JP2008153438A - Method for measuring buffer layer film thickness - Google Patents

Method for measuring buffer layer film thickness Download PDF

Info

Publication number
JP2008153438A
JP2008153438A JP2006339937A JP2006339937A JP2008153438A JP 2008153438 A JP2008153438 A JP 2008153438A JP 2006339937 A JP2006339937 A JP 2006339937A JP 2006339937 A JP2006339937 A JP 2006339937A JP 2008153438 A JP2008153438 A JP 2008153438A
Authority
JP
Japan
Prior art keywords
buffer layer
type buffer
ray
film thickness
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339937A
Other languages
Japanese (ja)
Other versions
JP4734224B2 (en
Inventor
Satoshi Yonezawa
諭 米澤
Hajime Ito
元 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006339937A priority Critical patent/JP4734224B2/en
Publication of JP2008153438A publication Critical patent/JP2008153438A/en
Application granted granted Critical
Publication of JP4734224B2 publication Critical patent/JP4734224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain the substantially correct film thickness of an n-type buffer layer which is one of the films constituting a chalcopyrite solar cell. <P>SOLUTION: XRF analysis is performed by fixing the incident angle θ of an X-ray with respect to a semifinished product 30 before arranging a transparent electrode layer 18. When an Mo electrode layer 12 is arranged, the incident angle θ of the X-ray is made to be within a range being over 0° to 1°. The film thickness of the n-type buffer layer 16 is obtained based on the strength of a fluorescent X-ray of S from the n-type buffer layer 16 (sulfide), which is obtained by the XRF analysis, and a previously generated analytical curve between the film thickness of the n-type buffer layer 16 and the strength of the fluorescent X-ray of S. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カルコパイライト型太陽電池中のn型バッファ層の膜厚を測定するバッファ層膜厚測定方法に関する。   The present invention relates to a buffer layer thickness measuring method for measuring the thickness of an n-type buffer layer in a chalcopyrite solar cell.

カルコパイライト型太陽電池は、例えば、図6に模式的に示すように、ガラス基板10上にMo電極層12、Cu(In,Ga)Se等のカルコパイライト化合物からなりp型半導体である光吸収層14、InSからなるn型バッファ層16、ZnO:Alからなる透明電極層18がこの順序で積層されることで構成される。また、Mo電極層12及び透明電極層18の上方には、それぞれ、集電電極20、22が設けられる。   A chalcopyrite solar cell is a p-type semiconductor composed of a chalcopyrite compound such as a Mo electrode layer 12 and Cu (In, Ga) Se on a glass substrate 10 as schematically shown in FIG. The layer 14, the n-type buffer layer 16 made of InS, and the transparent electrode layer 18 made of ZnO: Al are laminated in this order. In addition, current collecting electrodes 20 and 22 are provided above the Mo electrode layer 12 and the transparent electrode layer 18, respectively.

このような構成のカルコパイライト型太陽電池24では、光吸収層14とn型バッファ層16とでpn接合が形成される。すなわち、n型バッファ層16はカルコパイライト型太陽電池24の発電性能に影響をもたらす層であり、従って、n型バッファ層16の膜厚を管理することが重要となる。   In the chalcopyrite solar cell 24 having such a configuration, a pn junction is formed by the light absorption layer 14 and the n-type buffer layer 16. That is, the n-type buffer layer 16 is a layer that affects the power generation performance of the chalcopyrite solar cell 24, and therefore it is important to manage the film thickness of the n-type buffer layer 16.

ここで、図7に示すように、実際の光吸収層14の上端面は起伏及び陥没が大きく、且つn型バッファ層16の膜厚は光吸収層14に比して著しく小さい。このため、光吸収層14上に形成されたn型バッファ層16は、光吸収層14の起伏及び陥没に対応して起伏及び陥没する。また、n型バッファ層16がいわゆるウェットプロセスで製膜された場合、該n型バッファ層16は、膜強度が小さいものとなる。このような理由から、透過型電子顕微鏡(TEM)や、透過型電子顕微鏡−X線マイクロアナライザ(TEM−EPMA)以外の手法でn型バッファ層16の膜厚を測定することは、困難を窮める。   Here, as shown in FIG. 7, the actual upper end surface of the light absorption layer 14 is greatly undulated and depressed, and the thickness of the n-type buffer layer 16 is significantly smaller than that of the light absorption layer 14. For this reason, the n-type buffer layer 16 formed on the light absorption layer 14 is undulated and depressed corresponding to the undulation and depression of the light absorption layer 14. Further, when the n-type buffer layer 16 is formed by a so-called wet process, the n-type buffer layer 16 has a low film strength. For these reasons, it is difficult to measure the film thickness of the n-type buffer layer 16 by a method other than a transmission electron microscope (TEM) or a transmission electron microscope-X-ray microanalyzer (TEM-EPMA). .

例えば、エリプソメータを用いるエリプソ法(特許文献1参照)でのn型バッファ層16の膜厚の測定値は、TEMによる測定値の1/2〜2倍となる。すなわち、n型バッファ層16の膜厚は略一定であるにも関わらず、測定値にバラツキが生じる。この理由は、エリプソ法ではn型バッファ層16の光学定数n、kの双方が一定であることを前提とするが、上記したようにn型バッファ層16に起伏及び陥没が多数存在するため、この影響を受けてkの値が変化するためであると推察される。   For example, the measured value of the film thickness of the n-type buffer layer 16 by an ellipsometer method using an ellipsometer (see Patent Document 1) is 1/2 to 2 times the measured value by TEM. That is, although the film thickness of the n-type buffer layer 16 is substantially constant, the measurement value varies. The reason is that, in the ellipso method, it is assumed that both the optical constants n and k of the n-type buffer layer 16 are constant. However, as described above, the n-type buffer layer 16 has many undulations and depressions. It is assumed that this is because the value of k changes under this influence.

また、特許文献2に記載されているように蛍光X線(XRF)分析装置を用いてn型バッファ層16の化学組成を定量し、その結果に基づいて膜厚を求めることも想起されるが、この場合、Mo電極層12のMoからの蛍光X線エネルギ(Lα線=2.293eV)とn型バッファ層16(InS)のSからの蛍光X線エネルギ(Kα線=2.308eV)との値が極めて近い値であり、SとMoの両蛍光X線エネルギからSの分のみを分離することもできないので、Sを定量すること、ひいてはn型バッファ層16の膜厚を求めることができない。   It is also recalled that the chemical composition of the n-type buffer layer 16 is quantified using a fluorescent X-ray (XRF) analyzer as described in Patent Document 2, and the film thickness is obtained based on the result. In this case, the fluorescent X-ray energy from Mo of the Mo electrode layer 12 (Lα ray = 2.293 eV) and the fluorescent X-ray energy from S of the n-type buffer layer 16 (InS) (Kα ray = 2.308 eV) Since the value of S is very close and it is impossible to separate only the amount of S from both fluorescent X-ray energies of S and Mo, it is possible to quantify S and thus to determine the film thickness of the n-type buffer layer 16. Can not.

一方、Inで定量を試みる場合、光吸収層14及びn型バッファ層16の双方にInが含まれているため、Inの蛍光X線の強度が光吸収層14由来のものであるのか、n型バッファ層16由来のものであるのかが区別できない。   On the other hand, when quantification is attempted with In, since In is contained in both the light absorption layer 14 and the n-type buffer layer 16, whether the intensity of the fluorescent X-ray of In is derived from the light absorption layer 14, n It cannot be distinguished whether it is derived from the mold buffer layer 16.

結局、n型バッファ層16の略正確な膜厚を求めるには、TEM、TEM−EPMAが好適ではあるが、これらの手法には、膜厚を1箇所のみ測定する場合でも比較的長時間を要し、さらに高額の費用が必要であるという不具合がある。すなわち、カルコパイライト型太陽電池24を量産した場合等、1つのカルコパイライト型太陽電池24につき膜厚を迅速に測定することが必要な場合、TEM、TEM−EPMAでは対応することができない。   Eventually, TEM and TEM-EPMA are suitable for obtaining a substantially accurate film thickness of the n-type buffer layer 16, but these methods require a relatively long time even when measuring the film thickness at only one location. In other words, there is a problem that a higher cost is required. That is, when it is necessary to quickly measure the film thickness of one chalcopyrite solar cell 24, such as when the chalcopyrite solar cell 24 is mass-produced, TEM and TEM-EPMA cannot cope with it.

特開2001−111070号公報JP 2001-1111070 A 特開2006−196798号公報JP 2006-196798 A

本発明は上記した問題を解決するためになされたもので、カルコパイライト型太陽電池に含まれるn型バッファ層の略正確な膜厚を求めることが可能なバッファ層膜厚測定方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and provides a buffer layer thickness measurement method capable of obtaining a substantially accurate thickness of an n-type buffer layer included in a chalcopyrite solar cell. With the goal.

前記の目的を達成するために、本発明は、硫化物からなり、且つカルコパイライト型太陽電池に含まれるn型バッファ層の膜厚を測定するバッファ層膜厚測定方法であって、
基板の上方に金属電極層を設ける工程と、
前記金属電極層の上方にp型の光吸収層を設ける工程と、
前記光吸収層上に前記n型バッファ層を設けて半製品を設ける工程と、
蛍光X線分析装置を用いて前記半製品にX線を入射する工程と、
を有し、
前記X線を、0°を超え、且つ前記金属電極層の材質である金属を検出した蛍光X線検出強度が前記n型バッファ層の構成元素であるSを検出した蛍光X線検出強度を下回る角度の範囲内の固定角度で前記半製品に入射して前記Sの蛍光X線検出強度を測定し、
前記固定角度における蛍光X線分析での前記Sの蛍光X線検出強度と前記n型バッファ層の膜厚との関係式から、前記n型バッファ層の膜厚を求めることを特徴とする。なお、前記関係式は、検量線であってもよい。すなわち、検量線は、関係式を関数としてグラフ上に表したものであるからである。
To achieve the above object, the present invention is a buffer layer thickness measuring method for measuring the thickness of an n-type buffer layer made of a sulfide and included in a chalcopyrite solar cell,
Providing a metal electrode layer above the substrate;
Providing a p-type light absorption layer above the metal electrode layer;
Providing the n-type buffer layer on the light absorption layer to provide a semi-finished product;
Injecting X-rays into the semi-finished product using a fluorescent X-ray analyzer;
Have
The X-ray fluorescence intensity detected by detecting the metal that is greater than 0 ° and detecting the metal that is the material of the metal electrode layer is lower than the X-ray fluorescence intensity detected by detecting S that is a constituent element of the n-type buffer layer. Measure the fluorescence X-ray detection intensity of the S incident on the semi-finished product at a fixed angle within the range of angles,
The film thickness of the n-type buffer layer is obtained from the relational expression between the fluorescent X-ray detection intensity of S in the fluorescent X-ray analysis at the fixed angle and the film thickness of the n-type buffer layer. The relational expression may be a calibration curve. That is, the calibration curve is a graph representing the relational expression as a function.

先ず、透明電極層を設ける前の半製品のn型バッファ層の膜厚を、TEM、TEM−EPMA等によって略正確に求める一方、該半製品に対してXRF分析を行う。このXRF分析は、Sの検出強度と、金属電極層からの金属の検出強度とを区別可能な角度で行う。以上によって得られたn型バッファ層の略正確な膜厚とSの検出強度とから、n型バッファ層の膜厚とSの検出強度との関係式(検量線)を求めておく。   First, the thickness of the n-type buffer layer of the semi-finished product before providing the transparent electrode layer is determined approximately accurately by TEM, TEM-EPMA or the like, and XRF analysis is performed on the semi-finished product. This XRF analysis is performed at an angle at which the detection intensity of S and the detection intensity of metal from the metal electrode layer can be distinguished. The relational expression (calibration curve) between the film thickness of the n-type buffer layer and the S detection intensity is obtained from the substantially accurate film thickness of the n-type buffer layer and the S detection intensity obtained as described above.

次に、別途作製された半製品に対し、前記の角度でXRF分析を行ってSの検出強度を求めれば、この検出強度と、前記の関係式(検量線)とから、該半製品におけるn型バッファ層の略正確な膜厚を求めることができる。なお、測定結果のドリフトを回避するべく、出力管電圧や出力管電流等をはじめとするXRFの諸測定条件を同一とすることは勿論である。   Next, if the XRF analysis is performed on the separately manufactured semi-finished product at the above angle to obtain the detected intensity of S, the n in the semi-finished product is calculated from the detected intensity and the relational expression (calibration curve). A substantially accurate film thickness of the mold buffer layer can be obtained. Needless to say, various measurement conditions of XRF including the output tube voltage and the output tube current are made the same in order to avoid the drift of the measurement result.

XRF分析は比較的短時間で実施可能であるので、本発明によれば、n型バッファ層の略正確な膜厚を迅速に測定することが可能となる。従って、カルコパイライト型太陽電池を量産する場合に対応することもできる。   Since XRF analysis can be performed in a relatively short time, according to the present invention, it is possible to quickly measure a substantially accurate film thickness of the n-type buffer layer. Therefore, it is possible to deal with the case of mass-producing chalcopyrite solar cells.

しかも、XRF分析は非破壊分析方法であるので、カルコパイライト型太陽電池を損傷する懸念もない。   Moreover, since the XRF analysis is a non-destructive analysis method, there is no fear of damaging the chalcopyrite solar cell.

なお、Sは、X線の入射角度が0°超〜5°の極低角度であっても十分な検出強度を示す。一方、この角度範囲内では、各種の金属の検出強度はSに比して小さい。従って、X線の入射角度は、0°超〜5°とすることが好ましい。   In addition, S shows sufficient detection intensity even if the incident angle of X-rays is an extremely low angle of more than 0 ° to 5 °. On the other hand, the detected intensity of various metals is smaller than S within this angular range. Therefore, the incident angle of X-rays is preferably more than 0 ° to 5 °.

特に、金属電極層の材質がMoである場合、X線の入射角度を0°超〜1°とすることにより、Moの検出強度とSの検出強度とを確実且つ容易に区別することができる。   In particular, when the material of the metal electrode layer is Mo, the detection intensity of Mo and the detection intensity of S can be reliably and easily distinguished by setting the incident angle of X-rays to more than 0 ° to 1 °. .

本発明においては、n型バッファ層の略正確な膜厚と、所定角度でのXRF分析におけるSの検出強度とからn型バッファ層の膜厚とSの検出強度との関係式(検量線)を先ず求め、次に、別途作製された半製品に対してXRF分析を行ってSの検出強度を求めるようにしている。前記の関係式(検量線)を予め求めておくことで、XRF分析におけるSの検出強度に基づいて、該半製品におけるn型バッファ層の略正確な膜厚を迅速に求めることができる。   In the present invention, the relational expression (calibration curve) between the thickness of the n-type buffer layer and the detected intensity of S from the substantially accurate thickness of the n-type buffer layer and the detected intensity of S in the XRF analysis at a predetermined angle. First, the XRF analysis is performed on a separately manufactured semi-finished product to determine the S detection intensity. By obtaining the relational expression (calibration curve) in advance, it is possible to quickly obtain a substantially accurate film thickness of the n-type buffer layer in the semi-finished product based on the detected intensity of S in the XRF analysis.

すなわち、本発明によれば、n型バッファ層の膜厚を略正確且つ迅速に、しかも、カルコパイライト型太陽電池を損傷する懸念もなく測定することができる。従って、カルコパイライト型太陽電池を量産する場合にも対応可能である。   That is, according to the present invention, the film thickness of the n-type buffer layer can be measured substantially accurately and quickly, and without fear of damaging the chalcopyrite solar cell. Therefore, it is possible to cope with mass production of chalcopyrite solar cells.

以下、本発明に係るn型バッファ層膜厚測定方法につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。なお、本実施の形態では、図6に示すカルコパイライト型太陽電池24を設ける場合を例示して説明する。また、図6中の構成要素と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。   Preferred embodiments of the n-type buffer layer thickness measuring method according to the present invention will be described below in detail with reference to the accompanying drawings. In this embodiment, a case where the chalcopyrite solar cell 24 shown in FIG. 6 is provided will be described as an example. Also, the same components as those in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、先ず、図1に示す半製品30を作製する。すなわち、ガラス基板10上にMo電極層12、Cu(In,Ga)Se等からなる光吸収層14、InSからなるn型バッファ層16をこの順序で製膜し、堆積させる。なお、各層12、14、16は、スパッタ法や溶液成長法、Se化法等の公知の手法によって製膜すればよい。   In the present embodiment, first, a semi-finished product 30 shown in FIG. 1 is manufactured. That is, the Mo electrode layer 12, the light absorption layer 14 made of Cu (In, Ga) Se, and the n-type buffer layer 16 made of InS are formed on the glass substrate 10 in this order and deposited. The layers 12, 14, and 16 may be formed by a known method such as sputtering, solution growth, or Se conversion.

次に、この半製品30をXRF分析装置にて分析する。すなわち、半製品30に対してX線を入射する。   Next, this semi-finished product 30 is analyzed with an XRF analyzer. That is, X-rays are incident on the semi-finished product 30.

ここで、n型バッファ層16を設ける前、すなわち、ガラス基板10上にMo電極層12と光吸収層14のみが設けられた半製品に対し、X線の入射角度θを0°超〜5°としたときの蛍光X線の強度を図2に示す。この図2から諒解されるように、入射角度が0°超〜1°の範囲内では、蛍光X線の強度はほとんど0であるが、入射角度が1°を超えると強度が急激に上昇する。この理由は、入射角度が0°超〜1°である場合には入射X線の進入の度合いが浅く光吸収層14に留まるため、Moをはじめ、各種元素に由来する蛍光X線は検出されないのに対し、1°を超えると入射X線がMo電極層12に進入し、その結果、Moが検出されるようになるためである。   Here, before the n-type buffer layer 16 is provided, that is, with respect to a semi-finished product in which only the Mo electrode layer 12 and the light absorption layer 14 are provided on the glass substrate 10, the X-ray incident angle θ exceeds 0 ° to 5 °. FIG. 2 shows the intensity of the fluorescent X-ray when the angle is. As can be seen from FIG. 2, the intensity of the fluorescent X-ray is almost 0 when the incident angle is in the range of more than 0 ° to 1 °, but the intensity rapidly increases when the incident angle exceeds 1 °. . The reason for this is that when the incident angle is greater than 0 ° to 1 °, the degree of incident X-ray entry is shallow and remains in the light absorption layer 14, so that fluorescent X-rays derived from various elements including Mo are not detected. On the other hand, when the angle exceeds 1 °, incident X-rays enter the Mo electrode layer 12, and as a result, Mo is detected.

一方、半製品30に対して0°超〜1°の入射角度でX線を入射した場合、図2に併せて示すように、蛍光X線の強度は30を超え、0.4°〜0.9°では60で略一定となる。n型バッファ層16(InS)が存在する半製品30において蛍光X線が観察されたこと、及び、Cu(In,Ga)Se等からなる光吸収層14が存在する半製品で蛍光X線が観察されなかったことから、この蛍光X線は、n型バッファ層16のSに由来するものである。   On the other hand, when X-rays are incident on the semi-finished product 30 at an incident angle of more than 0 ° to 1 °, the intensity of fluorescent X-rays exceeds 30 and 0.4 ° to 0, as shown in FIG. .9 ° is substantially constant at 60 °. Fluorescence X-rays were observed in the semi-finished product 30 in which the n-type buffer layer 16 (InS) was present, and fluorescence X-rays were observed in the semi-finished product in which the light absorption layer 14 made of Cu (In, Ga) Se or the like was present. Since it was not observed, this fluorescent X-ray originates from S of the n-type buffer layer 16.

このように、X線の入射角度θを0°超〜1°の極低角度とした場合、Moの蛍光X線は検出されず、Sの蛍光X線のみが検出される。このため、Sの定量が可能となる。なお、極低角度でのXRF分析によってSの蛍光X線のみが得られるようになる理由は、図3に示すように高角度でX線を入射すると、該X線がガラス基板10まで到達する結果、Mo電極層12の材質であるMoからの蛍光X線が検出されるようになるためであるのに対し、極低角度でX線を入射すると該X線が光吸収層14の上層部までしか到達せず(図1参照)、このためにMo電極層12からの蛍光X線が検出されなくなるためであると推察される。   As described above, when the incident angle θ of X-rays is set to an extremely low angle of more than 0 ° to 1 °, Mo fluorescent X-rays are not detected, but only S fluorescent X-rays are detected. For this reason, it is possible to quantify S. The reason why only X fluorescent X-rays can be obtained by XRF analysis at an extremely low angle is that when X-rays are incident at a high angle as shown in FIG. 3, the X-rays reach the glass substrate 10. As a result, fluorescent X-rays from Mo which is the material of the Mo electrode layer 12 are detected, whereas when X-rays are incident at an extremely low angle, the X-rays are the upper layers of the light absorption layer 14. (See FIG. 1), it is assumed that this is because the fluorescent X-rays from the Mo electrode layer 12 are not detected.

なお、入射角度をさらに大きくすると、図2に併せて示すように、半製品30において検出されたSの強度と、n型バッファ層16が存在しない半製品において検出されたMoの強度とが略同等となる。このため、蛍光X線の強度がS由来のものであるのか又はMo由来のものであるのかを判別することが容易でなくなる。   When the incident angle is further increased, the intensity of S detected in the semi-finished product 30 and the intensity of Mo detected in the semi-finished product in which the n-type buffer layer 16 does not exist are substantially as shown in FIG. It becomes equivalent. For this reason, it is not easy to determine whether the intensity of fluorescent X-rays is derived from S or Mo.

以上の結果に基づき、本実施の形態では、X線の入射角度θを0°超〜1°としてXRF分析を行う。   Based on the above results, in this embodiment, the XRF analysis is performed with the incident angle θ of X-rays set to more than 0 ° to 1 °.

図4に、n型バッファ層16の膜厚が170Å、350Å、510Åである半製品30にX線を入射した際のX線の入射角度と、n型バッファ層16からのSの蛍光X線の強度との関係をグラフにして示す。なお、膜厚は、TEM、TEM−EPMA等によって予め測定しておく。   FIG. 4 shows the incident angle of X-rays when X-rays are incident on the semi-finished product 30 whose n-type buffer layer 16 has a thickness of 170 mm, 350 mm, and 510 mm, and S fluorescent X-rays from the n-type buffer layer 16. The relationship with the intensity is shown as a graph. The film thickness is measured in advance by TEM, TEM-EPMA, or the like.

この図4から、X線の入射角度が同一であっても、膜厚が異なると蛍光X線の強度も異なること、換言すれば、Sの蛍光X線の強度に膜厚依存性があることが明らかである。なお、入射角度を0.6°としたときの測定再現性は1σ%で2%以下であり、再現性が良好であることが確認された。   From FIG. 4, even if the incident angle of X-rays is the same, the intensity of fluorescent X-rays differs when the film thickness is different, in other words, the intensity of S fluorescent X-rays is dependent on the film thickness. Is clear. The measurement reproducibility when the incident angle was 0.6 ° was 2% or less at 1σ%, and it was confirmed that the reproducibility was good.

このようにして、X線の入射角度を0°超〜1°の範囲内の所定角度で固定する一方、n型バッファ層16の膜厚を種々変更しながら、Sの蛍光X線の強度を測定する。任意の入射角度での測定が終了した後、入射角度を変更して同様の測定を行う。入射角度を0.1°、0.6°、1°としたときの各測定結果を、代表例として図5に併せて示す。   In this way, the X-ray incident angle is fixed at a predetermined angle in the range of more than 0 ° to 1 °, while the thickness of the n-type buffer layer 16 is changed variously, and the intensity of the fluorescent X-rays of S is increased. taking measurement. After the measurement at an arbitrary incident angle is completed, the incident angle is changed and the same measurement is performed. Each measurement result when the incident angle is 0.1 °, 0.6 °, and 1 ° is shown in FIG. 5 as a representative example.

n型バッファ層16の膜厚は、この測定結果に基づいて作成された図5の検量線に基づいて求めることができる。すなわち、例えば、半製品30へのX線の入射角度を0.1°としたとき、Sの蛍光X線の強度が200であれば、縦軸の200から水平線l1を引き、さらに、該水平線l1と0.1°での直線との交点から横軸に向けて垂線m1を引く。垂線m1と横軸との交点のx座標の値(約320)が、n型バッファ層16の膜厚である。   The film thickness of the n-type buffer layer 16 can be determined based on the calibration curve of FIG. 5 created based on the measurement result. That is, for example, when the incident angle of X-rays to the semi-finished product 30 is 0.1 °, if the intensity of the fluorescent X-rays of S is 200, the horizontal line 11 is drawn from the vertical axis 200, and the horizontal line A perpendicular line m1 is drawn from the intersection of l1 and the straight line at 0.1 ° toward the horizontal axis. The value of the x coordinate (about 320) at the intersection of the vertical line m 1 and the horizontal axis is the film thickness of the n-type buffer layer 16.

また、半製品30へのX線の入射角度を0.6°としたときにSの蛍光X線の強度が300であった場合も、上記と同様にすればよい。すなわち、縦軸の300から水平線l2を引き、さらに、該水平線l2と0.6°での直線との交点から横軸に向けて垂線m2を引いて、該垂線m2と横軸との交点のx座標の値を求める。この場合、x座標の値、すなわち、n型バッファ層16の膜厚は、約270Åとなる。   Further, when the incident angle of X-rays to the semi-finished product 30 is 0.6 °, the intensity of S fluorescent X-rays is 300. That is, a horizontal line l2 is drawn from 300 on the vertical axis, and a perpendicular line m2 is drawn toward the horizontal axis from the intersection of the horizontal line l2 and the straight line at 0.6 °, and the intersection of the vertical line m2 and the horizontal axis is calculated. Find the x-coordinate value. In this case, the value of the x coordinate, that is, the film thickness of the n-type buffer layer 16 is about 270 mm.

このようにして、Moの蛍光X線が検出されない極低角度側でXRF分析を行うことにより、n型バッファ層16の膜厚を略正確に測定することが可能となる。   In this way, by performing XRF analysis on the extremely low angle side where Mo fluorescent X-rays are not detected, the film thickness of the n-type buffer layer 16 can be measured substantially accurately.

ここで、検量線の傾きが大きいほど検出感度が高いことを意味している。すなわち、図5に示す0.1°、0.6°、1°の場合では、0.6°の方が傾きが大きく検出感度が高い、良好な分析条件であるといえる。   Here, the greater the slope of the calibration curve, the higher the detection sensitivity. That is, in the case of 0.1 °, 0.6 °, and 1 ° shown in FIG. 5, it can be said that 0.6 ° is a better analysis condition with a larger inclination and higher detection sensitivity.

XRF分析は、出力管電圧を20kV、出力管電流を5mAとした場合、僅か約100秒程度で測定が終了する。すなわち、n型バッファ層16からSの蛍光X線を迅速に検出することができ、その結果に基づいて、膜厚を容易且つ即座に求めることが可能である。従って、カルコパイライト型太陽電池24を量産する場合においても、各々を迅速に検査することができる。   The XRF analysis is completed in about 100 seconds when the output tube voltage is 20 kV and the output tube current is 5 mA. That is, S fluorescent X-rays can be quickly detected from the n-type buffer layer 16, and the film thickness can be easily and immediately determined based on the result. Therefore, even when the chalcopyrite solar cell 24 is mass-produced, each can be quickly inspected.

しかも、XRF分析は非破壊検査であるので、カルコパイライト型太陽電池24に損傷を与える懸念もない。   In addition, since the XRF analysis is a nondestructive inspection, there is no fear of damaging the chalcopyrite solar cell 24.

その上、この実施の形態では、光吸収層14の材質であるCu(In,Ga)Seと、n型バッファ層16の材質であるInSの双方にInが含まれているものの、n型バッファ層16のSの蛍光X線のみを検出するようにしているので、光吸収層14中のInに影響されることなくn型バッファ層16の膜厚を略正確に測定することができる。   In addition, in this embodiment, although both Cu (In, Ga) Se, which is the material of the light absorption layer 14, and InS, which is the material of the n-type buffer layer 16, contain In, the n-type buffer Since only the S fluorescent X-rays of the layer 16 are detected, the film thickness of the n-type buffer layer 16 can be measured almost accurately without being affected by In in the light absorption layer 14.

その後、n型バッファ層16の上方に透明電極層18を設け、エッチングによって露呈したMo電極層12の上部と、透明電極層18の上部に集電電極20、22を設けることにより、カルコパイライト型太陽電池24が得られるに至る。   Thereafter, the transparent electrode layer 18 is provided above the n-type buffer layer 16, and the collector electrodes 20 and 22 are provided on the upper portion of the Mo electrode layer 12 exposed by etching and the upper portion of the transparent electrode layer 18. The solar cell 24 is obtained.

なお、上記した実施の形態では、n型バッファ層16としてInSを例示して説明したが、n型バッファ層16の材質は、CdSやZnS等の他の硫化物であってもよい。   In the above-described embodiment, InS has been described as an example of the n-type buffer layer 16, but the material of the n-type buffer layer 16 may be other sulfides such as CdS and ZnS.

また、Mo電極層12に代替し、その他の金属からなる電極層を設けるようにしてもよい。この場合、X線の入射角度θを、他の前記金属の蛍光X線が検出され難くSの蛍光X線と区別が容易な範囲内に設定すればよい。好適な入射角度は、0°超〜5°の範囲内である。   Further, instead of the Mo electrode layer 12, an electrode layer made of another metal may be provided. In this case, the incident angle θ of the X-ray may be set within a range in which it is difficult to detect the other fluorescent X-rays of the metal and can be easily distinguished from the S fluorescent X-ray. A suitable incident angle is in the range of more than 0 ° to 5 °.

さらに、例えば、ガラス基板10とMo電極層12との間に他の層を介装するようにしてもよい。   Furthermore, for example, another layer may be interposed between the glass substrate 10 and the Mo electrode layer 12.

本実施の形態に係るXRF分析を行っている状態を模式的に示す要部概略構成説明図である。It is principal part schematic structure explanatory drawing which shows typically the state which is performing the XRF analysis which concerns on this Embodiment. n型バッファ層(InS)が存在する半製品及び存在しない半製品に対し、X線の入射角度を0°超〜5°の範囲内で変更させたときの蛍光X線の強度を示すグラフである。It is a graph which shows the intensity | strength of fluorescent X-ray when changing the incident angle of X-rays within the range of more than 0 degree-5 degrees with respect to the semi-finished product which an n-type buffer layer (InS) exists, and a semi-finished product which does not exist. is there. 高角度側でXRF分析を行っている状態を模式的に示す要部概略構成説明図である。It is principal part schematic structure explanatory drawing which shows typically the state which is performing the XRF analysis on the high angle side. n型バッファ層の膜厚が170Å、350Å、510Åである半製品にX線を入射した際のX線の入射角度と、n型バッファ層からのSの蛍光X線の強度との関係を示すグラフである。The relationship between the incident angle of X-rays when X-rays are incident on semi-finished products having an n-type buffer layer thickness of 170 mm, 350 mm, and 510 mm and the intensity of S fluorescent X-rays from the n-type buffer layer is shown. It is a graph. X線の入射角度を0.1°、0.6°、1°としたときのn型バッファ層の膜厚とSの蛍光X線の強度との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of an n-type buffer layer when the incident angle of X-ray is 0.1 °, 0.6 ° and 1 ° and the intensity of S fluorescent X-rays. 一般的なカルコパイライト型太陽電池の積層方向に沿う概略全体断面説明図である。It is a schematic whole cross-section explanatory drawing along the lamination direction of a general chalcopyrite solar cell. 図6の要部拡大説明図である。FIG. 7 is an enlarged explanatory diagram of a main part of FIG. 6.

符号の説明Explanation of symbols

10…ガラス基板 12…Mo電極層
14…光吸収層 16…n型バッファ層
18…透明電極層 20、22…集電電極
30…半製品
DESCRIPTION OF SYMBOLS 10 ... Glass substrate 12 ... Mo electrode layer 14 ... Light absorption layer 16 ... N-type buffer layer 18 ... Transparent electrode layer 20, 22 ... Current collecting electrode 30 ... Semi-finished product

Claims (3)

硫化物からなり、且つカルコパイライト型太陽電池に含まれるn型バッファ層の膜厚を測定するバッファ層膜厚測定方法であって、
基板の上方に金属電極層を設ける工程と、
前記金属電極層の上方にp型の光吸収層を設ける工程と、
前記光吸収層上に前記n型バッファ層を設けて半製品を設ける工程と、
蛍光X線分析装置を用いて前記半製品にX線を入射する工程と、
を有し、
前記X線を、0°を超え、且つ前記金属電極層の材質である金属を検出した蛍光X線検出強度が前記n型バッファ層の構成元素であるSを検出した蛍光X線検出強度を下回る角度の範囲内の固定角度で前記半製品に入射して前記Sの蛍光X線検出強度を測定し、
前記固定角度における蛍光X線分析での前記Sの蛍光X線検出強度と前記n型バッファ層の膜厚との関係式から、前記n型バッファ層の膜厚を求めることを特徴とするバッファ層膜厚測定方法。
A buffer layer thickness measuring method for measuring the thickness of an n-type buffer layer made of sulfide and included in a chalcopyrite solar cell,
Providing a metal electrode layer above the substrate;
Providing a p-type light absorption layer above the metal electrode layer;
Providing the n-type buffer layer on the light absorption layer to provide a semi-finished product;
Injecting X-rays into the semi-finished product using a fluorescent X-ray analyzer;
Have
The X-ray fluorescence intensity detected by detecting the metal that is greater than 0 ° and detecting the metal that is the material of the metal electrode layer is lower than the X-ray fluorescence intensity detected by detecting S that is a constituent element of the n-type buffer layer. Measure the fluorescent X-ray detection intensity of the S incident on the semi-finished product at a fixed angle within the range of angles,
A buffer layer characterized in that the film thickness of the n-type buffer layer is obtained from a relational expression between the detected X-ray fluorescence intensity of S in the fluorescent X-ray analysis at the fixed angle and the film thickness of the n-type buffer layer. Film thickness measurement method.
請求項1記載の方法において、前記X線の入射角度を0°超〜5°とすることを特徴とするバッファ層膜厚測定方法。   2. The buffer layer thickness measuring method according to claim 1, wherein an incident angle of the X-ray is more than 0 ° to 5 °. 請求項1記載の方法において、前記金属電極層をMoで設け、且つ前記X線の入射角度を0°超〜1°とすることを特徴とするバッファ層膜厚測定方法。   2. The buffer layer thickness measuring method according to claim 1, wherein the metal electrode layer is made of Mo, and the incident angle of the X-ray is set to more than 0 [deg.] To 1 [deg.].
JP2006339937A 2006-12-18 2006-12-18 Buffer layer thickness measurement method Expired - Fee Related JP4734224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339937A JP4734224B2 (en) 2006-12-18 2006-12-18 Buffer layer thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339937A JP4734224B2 (en) 2006-12-18 2006-12-18 Buffer layer thickness measurement method

Publications (2)

Publication Number Publication Date
JP2008153438A true JP2008153438A (en) 2008-07-03
JP4734224B2 JP4734224B2 (en) 2011-07-27

Family

ID=39655301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339937A Expired - Fee Related JP4734224B2 (en) 2006-12-18 2006-12-18 Buffer layer thickness measurement method

Country Status (1)

Country Link
JP (1) JP4734224B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009557A (en) * 2009-06-26 2011-01-13 Kyocera Corp Photoelectric conversion cell and photoelectric conversion module
WO2012008513A1 (en) * 2010-07-15 2012-01-19 株式会社堀場製作所 Fluorescent x-ray detection method and fluorescent x-ray detection device
CN102538630A (en) * 2010-12-09 2012-07-04 北大方正集团有限公司 Fixture for XRF (X-ray fluorescence) device and detection method adopting same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102403444B1 (en) 2015-04-07 2022-05-30 선전 엑스펙트비전 테크놀로지 컴퍼니, 리미티드 How to make a semiconductor X-ray detector
US10061038B2 (en) 2015-04-07 2018-08-28 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
WO2016161542A1 (en) * 2015-04-07 2016-10-13 Shenzhen Xpectvision Technology Co.,Ltd. Semiconductor x-ray detector
WO2016197338A1 (en) 2015-06-10 2016-12-15 Shenzhen Xpectvision Technology Co.,Ltd. A detector for x-ray fluorescence
EP3320374B1 (en) 2015-07-09 2020-05-20 Shenzhen Xpectvision Technology Co., Ltd. Methods of making semiconductor x-ray detector
EP3341756A4 (en) 2015-08-27 2019-05-22 Shenzhen Xpectvision Technology Co., Ltd. X-ray imaging with a detector capable of resolving photon energy
CN107923987B (en) 2015-09-08 2020-05-15 深圳帧观德芯科技有限公司 Method for producing an X-ray detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221608A (en) * 1988-02-29 1989-09-05 Sumitomo Metal Ind Ltd Mass film thickness measuring method for thin metallic film
JPH06235628A (en) * 1993-02-09 1994-08-23 Seiko Instr Inc Fluorescent x-ray film thickness sensor
JPH0915392A (en) * 1995-06-28 1997-01-17 Hitachi Ltd X-ray analyzer
JPH1074967A (en) * 1996-08-29 1998-03-17 Moririka:Kk Thin-film solar cell
JP2000321223A (en) * 1999-05-14 2000-11-24 Technos Kenkyusho:Kk Multilayer thin-film composition measuring method
JP2006179552A (en) * 2004-12-21 2006-07-06 Honda Motor Co Ltd Chalcopyrite-type solar cell
JP2006332440A (en) * 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Method and apparatus for continuously film-forming high-resistant buffer layer/window layer (transparent conductive film) of cis-based thin film solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221608A (en) * 1988-02-29 1989-09-05 Sumitomo Metal Ind Ltd Mass film thickness measuring method for thin metallic film
JPH06235628A (en) * 1993-02-09 1994-08-23 Seiko Instr Inc Fluorescent x-ray film thickness sensor
JPH0915392A (en) * 1995-06-28 1997-01-17 Hitachi Ltd X-ray analyzer
JPH1074967A (en) * 1996-08-29 1998-03-17 Moririka:Kk Thin-film solar cell
JP2000321223A (en) * 1999-05-14 2000-11-24 Technos Kenkyusho:Kk Multilayer thin-film composition measuring method
JP2006179552A (en) * 2004-12-21 2006-07-06 Honda Motor Co Ltd Chalcopyrite-type solar cell
JP2006332440A (en) * 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Method and apparatus for continuously film-forming high-resistant buffer layer/window layer (transparent conductive film) of cis-based thin film solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009557A (en) * 2009-06-26 2011-01-13 Kyocera Corp Photoelectric conversion cell and photoelectric conversion module
WO2012008513A1 (en) * 2010-07-15 2012-01-19 株式会社堀場製作所 Fluorescent x-ray detection method and fluorescent x-ray detection device
CN102538630A (en) * 2010-12-09 2012-07-04 北大方正集团有限公司 Fixture for XRF (X-ray fluorescence) device and detection method adopting same

Also Published As

Publication number Publication date
JP4734224B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734224B2 (en) Buffer layer thickness measurement method
Greczynski et al. X-ray photoelectron spectroscopy of thin films
EP2761284B1 (en) System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy
JP6604629B2 (en) Inspection apparatus and inspection method
US20140093985A1 (en) In situ optical diagnostic for monitoring or control of sodium diffusion in photovoltaics manufacturing
In et al. Quantitative analysis of CuIn 1− x Ga x Se 2 thin films with fluctuation of operational parameters using laser-induced breakdown spectroscopy
Klenk et al. X-ray fluorescence measurements of thin film chalcopyrite solar cells
KR102382740B1 (en) Feed-forward of multi-layer and multi-process information using xps and xrf technologies
Walther et al. Self‐consistent method for quantifying indium content from X‐ray spectra of thick compound semiconductor specimens in a transmission electron microscope
CN102023172B (en) Method for performing quantitative analysis on SiGe thin film by using energy-dispersive X-ray spectroscopy
Spanier et al. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources
JP2012237602A (en) Method for measuring film thickness of soi layer of soi wafer
CN106524927A (en) System and method for online measurement of battery pole plate thickness capable of automatic path correction
CN114018760A (en) Method and device for detecting semiconductor structure
CN114822676A (en) Calibration method of measuring device, standard sample for calibration and preparation method thereof
CN109655475B (en) Method for calibrating detection depth of energy spectrometer
CN106500642A (en) A kind of method along projected route on-line measurement battery plate thickness
Oura et al. Application of soft X-ray microspectroscopic analyses to architectural structures–a case study on ceramic-tile/adhesive/mortar-structured composite materials
JP2000055841A (en) X-ray analysis method
Streeck et al. Elemental depth profiling of Cu (In, Ga) Se2 thin films by reference-free grazing incidence X-ray fluorescence analysis
JP4938960B2 (en) Method for manufacturing photoelectric conversion device and photoelectric conversion device
Nunney et al. Compositional XPS analysis of Cu (In, Ga) Se 2 solar cells
JP2002310961A (en) Depthwise element distribution measuring method
JP2906606B2 (en) Qualitative analysis of thin film samples
Canlı Thickness analysis of thin films by energy dispersive x-ray spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4734224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees