによって曇りを防止することができる。
As a method for removing fogging of the front window without installing such a defroster, a method using a hydrophilic material for the front window is known.
That is, the occurrence of fogging is caused by the attachment of minute water droplets on the panel. Therefore, the fogging can be prevented by making the panel surface hydrophilic and preventing the formation of water droplets.

このような親水表面の作成方法としては、例えばガラス表面をプラズマ処理することによって表面積を増やす方法が知られている(例えば、非特許文献1参照)。
なお、デフロスターの設置は、内燃機関を搭載した自動車や船舶においては、エンジンの廃熱を利用できることから、部品点数が増すものの、さほどの負担とはならないのに対し、電気自動車や燃料電池車においては、電力の消費が増すことになるので、デフロスターを使用することなく曇りを防止できることが望ましい。
Chen et al.,Surface Science Reports 24(1996),p.1−54
As a method for creating such a hydrophilic surface, for example, a method of increasing the surface area by plasma treatment of the glass surface is known (for example, see Non-Patent Document 1).
The installation of the defroster can be used in automobiles and ships equipped with internal combustion engines because the waste heat of the engine can be used. Since this increases power consumption, it is desirable to prevent fogging without using a defroster.
Chen et al. , Surface Science Reports 24 (1996), p. 1-54

しかしながら、上記特許文献1及び2に記載の多層膜構造を自動車のフロントウィンドウに用いた場合、低反射機能は発揮されるものの、曇りを防止することができないことから、デフロスターの設置が必要となる。
また、フロントウィンドウパネルに、非特許文献1に記載されたようなプラズマ処理を施したものを使用した場合には、デフロスターは不要になるものの、反射防止機能がないため、ディスプレイ部からの出射光を遮ってフロントウィンドウへの映り込みを防止するために、メーターフードが必要となり、その結果、車体デザインの自由度が制限されることになる。
However, when the multilayer film structure described in Patent Documents 1 and 2 is used for a front window of an automobile, a low reflection function is exhibited, but fogging cannot be prevented, so that a defroster must be installed. .
In addition, when a front window panel that has been subjected to plasma treatment as described in Non-Patent Document 1 is used, the defroster is unnecessary, but there is no antireflection function, so that the emitted light from the display unit A meter hood is required to prevent the image from being reflected on the front window, and as a result, the degree of freedom in designing the vehicle body is limited.

本発明は、多層膜を用いた従来の反射防止構造や、プラズマ処理による親水性表面構造における上記課題を解決すべくなされたものであって、その目的とするところは、光の反射防止機能と親水性とを兼ね備え、例えば上記したようなフロントウィンドウパネルに適用することによって、メーターフードと共にデフロスターをも不要にすることができる親水性反射防止構造と、このような親水性反射防止構造を備えた、自動車用部品などの構造体を提供することにある。   The present invention has been made in order to solve the above-mentioned problems in the conventional antireflection structure using a multilayer film and the hydrophilic surface structure by plasma treatment. The object of the present invention is to provide an antireflection function for light. Combined with hydrophilicity, for example, by applying to a front window panel as described above, it is possible to eliminate the need for a defroster along with a meter hood, and such a hydrophilic antireflection structure. It is to provide a structure such as an automobile part.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、反射防止機能を有する微細突起のアスペクト比と共に、当該微細突起の表面を構成する材料の水に対する接触角を制御することにより、上記目的が達成できる条件が存在することを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have controlled the contact angle of the material constituting the surface of the fine protrusion with water, together with the aspect ratio of the fine protrusion having an antireflection function. Thus, the present inventors have found that there are conditions that can achieve the above object, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の親水性反射防止構造は、略円形又は多角形底面を有する錐状又は錐台状をなし、底面の直径(底面が円形の場合)又は底面に外接する円の直径(底面が多角形の場合)が50〜380nmであって、アスペクト比が1〜10の無数の微細突起が50〜380nmのピッチで配置されて成るものであって、上記微細突起表面の水滴に対する接触角が90°未満であることを特徴としている。   That is, the present invention is based on the above knowledge, and the hydrophilic antireflection structure of the present invention has a substantially circular shape or a truncated cone shape having a polygonal bottom surface, and has a diameter of the bottom surface (when the bottom surface is circular). ) Or the diameter of a circle circumscribing the bottom surface (when the bottom surface is polygonal) is 50 to 380 nm, and innumerable fine protrusions having an aspect ratio of 1 to 10 are arranged at a pitch of 50 to 380 nm. The contact angle with respect to the water droplet on the surface of the fine protrusion is less than 90 °.

また、本発明の親水性反射防止構造体は、上記した親水性反射防止構造を基材の少なくとも一方の面に備えていることを特徴とし、本発明の自動車用部品は上記親水性反射防止構造を備えていることを特徴とする。   The hydrophilic antireflection structure of the present invention is characterized in that the above-mentioned hydrophilic antireflection structure is provided on at least one surface of a base material, and the automotive part of the present invention has the above hydrophilic antireflection structure. It is characterized by having.

本発明によれば、所定のアスペクト比を有し、可視光線の波長よりも短いピッチで配列された無数の微細突起から成る微細構造によって光の反射防止機能が発揮されると共に、この微細構造の表面の水滴に対する接触角が90°に満たないことから、親水性を発揮し、反射防止性と撥水性とを両立させることができる。   According to the present invention, the antireflection function of light is exhibited by a fine structure having innumerable fine protrusions having a predetermined aspect ratio and arranged at a pitch shorter than the wavelength of visible light. Since the contact angle with respect to water droplets on the surface is less than 90 °, hydrophilicity can be exhibited, and both antireflection properties and water repellency can be achieved.

以下、本発明の親水性反射防止構造やこれを適用した構造体について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the hydrophilic antireflection structure of the present invention and the structure to which the hydrophilic antireflection structure is applied will be described in more detail along with the manufacturing method and embodiments thereof.

本発明の親水性反射防止構造は、上記のように1〜10のアスペクト比を有し、可視光線の波長よりも小さい円形又は多角形底面を有する錐状又は錐台状の無数の微細突起から成り、これらが可視光線の波長よりも小さいピッチで配置された構造となっていることから、このような微細構造の厚み方向の各断面における材料の占有面積によって定まる厚み方向の屈折率が急激に変化することなく、空気の屈折率1.0から、材料の屈折率までなだらかに、連続的に変化するようになるため、当該微細構造に入射した光は、ほとんど回折や反射が生じることなく直進することになって、入射表面における光の反射率を効果的に低減することができる。   The hydrophilic antireflection structure of the present invention has an aspect ratio of 1 to 10 as described above, and is formed from countless fine projections having a circular or polygonal bottom having a circular or polygonal bottom smaller than the wavelength of visible light. Since these are arranged at a pitch smaller than the wavelength of visible light, the refractive index in the thickness direction determined by the area occupied by the material in each cross section in the thickness direction of such a fine structure is abrupt. Without any change, the refractive index of the air gradually changes from 1.0 to the refractive index of the material, so that the light incident on the fine structure travels straight without any diffraction or reflection. As a result, the reflectance of light on the incident surface can be effectively reduced.

本発明の親水性反射防止構造においては、上記した微細突起表面の水滴に対する接触角が90°未満とすることが必要であり、具体的には、このような接触角を有する材料を当該微細突起を構成する材料として用いることや、任意の材料により形成された微細突起の表面をこのような接触角を有する材料によってコーティング(表面処理)することによって、突起表面の水に対する接触角を90°未満に調整することができる。   In the hydrophilic antireflection structure of the present invention, it is necessary that the contact angle of the surface of the fine protrusions with respect to the water droplets is less than 90 °. Specifically, a material having such a contact angle is made of the fine protrusions. The surface of the fine protrusions formed of an arbitrary material is coated with a material having such a contact angle (surface treatment), so that the contact angle of the protrusion surface with respect to water is less than 90 °. Can be adjusted.

すなわち、平面上のある領域に上記のような微細突起を形成することによって表面積が増大し、領域内において見かけ上表面張力が増加する。そして、水に対する表面張力が空気に対する表面張力より小さい材料、つまり水に対する接触角が90°未満の材料の場合、表面積の増大によって水はより濡れ広がるようになり、無数の微細突起から成る構造の表面では親水化する。また、微細突起の形状やピッチを上記寸法にすることによって、水滴が完全に濡れ広がって薄膜状になるような超親水性とすることができる。   That is, the surface area is increased by forming the fine protrusions as described above in a certain area on the plane, and the surface tension is apparently increased in the area. In the case of a material whose surface tension with respect to water is smaller than the surface tension with respect to air, that is, a material with a contact angle with respect to water of less than 90 °, the water becomes more wet and spread by increasing the surface area. It becomes hydrophilic on the surface. Further, by setting the shape and pitch of the fine protrusions to the above dimensions, it can be made super hydrophilic so that the water droplets are completely wetted and spread into a thin film.

図1〜6は、本発明の微細突起の形態例を示すものであって、本発明において、微細突起1の底面の大きさについては、図1や図2に示すように、その形状が円形の場合にはその直径D、図3に示すように多角形(図では四角形)である場合には当該底面を形成する多角形に外接する円の直径Dで表すものとし、この直径Dと共に微細突起1,1間のピッチPを光の波長程度、具体的には50〜380nmとすることが必要であるが、30〜300nmとすることがより好ましい。なお、D≦Pであることは言うまでもなく、平坦部の割合を少なくして反射率を低くする観点から、D=Pであることが望ましい。
ここで、上記直径DやピッチPが50nmより小さい場合、このような無数の突起1から成る微細構造を均一かつ工業的に得ることが極めて困難となる一方、380nmより大きくなると、拡散や回折が起こって、光の反射率が大きくなってしまうので好ましくない。
FIGS. 1-6 shows the example of the form of the microprotrusion of this invention, Comprising: About the magnitude | size of the bottom face of the microprotrusion 1 in this invention, the shape is circular as shown in FIG.1 and FIG.2. 3 is represented by the diameter D, and when it is a polygon (as shown in FIG. 3), it is represented by a diameter D of a circle circumscribing the polygon forming the bottom surface. The pitch P between the protrusions 1 and 1 needs to be about the wavelength of light, specifically 50 to 380 nm, but more preferably 30 to 300 nm. Needless to say, D ≦ P. From the viewpoint of reducing the reflectance by reducing the proportion of the flat portion, it is desirable that D = P.
Here, when the diameter D and the pitch P are smaller than 50 nm, it is extremely difficult to obtain such a fine structure composed of innumerable protrusions 1 uniformly and industrially. On the other hand, when the diameter D and the pitch P are larger than 380 nm, diffusion and diffraction occur. This is not preferable because the reflectance of light increases.

上記微細突起1のアスペクト比、すなわち突起の高さHと直径Dの比(H/D)については、アスペクト比が1未満では、光反射防止の効果が得られ難く、10を超えると、微細突起1の成型や、成型後の離型が著しく困難となることから、1〜10の範囲とすることが必要である。
なお、アスペクト比が2以上の範囲では、成型及び成型後の離型が比較的容易であると共に、反射防止性能と親水性とを好適に両立することができる。
With respect to the aspect ratio of the fine protrusion 1, that is, the ratio of the height H to the diameter D (H / D), if the aspect ratio is less than 1, it is difficult to obtain the effect of preventing light reflection. Since it becomes extremely difficult to mold the protrusion 1 and release it after molding, the range of 1 to 10 is necessary.
In addition, when the aspect ratio is in the range of 2 or more, molding and mold release after molding are relatively easy, and antireflection performance and hydrophilicity can be suitably achieved.

微細突起1の形状としては、上記のような凸型錐状であることが望ましいが、底面から先端に向かって次第に体積が小さくなるような構造であれば、例えば図4に示す錐台状のように、先端が平面であってもよい。
また、各微細突起1の中心と頂点を結ぶ線は底面に対して必ずしも垂直である必要はなく、上記した数値を満たしている限り、図5に示すように傾いていてもよい。
The shape of the fine protrusion 1 is preferably a convex cone shape as described above. However, if the volume gradually decreases from the bottom surface toward the tip, for example, the shape of the frustum shape shown in FIG. As such, the tip may be flat.
Further, the line connecting the center and apex of each fine protrusion 1 does not necessarily have to be perpendicular to the bottom surface, and may be inclined as shown in FIG. 5 as long as the above numerical values are satisfied.

また、微細突起1の形状は、正確な円錐(母線が直線)や角錐(稜線が直線)のみならず、先細りとなっている限り、図6に示すように、母線や稜線形状が曲線をなし、側面が外側に膨らんだ曲面であるものであってもよい。また、成形性や耐破損性を考慮して、先端部を平坦にしたり、丸みをつけたりすることも可能である。   As shown in FIG. 6, the shape of the fine protrusion 1 is not only an accurate cone (the bus line is a straight line) or a pyramid (the ridge line is a straight line), but the shape of the bus line and the ridge line is a curved line Further, it may be a curved surface whose side surface bulges outward. Further, it is possible to make the tip portion flat or round in consideration of moldability and breakage resistance.

なお、微細突起1の底面形状は、上記数値を満たしてさえいれば、上記したように真円や楕円などの円形、あるいは多角形でもよいが、反射防止効果に異方性がないようにするためには、円形であることが望ましい。   The bottom surface shape of the fine protrusion 1 may be a circle such as a perfect circle or an ellipse or a polygon as described above as long as the above numerical value is satisfied. For this purpose, a circular shape is desirable.

さらに、上記微細突起1の配列については、各微細突起1の形状が上記数値範囲にある限り、規則的な配列であっても不規則なランダム配列であってもよく、また、これら微細突起1から成る微細構造中に、形状の異なる二種類以上の微細突起が含まれていても構わないが、反射防止構造の均一性を向上させるためには、同一形状の微細突起1から成り、微細突起1の間隔が均一であることが好ましく、さらには、図2〜4及び6に示したような正方配列、あるいは図1及び5に示したような六方細密配列とすることが好ましい。   Further, the arrangement of the fine protrusions 1 may be a regular arrangement or an irregular random arrangement as long as the shape of each fine protrusion 1 is within the above numerical range. Two or more kinds of fine protrusions having different shapes may be included in the fine structure made of the above, but in order to improve the uniformity of the antireflection structure, the fine protrusions 1 are formed of the same shape. 1 is preferably uniform, and more preferably a square array as shown in FIGS. 2 to 4 and 6 or a hexagonal close-packed array as shown in FIGS.

上記微細突起1の表面の水に対する接触角、言い換えると微細突起1の少なくとも表面を構成する材料の水に対する接触角は、上記したように90°未満とすることが必要であり、75°以下とすることがより好ましい。
すなわち、表面の水に対する接触角が90°以上では親水性を示さない一方、75°いかであれば、より良好な防曇効果が得られる。
The contact angle with respect to water of the surface of the fine protrusion 1, in other words, the contact angle with respect to water of the material constituting at least the surface of the fine protrusion 1 needs to be less than 90 ° as described above, and is 75 ° or less. More preferably.
That is, when the contact angle of the surface with respect to water is 90 ° or more, hydrophilicity is not exhibited, while if it is 75 °, a better antifogging effect can be obtained.

また、微細突起1を構成する材料としては、後述する方法によってこのような微細構造を付与することができる材料であればよく、光の屈折率が2.0以下、より好滴には1.7以下であることが望ましい。
すなわち、反射防止機能を高める観点からは、屈折率が小さいほど望ましいが、現状の材料の中では、1.3程度が最小レベルである。
The material constituting the fine protrusions 1 may be any material that can give such a fine structure by a method described later. The refractive index of light is 2.0 or less. It is desirable that it is 7 or less.
That is, from the viewpoint of enhancing the antireflection function, it is desirable that the refractive index is small, but among the current materials, about 1.3 is the minimum level.

このような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂、あるいはこれらを2種以上ブレンドした材料、さらにはガラス、酸化ケイ酸、酸化アルミニウム等の透明無機材料や、上記樹脂に無機材料をコンポジット化した材料を用いることが可能である。
また、材料物性を向上させるために、上記の屈折率範囲を逸脱しない範囲で、例えば、酸化ケイ素、酸化窒化ケイ素、酸化マグネシウム、酸化チタン、酸化インジウム合金等を添加して用いてもよい。
Examples of such materials include polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, Thermoplastic resins such as modified polyphenylene ether, polyphenylene sulfide, polyether ether ketone, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, phenol resin, melamine resin, urea resin, epoxy Thermosetting resin such as resin, unsaturated polyester resin, alkyd resin, silicone resin, diallyl phthalate resin Or, two or more of these blended materials, further glasses, oxide silicate, or a transparent inorganic material such as aluminum oxide, it is possible to use a material obtained by a composite of an inorganic material into the resin.
In order to improve material properties, for example, silicon oxide, silicon oxynitride, magnesium oxide, titanium oxide, an indium oxide alloy, etc. may be added and used without departing from the above refractive index range.

ナノインプリントの方法として、後述するように活性エネルギー線を用いる場合には、活性エネルギー線によって重合を開始する樹脂が用いられる。
このような樹脂としては、例えば紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂を挙げることができ、必要に応じて活性エネルギー線を照射することによってラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためにイソシアネートのような硬化剤を加えることもできる。
このとき用いられる活性エネルギー線としては、一般に紫外線やX線、その他電子線、電磁波などが挙げられるが特に限定されるものではない。
As a nanoimprinting method, when an active energy ray is used as will be described later, a resin that initiates polymerization by the active energy ray is used.
Examples of such resins include UV curable acrylic urethane resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, and UV curable epoxy resins. Accordingly, a polymerization initiator that generates radicals by irradiation with active energy rays can be used, and a curing agent such as isocyanate can also be added in order to harden it more firmly.
Examples of the active energy ray used at this time include ultraviolet rays, X-rays, other electron beams, and electromagnetic waves, but are not particularly limited.

上記微細突起1が無数に配列されて成る微細構造を成形する方法については、特に限定されないが、熱プレス法(ホットエンボス法)、射出成形法などを挙げることができ、特に光の波長以下の微細突起1を容易に成形できる方法として、ナノインプリントを用いることができる。
このナノインプリントの方法としては、熱及び活性エネルギー線のどちらを用いる方法であってもよい。ここで、熱を用いる方法は、熱可塑性樹脂を加熱して、金型を押し当て形を転写するものであり、活性エネルギー線を用いる方法は、型に活性エネルギー線にて重合し硬化するポリマー又はオリゴマー、モノマーなどを入れ、紫外線などの活性エネルギー線を照射して、固める方法である。なお、本発明において、ナノインプリントとは、数nmから数10μm程度の大きさを有する微細構造の転写を言う。
A method for forming a fine structure in which the fine protrusions 1 are arranged innumerably is not particularly limited, and examples thereof include a hot press method (hot embossing method), an injection molding method, and the like. Nanoimprinting can be used as a method for easily forming the fine protrusions 1.
The nanoimprinting method may be a method using either heat or active energy rays. Here, the method using heat is to heat a thermoplastic resin and press the mold to transfer the shape, and the method using active energy rays is a polymer that is polymerized and cured by active energy rays on the die. Or it is the method of putting an oligomer, a monomer, etc., and irradiating active energy rays, such as an ultraviolet-ray, and solidifying. In the present invention, nanoimprint refers to transfer of a fine structure having a size of several nanometers to several tens of micrometers.

上記の成形に用いられるスタンパは、本発明の親水性反射防止構造に要求される微細構造を形成できる方法であれば、その製造方法には特に限定は無く、生産性、コストなどを考慮して適宜なものを使用すればよい。   The stamper used for the molding is not particularly limited as long as it can form the fine structure required for the hydrophilic antireflection structure of the present invention. In consideration of productivity, cost, and the like. What is necessary is just to use an appropriate thing.

また、上記スタンパは、転写されるべき微細なパターンを有するものであり、スタンパにパターンを形成する方法については、特に制限されず、例えば、フォトリソグラフィや電子線描画法等、所望する加工精度に応じて選択することができる。   The stamper has a fine pattern to be transferred, and the method for forming the pattern on the stamper is not particularly limited. For example, the stamper has a desired processing accuracy such as photolithography or electron beam drawing. Can be selected accordingly.

上記スタンパの材料としては、シリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック、炭素材料等、強度と要求される精度の加工性を有するものであればよく、具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、C、あるいはこれらを1種以上含むものを例示することができる。   The material of the stamper may be any material having strength and workability with the required accuracy, such as silicon wafer, various metal materials, glass, ceramic, plastic, and carbon material. Specifically, Si, SiC, Examples thereof include SiN, polycrystalline Si, glass, Ni, Cr, Cu, C, or those containing one or more of these.

本発明の親水性反射防止構造の成形に用いるプレス装置としては、加熱・加圧機構を有するものや、光透過性スタンパの上方より活性エネルギー線を照射できる機構を有するものがパターン転写を効率良く行う上で好ましい。   As a pressing device used for forming the hydrophilic antireflection structure of the present invention, one having a heating / pressing mechanism and one having a mechanism capable of irradiating an active energy ray from above a light-transmitting stamper can efficiently transfer a pattern. It is preferable in carrying out.

表面処理によって親水性を付与する方法としては、微細突起1から成る構造を埋めてしまうような方法でありさえすれば、特に限定されず、例えば、LB法、PVD法、CVD法、自己組織化法、スパッタ法、単分子を溶剤で希釈したものを塗布する方法などを挙げることができる。また、微細構造形成前の平板に任意の厚さに親水処理を施してから、上記した方法によって微細構造を成形してもよい。   The method of imparting hydrophilicity by surface treatment is not particularly limited as long as it is a method that fills the structure composed of the fine protrusions 1. For example, the LB method, PVD method, CVD method, self-assembly And a method of applying a solution obtained by diluting a single molecule with a solvent. Moreover, after performing a hydrophilic process to arbitrary thickness to the flat plate before fine structure formation, you may shape | mold a fine structure with an above-described method.

本発明の親水性反射防止構造を備えた部品(親水性反射防止構造体)は、光に曝される場所に用いられることから、光による劣化を防止するために、材料に紫外線吸収剤や酸化防止剤、ラジカル補足剤などを添加しておくことが望ましい。
また、必要に応じて、樹脂の劣化による黄変を補うためのブルーイング剤や蛍光発色顔料を用いることもきる。
Since the component (hydrophilic antireflection structure) having the hydrophilic antireflection structure of the present invention is used in a place exposed to light, in order to prevent deterioration due to light, an ultraviolet absorber or an oxidation material is used as a material. It is desirable to add an inhibitor or a radical scavenger.
Further, if necessary, a bluing agent or a fluorescent coloring pigment for compensating for yellowing due to deterioration of the resin can be used.

本発明の親水性反射防止構造を形成する場合、少なくとも基材の片面側に形成するが、用途に応じて、光の入射面及び透過光の出射面の両面に形成してもよい。
このような微細構造の形成方法は、特に限定はなく、例えば、基材に直接形成する方法、あるいは基材と同じ屈折率で成形が容易な塗布物を塗布して薄膜を作り、そこに微細構造を転写する方法などを適用することができる。
When forming the hydrophilic antireflection structure of the present invention, it is formed on at least one side of the substrate, but may be formed on both the light incident surface and the transmitted light exit surface depending on the application.
There is no particular limitation on the method for forming such a fine structure. For example, a method for forming directly on a base material, or a thin film is formed by applying a coating material that can be easily molded with the same refractive index as that of the base material. A method of transferring the structure can be applied.

また、この親水性反射防止構造をウィンドウパネルに形成する際には、室内側に形成することが最も効果的であり、この構造を片面に付与すれば、その裏面側には、従来の反射防止方法を適用することもできる。
このような反射防止方法としては、例えば、光の波長以下の微細突起から成る構造のみを形成してなる反射防止構造(水との接触角不問)を適用する方法や、反射防止層の膜厚を制御して、薄膜表面と基材接着面との反射光を干渉させ反射光を打ち消す方法などが挙げられる。
Moreover, when forming this hydrophilic antireflection structure on a window panel, it is most effective to form it on the indoor side. If this structure is applied to one side, the conventional antireflection is provided on the back side. The method can also be applied.
As such an antireflection method, for example, a method of applying an antireflection structure (no contact angle with water) formed by forming only a structure composed of fine protrusions having a wavelength equal to or less than the wavelength of light, or a film thickness of the antireflection layer And controlling the light to interfere the reflected light between the surface of the thin film and the substrate adhesion surface, and cancel the reflected light.

本発明の親水性反射防止構造を備えた成形品(親水性反射防止構造体)としては、カメラのレンズ、携帯電話、電子手帳などのモバイル機器、看板、時計など、透明パネルや表示装置の最前面で反射防止を必要とし、曇りが生じる可能性があるようなものに使用される。   The molded article (hydrophilic antireflection structure) having the hydrophilic antireflection structure of the present invention is the most suitable for transparent panels and display devices such as camera lenses, mobile devices such as mobile phones and electronic notebooks, signboards and watches. Used for those that require anti-reflection on the front and may be cloudy.

表示装置の形式としては特に限定されず、例えば、アナログメーターのように機械的な表示と照明を組み合わせた方式、デジタルメーターやモニターのように液晶やLED、ELなどのバックライトや発光面を用いた方式に適用することができる。さらには、モバイル機器のように反射方式の液晶を用いることもある。
また、自動車用部材として、フロントウィンドウやリアウィンドウの室内側、サイドミラーの表面などに用いることができる。なお、これらの部材は自動車に限定されるものではなく、航空機、電車、船舶など、室内外が透明パネルによって仕切られるような場合に、好適に用いることができる。
The type of display device is not particularly limited. For example, a combination of mechanical display and illumination, such as an analog meter, and a backlight or light emitting surface such as a liquid crystal, LED, or EL, such as a digital meter or monitor are used. Can be applied. Further, a reflective liquid crystal may be used as in mobile devices.
Moreover, it can be used as a member for automobiles on the indoor side of a front window or a rear window, the surface of a side mirror, or the like. Note that these members are not limited to automobiles, and can be suitably used when the interior and exterior are partitioned by a transparent panel, such as aircraft, trains, and ships.

以下に、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be described more specifically based on examples, but it is needless to say that the present invention is not limited to these examples.

(実施例1)
まず、市販の電子線描画装置を用いて、開口径250nm、深さ500nmの円錐状凹部がピッチ250nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのSiOゾルゲル膜(水に対する接触角:40°、屈折率:1.45)の表裏両面に、底面径D=250nm、高さH=500nmの円錐形微細突起1(アスペクト比:2)がピッチP=250nmに六方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 1)
First, using a commercially available electron beam drawing apparatus, a stamper in which conical recesses having an opening diameter of 250 nm and a depth of 500 nm are arranged in a hexagonal manner at a pitch of 250 nm is prepared, and using this stamper, a 2 mm thick SiO 2 sol-gel film ( Conical microprotrusions 1 (aspect ratio: 2) having a bottom diameter D = 250 nm and a height H = 500 nm are hexagonal at a pitch P = 250 nm on both front and back surfaces with a contact angle with water of 40 ° and a refractive index of 1.45. The arranged fine structure was transferred to obtain the hydrophilic antireflection structure of this example.

このようにして得られた親水性反射防止構造体について、以下の要領によって、反射防止機能、親水機能について評価した。この結果を表1に示す。   The hydrophilic antireflection structure thus obtained was evaluated for the antireflection function and the hydrophilic function in the following manner. The results are shown in Table 1.

〔平均反射率の測定〕
反射防止機能の評価方法としては、380〜780nmの各波長について、変角分光光度計(大塚電子製:可視・近赤外自動変角測定装置)により、入射角0°のときの反射率を測定し、得られた値から平均反射率を算出した。
[Measurement of average reflectance]
As an evaluation method of the antireflection function, the reflectivity at an incident angle of 0 ° is measured with a variable angle spectrophotometer (manufactured by Otsuka Electronics: visible / near infrared automatic variable angle measuring device) for each wavelength of 380 to 780 nm. The average reflectance was calculated from the measured value.

〔接触角の測定〕
親水機能の評価方法としては、接触角計(協和界面科学社製:CA−X)を用いて、得られた親水性反射防止構造体上に、10μLの水を滴下し、その接触角を測定した。なお、上記接触角計による測定下限値は5°であり、接触角が5°未満の場合には、表面に付着した水がほぼ薄膜状に濡れ広がり、ほとんど超親水性を示すものと判断される。
(Measurement of contact angle)
As a method for evaluating the hydrophilic function, using a contact angle meter (Kyowa Interface Science Co., Ltd .: CA-X), 10 μL of water was dropped on the obtained hydrophilic antireflection structure, and the contact angle was measured. did. The lower limit of measurement by the contact angle meter is 5 °, and when the contact angle is less than 5 °, it is judged that the water adhering to the surface spreads almost in a thin film shape and exhibits almost super hydrophilicity. The

当該実施例1で得られた親水性反射防止構造体の可視光範囲における平均反射率は0.06%、水との接触角は5°未満であった。   The average reflectance in the visible light range of the hydrophilic antireflection structure obtained in Example 1 was 0.06%, and the contact angle with water was less than 5 °.

(実施例2)
上記実施例1と同様の方法によって、四角形をなす開口部の対角線の長さが250nm、深さ750nmの四角錐状凹部がピッチ250nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのSiOゾルゲル膜(接触角:40°、屈折率:1.45)の表裏両面に、四角形底面に外接する円の直径D=250nm、高さH=750nmの四角錐形微細突起1(アスペクト比:3)がピッチP=250nmに六方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 2)
By using the same method as in Example 1, a stamper in which square pyramid-shaped concave portions having a rectangular opening length of 250 nm and a depth of 750 nm are arranged hexagonally at a pitch of 250 nm is prepared. A quadrangular pyramidal microprotrusion 1 having a diameter D = 250 nm and a height H = 750 nm of a circle circumscribing a square bottom surface on both front and back surfaces of a 2 mm-long SiO 2 sol-gel film (contact angle: 40 °, refractive index: 1.45) The fine structure in which (aspect ratio: 3) was hexagonally arranged at a pitch P = 250 nm was transferred to obtain a hydrophilic antireflection structure of this example.

得られた親水性反射防止構造体について、上記した方法により、反射防止機能及び親水機能を調査した結果、可視光範囲での平均反射率は0.008%であり、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function of the obtained hydrophilic antireflection structure by the above-described method, the average reflectance in the visible light range is 0.008%, and the contact angle of the water droplet is 5 °. Was less than. These results are also shown in Table 1.

(実施例3)
上記実施例1と同様の方法によって、開口径300nm、深さ3000nmの円錐状凹部がピッチ300nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMA(ポリメタクリル酸メチル、接触角:70°、屈折率:1.49)の表裏両面に、底面径D=300nm、高さH=3000nmの円錐形微細突起1(アスペクト比:10)がピッチP=300nmに六方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 3)
A stamper in which conical recesses having an opening diameter of 300 nm and a depth of 3000 nm are arranged in a hexagonal manner at a pitch of 300 nm is manufactured by the same method as in Example 1 above. Using this stamper, a PMMA (polymethyl methacrylate, polymethyl methacrylate, Conical fine protrusions 1 (aspect ratio: 10) having a bottom diameter D = 300 nm and a height H = 3000 nm are arranged hexagonally at a pitch P = 300 nm on both the front and back surfaces with a contact angle of 70 ° and a refractive index of 1.49. The fine structure was transferred to obtain the hydrophilic antireflection structure of this example.

得られた親水性反射防止構造体について、上記した方法により、反射防止機能及び親水機能を調査した結果、可視光範囲での平均反射率は0.009%であり、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function of the obtained hydrophilic antireflection structure by the above-described method, the average reflectance in the visible light range is 0.009%, and the contact angle of the water droplet is 5 °. Was less than. These results are also shown in Table 1.

(実施例4)
上記実施例1と同様の方法によって、開口径250nm、深さ250nmの円錐状凹部がピッチ250nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMA(接触角:70°、屈折率:1.49)の表裏両面に、底面径D=250nm、高さH=250nmの円錐形微細突起1(アスペクト比:1)がピッチP=250nmに六方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
Example 4
A stamper in which conical concave portions having an opening diameter of 250 nm and a depth of 250 nm are arranged in a hexagonal manner at a pitch of 250 nm is manufactured by the same method as in the first embodiment. Using this stamper, a PMMA having a thickness of 2 mm (contact angle: 70 °) , With a refractive index of 1.49), a fine structure in which conical fine protrusions 1 (aspect ratio: 1) having a bottom diameter D = 250 nm and a height H = 250 nm are arranged hexagonally at a pitch P = 250 nm is transferred Thus, the hydrophilic antireflection structure of this example was obtained.

そして、得られた親水性反射防止構造体について、上記同様の方法により、反射防止機能及び親水機能を調査した結果、可視光範囲での平均反射率は0.86%、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function of the obtained hydrophilic antireflection structure by the same method as described above, the average reflectance in the visible light range was 0.86%, and the contact angle of the water droplet was 5 It was less than °. These results are also shown in Table 1.

(実施例5)
上記実施例1と同様の方法によって、開口径50nm、深さ200nmの円錐状凹部がピッチ200nmに正方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMA(接触角:70°、屈折率:1.49)の表裏両面に、底面径D=50nm、高さH=200nmの円錐形微細突起1(アスペクト比:4)がピッチP=200nmに正方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 5)
A stamper in which conical recesses with an opening diameter of 50 nm and a depth of 200 nm are squarely arranged at a pitch of 200 nm is manufactured by the same method as in Example 1 above, and a PMMA (contact angle: 70 °) with a thickness of 2 mm is produced using this stamper. , A fine structure in which conical fine protrusions 1 (aspect ratio: 4) having a bottom diameter D = 50 nm and a height H = 200 nm are squarely arranged at a pitch P = 200 nm on both front and back surfaces of a refractive index of 1.49) Thus, the hydrophilic antireflection structure of this example was obtained.

そして、得られた親水性反射防止構造体について、上記同様の方法によって、反射防止機能及び親水機能を調査した結果、可視光範囲での平均反射率は0.62%、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function of the obtained hydrophilic antireflection structure by the same method as described above, the average reflectance in the visible light range was 0.62%, and the contact angle of the water droplet was 5 It was less than °. These results are also shown in Table 1.

(実施例6)
上記実施例1と同様の方法によって、開口径350nm、深さ1050nmの円錐状凹部がピッチ350nmに正方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMA(接触角:70°、屈折率:1.49)の表裏両面に、底面径D=350nm、高さH=1050nmの円錐形微細突起1(アスペクト比:3)がピッチP=350nmに正方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 6)
A stamper in which conical recesses having an opening diameter of 350 nm and a depth of 1050 nm were squarely arranged at a pitch of 350 nm was produced in the same manner as in Example 1, and a PMMA having a thickness of 2 mm (contact angle: 70 °) was produced using this stamper. The fine structure in which conical microprotrusions 1 (aspect ratio: 3) having a bottom surface diameter D = 350 nm and a height H = 1050 nm are squarely arranged at a pitch P = 350 nm is transferred onto both front and back surfaces of a refractive index of 1.49). Thus, the hydrophilic antireflection structure of this example was obtained.

得られた親水性反射防止構造体について、上記した方法により、反射防止機能及び親水機能を調査した結果、可視光範囲での平均反射率は0.08%、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function of the obtained hydrophilic antireflection structure by the above-described method, the average reflectance in the visible light range is 0.08%, and the contact angle of the water droplet is less than 5 °. there were. These results are also shown in Table 1.

(実施例7)
上記実施例1と同様の方法によって、開口径250nm、深さ750nmの円錐状凹部がピッチ250nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPS(ポリスチレン、接触角:91°、屈折率:1.6)基板の片面にシリカ(接触角:30°、屈折率:1.45)による表面処理を施した基板の表裏両面に、底面径D=250nm、高さH=750nmの円錐形微細突起1(アスペクト比:3)がピッチP=250nmに正方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 7)
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 750 nm are arranged in a hexagonal manner at a pitch of 250 nm is manufactured by the same method as in Example 1 above, and PS (polystyrene, contact angle: 2 mm thick) is formed using this stamper. 91 °, refractive index: 1.6) The bottom surface diameter D = 250 nm, the height H on both front and back surfaces of the substrate subjected to surface treatment with silica (contact angle: 30 °, refractive index: 1.45) on one surface of the substrate. = The fine structure in which conical fine protrusions 1 (aspect ratio: 3) of 750 nm are squarely arranged at a pitch P = 250 nm was transferred to obtain the hydrophilic antireflection structure of this example.

得られた親水性反射防止構造体について、上記した方法により、反射防止機能及び親水機能を調査した結果、可視光範囲での平均反射率は0.19%、シリカ処理面における水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function by the above-described method for the obtained hydrophilic antireflection structure, the average reflectance in the visible light range is 0.19%, and the contact angle of water droplets on the silica-treated surface is It was less than 5 °. These results are also shown in Table 1.

(実施例8)
上記実施例1と同様の方法により、開口径250nm、深さ750nmの円錐状凹部がピッチ250nmに正方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMAに酸化チタンを分散させたもの(接触角:60°、屈折率:1.7)の表裏両面に、底面径D=250nm、高さH=750nmの円錐形微細突起1(アスペクト比:3)がピッチP=250nmに正方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 8)
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 750 nm are squarely arranged at a pitch of 250 nm is manufactured by the same method as in Example 1 above, and titanium oxide is dispersed in PMMA having a thickness of 2 mm using this stamper. The conical fine protrusions 1 (aspect ratio: 3) having a bottom surface diameter D = 250 nm and a height H = 750 nm are formed on the front and back surfaces of an object (contact angle: 60 °, refractive index: 1.7) at a pitch P = 250 nm. The microstructure arranged in a square was transferred to obtain a hydrophilic antireflection structure of this example.

得られた親水性反射防止構造体について、反射防止機能及び親水機能を同様の要領で調査した結果、可視光範囲での平均反射率は0.08%、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function in the same manner for the obtained hydrophilic antireflection structure, the average reflectance in the visible light range was 0.08%, and the contact angle of water droplets was less than 5 °. It was. These results are also shown in Table 1.

(実施例9)
上記実施例1と同様の方法によって、開口径250nm、深さ750nmの円錐状凹部がピッチ250nmに正方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMAに酸化チタンを分散させたもの(接触角:60°、屈折率:2.0)の表裏両面に、底面径D=250nm、高さH=750nmの円錐形微細突起(アスペクト比:3)がピッチP=250nmに正方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
Example 9
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 750 nm are squarely arranged at a pitch of 250 nm is manufactured by the same method as in Example 1 above, and titanium oxide is dispersed in PMMA having a thickness of 2 mm using this stamper. Conical fine protrusions (aspect ratio: 3) with a bottom diameter D = 250 nm and a height H = 750 nm are square on the front and back surfaces of a flat plate (contact angle: 60 °, refractive index: 2.0) with a pitch P = 250 nm. The arranged fine structure was transferred to obtain the hydrophilic antireflection structure of this example.

そして、得られた親水性反射防止構造体について、反射防止機能及び親水機能を同様の要領で調査した結果、可視光範囲での平均反射率は0.23%、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   And as a result of investigating the antireflection function and the hydrophilic function in the same manner for the obtained hydrophilic antireflection structure, the average reflectance in the visible light range is 0.23%, and the contact angle of water droplets is less than 5 °. Met. These results are also shown in Table 1.

(実施例10)
上記実施例1と同様の方法により、開口径250nm、深さ750nmの円錐状凹部がピッチ250nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmの酸化チタン(接触角:5°未満、屈折率:2.6)の表裏両面に、底面径D=250nm、高さH=750nmの円錐形微細突起1(アスペクト比:3)がピッチP=250nmに六方配列された微細構造を転写し、本例の親水性反射防止構造体を得た。
(Example 10)
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 750 nm are arranged in a hexagonal manner at a pitch of 250 nm is manufactured by the same method as in Example 1 above, and a titanium oxide having a thickness of 2 mm (contact angle: 5) is prepared using this stamper. Microstructure in which conical microprotrusions 1 (aspect ratio: 3) having a bottom surface diameter D = 250 nm and a height H = 750 nm are arranged hexagonally at a pitch P = 250 nm on both front and back surfaces with a refractive index of 2.6). Was transferred to obtain a hydrophilic antireflection structure of this example.

得られた親水性反射防止構造体について、反射防止機能及び親水機能を同様の方法により調査した結果、可視光範囲での平均反射率は1.17%、水滴の接触角は5°未満であった。これらの結果を表1に併せて示す。   As a result of investigating the antireflection function and the hydrophilic function of the obtained hydrophilic antireflection structure by the same method, the average reflectance in the visible light range was 1.17%, and the contact angle of water droplets was less than 5 °. It was. These results are also shown in Table 1.

(比較例1)
上記実施例1と同様の方法により、開口径200nm、深さ180nmの円錐状凹部がピッチ200nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのPMMA(接触角:70°、屈折率:1.49)の表裏両面に、底面径D=200nm、高さH=180nmの円錐形微細突起(アスペクト比:0.90)がピッチP=200nmに六方配列された微細構造を転写し、本比較例の構造体を得た。
(Comparative Example 1)
A stamper in which conical recesses having an opening diameter of 200 nm and a depth of 180 nm are arranged in a hexagonal manner at a pitch of 200 nm is manufactured by the same method as in Example 1, and a PMMA (contact angle: 70 °) having a thickness of 2 mm is produced using this stamper. , Refractive index: 1.49) on both front and back surfaces, a fine structure in which conical fine protrusions (aspect ratio: 0.90) having a bottom diameter D = 200 nm and a height H = 180 nm are arranged hexagonally at a pitch P = 200 nm. The structure was transferred to obtain the structure of this comparative example.

そして、得られた構造体の反射率及び接触角を同様の方法により測定した結果、可視光範囲での平均反射率は1.4%、水滴の接触角は50°であった。これらの結果を表1に併せて示す。   And as a result of measuring the reflectance and contact angle of the obtained structure by the same method, the average reflectance in the visible light range was 1.4%, and the contact angle of water droplets was 50 °. These results are also shown in Table 1.

(比較例2)
上記実施例1と同様の方法によって、開口径250nm、深さ500nmの四角錐状凹部がピッチ250nmに六方配列したスタンパを作製し、このスタンパを用いて、厚さ2mmのポリスチレン(接触角:91°、屈折率:1.6)の表裏両面に、底面径D=250nm、高さH=500nmの四角錐形微細突起(アスペクト比:2)がピッチP=250nmに六方配列された微細構造を転写した。
(Comparative Example 2)
A stamper in which square pyramidal concave portions having an opening diameter of 250 nm and a depth of 500 nm are arranged in a hexagonal manner at a pitch of 250 nm is manufactured by the same method as in the first embodiment, and a polystyrene having a thickness of 2 mm (contact angle: 91) is prepared using this stamper. °, Refractive index: 1.6) A fine structure in which square pyramidal microprotrusions (aspect ratio: 2) having a base diameter D = 250 nm and a height H = 500 nm are arranged hexagonally at a pitch P = 250 nm on both front and back surfaces. Transcribed.

得られた構造体の性能について、反射率及び接触角を同様の方法により測定した結果、可視光範囲での平均反射率は0.11%、水滴の接触角は146°であった。これらの結果を表1に併せて示す。   Regarding the performance of the obtained structure, the reflectance and the contact angle were measured by the same method. As a result, the average reflectance in the visible light range was 0.11%, and the contact angle of the water droplet was 146 °. These results are also shown in Table 1.

Figure 2008158293
Figure 2008158293

本発明の親水性反射防止構造の形態例として、円錐状をなす微細突起が六方配列された例を示す側面図及び平面図である。It is the side view and top view which show the example by which the micro processus | protrusion which makes cone shape was arranged hexagonally as an example of the hydrophilic antireflection structure of this invention. 同じく本発明の親水性反射防止構造の形態例として、円錐状をなす微細突起が正方配列された例を示す側面図及び平面図である。Similarly, as a form example of the hydrophilic antireflection structure of the present invention, there are a side view and a plan view showing an example in which conical fine protrusions are arranged in a square. 同じく本発明の親水性反射防止構造の形態例として、四角錐状をなす微細突起が正方配列された例を示す側面図及び平面図である。Similarly, as a form example of the hydrophilic antireflection structure of the present invention, there are a side view and a plan view showing an example in which fine projections having a quadrangular pyramid shape are squarely arranged. 同じく本発明の親水性反射防止構造の形態例として、円錐台状をなす微細突起が正方配列された例を示す側面図及び平面図である。Similarly, as a form example of the hydrophilic antireflection structure of the present invention, there are a side view and a plan view showing an example in which fine projections having a truncated cone shape are squarely arranged. 同じく本発明の親水性反射防止構造の形態例として、傾斜した円錐状をなす微細突起が六方配列された例を示す側面図及び平面図である。Similarly, as a form example of the hydrophilic antireflection structure of the present invention, there are a side view and a plan view showing an example in which inclined conical fine protrusions are arranged in a hexagonal manner. 同じく本発明の親水性反射防止構造の形態例として、曲線の母線を有する略円錐状をなす微細突起が正方配列された例を示す側面図及び平面図である。Similarly, as a form example of the hydrophilic antireflection structure of the present invention, there are a side view and a plan view showing an example in which fine projections having a substantially conical shape having a curved generatrix are squarely arranged.

符号の説明Explanation of symbols

1 微細突起   1 Fine protrusion

Claims (6)

略円形又は多角形底面を有する錐状又は錐台状をなし、底面又は底面に外接する円の直径が50〜380nm、アスペクト比が1〜10の無数の微細突起が50〜380nmのピッチで配置されて成り、上記微細突起表面の水滴に対する接触角が90°未満であることを特徴とする親水性反射防止構造。   It has a substantially circular or polygonal bottom shape with a cone or frustum shape, and the diameter of the circle circumscribing the bottom surface or the bottom surface is 50 to 380 nm. Thus, the hydrophilic antireflection structure characterized in that the contact angle of the surface of the fine protrusion with respect to the water droplet is less than 90 °. 上記微細突起を構成する材料の水滴に対する接触角が90°未満であることを特徴とする請求項1に記載の親水性反射防止構造。   The hydrophilic antireflection structure according to claim 1, wherein a contact angle of the material constituting the fine protrusion with respect to a water droplet is less than 90 °. 上記微細突起を構成する材料の屈折率が2.0以下であることを特徴とする請求項1又は2に記載の親水性反射防止構造。   The hydrophilic antireflection structure according to claim 1 or 2, wherein a refractive index of a material constituting the fine protrusion is 2.0 or less. 上記微細突起のアスペクト比が2以上であり、表面の水滴に対する接触角が75°以下であることを特徴とする請求項1〜3のいずれか1つの項に記載の親水性反射防止構造。   The hydrophilic antireflection structure according to any one of claims 1 to 3, wherein an aspect ratio of the fine protrusion is 2 or more, and a contact angle with respect to a water droplet on the surface is 75 ° or less. 請求項1〜4のいずれか1つの項に記載の親水性反射防止構造を基材の少なくとも一方の面に備えていることを特徴とする親水性反射防止構造体。   A hydrophilic antireflection structure comprising the hydrophilic antireflection structure according to any one of claims 1 to 4 on at least one surface of a substrate. 請求項1〜4のいずれか1つの項に記載の撥水性反射防止構造を備えていることを特徴とする自動車用部品。   An automotive part comprising the water-repellent antireflection structure according to any one of claims 1 to 4.
JP2006347426A 2006-12-25 2006-12-25 Hydrophilic antireflection structure Pending JP2008158293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347426A JP2008158293A (en) 2006-12-25 2006-12-25 Hydrophilic antireflection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347426A JP2008158293A (en) 2006-12-25 2006-12-25 Hydrophilic antireflection structure

Publications (2)

Publication Number Publication Date
JP2008158293A true JP2008158293A (en) 2008-07-10
JP2008158293A5 JP2008158293A5 (en) 2010-01-28

Family

ID=39659253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347426A Pending JP2008158293A (en) 2006-12-25 2006-12-25 Hydrophilic antireflection structure

Country Status (1)

Country Link
JP (1) JP2008158293A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109755A (en) * 2007-10-30 2009-05-21 Sony Corp Optical element and method of manufacturing master disk for producing optical element
WO2010101250A1 (en) * 2009-03-06 2010-09-10 日産自動車株式会社 Fine structure, process for producing the fine structure, and automotive component comprising the fine structure
JP2011028229A (en) * 2009-07-03 2011-02-10 Sony Corp Optical element, method for producing the same, and display apparatus
JP2011053334A (en) * 2009-08-31 2011-03-17 Housetec Inc Molded structure
WO2011093355A1 (en) * 2010-01-29 2011-08-04 Hoya株式会社 Lens for intraocular observation and method for producing same
JP2012011685A (en) * 2010-07-01 2012-01-19 Mitsubishi Rayon Co Ltd Molding, method for manufacturing the molding, and water-repellent article with the molding
KR101134383B1 (en) * 2009-11-27 2012-04-09 현대자동차주식회사 Coating agent for Poly?methyl methacrylate?pannel nano imprinting having superior anti-light reflection
WO2013117150A1 (en) * 2012-02-08 2013-08-15 苏州锦富新材料股份有限公司 High-transmittance high-haze easy-clean diffusion board and preparation method thereof
JP2014141085A (en) * 2012-12-28 2014-08-07 Dainippon Printing Co Ltd Dew condensation suppression member for indoor interior
JP2014155689A (en) * 2013-01-17 2014-08-28 Dexerials Corp Optical element for facial protection
JP2014240728A (en) * 2013-06-12 2014-12-25 大日本印刷株式会社 Dew condensation suppression member for refrigerator/freezer, and refrigerator/freezer
JP2015017743A (en) * 2013-07-10 2015-01-29 大日本印刷株式会社 Refrigerating/freezing showcase
JP2015078924A (en) * 2013-10-17 2015-04-23 デクセリアルズ株式会社 Antifogging film and instrument using the same
JP2016008896A (en) * 2014-06-25 2016-01-18 日本精機株式会社 Instrument device
WO2016013290A1 (en) * 2014-07-23 2016-01-28 デクセリアルズ株式会社 Transparent film for face protective shield
JP2016016646A (en) * 2014-07-10 2016-02-01 大日本印刷株式会社 Dew condensation suppression member
JPWO2014038288A1 (en) * 2012-09-05 2016-08-08 シャープ株式会社 Moth eye film
EP2914422A4 (en) * 2013-03-14 2016-08-10 Sdc Technologies Inc Anti-fog nanotextured surfaces and articles containing the same
JP2018517924A (en) * 2015-07-24 2018-07-05 華為技術有限公司Huawei Technologies Co.,Ltd. Camera module and terminal
CN108333656A (en) * 2018-01-18 2018-07-27 苏州三鑫时代新材料股份有限公司 Compound light diffusing sheet of a kind of bilayer heat and preparation method thereof
JP2018140170A (en) * 2013-01-17 2018-09-13 デクセリアルズ株式会社 Optical element for facial protection
KR20180121897A (en) * 2016-02-05 2018-11-09 하비 글로벌 솔루션즈 엘엘씨 Microstructured surfaces with improved insulation and condensation resistance
JP2018186034A (en) * 2017-04-27 2018-11-22 トヨタ車体株式会社 Vehicular component and manufacturing method therefor
WO2018212359A1 (en) 2017-05-19 2018-11-22 Jxtgエネルギー株式会社 Antireflection member
WO2018221593A1 (en) 2017-05-31 2018-12-06 Jxtgエネルギー株式会社 Antifogging member
JP2019096578A (en) * 2017-11-28 2019-06-20 トヨタ車体株式会社 Vehicle component and manufacturing method thereof
US10473823B2 (en) 2012-07-04 2019-11-12 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
CN113572417A (en) * 2021-06-24 2021-10-29 东南大学 Self-cleaning anti-icing composite surface device
CN114019592A (en) * 2021-11-08 2022-02-08 烟台睿创微纳技术股份有限公司 Antireflection structure, manufacturing method thereof and optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340844A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Antireflection article due to sol/gel method and manufacturing method therefor
JP2004502625A (en) * 2000-07-06 2004-01-29 サン−ゴバン グラス フランス Transparent textured substrate and method for obtaining the same
JP2004051388A (en) * 2002-07-17 2004-02-19 National Institute Of Advanced Industrial & Technology Method of processing surface of optical element
JP2005266343A (en) * 2004-03-18 2005-09-29 Nippon Zeon Co Ltd Optical member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502625A (en) * 2000-07-06 2004-01-29 サン−ゴバン グラス フランス Transparent textured substrate and method for obtaining the same
JP2003340844A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Antireflection article due to sol/gel method and manufacturing method therefor
JP2004051388A (en) * 2002-07-17 2004-02-19 National Institute Of Advanced Industrial & Technology Method of processing surface of optical element
JP2005266343A (en) * 2004-03-18 2005-09-29 Nippon Zeon Co Ltd Optical member

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109755A (en) * 2007-10-30 2009-05-21 Sony Corp Optical element and method of manufacturing master disk for producing optical element
WO2010101250A1 (en) * 2009-03-06 2010-09-10 日産自動車株式会社 Fine structure, process for producing the fine structure, and automotive component comprising the fine structure
JP2010228443A (en) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd Fine structure, process for producing the same and automotive component comprising the fine structure
JP2011028229A (en) * 2009-07-03 2011-02-10 Sony Corp Optical element, method for producing the same, and display apparatus
US9535191B2 (en) 2009-07-03 2017-01-03 Sony Corporation Optical element, method for producing the same, and display apparatus
JP2011053334A (en) * 2009-08-31 2011-03-17 Housetec Inc Molded structure
KR101134383B1 (en) * 2009-11-27 2012-04-09 현대자동차주식회사 Coating agent for Poly?methyl methacrylate?pannel nano imprinting having superior anti-light reflection
WO2011093355A1 (en) * 2010-01-29 2011-08-04 Hoya株式会社 Lens for intraocular observation and method for producing same
JP2012011685A (en) * 2010-07-01 2012-01-19 Mitsubishi Rayon Co Ltd Molding, method for manufacturing the molding, and water-repellent article with the molding
WO2013117150A1 (en) * 2012-02-08 2013-08-15 苏州锦富新材料股份有限公司 High-transmittance high-haze easy-clean diffusion board and preparation method thereof
US10473823B2 (en) 2012-07-04 2019-11-12 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
JPWO2014038288A1 (en) * 2012-09-05 2016-08-08 シャープ株式会社 Moth eye film
US9411158B2 (en) 2012-09-05 2016-08-09 Sharp Kabushiki Kaisha Moth-eye film
JP2014141085A (en) * 2012-12-28 2014-08-07 Dainippon Printing Co Ltd Dew condensation suppression member for indoor interior
US10175390B2 (en) 2013-01-17 2019-01-08 Dexerials Corporation Face protective optical element
JP2014155689A (en) * 2013-01-17 2014-08-28 Dexerials Corp Optical element for facial protection
JP2018140170A (en) * 2013-01-17 2018-09-13 デクセリアルズ株式会社 Optical element for facial protection
EP2947483A4 (en) * 2013-01-17 2016-08-24 Dexerials Corp Optical element for facial protection
EP2914422A4 (en) * 2013-03-14 2016-08-10 Sdc Technologies Inc Anti-fog nanotextured surfaces and articles containing the same
JP2014240728A (en) * 2013-06-12 2014-12-25 大日本印刷株式会社 Dew condensation suppression member for refrigerator/freezer, and refrigerator/freezer
JP2015017743A (en) * 2013-07-10 2015-01-29 大日本印刷株式会社 Refrigerating/freezing showcase
JP2015078924A (en) * 2013-10-17 2015-04-23 デクセリアルズ株式会社 Antifogging film and instrument using the same
JP2016008896A (en) * 2014-06-25 2016-01-18 日本精機株式会社 Instrument device
JP2016016646A (en) * 2014-07-10 2016-02-01 大日本印刷株式会社 Dew condensation suppression member
JP2016029446A (en) * 2014-07-23 2016-03-03 デクセリアルズ株式会社 Transparent film for facial protection
WO2016013290A1 (en) * 2014-07-23 2016-01-28 デクセリアルズ株式会社 Transparent film for face protective shield
US10575572B2 (en) 2014-07-23 2020-03-03 Dexerials Corporation Transparent film for face protection shield
JP2018517924A (en) * 2015-07-24 2018-07-05 華為技術有限公司Huawei Technologies Co.,Ltd. Camera module and terminal
KR102168460B1 (en) * 2016-02-05 2020-10-21 하비 글로벌 솔루션즈 엘엘씨 Microstructured surface with improved insulation and condensation resistance
KR20180121897A (en) * 2016-02-05 2018-11-09 하비 글로벌 솔루션즈 엘엘씨 Microstructured surfaces with improved insulation and condensation resistance
JP2018186034A (en) * 2017-04-27 2018-11-22 トヨタ車体株式会社 Vehicular component and manufacturing method therefor
KR20200008545A (en) 2017-05-19 2020-01-28 제이엑스티지 에네루기 가부시키가이샤 Antireflection material
WO2018212359A1 (en) 2017-05-19 2018-11-22 Jxtgエネルギー株式会社 Antireflection member
WO2018221593A1 (en) 2017-05-31 2018-12-06 Jxtgエネルギー株式会社 Antifogging member
KR20200010183A (en) 2017-05-31 2020-01-30 제이엑스티지 에네루기 가부시키가이샤 Anti-fence
US11112540B2 (en) 2017-05-31 2021-09-07 Eneos Corporation Antifogging member
JP2019096578A (en) * 2017-11-28 2019-06-20 トヨタ車体株式会社 Vehicle component and manufacturing method thereof
CN108333656A (en) * 2018-01-18 2018-07-27 苏州三鑫时代新材料股份有限公司 Compound light diffusing sheet of a kind of bilayer heat and preparation method thereof
CN108333656B (en) * 2018-01-18 2023-10-17 苏州三鑫时代新材料股份有限公司 Double-layer thermal composite light diffusion plate and preparation method thereof
CN113572417A (en) * 2021-06-24 2021-10-29 东南大学 Self-cleaning anti-icing composite surface device
CN114019592A (en) * 2021-11-08 2022-02-08 烟台睿创微纳技术股份有限公司 Antireflection structure, manufacturing method thereof and optical device

Similar Documents

Publication Publication Date Title
JP2008158293A (en) Hydrophilic antireflection structure
KR100957890B1 (en) Water repellent anti-reflective structure body, vehicle component comprising the same and manufacturing method for the same
JP5170495B2 (en) Antireflection microstructure and antireflection structure
JP2008090212A (en) Antireflection optical structure, antireflection optical structure body and its manufacturing method
US9880328B2 (en) Transparent diffusers for lightguides and luminaires
KR102084997B1 (en) Anti-glare film, polarizing plate and image display device
KR101045695B1 (en) Antireflective structure and antireflective molded body, and vehicle component using the antireflective molded body
CN101178442B (en) Water repellent anti-reflective structure and method of manufacturing the same
JP2008122435A (en) Water repellent reflection preventive structure and its manufacturing method
KR101918334B1 (en) Anti-glare film, polarized light plate, and image display device
JP2008203473A (en) Antireflection structure and structure
JP2007264594A (en) Anti-reflection fine structure, anti-reflection molded body, method of producing the same
KR20090047528A (en) Method for manufacturing optical laminate, manufacturing equipment, optical laminate, polarizing plate, and image display apparatus
JP5201537B2 (en) Water repellent structure and water repellent structure
KR20130127984A (en) Anti-glare film, polarizing plate, and image display device
JP2007322763A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP5146722B2 (en) Antireflection structure and structure
JP2009198627A (en) Anti-reflective structure and anti-reflective molded body
JP2019073408A (en) Glass laminate for vehicle, image display system, and windshield
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
JP2007322767A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
CN101034165A (en) Anti-reflection structure, anti-reflection mold body, method of producing the anti-reflection mold body, and automobile part
JP2007025508A (en) Antireflection structure and method for manufacturing the same
JP2008164996A (en) Chromogenic anti-reflection structure and structure body
JP2009198628A (en) Anti-reflective structure and anti-reflective molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120925

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121109