JP2008151640A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2008151640A
JP2008151640A JP2006339819A JP2006339819A JP2008151640A JP 2008151640 A JP2008151640 A JP 2008151640A JP 2006339819 A JP2006339819 A JP 2006339819A JP 2006339819 A JP2006339819 A JP 2006339819A JP 2008151640 A JP2008151640 A JP 2008151640A
Authority
JP
Japan
Prior art keywords
light
axis
test object
deflection element
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339819A
Other languages
Japanese (ja)
Inventor
Kazuaki Aoto
和明 青砥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006339819A priority Critical patent/JP2008151640A/en
Publication of JP2008151640A publication Critical patent/JP2008151640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement device capable of measuring even minute irregularities on the surface of an object to be inspected, even if a femtosecond laser beam is used, while making the best use of the laser beam. <P>SOLUTION: The measurement device is equipped with a deflecting member (an X-axis deflection element 21 and a Y-axis deflection element 24) having a reflecting surface (212), a drive section (a drive circuit 23) for rotating/driving the deflecting member around an axis (a rotating shaft 215) inside the reflecting surface or along the vicinity of the reflecting surface, a radiation section (a beam splitter 12) for radiating measurement light to the object to be measured via the reflecting surface, and a light receiving section (a photo detector 14) for receiving return light of the measurement light reflected by the object to be inspected. The radiation section radiates the measurement light to the deflecting member at the position of the axis or near the axis, and the shape of the object to be measured is measured by information from the light receiving section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばフェムト秒レーザー光などを使用して被検物の3次元形状を非接触で計測する計測装置に関する。   The present invention relates to a measuring apparatus that measures the three-dimensional shape of a test object in a non-contact manner using, for example, femtosecond laser light.

フェムト秒レーザー光を使用した計測装置として、例えば、フェムト秒レーザー光を二つに分け、一方のレーザー光を参照光とし、他方のレーザー光を拡大光学系によってビーム径を拡大した後、照射光として被検物に照射し、この被検物から反射してくる戻り光(反射光)の位相と参照光の位相とを比較し、両者の位相の位相差を求めて、被検物までの距離を計測する計測装置が提案されている(特許文献1)。   As a measuring device using femtosecond laser light, for example, the femtosecond laser light is divided into two parts, one laser light is used as a reference light, and the other laser light is enlarged by a magnifying optical system, and then irradiated with light. The phase of the return light (reflected light) reflected from the test object is compared with the phase of the reference light, and the phase difference between the two is obtained to obtain the test object. A measuring device for measuring a distance has been proposed (Patent Document 1).

上記計測装置は、波長安定性が非常に優れていて、高精度の計測が可能となる、フェムト秒レーザー光の特性を生かしたもので、被検物に照射されるレーザー光(照射光)としてはビーム径を拡大したビームを使用している。   The above measuring device uses the characteristics of femtosecond laser light, which is very excellent in wavelength stability and enables high-precision measurement. As laser light (irradiation light) irradiated to the test object Uses a beam with an enlarged beam diameter.

OPTRONICS(2005)No.8P.103〜108OPTRONICS (2005) No. 8P. 103-108

上記計測装置を使用して被検物の3次元形状を計測する場合、ビーム径を拡大していることから被検物表面の微細な凹凸を含めて精度良く計測することは非常に困難である。被検物表面の微細な凹凸まで高精度で計測するには、例えばビーム径を縮小したビーム(照射光)を使用することが考えられるが、このとき問題となるのが、照射光を被検物表面に走査させ、該被検物表面から反射してくる戻り光(反射光)を照射光の光路上を通って位相計などを装備した測定部に導く光学系の部分である。この光学系の部分でも、特に、照射光を振って被検物表面に走査させる一方、被検物表面から戻ってくる戻り光(反射光)を反射させて照射光の光路上に導くミラー部分である。   When measuring the three-dimensional shape of the test object using the above measuring device, it is very difficult to accurately measure the fine unevenness of the test object surface because the beam diameter is enlarged. . In order to measure fine irregularities on the surface of the test object with high accuracy, it is conceivable to use, for example, a beam (irradiation light) with a reduced beam diameter. It is a part of an optical system that scans the surface of an object and guides return light (reflected light) reflected from the surface of the test object to a measurement unit equipped with a phase meter and the like through an optical path of irradiation light. Even in this optical system part, in particular, a mirror part that scans the surface of the test object by shaking the irradiation light and reflects the return light (reflected light) returning from the surface of the test object to guide it on the optical path of the irradiation light. It is.

ミラー部分では被検物に行く照射光や被検物から戻ってきた戻り光(反射光)が入射・反射を繰り返す箇所であり、ミラー部分の回転によりこれら参照光、戻り光(反射光)の入射・反射箇所が異なる(ずれると)と高精度の計測が困難となる。   In the mirror part, the irradiation light going to the test object and the return light (reflected light) returning from the test object are repeatedly incident and reflected. The rotation of the mirror part causes these reference light and return light (reflected light) to be reflected. If the incident / reflected points are different (shifted), high-precision measurement becomes difficult.

ビーム径を拡大した場合では、ミラー部分上の照射光、戻り光(反射光)の入射・反射箇所はある程度の拡がりをもっており、ミラー部分の回転により入射・反射箇所がずれてもそれ程問題にはならないが、ビーム径を絞ると、事情は一転し、フェムト秒レーザー光を使用したことのメリットを生かすことが出来なくなってしまうおそれがある。   When the beam diameter is enlarged, the incident / reflected part of the irradiated light and return light (reflected light) on the mirror part has a certain extent, and even if the incident / reflected part shifts due to the rotation of the mirror part, there is no problem. However, if the beam diameter is reduced, the situation will change, and there is a possibility that the merit of using the femtosecond laser beam cannot be utilized.

本発明は、フェムト秒レーザー光を使用してもそのメリットを生かすことが出来て、被検物の表面の微細な凹凸でも高精度の計測が可能な、計測装置を提供することを目的とする。   An object of the present invention is to provide a measuring apparatus that can take advantage of femtosecond laser light and can perform high-precision measurement even with fine irregularities on the surface of a test object. .

上記目的を達成する本発明の請求項1に記載の計測装置は、反射面を有する偏向部材と、前記反射面内または前記反射面近傍に沿った軸中心に前記偏向部材を回動駆動する駆動部と、前記反射面を介して被検物に測定光を照射する照射部と、前記測定光が前記被検物で反射した戻り光を受光する受光部と、を備え、前記照射部は前記軸の位置または前記軸の近傍の前記偏向部材へ前記測定光を照射し、前記受光部からの情報により前記被検物の形状を測定することを特徴とする。   The measuring apparatus according to claim 1 of the present invention that achieves the above object includes a deflecting member having a reflecting surface, and a drive that rotationally drives the deflecting member about an axis in the reflecting surface or along the vicinity of the reflecting surface. And an irradiation unit that irradiates the test object with the measurement light through the reflection surface, and a light receiving unit that receives the return light reflected by the measurement object. The measurement light is irradiated to the deflection member in the vicinity of the axis or in the vicinity of the axis, and the shape of the test object is measured based on information from the light receiving unit.

前記偏向部材としては、例えば、X軸偏向素子21とY軸偏向素子24(図1参照)などがある。   Examples of the deflection member include an X-axis deflection element 21 and a Y-axis deflection element 24 (see FIG. 1).

前記駆動部としては、例えば、クーロン力を利用してX軸偏向素子21の微小ミラー212、Y軸偏向素子24の微小ミラー242を回動する駆動回路23(図6参照)などがある。   Examples of the drive unit include a drive circuit 23 (see FIG. 6) that rotates the micro mirror 212 of the X-axis deflection element 21 and the micro mirror 242 of the Y-axis deflection element 24 using Coulomb force.

前記照射部としては、例えば、レーザー光源11からのレーザ光を基準光(参照光)と被検物Tに照射する測定光(プローブ光)とに分割して、該測定光をX軸偏向素子21の反射面214に導くビームスプリッタ12などがある。   As the irradiation unit, for example, the laser light from the laser light source 11 is divided into standard light (reference light) and measurement light (probe light) for irradiating the object T, and the measurement light is X-axis deflecting element. There is a beam splitter 12 that leads to the reflection surface 214 of 21.

前記受光部としては、例えば、フォトディテクタ14(図1参照)などがある。   Examples of the light receiving unit include a photodetector 14 (see FIG. 1).

本発明の請求項2に記載の計測装置には、前記戻り光の少なくとも一部を分岐する分岐部をさらに備え、前記受光部は前記測定光の前記偏向部材から前記被検物へ至る光路を逆に進む前記戻り光の少なくとも一部を受光するように配置されていることを特徴とする。   The measuring apparatus according to claim 2 of the present invention further includes a branching part that branches at least a part of the return light, and the light receiving part has an optical path from the deflecting member of the measuring light to the test object. It is arranged so as to receive at least a part of the return light traveling in the reverse direction.

前記分岐部としては、例えば、前記被検物と前記受光部との間の光路に配置されたY軸偏向素子24、X軸偏向素子21、ビームスプリッタ12などがある。   Examples of the branching unit include a Y-axis deflecting element 24, an X-axis deflecting element 21, and a beam splitter 12 arranged in the optical path between the test object and the light receiving unit.

本発明の請求項3に記載の計測装置は、前記偏向部材が、前記軸の軸方向両端位置で前記反射面に接して回転可能に支持する一対の支持軸を有することを特徴とする。   The measuring apparatus according to claim 3 of the present invention is characterized in that the deflecting member has a pair of support shafts rotatably supported in contact with the reflecting surface at both axial end positions of the shaft.

本発明の請求項4に記載の計測装置は、前記偏向部材が、一対の前記反射面を有し、一方の前記反射面に入射して反射する光路を含む面内に他方の前記反射面の前記軸が含まれることを特徴とする。   In the measuring device according to claim 4 of the present invention, the deflecting member has a pair of the reflecting surfaces, and the other reflecting surface is included in a plane including an optical path that is incident on and reflected by one of the reflecting surfaces. The axis is included.

本発明の請求項5に記載の計測装置は、前記測定光がフェムト秒レーザー光であることを特徴とする。   The measuring apparatus according to claim 5 of the present invention is characterized in that the measurement light is femtosecond laser light.

本発明によれば、被検物の表面の微細な凹凸でも高精度の計測が可能である。   According to the present invention, high-precision measurement is possible even with minute irregularities on the surface of the test object.

以下、本発明の計測装置の一実施形態について図1乃至図6を参照して説明する。   Hereinafter, an embodiment of a measuring apparatus of the present invention will be described with reference to FIGS.

図1は本発明の計測装置の一実施形態を示す機能ブロック図、図2は図1に示すX軸偏向素子の、プローブ光が該X軸偏向素子に入射する方向からみた上面図、図3は図2の3−3線に沿う断面図、図4は図2の4−4線に沿う断面図、図5はプローブ光が被検物上を走査する状態を説明する説明図、図6は図1に示すX軸偏向素子とY軸偏向素子を駆動する駆動回路のブロック図である。   FIG. 1 is a functional block diagram showing an embodiment of the measuring apparatus of the present invention, FIG. 2 is a top view of the X-axis deflection element shown in FIG. 1 as seen from the direction in which probe light enters the X-axis deflection element, and FIG. Is a cross-sectional view taken along line 3-3 in FIG. 2, FIG. 4 is a cross-sectional view taken along line 4-4 in FIG. 2, FIG. 5 is an explanatory view for explaining a state in which the probe light scans on the test object, and FIG. FIG. 2 is a block diagram of a drive circuit that drives the X-axis deflection element and the Y-axis deflection element shown in FIG. 1.

本実施形態の計測装置には、図1に示すように、測定部10と走査部20と演算部30とが装備される。   As shown in FIG. 1, the measurement apparatus of the present embodiment is equipped with a measurement unit 10, a scanning unit 20, and a calculation unit 30.

測定部10は、フェムト秒レーザー光を発し、この位相と被検物Tからの戻り光(反射光)の位相を比較して、その位相差を演算部30に出力する装置である。   The measuring unit 10 is a device that emits femtosecond laser light, compares the phase with the phase of return light (reflected light) from the test object T, and outputs the phase difference to the arithmetic unit 30.

具体的には、測定部10は、フェムト秒レーザー光を発射するレーザー光源11と、このレーザー光を基準光(参照光)と被検物Tに照射する測定光(プローブ光)とに分割するビームスプリッタ12と、フォトディテクタ13と、フォトディテクタ14と、位相計15とを備える。フォトディテクタ13は、ビームスプリッタ12によって分割され、反射された基準光を受光し電気信号に変換する。フォトディテクタ14は、被検物Tから走査部20を通って測定部10のビームスプリッタ12に入射し、反射された戻り光を受光して電気信号に変換する。位相計15は、これらフォトディテクタ13とフォトディテクタ14から電気信号(出力)を入力して両者(基準光と戻り光)の位相差(位相データ)を求め、この位相データを演算部30に出力する。   Specifically, the measurement unit 10 divides the laser light source 11 that emits femtosecond laser light into reference light (reference light) and measurement light (probe light) that irradiates the test object T. A beam splitter 12, a photo detector 13, a photo detector 14, and a phase meter 15 are provided. The photodetector 13 receives the reference light that is split and reflected by the beam splitter 12 and converts it into an electrical signal. The photodetector 14 enters the beam splitter 12 of the measurement unit 10 from the test object T through the scanning unit 20, receives the reflected return light, and converts it into an electrical signal. The phase meter 15 receives an electric signal (output) from the photo detector 13 and the photo detector 14 to obtain a phase difference (phase data) between the two (reference light and return light), and outputs the phase data to the arithmetic unit 30.

ビームスプリッタ12は、レーザー光を基準光(参照光)と測定光(プローブ光)とに分割する一方、分割したプローブ光を透過させて走査部20に導く、照射部として機能する。また、ビームスプリッタ12は、被検物Tから走査部20を通って戻ってきた戻り光をフォトディテクタ14側に分岐する分岐部としても機能する。   The beam splitter 12 functions as an irradiation unit that divides laser light into reference light (reference light) and measurement light (probe light), and transmits the divided probe light to the scanning unit 20. The beam splitter 12 also functions as a branching unit that branches the return light returned from the test object T through the scanning unit 20 to the photodetector 14 side.

走査部20は、プローブ光をプローブ光の進行方向に対して垂直な方向(XY方向)に走査する光学装置である。   The scanning unit 20 is an optical device that scans the probe light in a direction (XY direction) perpendicular to the traveling direction of the probe light.

具体的には、走査部20は、プローブ光を被検物Tの表面に走査するためのX軸偏向素子21及びY軸偏向素子24と、これらX軸偏向素子21とY軸偏向素子24を駆動する駆動回路26とを備える。X軸偏向素子21とY軸偏向素子24とは、同一構成で、同一機能なので、Y軸偏向素子24の説明は省略し、X軸偏向素子21について説明する。   Specifically, the scanning unit 20 includes an X-axis deflection element 21 and a Y-axis deflection element 24 for scanning the probe light on the surface of the test object T, and the X-axis deflection element 21 and the Y-axis deflection element 24. And a driving circuit 26 for driving. Since the X-axis deflection element 21 and the Y-axis deflection element 24 have the same configuration and the same function, description of the Y-axis deflection element 24 is omitted, and the X-axis deflection element 21 will be described.

X軸偏向素子21は、図2ないし図4に示すように、基板210と、この基板210内に2つのピボット211によって所定の角度範囲で回転振動(揺動)可能に装備された微小ミラー212とを備える。   As shown in FIGS. 2 to 4, the X-axis deflecting element 21 includes a substrate 210 and a minute mirror 212 provided in the substrate 210 so as to be capable of rotational vibration (oscillation) within a predetermined angular range by two pivots 211. With.

基板210は、例えばシリコンを主成分とする半導体材料を使用し、フォトリソグラフィなどの加工方法によって図2ないし図4に示すように略ボックス状に加工され且つ駆動回路23の構成部品である集積回路などが形成される。基板210には、プローブ光が入射する側の面部に該プローブ光が通過する反射窓213が設けられ、また該面部と対向する側の面部に微小ミラー212が配置されている。この反射窓213は、微小ミラー212の反射面214を囲んで、該反射面214よりやや広い面積を有する開口である。プローブ光は、反射窓213を通って微小ミラー212の反射面214に向かい、該反射面214で反射して、再びこの反射窓213を通って、Y軸偏向素子24に向う。   The substrate 210 is an integrated circuit that uses a semiconductor material mainly composed of silicon, is processed into a substantially box shape as shown in FIGS. 2 to 4 and is a component of the drive circuit 23 by a processing method such as photolithography. Etc. are formed. In the substrate 210, a reflection window 213 through which the probe light passes is provided on the surface portion on which the probe light is incident, and a micro mirror 212 is disposed on the surface portion on the side facing the surface portion. The reflection window 213 is an opening that surrounds the reflection surface 214 of the micromirror 212 and has a slightly larger area than the reflection surface 214. The probe light passes through the reflection window 213 toward the reflection surface 214 of the micromirror 212, is reflected by the reflection surface 214, passes through the reflection window 213 again, and goes toward the Y-axis deflection element 24.

ピボット211は基板210に設けられた円錐形の部材である。図3及び図4に示すように、2つのピボット211は、反射窓213を挟んで基板210の両側に設けられ、それぞれの頂点が微小ミラー212の反射面214に当接している。   The pivot 211 is a conical member provided on the substrate 210. As shown in FIGS. 3 and 4, the two pivots 211 are provided on both sides of the substrate 210 with the reflection window 213 interposed therebetween, and the apexes thereof are in contact with the reflection surface 214 of the micromirror 212.

微小ミラー212は、2つのピボット211によって回転振動(揺動)可能に支持される。すなわち、微小ミラー212は、2つのピボット211の頂点どうしを結んだ直線を中心に回転振動(揺動)する。この直線は、反射面214の面内に位置する、微小ミラー212(反射面214)の軸としての回転軸215である。したがって、反射面214の回転軸215上に光が入射し、反射する場合には、微小ミラー212(反射面214)の回転によって光の入射・反射箇所は変化せず、常に回転軸215上にある。   The micro mirror 212 is supported by two pivots 211 so as to be capable of rotational vibration (oscillation). In other words, the micro mirror 212 oscillates (oscillates) around a straight line connecting the vertices of the two pivots 211. This straight line is a rotation axis 215 as an axis of the minute mirror 212 (reflection surface 214) located in the plane of the reflection surface 214. Therefore, when light enters and reflects on the rotation axis 215 of the reflection surface 214, the incident / reflection position of the light does not change due to the rotation of the minute mirror 212 (reflection surface 214), and always on the rotation axis 215. is there.

微小ミラー212は、上述の如く、プローブ光をY軸偏向素子24に向けて反射するミラーであって、2つのピボット211により支持されており、そして回転軸215に沿って反射面214の両側に設けられた一対のヒンジ216によって基板210に接続している。この一対のヒンジ216は、微小ミラー212の回転時に該回転を許容するように捩れが可能な幅(回転軸215と直交する方向の寸法)及び厚さに設定されている。   As described above, the micro mirror 212 is a mirror that reflects the probe light toward the Y-axis deflection element 24, and is supported by the two pivots 211, and on both sides of the reflection surface 214 along the rotation axis 215. The pair of hinges 216 provided is connected to the substrate 210. The pair of hinges 216 is set to have a width (a dimension in a direction perpendicular to the rotation shaft 215) and a thickness capable of being twisted so as to allow the rotation when the micro mirror 212 is rotated.

プローブ光は、その光軸と反射面214の中央にある回転軸215とが交わる交点217を中心とする領域に入射し、ここで反射する。この交点217は、回転軸215上にあるので、微小ミラー212が回転しても、その位置は移動しない。従って、プローブ光はこの交点217を頂点とする安定した円錐の範囲に反射されるので、プローブ光の被検物Tの表面を走査する位置(測定点S1、S2、S3・・・(図5参照))が、主走査方向及び副走査方向に外れるおそれがない。   The probe light is incident on a region centered at an intersection 217 where the optical axis and the rotation axis 215 at the center of the reflection surface 214 intersect, and is reflected here. Since this intersection point 217 is on the rotation axis 215, its position does not move even if the micromirror 212 rotates. Accordingly, since the probe light is reflected in a stable cone range having the intersection 217 as a vertex, the probe light scans the surface of the object T (measurement points S1, S2, S3... (FIG. 5 There is no risk of deviating in the main scanning direction and the sub-scanning direction.

また、被検物Tへのプローブ光と被検物Tからの戻り光は、微小ミラー212の回転によって位置が変動しない、反射面214の面内にある回転軸215上の交点217の箇所で入射・反射を繰り返すことになり、反射面214の回転のたびに反射面214上の光の入射・反射箇所がずれることがなく、被検物Tの表面の微細な凹凸を計測するためにビーム径を縮小させても何ら支障が生じない。   Further, the position of the probe light to the test object T and the return light from the test object T at the intersection point 217 on the rotation axis 215 in the plane of the reflection surface 214 where the position does not fluctuate due to the rotation of the micro mirror 212. In order to repeat the incidence and reflection, the incident and reflection portions of the light on the reflection surface 214 are not shifted each time the reflection surface 214 is rotated, and the beam is used to measure fine irregularities on the surface of the test object T. There is no problem even if the diameter is reduced.

微小ミラー212は、例えば、光の反射率の高いアルミニウムを主成分とする金属からなり、導電性があり、また厚さが約100μmに設定され、プローブ光を反射する反射面214の1辺が、プローブ光のビーム径の約2倍の約2mm四方の大きさに設定されている。微小ミラー212は、その質量が非常に小さいので、回転振動による振動は殆ど発生せず、よって、被検物Tに向うプローブ光の方向も振動しない。このことからも、プローブ光の被検物Tの表面を走査する位置(測定点S1、S2、S3・・・)が、主走査方向及び副走査方向に外れるおそれがない。   The micro mirror 212 is made of, for example, a metal whose main component is aluminum having a high light reflectivity, is conductive, has a thickness of about 100 μm, and has one side of the reflecting surface 214 that reflects the probe light. The size is set to about 2 mm square, which is about twice the beam diameter of the probe light. Since the micromirror 212 has a very small mass, vibration due to rotational vibration hardly occurs, and therefore the direction of the probe light toward the object T does not vibrate. Also from this, there is no possibility that the positions (measurement points S1, S2, S3...) Of the probe light that scan the surface of the test object T are deviated in the main scanning direction and the sub scanning direction.

微小ミラー212と対向する基板210の表面箇所には、一対の駆動電極218が設けられている。一対の駆動電極218が設けられる位置は、反射窓213の両側で、回転軸215に対して線対称な位置である。駆動電極218は、交番電圧が印加される電極である。駆動電極218に交番電圧が印加されると、駆動電極218と微小ミラー212との間に働くクーロン力により、図4に示すように、微小ミラーは矢印A1の方向に回転振動(揺動)する。   A pair of drive electrodes 218 are provided on the surface portion of the substrate 210 facing the micromirror 212. The positions where the pair of drive electrodes 218 are provided are positions symmetrical with respect to the rotation axis 215 on both sides of the reflection window 213. The drive electrode 218 is an electrode to which an alternating voltage is applied. When an alternating voltage is applied to the drive electrode 218, the micromirrors oscillate (oscillate) in the direction of the arrow A1, as shown in FIG. 4, due to the Coulomb force acting between the drive electrode 218 and the micromirror 212. .

図4には微小ミラー212が回転振動している様子が表されている。図中、破線が最も大きく振れている微小ミラー212の位置を表している。プローブ光が微小ミラー212に入射しているときに微小ミラー212が矢印A1の方向に回転振動すると、プローブ光は微小ミラー212の反射面214で反射して、矢印A2の方向に振動しながら、Y軸偏向素子24に向かう。微小ミラー212が矢印A1の方向に回転振動すると、プローブ光は、図5に示すように、被検物T上を主走査方向に移動する。   FIG. 4 shows a state in which the minute mirror 212 is rotating and vibrating. In the drawing, the broken line represents the position of the minute mirror 212 that is most greatly swung. When the micro mirror 212 is rotated and oscillated in the direction of the arrow A1 while the probe light is incident on the micro mirror 212, the probe light is reflected by the reflecting surface 214 of the micro mirror 212 and oscillates in the direction of the arrow A2. It goes to the Y-axis deflection element 24. When the micromirror 212 rotates and vibrates in the direction of the arrow A1, the probe light moves in the main scanning direction on the test object T as shown in FIG.

Y軸偏向素子24は、X軸偏向素子21の反射面212を反射したプローブ光が進行する光路上に配置されていて(図1参照)、その微小ミラー242(図6参照)の不図示の反射面内に該反射面の回転軸が含まれる。この不図示の反射面には、一対の円錐状のピボットの頂点が当接しており、このピボットの頂点間を結ぶ直線が該反射面内に含まれる回転軸となっていることは上述したX軸偏向素子21の反射面212と同様である。   The Y-axis deflection element 24 is arranged on the optical path along which the probe light reflected by the reflection surface 212 of the X-axis deflection element 21 travels (see FIG. 1), and the micromirror 242 (see FIG. 6) is not shown. The axis of rotation of the reflecting surface is included in the reflecting surface. The vertex of a pair of conical pivots is in contact with the reflecting surface (not shown), and the straight line connecting the vertices of the pivot is the rotational axis included in the reflecting surface. This is the same as the reflection surface 212 of the axial deflection element 21.

Y軸偏向素子24に向うプローブ光は、その光軸とY軸偏向素子24の微小ミラー242(図6参照)の不図示の反射面にある回転軸との交点に入射する。X軸偏向素子21の微小ミラー212で反射したプローブ光が図4の矢印A2の方向に振動すると、そのプローブ光の入射位置はY軸偏向素子24の不図示の回転軸上を往復振動する。そして、Y軸偏向素子24の微小ミラー242がX軸偏向素子21の微小ミラー212と同様に回転振動すると、その反射光は被検物Tに向かい、図5に示すように、被検物T上を副走査方向に移動する。主走査方向と副走査方向とは、互いに直交する方向で、X軸偏向素子21とY軸偏向素子24とでプローブ光を被検物T上でラスタースキャンさせる。   The probe light directed to the Y-axis deflection element 24 is incident on the intersection of the optical axis and the rotation axis on the reflection surface (not shown) of the micromirror 242 (see FIG. 6) of the Y-axis deflection element 24. When the probe light reflected by the micro mirror 212 of the X-axis deflection element 21 vibrates in the direction of arrow A2 in FIG. 4, the incident position of the probe light reciprocates on the rotation axis (not shown) of the Y-axis deflection element 24. When the micromirror 242 of the Y-axis deflecting element 24 rotates and vibrates similarly to the micromirror 212 of the X-axis deflecting element 21, the reflected light travels toward the test object T, and as shown in FIG. Move up in the sub-scanning direction. The main scanning direction and the sub-scanning direction are orthogonal to each other, and the X-axis deflection element 21 and the Y-axis deflection element 24 cause the probe light to be raster scanned on the object T.

なお、被検物Tの表面を反射した光のうち、一部の光(戻り光)はプローブ光と同じ光路上をY軸偏向素子24、X軸偏向素子21を通って走査部20から測定部10に至り、該測定部10のビームスプリッタ12に入射し、該ビームスプリッタ12を反射してフォトディテクタ14によって受光される。   Of the light reflected from the surface of the test object T, a part of the light (return light) is measured from the scanning unit 20 through the Y-axis deflection element 24 and the X-axis deflection element 21 on the same optical path as the probe light. It reaches the unit 10, enters the beam splitter 12 of the measuring unit 10, reflects off the beam splitter 12, and is received by the photodetector 14.

X軸偏向素子21の微小ミラー212とY軸偏向素子24の微小ミラー242(図6参照)とは、駆動回路23によって駆動される。この駆動回路23は、被検物T上のプローブ光が主走査と副走査とを行うように、X軸偏向素子21の微小ミラー212とY軸偏向素子24の微小ミラー242を駆動する回路で、図6に示すように、同期回路231と、主走査回路232と、副走査回路233と、4つの電圧源234,235,236,237とが設けられている。   The micro mirror 212 of the X-axis deflection element 21 and the micro mirror 242 (see FIG. 6) of the Y-axis deflection element 24 are driven by the drive circuit 23. The drive circuit 23 is a circuit that drives the micro mirror 212 of the X-axis deflection element 21 and the micro mirror 242 of the Y-axis deflection element 24 so that the probe light on the test object T performs main scanning and sub scanning. As shown in FIG. 6, a synchronization circuit 231, a main scanning circuit 232, a sub-scanning circuit 233, and four voltage sources 234, 235, 236, and 237 are provided.

同期回路231は、主走査回路232と副走査回路233とを同期して駆動する回路で、その同期タイミングを表す同期パルスを演算部30に出力する。   The synchronization circuit 231 is a circuit that drives the main scanning circuit 232 and the sub-scanning circuit 233 in synchronization, and outputs a synchronization pulse representing the synchronization timing to the arithmetic unit 30.

主走査回路232は、プローブ光が被検物Tの測定点S1,S2,S3,S4・・・・を通り過ぎるような掃引信号(以降、この信号を主走査信号と称す)を、一対の電圧源234,235に出力する回路である。この一対の電圧源234,235は、X軸偏向素子21の一対の駆動電極218に、主走査信号を増幅した交番電圧を出力する。この交番電圧が印加されると、微小ミラー212は、プローブ光が被検物T上を主走査する角度(図4の矢印A1の方向)に回転振動する。   The main scanning circuit 232 uses a pair of voltages as a sweep signal (hereinafter, this signal is referred to as a main scanning signal) such that the probe light passes the measurement points S1, S2, S3, S4,. This is a circuit for outputting to the sources 234 and 235. The pair of voltage sources 234 and 235 output an alternating voltage obtained by amplifying the main scanning signal to the pair of drive electrodes 218 of the X-axis deflection element 21. When this alternating voltage is applied, the micromirror 212 rotates and vibrates at an angle (in the direction of arrow A1 in FIG. 4) at which the probe light scans on the object T.

副走査回路233は、主走査回路232の出力信号が1回の主走査を経過するごとに、プローブ光が図5に示す被検物Tの測定点S1,S11,S21・・・・を通り過ぎるような掃引信号(以降、この信号を副走査信号と称す)を、一対の電圧源236,237に出力する回路である。一対の電圧源236,237は、Y軸偏向素子24の一対の駆動電極248に、副走査信号を増幅した交番電流を出力する。一対の駆動電極248に、この交番電流が印加されると、微小ミラー242は、プローブ光が被検物上を副走査する角度に回転振動(揺動)する。   Each time the output signal of the main scanning circuit 232 passes one main scanning, the sub-scanning circuit 233 passes the probe light through the measurement points S1, S11, S21,. This is a circuit that outputs such a sweep signal (hereinafter, this signal is referred to as a sub-scan signal) to a pair of voltage sources 236 and 237. The pair of voltage sources 236 and 237 outputs an alternating current obtained by amplifying the sub scanning signal to the pair of drive electrodes 248 of the Y-axis deflection element 24. When this alternating current is applied to the pair of drive electrodes 248, the micromirror 242 oscillates (oscillates) at an angle at which the probe light is sub-scanned on the object.

演算部30は、測定部10からの位相データと走査部20からの同期パルスとを入力して、測定点毎に走査部10から被検物Tの測定点までの距離を演算する回路で、求めた距離データは外部のCAD/CAM装置などに出力する。演算部30には演算回路31が設けられている。この演算回路31は、同期パルスから各測定点S1,S2,S3・・・の主走査方向の位置座標(X座標)と副走査方向の位置座標(Y座標)とを求め、各測定点のX座標とY座標に、位相データがあらわす各測定点の距離データをZ座標として対応させる回路である。   The calculation unit 30 is a circuit that inputs the phase data from the measurement unit 10 and the synchronization pulse from the scanning unit 20 and calculates the distance from the scanning unit 10 to the measurement point of the test object T for each measurement point. The obtained distance data is output to an external CAD / CAM device or the like. The arithmetic unit 30 is provided with an arithmetic circuit 31. This arithmetic circuit 31 obtains the position coordinates (X coordinate) in the main scanning direction and the position coordinates (Y coordinate) in the sub-scanning direction of each measurement point S1, S2, S3. This is a circuit for associating the X coordinate and the Y coordinate with the distance data of each measurement point represented by the phase data as the Z coordinate.

以上のように構成された本実施形態の計測装置によれば、微小ミラー212の反射面214に円錐状の2つのピボット211の頂点を当てて、これらピボット211で反射面214を支持して、ピボット211間を結ぶ直線である回転軸215を反射面214の面内に位置させるようにしてあり、また微小ミラー242についても同じようにしてあり、そして、微小ミラー212の回転により位置が変動しない反射面214の面内にある回転軸215上の箇所、微小ミラー242の回転により位置が変動しない反射面の面内にある回転軸上の箇所に、プローブ光や被検物Tを反射して走査部20に戻った戻り光が入射し、反射するようにしてあるので、被検物上の測定点の主走査方向と副走査方向の位置の誤差が非常に少ない距離計測ができ、また被検物Tの表面の微細な凹凸を計測するために光のビーム径を縮小しても計測誤差は非常に少なく、被検物Tの3次元形状を高精度で計測することが可能となる。   According to the measuring apparatus of the present embodiment configured as described above, the apex of two conical pivots 211 is applied to the reflecting surface 214 of the micromirror 212, and the reflecting surface 214 is supported by these pivots 211, The rotation axis 215, which is a straight line connecting the pivots 211, is positioned in the plane of the reflecting surface 214, and the same applies to the minute mirror 242, and the position does not vary due to the rotation of the minute mirror 212. The probe light and the test object T are reflected at a location on the rotation axis 215 in the plane of the reflection surface 214 and a location on the rotation axis in the plane of the reflection surface where the position does not vary due to the rotation of the micromirror 242. Since the return light that has returned to the scanning unit 20 is incident and reflected, distance measurement can be performed with very little error in the position of the measurement point on the object in the main scanning direction and the sub-scanning direction. Further, even if the beam diameter of the light is reduced in order to measure fine irregularities on the surface of the test object T, the measurement error is very small, and the three-dimensional shape of the test object T can be measured with high accuracy. Become.

また、微小ミラー212の回転により位置が変動しない反射面214の面内にある回転軸215上の箇所、微小ミラー242の回転により位置が変動しない反射面の面内にある回転軸上の箇所に、プローブ光や戻り光が入射し、反射するようにした、極めて簡単で且つ容易に精度を出しやすい構成を採用していることから、反射面上のプローブ光や戻り光の入射・反射箇所のずれを信号処理により対処するようにした場合に比してコストがかからない。   Further, at a location on the rotation axis 215 in the plane of the reflection surface 214 where the position does not change due to the rotation of the micro mirror 212, and a location on the rotation axis within the plane of the reflection surface where the position does not change due to the rotation of the micro mirror 242. Because the probe light and return light are incident and reflected, the structure is extremely simple and easy to obtain accuracy. Compared with the case where the deviation is dealt with by signal processing, the cost does not increase.

本発明の計測装置は上記実施形態に示すものに限定されるものではない。   The measuring device of the present invention is not limited to the one shown in the above embodiment.

微小ミラー212,242(反射面214)を回転振動(揺動)可能に支持するために支持軸として円錐状のピボット211を使用した場合を示したが、これに限定されず、例えば三角柱状のピボットを使用し、三つの頂点のうち、何れかの頂点を反射面に当てるようにしてもよい。   Although the case where the conical pivot 211 is used as the support shaft to support the micromirrors 212 and 242 (reflection surface 214) so as to be capable of rotational vibration (oscillation) is shown, the present invention is not limited to this. A pivot may be used so that any one of the three vertices hits the reflecting surface.

何れにしても、微小ミラー212,242の反射面の面内に回転軸が位置するように微小ミラー212,242を回転振動(揺動)可能に支持する構造であればピボットに限定されるものではない。   In any case, if the structure is such that the micromirrors 212 and 242 are supported so as to be able to rotate and oscillate (oscillate) so that the rotation axis is located within the reflection surface of the micromirrors 212 and 242, it is limited to the pivot. is not.

また、微小ミラー212を駆動するのに基板210に駆動電極218を配置し、微小ミラー242を駆動するのに基板に駆動電極248を配置し、これら駆動電極218,248に交番電圧を印加して、クーロン力により微小ミラー212,242を回転振動させた場合を示したが、これに限定されない。例えば、微小ミラー212,242の裏面(反射面と反対側の面)に駆動コイルを配置し、微小ミラー212,242の外部に磁石を配置して、駆動コイルに電流を流すことにより発生するローレンツ力によって微小ミラー212,242を回転振動させてもよい。   Further, the drive electrode 218 is disposed on the substrate 210 to drive the micromirror 212, the drive electrode 248 is disposed on the substrate to drive the micromirror 242, and an alternating voltage is applied to these drive electrodes 218 and 248. Although the case where the micromirrors 212 and 242 are rotationally oscillated by the Coulomb force is shown, the present invention is not limited to this. For example, a Lorentz generated by disposing a drive coil on the back surface (surface opposite to the reflecting surface) of the micromirrors 212 and 242 and disposing a magnet outside the micromirrors 212 and 242 and passing a current through the drive coil. The micromirrors 212 and 242 may be rotated and vibrated by force.

また、プローブ光としてフェムト秒レーザー光を使用した場合を示したが、他のレーザー光を使用してもよい。   Moreover, although the case where femtosecond laser light was used as probe light was shown, you may use another laser light.

本発明の計測装置の一実施形態を示す機能ブロック図である。It is a functional block diagram which shows one Embodiment of the measuring device of this invention. 図1に示すX軸偏向素子の、プローブ光が該X軸偏向素子に入射する方向からみた上面図である。FIG. 2 is a top view of the X-axis deflection element shown in FIG. 1 as seen from the direction in which probe light enters the X-axis deflection element. 図2の3−3線に沿う断面図である。It is sectional drawing which follows the 3-3 line of FIG. 図2の4−4線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. プローブ光が被検物上を走査する状態を説明する説明図である。It is explanatory drawing explaining the state which probe light scans on a test object. 図1に示すX軸偏向素子とY軸偏向素子を駆動する駆動回路のブロック図である。FIG. 2 is a block diagram of a drive circuit that drives the X-axis deflection element and the Y-axis deflection element shown in FIG. 1.

符号の説明Explanation of symbols

10 測定部
11 レーザー光源
12 ビームスプリッタ
13,14 フォトディテクタ
15 位相計
20 走査部
21 X軸偏向素子
22 Y軸偏向素子
23 駆動回路
30 演算部
212 微小ミラー
242 微小ミラー
214 反射面
215 回転軸
DESCRIPTION OF SYMBOLS 10 Measurement part 11 Laser light source 12 Beam splitter 13, 14 Photo detector 15 Phase meter 20 Scan part 21 X-axis deflection element 22 Y-axis deflection element 23 Drive circuit 30 Calculation part 212 Micro mirror 242 Micro mirror 214 Reflecting surface 215 Rotation axis

Claims (5)

反射面を有する偏向部材と、
前記反射面内または前記反射面近傍に沿った軸中心に前記偏向部材を回動駆動する駆動部と、
前記反射面を介して被検物に測定光を照射する照射部と、
前記測定光が前記被検物で反射した戻り光を受光する受光部と、を備え、
前記照射部は前記軸の位置または前記軸の近傍の前記偏向部材へ前記測定光を照射し、前記受光部からの情報により前記被検物の形状を測定することを特徴とする計測装置。
A deflection member having a reflective surface;
A drive unit that rotationally drives the deflection member about the axis in the reflection surface or along the vicinity of the reflection surface;
An irradiating unit that irradiates the test object with measurement light through the reflecting surface;
A light receiving portion for receiving the return light reflected by the test object by the measurement light,
The irradiation unit irradiates the measuring member with the measurement light on the position of the shaft or in the vicinity of the shaft, and measures the shape of the test object based on information from the light receiving unit.
請求項1に記載の計測装置において、
前記戻り光の少なくとも一部を分岐する分岐部をさらに備え、
前記受光部は前記測定光の前記偏向部材から前記被検物へ至る光路を逆に進む前記戻り光の少なくとも一部を受光するように配置されていることを特徴とする計測装置。
The measuring device according to claim 1,
A branching part for branching at least a part of the return light;
The measuring device, wherein the light receiving unit is arranged to receive at least a part of the return light that travels in the reverse direction along the optical path from the deflecting member of the measurement light to the test object.
請求項1又は2に記載の計測装置において、
前記偏向部材は、前記軸の軸方向両端位置で前記反射面に接して回転可能に支持する一対の支持軸を有することを特徴とする計測装置。
In the measuring device according to claim 1 or 2,
The measuring apparatus according to claim 1, wherein the deflecting member has a pair of support shafts rotatably supported in contact with the reflecting surface at both axial end positions of the shaft.
請求項1ないし3の何れか一項に記載の計測装置において、
前記偏向部材は、一対の前記反射面を有し、一方の前記反射面に入射して反射する光路を含む面内に他方の前記反射面の前記軸が含まれることを特徴とする計測装置。
In the measuring device according to any one of claims 1 to 3,
The deflecting member has a pair of the reflecting surfaces, and the axis of the other reflecting surface is included in a plane including an optical path that is incident on and reflected by one of the reflecting surfaces.
請求項1ないし4の何れか一項に記載の計測装置において、
前記測定光はフェムト秒レーザー光であることを特徴とする計測装置。
In the measuring device according to any one of claims 1 to 4,
The measuring apparatus, wherein the measuring light is femtosecond laser light.
JP2006339819A 2006-12-18 2006-12-18 Measurement device Pending JP2008151640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339819A JP2008151640A (en) 2006-12-18 2006-12-18 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339819A JP2008151640A (en) 2006-12-18 2006-12-18 Measurement device

Publications (1)

Publication Number Publication Date
JP2008151640A true JP2008151640A (en) 2008-07-03

Family

ID=39653953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339819A Pending JP2008151640A (en) 2006-12-18 2006-12-18 Measurement device

Country Status (1)

Country Link
JP (1) JP2008151640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897076A (en) * 2014-03-07 2015-09-09 中国科学院光电研究院 Three dimensional shape measurement method for micro nanoscale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897076A (en) * 2014-03-07 2015-09-09 中国科学院光电研究院 Three dimensional shape measurement method for micro nanoscale

Similar Documents

Publication Publication Date Title
JP5913726B2 (en) Gimbal scanning mirror array
JP5740321B2 (en) Distance measuring device, distance measuring method and control program
JP6933401B2 (en) MEMS scanning module for optical scanner
JP4970211B2 (en) 3D shape measuring instrument
JP2005539260A (en) Apparatus for changing the path length of a radiation beam
JP4184288B2 (en) Laser processing machine
JPS6388409A (en) Laser vibrometer
JP2020515917A (en) Angular magnetic field sensor for scanners
JP2016020834A (en) Laser scanner
JP2008151640A (en) Measurement device
JP2009109305A (en) Method of measuring resonance frequency and maximum optical swing angle
JP2012226020A (en) Distance measuring instrument
JP4696249B2 (en) Shape measuring method and apparatus
JP2000035375A (en) Optical scanner tester
JP2008190883A (en) Measuring device
JP2023039222A (en) Micro-mirror device and optical scanning device
JP2023039221A (en) Micro-mirror device and optical scanning device
JP6989354B2 (en) Optical scanning device and ranging device
JP2008256497A (en) Measurement apparatus
JP7281018B2 (en) Ranging device, ranging method, and ranging program
JP2023163947A (en) Optical scanner and abnormality detection method
WO2024024299A1 (en) Optical scanning device
JP2004004276A (en) Two-dimensional optical scanner
WO2019151092A1 (en) Scanning device and distance measuring device
JP2016017854A (en) Shape measurement device