JP2008149284A - Water treatment system for producing drinking water and its operation method - Google Patents

Water treatment system for producing drinking water and its operation method Download PDF

Info

Publication number
JP2008149284A
JP2008149284A JP2006341600A JP2006341600A JP2008149284A JP 2008149284 A JP2008149284 A JP 2008149284A JP 2006341600 A JP2006341600 A JP 2006341600A JP 2006341600 A JP2006341600 A JP 2006341600A JP 2008149284 A JP2008149284 A JP 2008149284A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
membrane device
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341600A
Other languages
Japanese (ja)
Other versions
JP3957080B1 (en
Inventor
Naoto Nitta
直人 新田
Masanobu Noshita
昌伸 野下
Kenji Takesaka
憲治 竹坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2006341600A priority Critical patent/JP3957080B1/en
Application granted granted Critical
Publication of JP3957080B1 publication Critical patent/JP3957080B1/en
Publication of JP2008149284A publication Critical patent/JP2008149284A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment system for producing drinking water having a small size enough to be mounted on a high mobile vehicle and efficiently producing drinking water by changing over a water treatment route corresponding to the concentration of the salt component of raw water. <P>SOLUTION: The water treatment system for producing drinking water is constituted so as to supply water to be treated in series of two RO membrane devices in a case that raw water is seawater to produce the drinking water. In the case where raw water is fresh water, the water to be treated is supplied in parallel to two RO membrane devices by changing over the water treatment route to produce the drinking water. With this constitution, in spite of a small-sized system of a degree capable of being mounted even on the high mobile vehicle, the drinking water can be efficiently produced corresponding to the kind of raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、河川水、湖沼水等の淡水、又は海水を原水として、精密ろ過膜(MF膜)分離装置又は限外ろ過膜(UF膜)分離装置と、逆浸透膜(RO膜)装置とを用いて膜分離処理を行い、飲料水を製造するための水処理システム及びその運転方法に関する。   The present invention provides a microfiltration membrane (MF membrane) separation device or an ultrafiltration membrane (UF membrane) separation device, a reverse osmosis membrane (RO membrane) device using fresh water such as river water and lake water, or seawater as raw water. The present invention relates to a water treatment system for producing a drinking water and a method for operating the same.

MF膜又はUF膜は、微粒子等の除去性能が高いため、原水中に含まれる微細な固形物、懸濁物質、微生物等を分離する固液分離手段として使用される。また、このMF膜を組み込んだMF膜分離装置又はUF膜を組み込んだUF膜分離装置は、操作が簡便であることから、医薬、化学、半導体等の分野的で工業的に広く利用されている。   Since the MF membrane or UF membrane has high removal performance of fine particles and the like, it is used as a solid-liquid separation means for separating fine solids, suspended substances, microorganisms and the like contained in raw water. In addition, the MF membrane separation device incorporating the MF membrane or the UF membrane separation device incorporating the UF membrane is easy to operate, and is widely used in the fields of medicine, chemistry, semiconductors, and the like in industry. .

また、RO膜は、水中の塩類、有機物質(トリハロメタン、農薬等)、微細粒子(生菌、死菌、ウイルス等)を安定かつ活効率的に除去できるため、超純水製造から海水淡水化まで広い範囲で利用されている。例えば、医薬品、半導体の分野において、注射用水、超純水等の製造に利用されている。   RO membranes can remove salt, organic substances (trihalomethane, agricultural chemicals, etc.) and fine particles (viable bacteria, dead bacteria, viruses, etc.) in water stably and vigorously. It is used in a wide range. For example, it is used for the production of water for injection, ultrapure water, etc. in the fields of pharmaceuticals and semiconductors.

RO膜は、非常に微細な細孔を有しているため、原水(例えば、工業用水)を、まずMF膜分離装置又はUF膜分離装置を用いて前処理し、それらの処理水をRO膜分離装置で膜分離処理することが一般的である。   Since the RO membrane has very fine pores, raw water (for example, industrial water) is first pretreated using an MF membrane separation device or a UF membrane separation device, and the treated water is supplied to the RO membrane. It is common to perform membrane separation treatment with a separation device.

ここで、地震、津波等の災害時に飲料水を製造するため、被災地の原水を浄化する浄化装置として、長毛ろ過装置と珪藻土ろ過装置を用いる車載型の移動式浄水装置が、特許文献1に開示されている。   Here, in order to produce drinking water at the time of disasters such as earthquakes and tsunamis, an on-vehicle mobile water purification device using a long hair filtration device and a diatomaceous earth filtration device is disclosed in Patent Document 1 as a purification device for purifying raw water in the affected area. It is disclosed.

また、RO膜を用いる海水淡水化装置と、UF膜を用いる汚濁淡水の浄化装置等を備える車両搭載型清水製造装置が、特許文献2に開示されている。   Further, Patent Document 2 discloses a vehicle-mounted fresh water production apparatus including a seawater desalination apparatus using an RO membrane and a contaminated fresh water purification device using a UF membrane.

また、回転するろ過筒を通じてろ過を行う第一ろ過器と、MF膜又はRO膜処理を行う第二ろ過器と、RO膜を用いて純水を得る第三ろ過器とを備える移動式浄水設備が、特許文献3に開示されている。   A mobile water purification facility comprising a first filter that performs filtration through a rotating filter cylinder, a second filter that performs MF membrane or RO membrane treatment, and a third filter that obtains pure water using the RO membrane. However, this is disclosed in Patent Document 3.

また、直列方向に2段に接続された逆浸透膜装置によって海水を高収率で鹹水化処理する処理方法が、特許文献4に開示されている。
実公昭62−9997号公報 特開平9−141262号公報 特開平8−71567号公報 特開2005−246158号公報
Further, Patent Document 4 discloses a treatment method in which seawater is submerged in a high yield by a reverse osmosis membrane device connected in two stages in series.
Japanese Utility Model Publication No. 62-9997 JP-A-9-141262 JP-A-8-71567 JP 2005-246158 A

しかし、特許文献1に開示される移動式浄水装置は、細菌、ウイルス、塩類、重金属類、農薬等の化学物質を除去することができず、原水の濁度が高い場合には、珪藻土ろ過器を頻繁に手動で逆流洗浄しなければならないという欠点があった。   However, the mobile water purifier disclosed in Patent Literature 1 cannot remove chemical substances such as bacteria, viruses, salts, heavy metals, and agricultural chemicals, and when the turbidity of raw water is high, a diatomaceous earth filter Has had the disadvantage of having to be manually backwashed frequently.

また、特許文献2及び特許文献3に開示される移動式浄水設備は、原水タンクや凝集剤を添加した原水を貯留するタンクを有するため、大型車両でなければ浄水設備を搭載することが困難である。   Moreover, since the mobile water purification equipment disclosed in Patent Literature 2 and Patent Literature 3 includes a raw water tank or a tank for storing raw water added with a flocculant, it is difficult to mount the water purification equipment unless it is a large vehicle. is there.

ここで、地震等の被災地では道路等が陥没したり、道路にはがれき等の障害物があり、従来のトラック等大型車両では走行できない箇所がある。このような場合、被災地での浄水の供給ができなくなるため、多少の悪路でも走行可能な小型で機動性の高い高機動車と呼ばれる小型車両の利用が検討されている。   Here, there are places where roads or the like are depressed in areas affected by earthquakes or the like, or there are obstacles such as debris on the roads, and there are places where large vehicles such as conventional trucks cannot travel. In such a case, since it becomes impossible to supply purified water in the stricken area, the use of a small vehicle called a high mobility vehicle that is small and highly mobile that can travel even on some rough roads has been studied.

しかし、高機動車の荷台寸法は、縦2070mm×横2000mm×高さ1175mm程度であり、一般的な大型車両の荷台寸法である縦4500mm×横2990mm×高さ2080mmと比較すると、浄水設備のスペースが非常に限られることが大きな問題である。また、積載重量も小さいため、高機動車に搭載する発電機の仕様(発電容量、大きさ、重量)を考慮して、水処理システムのコンパクト化、軽量化及び省エネ化を行う必要があった。   However, the size of the carrier bed of the high mobility vehicle is about 2070 mm long × 2000 mm wide × 1175 mm high, and compared to the size of a general large vehicle carrier 4500 mm long × 2990 mm wide × 2080 mm high, the space for water purification equipment It is a big problem that is very limited. In addition, because the loading weight is small, it was necessary to make the water treatment system more compact, lighter, and more energy efficient in consideration of the specifications (power generation capacity, size, weight) of the generator mounted on the high mobility vehicle. .

高機動車が派遣される災害地では、原水が海水であるか淡水であるか、あるいは海水と淡水が混じっているか、現場で初めて確認できる場合もある。また、取水場所を移動すれば原水の塩分濃度が変動する場合も想定される。このため、海水にも淡水にも対応した飲料水製造システムを高機動車に搭載し、どのような塩分濃度の原水にも対応できるようにすることが好ましいが、高機動車には海水用及び淡水用の飲料水製造システムの両方を搭載するスペースはない。   In disaster areas where high mobility vehicles are dispatched, it may be confirmed for the first time on site whether the raw water is seawater or freshwater, or whether seawater and freshwater are mixed. In addition, if the water intake location is moved, the salt concentration of the raw water may be changed. For this reason, it is preferable to install a drinking water production system that supports both seawater and fresh water on a high mobility vehicle so that it can handle raw water of any salt concentration. There is no space for both freshwater drinking water production systems.

原水が海水の場合には、特許文献4に開示される海水淡水化装置のように、RO膜装置によって2回処理する必要がある。もちろん、原水が淡水の場合にもこの海水淡水化装置は飲料水を製造することができるが、RO膜装置で1回処理するだけで足りるため、2段目のRO膜装置による処理が無駄となる。災害地では少しでも多くの飲料水を製造して給水しなければならない事情があるため、原水が淡水の場合には、海水淡水化装置の2台のRO膜装置を独立して使用できれば、飲料水製造量を増やすことができるので便利である。   When the raw water is seawater, it needs to be treated twice by the RO membrane device as in the seawater desalination apparatus disclosed in Patent Document 4. Of course, even when the raw water is fresh water, this seawater desalination apparatus can produce drinking water, but it is only necessary to perform the treatment once with the RO membrane device, so that the processing by the second-stage RO membrane device is useless. Become. In the disaster area, there is a situation where a large amount of drinking water must be produced and supplied, so if the raw water is fresh water, if the two RO membrane devices of the seawater desalination device can be used independently, This is convenient because the water production can be increased.

本発明は、高機動車に搭載できるほど小型であって、原水の塩分濃度に応じて水処理経路を切り換えることにより、飲料水を効率よく製造する飲料水製造用水処理システム及びその運転方法の提供を目的とする。   The present invention provides a water treatment system for drinking water production that efficiently produces drinking water by switching the water treatment path according to the salinity concentration of raw water, and a method for operating the same, which is small enough to be mounted on a high mobility vehicle. With the goal.

本発明の飲料水製造用水処理システムは、原水が海水の場合には、2台のRO膜装置に直列に被処理水を供給して飲料水を製造する。一方、原水が淡水の場合には、水処理経路を切り換えて、2台のRO膜装置に並列に被処理水を供給して飲料水を製造する。   When the raw water is seawater, the water treatment system for producing drinking water of the present invention supplies drinking water in series to two RO membrane devices to produce drinking water. On the other hand, when the raw water is fresh water, the water treatment path is switched and the treated water is supplied in parallel to the two RO membrane devices to produce drinking water.

具体的に、本発明は、
除濁装置と、
第一逆浸透膜装置と、
第二逆浸透膜装置とを備え、
除濁装置の処理水を第一逆浸透膜装置及び/又は第二逆浸透膜装置で処理する飲料水製造用水処理システムであって、
原水が淡水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水を飲料水とする第一経路と、
除濁装置の処理水を第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第二経路とを併用し、
原水が海水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水を第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第三経路を使用することを特徴とするシステムに関する(請求項1)。
Specifically, the present invention
A decontamination device,
A first reverse osmosis membrane device;
A second reverse osmosis membrane device,
A drinking water production water treatment system for treating treated water of a turbidity removal device with a first reverse osmosis membrane device and / or a second reverse osmosis membrane device,
When the raw water is fresh water, supply the treated water of the turbidity removal device to the first reverse osmosis membrane device, and the first path using the permeated water of the first reverse osmosis membrane device as drinking water,
Supplying the treated water of the turbidity removing device to the second reverse osmosis membrane device, using the second route with the permeated water of the second reverse osmosis membrane device as drinking water,
When the raw water is seawater, the treated water of the turbidity removing device is supplied to the first reverse osmosis membrane device, the permeated water of the first reverse osmosis membrane device is supplied to the second reverse osmosis membrane device, and the second reverse osmosis is supplied. The present invention relates to a system using a third path using drinking water as permeated water of the membrane device (claim 1).

また、本発明は、
除濁装置と、
第一逆浸透膜装置と、
第二逆浸透膜装置とを備え、
除濁装置の処理水を第一逆浸透膜装置及び/又は第二逆浸透膜装置で処理する飲料水製造用水処理システムにおいて、
原水が淡水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水を飲料水とする第一経路と、
除濁装置の処理水を第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第二経路とを併用し、
原水が海水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水をさらに第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第三経路を使用することを特徴とする飲料水製造用水処理システムの運転方法に関する(請求項6)。
The present invention also provides:
A decontamination device,
A first reverse osmosis membrane device;
A second reverse osmosis membrane device,
In a drinking water production water treatment system for treating treated water of a turbidity removal device with a first reverse osmosis membrane device and / or a second reverse osmosis membrane device,
When the raw water is fresh water, supply the treated water of the turbidity removal device to the first reverse osmosis membrane device, and the first path using the permeated water of the first reverse osmosis membrane device as drinking water,
Supplying the treated water of the turbidity removing device to the second reverse osmosis membrane device, using the second route with the permeated water of the second reverse osmosis membrane device as drinking water,
When the raw water is seawater, the treated water of the turbidity removal device is supplied to the first reverse osmosis membrane device, the permeated water of the first reverse osmosis membrane device is further supplied to the second reverse osmosis membrane device, and the second reverse osmosis membrane device is supplied. The present invention relates to a method for operating a water treatment system for producing drinking water, wherein a third path using the permeated water of the osmotic membrane device as drinking water is used.

本発明の飲料水製造用水処理システムは、原水が海水の場合には、第一RO膜装置(高圧RO膜装置であることが好ましい)及び第二RO膜装置(低圧RO膜装置であることが好ましい)を用いて、海水を淡水化して飲料水を製造する。一方、原水が淡水の場合には、第一RO膜装置及び第二RO膜装置を平行して使用し、飲料水の製造量を通常の海水対応型飲料水製造用水処理システムよりも増やすことができる。   When the raw water is seawater, the drinking water production water treatment system of the present invention may be a first RO membrane device (preferably a high pressure RO membrane device) and a second RO membrane device (low pressure RO membrane device). Seawater is desalinated to produce drinking water. On the other hand, when the raw water is fresh water, the first RO membrane device and the second RO membrane device are used in parallel, and the production amount of drinking water can be increased more than a normal seawater-compatible drinking water production water treatment system. it can.

なお、本発明でいう「淡水」には、塩分を全く又はほとんど含まない水の他、第一RO膜装置で1回処理すれば飲料水として利用することができる程度に塩分濃度の低い水も含まれる。同様に、本発明でいう「海水」には、海水ではないが塩分濃度が高く、第一RO膜装置及び第二RO膜装置で2回処理しなければ飲料水として利用することができない水も含まれる。   In addition, the “fresh water” as used in the present invention includes water that contains no or almost no salt, and water that has a low salt concentration to the extent that it can be used as drinking water if treated once with the first RO membrane device. included. Similarly, “seawater” as used in the present invention includes water that is not seawater but has a high salinity and cannot be used as drinking water unless it is treated twice by the first RO membrane device and the second RO membrane device. included.

原水の一次処理として、懸濁物質を取り除く除濁装置は特に限定されないが、第一RO膜装置のRO膜の目詰まりを防止する観点からは、MF膜分離装置又はUF膜分離装置を使用することが好ましい(請求項2,7)。なお、原水中の懸濁物質が非常に少ないような場合には、除濁装置として簡易なフィルターろ過器等を使用することもできる。   As a primary treatment of raw water, a turbidity removing device for removing suspended substances is not particularly limited, but from the viewpoint of preventing clogging of the RO membrane of the first RO membrane device, an MF membrane separation device or a UF membrane separation device is used. (Claims 2 and 7). In addition, when there are very few suspended substances in raw water, a simple filter filter etc. can also be used as a turbidity removal apparatus.

逆浸透膜分離装置へと膜分離装置の処理水を供給する膜処理水供給経路の加圧ポンプ上流と、逆浸透膜分離装置の透過水出口側経路とにそれぞれ流量計を備え、
加圧ポンプ上流の流量計の指示値が、逆浸透膜分離装置の必要供給水量目標値未満の場合には加圧ポンプの回転数を上げ、
逆浸透膜分離装置の透過水出口側経路の流量計の指示値が、逆浸透膜分離装置の必要処理水量目標値未満の場合には濃縮水排出口側の流量調節弁を絞ることにより、逆浸透膜分離装置の供給水及び処理水量を運転中一定に保つことも可能である(請求項3,8)。
A flow meter is provided in each of the pressure pump upstream of the membrane treated water supply path for supplying treated water of the membrane separator to the reverse osmosis membrane separator, and the permeate outlet side path of the reverse osmosis membrane separator,
If the indicated value of the flow meter upstream of the pressure pump is less than the required supply water target value of the reverse osmosis membrane separator, increase the rotation speed of the pressure pump,
If the indicated value of the flow meter on the permeate outlet side path of the reverse osmosis membrane separator is less than the required treatment water volume target value of the reverse osmosis membrane separator, reverse the flow rate by adjusting the flow control valve on the concentrated water outlet. It is also possible to keep the supply water and treated water amount of the osmosis membrane separation device constant during operation (claims 3 and 8).

第二RO膜装置への供給水圧は、0.5MPa以上2.0MPa以下であることが好ましい(請求項4,9)。第二RO膜装置は、淡水又は第一RO膜装置の透過水を処理するための装置であるため、供給水圧は淡水を処理する通常のRO膜処理装置と同様、0.5MPa以上2.0MPa以下の範囲であることが好ましい。   The supply water pressure to the second RO membrane device is preferably 0.5 MPa or more and 2.0 MPa or less (Claims 4 and 9). Since the second RO membrane device is a device for treating fresh water or the permeated water of the first RO membrane device, the supply water pressure is 0.5 MPa or more and 2.0 MPa or less, similar to a normal RO membrane treatment device for treating fresh water. A range is preferable.

これに対して第一RO膜装置への供給水圧は、淡水を処理する場合には0.5MPa以上2.0MPa以下であることが好ましく、海水を処理する場合には5.0MPa以上7.0MPa以下であることが好ましい(請求項5,10)。海水等塩分濃度の高い原水を第一RO膜装置によって処理する場合には、供給水圧は海水を処理する通常のRO膜処理装置と同様、5.0MPa以上7.0MPa以下であることが好ましい。一方、淡水等塩分濃度の低い原水を処理する場合には、第二RO膜装置と同様の供給水圧であることが好ましい。   On the other hand, the supply water pressure to the first RO membrane device is preferably 0.5 MPa or more and 2.0 MPa or less when processing fresh water, and 5.0 MPa or more and 7.0 MPa or less when processing seawater. (Claims 5 and 10) are preferable. When raw water having a high salt concentration such as seawater is processed by the first RO membrane device, the supply water pressure is preferably 5.0 MPa or more and 7.0 MPa or less, as in the case of a normal RO membrane processing device that processes seawater. On the other hand, when processing raw water having a low salinity concentration such as fresh water, the supply water pressure is preferably the same as that of the second RO membrane device.

本発明の飲料水製造用水処理システムは、原水が海水であるか淡水であるかによって水処理経路を切り換えるため、原水が淡水である場合には従来の海水対応型水処理システムよりも、同じ設置スペース当たりの処理水量を倍増させることが可能である。   The water treatment system for drinking water production according to the present invention switches the water treatment path depending on whether the raw water is seawater or fresh water. Therefore, when the raw water is fresh water, it is installed in the same manner as the conventional seawater-compatible water treatment system. It is possible to double the amount of treated water per space.

以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明は、これらに限定されない。   Embodiments of the present invention will be described below with reference to the drawings as appropriate. The present invention is not limited to these.

海水を淡水化する、従来の飲料水製造用水処理システムの一例を、図3に示す。このシステムでは、まず揚水ポンプ31によって原水を経路32へと吸水し、長毛ろ過器33によって前処理することにより、原水中の懸濁物質を除去する。   An example of a conventional water treatment system for producing drinking water that desalinates seawater is shown in FIG. In this system, first, raw water is sucked into a path 32 by a pumping pump 31 and pretreated by a long hair filter 33 to remove suspended substances in the raw water.

次に、長毛ろ過器33の処理水は、経路34に設置されたろ過ポンプ35によって加圧(0.2MPa程度)され、MF膜分離装置36の供給水入口へと供給される。なお、ここではMF膜分離装置36を使用しているが、UF膜分離装置を使用する場合もある。   Next, the treated water of the long hair filter 33 is pressurized (about 0.2 MPa) by the filtration pump 35 installed in the path 34 and supplied to the supply water inlet of the MF membrane separation device 36. Although the MF membrane separation device 36 is used here, a UF membrane separation device may be used.

MF膜分離装置36の処理水(透過水)は、処理水出口側の経路37を経てMF膜処理水タンク38に貯水される。さらに、経路39に設置された高圧ポンプ40によって加圧され(5MPa〜7MPa程度)、高圧RO膜装置41の供給水入口へと供給される。   The treated water (permeated water) of the MF membrane separation device 36 is stored in the MF membrane treated water tank 38 via the path 37 on the treated water outlet side. Furthermore, it is pressurized (about 5 MPa to 7 MPa) by the high-pressure pump 40 installed in the path 39 and supplied to the supply water inlet of the high-pressure RO membrane device 41.

高圧RO膜装置41の透過水は、透過水出口側の経路42を経て、サックバックタンク43に貯水される。次に、サックバックタンク43内の透過水は、経路44に設置された低圧ポンプ45によって加圧され(0.5MPa〜2MPa程度)、低圧RO膜装置46の入口へと供給される。   The permeated water of the high-pressure RO membrane device 41 is stored in the suck back tank 43 through the passage 42 on the permeate outlet side. Next, the permeated water in the sackback tank 43 is pressurized (about 0.5 MPa to 2 MPa) by the low pressure pump 45 installed in the path 44 and supplied to the inlet of the low pressure RO membrane device 46.

そして、低圧RO膜装置46の透過水は、透過水出口側の経路47から飲料水(浄水)として流出する。このとき、図3に示すように、経路47には、活性炭吸着装置48を設置し、透過水を吸着処理することが多い。   Then, the permeated water of the low-pressure RO membrane device 46 flows out as drinking water (purified water) from the passage 47 on the permeate outlet side. At this time, as shown in FIG. 3, the activated carbon adsorbing device 48 is often installed in the path 47 to adsorb the permeated water.

図3に示す飲料水製造用水処理システムでは、原水が淡水である場合にも、原水が海水である場合と同様に、高圧RO膜装置41及び低圧RO膜装置46の両方で処理せざるを得ない。このため、単位時間当たりの飲料水製造量は、原水が淡水であっても海水の場合以上に増やすことはできず、しかも、本来不必要な低圧RO膜装置46による処理を行うために低圧ポンプ45を作動させるため、無駄な電力を消費するという問題がある。   In the drinking water production water treatment system shown in FIG. 3, even when the raw water is fresh water, the raw water is treated with both the high-pressure RO membrane device 41 and the low-pressure RO membrane device 46 as in the case where the raw water is seawater. Absent. For this reason, the amount of drinking water produced per unit time cannot be increased more than the case of seawater even if the raw water is fresh water, and a low pressure pump is used in order to perform processing by the originally unnecessary low pressure RO membrane device 46. Therefore, there is a problem that wasteful power is consumed.

[実施の形態1]
次に、本発明の飲料水製造用水処理システムの一例を、図1に示す。この水処理システムでは、まず揚水ポンプ1によって原水を吸水し、プレフィルター(簡易フィルター)2によって前処理することにより、原水中の懸濁物質を除去する。
[Embodiment 1]
Next, an example of the water treatment system for drinking water production of the present invention is shown in FIG. In this water treatment system, raw water is first absorbed by a pumping pump 1 and pretreated by a prefilter (simple filter) 2 to remove suspended substances in the raw water.

プレフィルター2の処理水は、ろ過ポンプ3によって加圧され(0.2MPa程度)、MF膜分離装置4の供給水入口へと供給される。MF膜分離装置4の処理水は、MF膜処理水タンク5に貯水される。なお、MF膜分離装置4の代わりにUF膜分離装置を使用してもよく、原水中の懸濁物質濃度が非常に低い場合には、簡易なフィルターろ過器を使用してもよい。   The treated water of the prefilter 2 is pressurized by the filtration pump 3 (about 0.2 MPa) and supplied to the feed water inlet of the MF membrane separation device 4. The treated water of the MF membrane separation device 4 is stored in the MF membrane treated water tank 5. Note that a UF membrane separator may be used instead of the MF membrane separator 4, and a simple filter filter may be used when the concentration of suspended substances in the raw water is very low.

(原水が淡水の場合の水処理経路)
1)第一経路
ここで、原水が淡水である場合のMF膜処理水タンク5以降の水処理経路について説明する。MF膜処理水タンク5内の処理水(淡水)は、第一経路として、経路Aから第一ポンプ6にも供給され、加圧される。弁18は開かれている。
(Water treatment route when raw water is fresh water)
1) 1st path | route Here, the water treatment path | route after MF membrane treated water tank 5 in case raw | natural water is fresh water is demonstrated. The treated water (fresh water) in the MF membrane treated water tank 5 is also supplied to the first pump 6 from the path A as a first path and pressurized. Valve 18 is open.

加圧された処理水は、第一RO膜装置8の供給水入口へと供給され、第一RO膜装置8の透過水は、経路Bを経て活性炭吸着装置15で処理された後、飲料水として利用される。ここでは、第一RO膜装置8は高圧RO膜装置である。弁22は開いており、弁23は閉じている。このとき、第一ポンプ6は、MF膜処理水を0.5MPa以上2.0MPa以下に加圧すれば足りる。   The pressurized treated water is supplied to the supply water inlet of the first RO membrane device 8, and the permeated water of the first RO membrane device 8 is treated by the activated carbon adsorbing device 15 via the path B, and then drinking water. Used as Here, the first RO membrane device 8 is a high-pressure RO membrane device. Valve 22 is open and valve 23 is closed. At this time, it is sufficient for the first pump 6 to pressurize the MF membrane treated water to 0.5 MPa or more and 2.0 MPa or less.

2)第二経路
また、MF膜処理水タンク5内の処理水(淡水)は、第二経路として、経路Cから第三ポンプ16へと供給され、加圧される。ここでは、第三ポンプ16は低圧ポンプである。弁19及び弁20は開いており、弁21は閉じている。
2) Second path Further, the treated water (fresh water) in the MF membrane treated water tank 5 is supplied to the third pump 16 from the path C and pressurized as a second path. Here, the third pump 16 is a low pressure pump. Valves 19 and 20 are open and valve 21 is closed.

加圧された処理水は、経路Dを経て第二RO膜装置13の供給水入口へと供給され、第二RO膜装置13の透過水は、活性炭吸着装置15で処理された後、飲料水として利用される。ここでは、第二RO膜装置13は低圧RO膜装置である。このとき、弁24は閉じられている。   The pressurized treated water is supplied to the supply water inlet of the second RO membrane device 13 via the route D, and the permeated water of the second RO membrane device 13 is treated with the activated carbon adsorbing device 15 and then the drinking water. Used as Here, the second RO membrane device 13 is a low pressure RO membrane device. At this time, the valve 24 is closed.

ここで、第一RO膜装置8は、後述するように原水が海水の場合には、第一ポンプ6によって5.0MPa〜7.0MPaに加圧されたMF膜処理水を処理するため、7.0MPa程度の処理水圧に耐えられるような高圧RO膜装置であることが好ましい。一方、第二RO膜装置13は、淡水のみ処理するために、処理水圧は0.5MPa〜2.0MPaであるため、第一RO膜装置8のように高い水圧に耐えるような構造である必要はなく、低圧RO膜装置であればよい。   Here, since the first RO membrane device 8 treats the MF membrane treated water pressurized to 5.0 MPa to 7.0 MPa by the first pump 6 when the raw water is seawater as will be described later, it is about 7.0 MPa. A high-pressure RO membrane apparatus that can withstand the treatment water pressure is preferable. On the other hand, since the second RO membrane device 13 treats only fresh water and the treated water pressure is 0.5 MPa to 2.0 MPa, it is not necessary to have a structure that can withstand high water pressure as in the first RO membrane device 8. Any low pressure RO membrane device may be used.

(原水が海水の場合の水処理経路:第三経路)
次に、原水が海水である場合のMF膜処理水タンク5以降の水処理経路について説明する。MF膜処理水タンク5内の処理水(海水)は、まず、経路Cから第三ポンプ16に供給され、2.5MPa〜3.5MPaに加圧される。弁19及び弁21は開いており、弁18及び弁20は閉じている。加圧された処理水は、経路Eを経て第一ポンプ6へと供給される。第一ポンプ6は、処理水をさらに5.0MPa〜7.0MPaに加圧して第一RO膜装置8の供給水入口へと供給する。第一RO膜装置8の透過水は経路Fに流れ、サックバックタンク10内に一旦貯水される(弁22は閉じ、弁23は開いている)。
(Water treatment route when raw water is seawater: third route)
Next, the water treatment path after the MF membrane treated water tank 5 when the raw water is seawater will be described. The treated water (seawater) in the MF membrane treated water tank 5 is first supplied from the path C to the third pump 16 and pressurized to 2.5 MPa to 3.5 MPa. Valves 19 and 21 are open and valves 18 and 20 are closed. The pressurized treated water is supplied to the first pump 6 via the path E. The first pump 6 further pressurizes the treated water to 5.0 MPa to 7.0 MPa and supplies it to the supply water inlet of the first RO membrane device 8. The permeated water of the first RO membrane device 8 flows into the path F and is temporarily stored in the suck back tank 10 (the valve 22 is closed and the valve 23 is open).

サックバックタンク10内の透過水は、第二ポンプ11へと供給され、0.5MPa〜2.0MPaに加圧された後、第二RO膜装置13の供給水入口に供給される。ここでは、第二ポンプ11は低圧ポンプである。弁24は開いている。第二RO膜装置13の処理水は、活性炭吸着装置15で処理された後、飲料水として利用される。なお、活性炭吸着装置15は任意の構成であり、他の吸着装置や浄水装置を使用することもできる。   The permeated water in the suck back tank 10 is supplied to the second pump 11, pressurized to 0.5 MPa to 2.0 MPa, and then supplied to the supply water inlet of the second RO membrane device 13. Here, the second pump 11 is a low pressure pump. The valve 24 is open. The treated water of the second RO membrane device 13 is used as drinking water after being treated by the activated carbon adsorption device 15. In addition, the activated carbon adsorption | suction apparatus 15 is arbitrary structures, and can also use another adsorption | suction apparatus and a water purifier.

上記実施形態では、第二ポンプ11を低圧ポンプとした。これは、海水を第二RO膜装置13に供給することはないため、最高加圧2.0MPa程度の低出力型であれば足りるためである。しかし、第一ポンプ6と同様に高圧ポンプ(最高加圧3.5MPa程度)であってもよい。   In the above embodiment, the second pump 11 is a low pressure pump. This is because seawater is not supplied to the second RO membrane device 13, and a low output type with a maximum pressure of about 2.0 MPa is sufficient. However, it may be a high-pressure pump (maximum pressurization of about 3.5 MPa) as with the first pump 6.

<運転方法>
ここで、本発明の飲料水製造用水処理システム(実施の形態1)の運転方法のうち、MF膜処理水タンク5以降の処理工程について、原水が淡水の場合と海水の場合とに分けて説明する。
<Driving method>
Here, among the operating methods of the water treatment system for drinking water production of the present invention (Embodiment 1), the treatment steps after the MF membrane treated water tank 5 will be described separately for raw water and seawater. To do.

1)原水が淡水の場合
まず、弁18、弁19、弁20、弁22、第一RO膜装置流量調節弁25及び第二RO膜装置流量調節弁26を全開とし、その他の弁を全閉とする。そして、第一ポンプ6、第三ポンプ16を順次起動し、第一経路及び第二経路に通水する。
1) When raw water is fresh water First, the valve 18, the valve 19, the valve 20, the valve 22, the first RO membrane device flow control valve 25 and the second RO membrane device flow control valve 26 are fully opened, and the other valves are fully closed. And And the 1st pump 6 and the 3rd pump 16 are started one by one, and water is passed through the 1st course and the 2nd course.

第一RO膜装置8への供給水量は、第一RO膜装置供給水流量計7の指示値に基づいて第一ポンプ6の回転数を制御することにより調節する。すなわち、第一RO膜装置供給水流量計7の指示値が目標値(第一RO膜装置8の必要供給水量:例えば、2.5m3/h)未満となれば、第一ポンプ6の回転数を上げて指示値が目標値となるように制御する。また、RO膜装置供給水流量計7の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第一RO膜装置8への供給水量を調整する。 The amount of water supplied to the first RO membrane device 8 is adjusted by controlling the rotational speed of the first pump 6 based on the indicated value of the first RO membrane device supplied water flow meter 7. That is, if the indicated value of the first RO membrane device supply water flow meter 7 is less than the target value (required supply water amount of the first RO membrane device 8: for example, 2.5 m 3 / h), the rotation speed of the first pump 6 And control so that the indicated value becomes the target value. In addition, if the indicated value of the RO membrane device supply water flow meter 7 exceeds the target value, the rotational speed is lowered to control the indicated value to the target value, and the amount of water supplied to the first RO membrane device 8 is adjusted.

また、第二RO膜装置13への供給水量は、第二経路RO膜装置供給水流量計17の指示値に基づいて第三ポンプ16の回転数を制御することにより調節する。すなわち、第二RO供給水流量計17の指示値が目標値(第二RO膜装置13の必要供給水量:例えば、2.5m3/h)未満となれば、第三ポンプ16の回転数を上げて指示値が目標値となるように制御する。また、第二RO膜装置供給水流量計17の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第二RO膜装置13への供給水量を調整する。 Further, the amount of water supplied to the second RO membrane device 13 is adjusted by controlling the number of revolutions of the third pump 16 based on the indicated value of the second path RO membrane device supplied water flow meter 17. That is, if the indicated value of the second RO supply water flow meter 17 is less than the target value (necessary supply water amount of the second RO membrane device 13: for example, 2.5 m 3 / h), the rotation speed of the third pump 16 is increased. Control so that the indicated value becomes the target value. Further, if the indicated value of the second RO membrane device supply water flow meter 17 exceeds the target value, the number of revolutions is reduced to control the indicated value to the target value, and the amount of water supplied to the second RO membrane device 13 is adjusted. To do.

第一RO膜装置8の透過水量は、第一RO膜装置透過水流量計9の指示値に基づいて第一RO膜装置流量調節弁25の開度を制御することにより調節する。すなわち、第一RO透過水流量計9の指示値は、第一RO膜装置8の必要処理水量(第一RO膜装置8の必要供給水量×RO回収率/100)を目標値とすることが好ましい。淡水を処理する場合、第一RO膜装置8のRO回収率は、60%〜90%の範囲に調整することが好ましい。例えば、第一RO膜装置8の必要供給水量が2.5m3/h、回収率が70%である場合、必要処理水量(目標値)は、1.75m3/hとすることが好ましい。必要処理水量が目標値未満となれば、第一RO膜装置流量調節弁25を閉じて指示値が1.75m3/hとなるように制御する。また、第一RO膜装置透過水流量計9の指示値が目標値を超えれば、第一RO膜装置流量調節弁25を開いて指示値が1.75m3/hとなるように制御し、第一RO膜装置8の透過水量を調整する。 The permeated water amount of the first RO membrane device 8 is adjusted by controlling the opening degree of the first RO membrane device flow rate adjustment valve 25 based on the indicated value of the first RO membrane device permeated water flow meter 9. That is, the indicated value of the first RO permeate flow meter 9 may be set to a target value of a required treated water amount of the first RO membrane device 8 (required supply water amount of the first RO membrane device 8 × RO recovery rate / 100). preferable. When processing fresh water, it is preferable to adjust the RO recovery rate of the first RO membrane device 8 in the range of 60% to 90%. For example, when the required supply water amount of the first RO membrane device 8 is 2.5 m 3 / h and the recovery rate is 70%, the required treated water amount (target value) is preferably 1.75 m 3 / h. If the required amount of treated water is less than the target value, the first RO membrane device flow rate adjustment valve 25 is closed and the indicated value is controlled to be 1.75 m 3 / h. Further, if the indicated value of the first RO membrane device permeate flow meter 9 exceeds the target value, the first RO membrane device flow rate adjustment valve 25 is opened to control the indicated value to be 1.75 m 3 / h. The amount of permeated water of one RO membrane device 8 is adjusted.

また、第二RO膜装置透過水量は、第二RO膜装置透過水流量計14の指示値に基づいて第二RO膜装置流量調節弁26の開度を制御することにより調節する。すなわち、第二RO透過水流量計14の指示値は、第二RO膜装置13の必要処理水量(第二RO膜装置13の必要供給水量×RO回収率/100)を目標値とすることが好ましい。第二RO膜装置13のRO回収率は、60%〜90%の範囲に調整することが好ましい。例えば、第二RO膜装置13の必要供給水量が2.5m3/h、回収率が70%である場合、必要処理水量(目標値)は、1.75m3/hとすることが好ましい。必要処理水量が目標値未満となれば、第二RO膜装置流量調節弁26を閉じて指示値が1.75m3/hとなるように制御する。また、第二RO膜装置透過水流量計14の指示値が目標値を超えれば、第二RO膜装置流量調節弁26を開いて指示値が1.75m3/hとなるように制御し、第二RO膜装置13の透過水量を調整する。 The second RO membrane device permeated water amount is adjusted by controlling the opening degree of the second RO membrane device flow rate control valve 26 based on the indicated value of the second RO membrane device permeated water flow meter 14. That is, the indication value of the second RO permeate flow meter 14 may be set to a target value of the required amount of treated water of the second RO membrane device 13 (required supply water amount of the second RO membrane device 13 × RO recovery rate / 100). preferable. The RO recovery rate of the second RO membrane device 13 is preferably adjusted to a range of 60% to 90%. For example, when the required supply water amount of the second RO membrane device 13 is 2.5 m 3 / h and the recovery rate is 70%, the required treated water amount (target value) is preferably 1.75 m 3 / h. If the required amount of treated water is less than the target value, the second RO membrane device flow rate adjustment valve 26 is closed and the indicated value is controlled to be 1.75 m 3 / h. Further, if the indicated value of the second RO membrane device permeate flow meter 14 exceeds the target value, the second RO membrane device flow rate control valve 26 is opened to control the indicated value to be 1.75 m 3 / h, The permeated water amount of the two RO membrane device 13 is adjusted.

2)原水が海水の場合
まず、弁19、弁21、弁23、弁24、第一RO膜装置流量調節弁25及び第二RO膜装置流量調節弁26を全開とし、その他の弁を全閉とする。そして、第三ポンプ16、第一ポンプ6を順次起動し、第三経路に通水する。
2) When raw water is seawater First, valve 19, valve 21, valve 23, valve 24, first RO membrane device flow rate adjustment valve 25 and second RO membrane device flow rate adjustment valve 26 are fully opened, and other valves are fully closed. And And the 3rd pump 16 and the 1st pump 6 are started sequentially, and water is passed through the 3rd course.

第一RO膜装置8への供給水量は、第一RO膜装置供給水流量計7の指示値に基づいて第一ポンプ6の回転数を制御することにより調節する。すなわち、第一RO膜装置供給水流量計7の指示値が目標値(第一RO膜装置8の必要供給水量:例えば、4.0m3/h)未満となれば、第一ポンプ6の回転数を上げて指示値が目標値となるように制御する。また、第一RO膜装置供給水流量計7の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第一RO膜装置8への供給水量を調整する。 The amount of water supplied to the first RO membrane device 8 is adjusted by controlling the rotational speed of the first pump 6 based on the indicated value of the first RO membrane device supplied water flow meter 7. That is, if the indicated value of the first RO membrane device supply water flow meter 7 is less than the target value (necessary supply water amount of the first RO membrane device 8: for example, 4.0 m 3 / h), the rotation speed of the first pump 6 And control so that the indicated value becomes the target value. Further, if the indicated value of the first RO membrane device supply water flow meter 7 exceeds the target value, the number of revolutions is decreased to control the indicated value to the target value, and the amount of water supplied to the first RO membrane device 8 is adjusted. To do.

また、第一RO膜装置8の透過水量は、第一RO膜装置透過水流量計9の指示値に基づいて第一RO膜装置流量調節弁25の開度を制御することにより調節する。すなわち、第一RO膜装置透過水流量計9の指示値は、第一RO膜装置8の必要処理水量(第一RO膜装置8の必要供給水量×RO回収率/100)を目標値とすることが好ましい。海水を処理する場合、第一RO膜装置8のRO回収率は、40%〜60%の範囲に調整することが好ましい。必要処理水量が目標値未満となれば、第一RO膜装置流量調節弁25を閉じて指示値が目標値となるように制御する。また、第一RO膜装置透過水流量計9の指示値が目標値を超えれば、第一RO膜装置流量調節弁25を開いて指示値が目標値となるように制御し、第一RO膜装置8の透過水量を調整する。   Further, the permeated water amount of the first RO membrane device 8 is adjusted by controlling the opening degree of the first RO membrane device flow rate regulating valve 25 based on the instruction value of the first RO membrane device permeated water flow meter 9. That is, the indication value of the first RO membrane device permeated water flow meter 9 uses the required amount of treated water of the first RO membrane device 8 (required supply water amount of the first RO membrane device 8 × RO recovery rate / 100) as a target value. It is preferable. When processing seawater, it is preferable to adjust the RO collection | recovery rate of the 1st RO membrane apparatus 8 in the range of 40%-60%. If the required amount of treated water is less than the target value, the first RO membrane device flow rate adjustment valve 25 is closed to control the indicated value to be the target value. If the indicated value of the first RO membrane device permeate flow meter 9 exceeds the target value, the first RO membrane device flow rate adjustment valve 25 is opened to control the indicated value to be the target value. The amount of permeated water of the device 8 is adjusted.

第一RO膜装置8の処理水(透過水)は、サックバックタンク10に貯水されるが、処理水の水位が設定値以上になると、第二ポンプ11を起動させる。第二ポンプ11の起動後も、第一RO膜装置8の処理水(透過水)は、サックバックタンク10に貯水され続ける。   The treated water (permeated water) of the first RO membrane device 8 is stored in the suck-back tank 10, but when the treated water level becomes equal to or higher than the set value, the second pump 11 is activated. Even after the activation of the second pump 11, the treated water (permeated water) of the first RO membrane device 8 continues to be stored in the suck back tank 10.

一方、第二RO膜装置13への供給水量は、第三経路RO膜装置供給水流量計12の指示値に基づき第二ポンプ11の回転数を制御することにより調節する。すなわち、第三経路RO膜装置供給水流量計12の指示値が目標値(第二RO膜装置13の必要供給水量:例えば、2.0m3/h)未満となれば、第二ポンプ11の回転数を上げて指示値が目標値となるように制御する。また、第三経路RO膜装置供給水流量計12の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第二RO膜装置13への供給水量を調整する。 On the other hand, the amount of water supplied to the second RO membrane device 13 is adjusted by controlling the rotational speed of the second pump 11 based on the indicated value of the third path RO membrane device supplied water flow meter 12. That is, if the indicated value of the third path RO membrane device supply water flow meter 12 is less than a target value (necessary supply water amount of the second RO membrane device 13: for example, 2.0 m 3 / h), the rotation of the second pump 11 is performed. The number is increased and control is performed so that the indicated value becomes the target value. In addition, if the indicated value of the third path RO membrane device supply water flow meter 12 exceeds the target value, the rotational speed is decreased to control the indicated value to the target value, and the amount of water supplied to the second RO membrane device 13 is controlled. adjust.

また、第二RO膜装置13の透過水量は、第二RO膜装置透過水流量計14の指示値に基づいて第二RO膜装置流量調節弁26の開度を制御することにより調節する。すなわち、第二RO膜装置透過水流量計14の指示値は、第二RO膜装置13の必要処理水量(第二RO膜装置13の必要供給水量×RO回収率/100)を目標値とすることが好ましい。第二RO膜装置13のRO回収率は、60%〜90%の範囲に調整することが好ましい。第二RO膜装置透過水流量計14の指示値が目標値未満となれば、第二RO膜装置流量調節弁26を閉じて指示値が目標値となるように制御する。また、第二RO膜装置透過水流量計14の指示値が目標値を超えれば、第二RO膜装置流量調節弁26を開いて指示値が目標値となるように制御し、第二RO膜装置13の透過水量を調整する。   Further, the amount of permeated water of the second RO membrane device 13 is adjusted by controlling the opening degree of the second RO membrane device flow rate regulating valve 26 based on the instruction value of the second RO membrane device permeated water flow meter 14. That is, the indication value of the second RO membrane device permeated water flow meter 14 has a required treatment water amount of the second RO membrane device 13 (required supply water amount of the second RO membrane device 13 × RO recovery rate / 100) as a target value. It is preferable. The RO recovery rate of the second RO membrane device 13 is preferably adjusted to a range of 60% to 90%. When the indicated value of the second RO membrane device permeated water flow meter 14 is less than the target value, the second RO membrane device flow rate adjustment valve 26 is closed to control the indicated value to be the target value. When the indicated value of the second RO membrane device permeate flow meter 14 exceeds the target value, the second RO membrane device flow rate adjustment valve 26 is opened to control the indicated value to be the target value. The amount of permeated water of the device 13 is adjusted.

ここで、原水が海水の場合には、第三ポンプ16及び第一ポンプ6を直列運転するため、これら2台のポンプの同期運転を行う。また、キャビテーション防止のため、揚程は第三ポンプ16>第一ポンプ6とする。   Here, when the raw water is seawater, since the third pump 16 and the first pump 6 are operated in series, the two pumps are operated synchronously. In order to prevent cavitation, the head is set to the third pump 16> the first pump 6.

また、原水が海水の場合と淡水の場合では、第一RO膜装置8と第二RO膜装置13は、供給水流量及び透過水流量がそれぞれ異なる。このため、2つの流量目標値を満足するポンプ及び流量調整弁を選定する必要がある。   In addition, when the raw water is seawater and fresh water, the first RO membrane device 8 and the second RO membrane device 13 have different supply water flow rates and permeate flow rates. For this reason, it is necessary to select a pump and a flow rate adjusting valve that satisfy two flow rate target values.

なお、図1では、第二経路において、第三ポンプ16を用いてMF膜処理水を第二RO膜装置13に供給する構成であったが、第二ポンプ11を用いてMF膜処理水を第二RO膜装置13に供給する構成としてもよい。   In FIG. 1, the MF membrane treated water is supplied to the second RO membrane device 13 using the third pump 16 in the second path, but the MF membrane treated water is fed using the second pump 11. It is good also as a structure supplied to the 2nd RO membrane apparatus 13. FIG.

[実施の形態2]
次に、本発明の飲料水製造用水処理システムの別の一例を、図2に示す。この水処理システムでは、加圧ポンプが高圧ポンプ1台であり、サックバックタンク10を有しない点で図1に示した水処理システムと異なるが、それ以外はすべて同様である。
[Embodiment 2]
Next, another example of the water treatment system for drinking water production of the present invention is shown in FIG. This water treatment system differs from the water treatment system shown in FIG. 1 in that the pressure pump is one high-pressure pump and does not have the sackback tank 10, but all other points are the same.

(原水が淡水の場合の水処理経路)
1)第一経路
まず、原水が淡水である場合のMF膜処理水タンク5以降の水処理経路について説明する。MF膜処理水タンク5内の処理水(淡水)は、第一経路として、経路Cから高圧ポンプ27に供給され、0.5MPa〜2.0MPaに加圧される。弁19及び弁21は開かれている。
(Water treatment route when raw water is fresh water)
1) First route First, the water treatment route after the MF membrane treated water tank 5 when the raw water is fresh water will be described. Treated water (fresh water) in the MF membrane treated water tank 5 is supplied from the path C to the high-pressure pump 27 as a first path and pressurized to 0.5 MPa to 2.0 MPa. Valve 19 and valve 21 are open.

加圧された処理水は、経路Eを経て第一RO膜装置8の供給水入口へと供給される。第一RO膜装置8の透過水は、経路Bを経て活性炭吸着装置15で処理された後、飲料水として利用される。ここでは、第一RO膜装置8は高圧RO膜装置である。弁22は開いており、弁23は閉じている。   The pressurized treated water is supplied to the supply water inlet of the first RO membrane device 8 via the path E. The permeated water of the first RO membrane device 8 is used as drinking water after being treated by the activated carbon adsorbing device 15 via the path B. Here, the first RO membrane device 8 is a high-pressure RO membrane device. Valve 22 is open and valve 23 is closed.

2)第二経路
また、MF膜処理水タンク5内の処理水(淡水)は、第二経路として、経路Dを経て第二RO膜装置13の供給水入口にも供給される。弁20は開かれている。すなわち、図2に示す水処理システムでは、1台の加圧ポンプ(高圧ポンプ27)によってMF膜処理水タンク5内の処理水(淡水)を2台のRO膜装置(第一RO膜装置8及び第二RO膜装置13)へと加圧及び供給する。
2) Second route The treated water (fresh water) in the MF membrane treated water tank 5 is also supplied to the supply water inlet of the second RO membrane device 13 via the route D as the second route. Valve 20 is open. That is, in the water treatment system shown in FIG. 2, two RO membrane devices (first RO membrane device 8) receive treated water (fresh water) in the MF membrane treated water tank 5 by one pressure pump (high pressure pump 27). And pressure and supply to the second RO membrane device 13).

第二RO膜装置13の透過水は、活性炭吸着装置15で処理された後、飲料水として利用される。ここでは、第二RO膜装置13は低圧RO膜装置である。このとき、弁23は閉じられている。   The permeated water of the second RO membrane device 13 is used as drinking water after being treated by the activated carbon adsorption device 15. Here, the second RO membrane device 13 is a low pressure RO membrane device. At this time, the valve 23 is closed.

(原水が海水の場合の水処理経路:第三経路)
次に、原水が淡水である場合のMF膜処理水タンク5以降の水処理経路について説明する。MF膜処理水タンク5内の処理水(海水)は、まず、経路Cから高圧ポンプ27に供給され、6.0MPa〜8.0MPaに加圧される。弁19及び弁21は開いており、弁20は閉じている。加圧された処理水は、経路Eを経て第一RO膜装置8の供給水入口へと供給される。
(Water treatment route when raw water is seawater: third route)
Next, the water treatment path after the MF membrane treated water tank 5 when the raw water is fresh water will be described. The treated water (seawater) in the MF membrane treated water tank 5 is first supplied from the path C to the high pressure pump 27 and pressurized to 6.0 MPa to 8.0 MPa. Valves 19 and 21 are open and valve 20 is closed. The pressurized treated water is supplied to the supply water inlet of the first RO membrane device 8 via the path E.

第一RO膜装置8の供給水入口への供給水圧が6MPa程度以上あると、第一RO膜装置8の透過水は1MPa程度以上とすることが可能になる。このため、図2に示す水処理システムでは、第一RO膜装置8の透過水出口と第二RO膜装置13の供給水入口とを接続すれば、第一RO膜装置8の透過水を加圧ポンプで加圧しなくても、第二RO膜装置13の被処理水として充分な供給水圧を維持することが可能である。なお、このとき弁23は開いており、弁22は閉じている。   When the supply water pressure to the supply water inlet of the first RO membrane device 8 is about 6 MPa or more, the permeated water of the first RO membrane device 8 can be about 1 MPa or more. For this reason, in the water treatment system shown in FIG. 2, if the permeate outlet of the first RO membrane device 8 and the supply water inlet of the second RO membrane device 13 are connected, the permeate of the first RO membrane device 8 is added. Even if it is not pressurized by the pressure pump, it is possible to maintain a sufficient supply water pressure as the water to be treated in the second RO membrane device 13. At this time, the valve 23 is open and the valve 22 is closed.

なお、原水が海水の場合、経路Bはサックバック経路としても機能させることができる。すなわち、システムの運転を停止した時(高圧ポンプ27を停止した時)は、弁22を開け、弁23を閉じることにより、第二RO膜装置13の透過水をサックバック水として経路Bから、第一RO膜装置8の透過水出口側へと逆流させることができる。このように、実施の形態2の飲料水製造用水処理システムは、実施の形態1の飲料水製造用水処理システムより設備を簡素化することができる点で好ましい。   In addition, when raw | natural water is seawater, the path | route B can be functioned also as a suck back path | route. That is, when the operation of the system is stopped (when the high-pressure pump 27 is stopped), by opening the valve 22 and closing the valve 23, the permeated water of the second RO membrane device 13 is used as suck-back water from the path B. It can be made to flow backward to the permeate outlet side of the first RO membrane device 8. Thus, the drinking water production water treatment system of the second embodiment is preferable in that the equipment can be simplified compared to the drinking water production water treatment system of the first embodiment.

第二RO膜装置13の処理水は、活性炭吸着装置15で処理された後、飲料水として利用される。なお、活性炭吸着装置15は任意の構成であり、他の吸着装置や浄水装置を使用することもできる。   The treated water of the second RO membrane device 13 is used as drinking water after being treated by the activated carbon adsorption device 15. In addition, the activated carbon adsorption | suction apparatus 15 is arbitrary structures, and can also use another adsorption | suction apparatus and a water purifier.

<運転方法>
ここで、本発明の飲料水製造用水処理システム(実施の形態2)の運転方法のうち、MF膜処理水タンク5以降の処理工程について、原水が淡水の場合と海水の場合とに分けて説明する。
<Driving method>
Here, in the operation method of the drinking water production water treatment system (Embodiment 2) of the present invention, the treatment steps after the MF membrane treated water tank 5 are divided into cases where the raw water is fresh water and sea water. To do.

1)原水が淡水の場合
まず、弁19、弁20、弁21、弁22、第一RO膜装置流量調節弁25及び第二RO膜装置流量調節弁26を全開とし、その他の弁を全閉とする。そして、高圧ポンプ27を起動し、第一経路及び第二経路に通水する。
1) When raw water is fresh water First, the valve 19, the valve 20, the valve 21, the valve 22, the first RO membrane device flow control valve 25 and the second RO membrane device flow control valve 26 are fully opened, and the other valves are fully closed. And And the high pressure pump 27 is started and water is passed through the first path and the second path.

第一RO膜装置8への供給水量は、第一RO膜装置供給水流量計7の指示値に基づいて、高圧ポンプ27の回転数を制御することにより調節する。すなわち、第一RO供給水流量計7の指示値が目標値(第一RO膜装置8の必要供給水量:例えば、2.5m3/h)未満となれば、高圧ポンプ27の回転数を上げて指示値が目標値となるように制御する。また、第一RO膜装置供給水流量計7の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第一RO膜装置8への供給水量を調整する。 The amount of water supplied to the first RO membrane device 8 is adjusted by controlling the number of revolutions of the high-pressure pump 27 based on the indicated value of the first RO membrane device supplied water flow meter 7. That is, if the indicated value of the first RO supply water flow meter 7 is less than the target value (necessary supply water amount of the first RO membrane device 8: for example, 2.5 m 3 / h), the rotational speed of the high-pressure pump 27 is increased. Control is performed so that the indicated value becomes the target value. Further, if the indicated value of the first RO membrane device supply water flow meter 7 exceeds the target value, the number of revolutions is decreased to control the indicated value to the target value, and the amount of water supplied to the first RO membrane device 8 is adjusted. To do.

また、第二RO膜装置13への供給水量は、第二経路RO膜装置供給水流量計17の指示値に基づいて高圧ポンプ27の回転数を制御することにより調節する。すなわち、第二RO膜装置供給水流量計17の指示値が目標値(第二RO膜装置13の必要供給水量:例えば、2.5m3/h)未満となれば、高圧ポンプ27の回転数を上げて指示値が目標値となるように制御する。また、第二RO供給水流量計17の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第二RO膜装置13への供給水量を調整する。 The amount of water supplied to the second RO membrane device 13 is adjusted by controlling the number of revolutions of the high-pressure pump 27 based on the indicated value of the second path RO membrane device supply water flow meter 17. That is, if the indicated value of the second RO membrane device supply water flow meter 17 is less than the target value (required supply water amount of the second RO membrane device 13: for example, 2.5 m 3 / h), the rotation speed of the high pressure pump 27 is set. And control so that the indicated value becomes the target value. Further, if the indicated value of the second RO supply water flow meter 17 exceeds the target value, the number of revolutions is reduced to control the indicated value to the target value, and the amount of water supplied to the second RO membrane device 13 is adjusted.

なお、第一RO膜装置8及び第二RO膜装置13への供給水量の調整は、高圧ポンプ27の回転数の制御に加えて、弁20及び弁21の開度を調節することにより行うのが、好ましい。   The amount of water supplied to the first RO membrane device 8 and the second RO membrane device 13 is adjusted by adjusting the opening degree of the valve 20 and the valve 21 in addition to controlling the rotational speed of the high-pressure pump 27. Is preferred.

第一RO膜装置8の透過水量は、第一RO膜装置透過水流量計9の指示値に基づいて、第一RO膜装置流量調節弁25の開度を制御することにより調節する。すなわち、第一RO膜装置透過水流量計9の指示値は、第一RO膜装置8の必要処理水量(第一RO膜装置8の必要供給水量×RO回収率/100)を目標値とすることが好ましい。淡水を処理する場合、第一RO膜装置8のRO回収率は、60%〜90%の範囲に調整することが好ましい。例えば、第一RO膜装置8の必要供給水量が2.5m3/h、回収率が70%である場合、必要処理水量(目標値)は、1.75m3/hとすることが好ましい。必要処理水量が目標値未満となれば、第一RO膜装置流量調節弁25を閉じて指示値が1.75m3/hとなるように制御する。また、第一RO膜装置透過水流量計9の指示値が目標値を超えれば、第一RO膜装置流量調節弁25を開いて指示値が1.75m3/hとなるように制御し、第一RO膜装置8の透過水量を調整する。 The permeated water amount of the first RO membrane device 8 is adjusted by controlling the opening degree of the first RO membrane device flow rate adjustment valve 25 based on the indication value of the first RO membrane device permeated water flow meter 9. That is, the indication value of the first RO membrane device permeated water flow meter 9 uses the required amount of treated water of the first RO membrane device 8 (required supply water amount of the first RO membrane device 8 × RO recovery rate / 100) as a target value. It is preferable. When processing fresh water, it is preferable to adjust the RO recovery rate of the first RO membrane device 8 in the range of 60% to 90%. For example, when the required supply water amount of the first RO membrane device 8 is 2.5 m 3 / h and the recovery rate is 70%, the required treated water amount (target value) is preferably 1.75 m 3 / h. If the required amount of treated water is less than the target value, the first RO membrane device flow rate adjustment valve 25 is closed and the indicated value is controlled to be 1.75 m 3 / h. Further, if the indicated value of the first RO membrane device permeate flow meter 9 exceeds the target value, the first RO membrane device flow rate adjustment valve 25 is opened to control the indicated value to be 1.75 m 3 / h. The amount of permeated water of one RO membrane device 8 is adjusted.

また、第二RO膜装置透過水量は、第二RO膜装置透過水流量計14の指示値に基づいて第二RO膜装置流量調節弁26の開度を制御することにより調節する。すなわち、第二RO膜装置透過水流量計14の指示値は、第二RO膜装置13の必要処理水量(第二RO膜装置13の必要供給水量×RO回収率/100)を目標値とすることが好ましい。第二RO膜装置13のRO回収率は、60%〜90%の範囲に調整することが好ましい。例えば、第二RO膜装置13の必要供給水量が2.5m3/h、回収率が70%である場合、必要処理水量(目標値)は、1.75m3/hとすることが好ましい。必要処理水量が目標値未満となれば、第二RO膜装置流量調節弁26を閉じて指示値が1.75m3/hとなるように制御する。また、第二RO膜装置透過水流量計14の指示値が目標値を超えれば、第二RO膜装置流量調節弁26を開いて指示値が1.75m3/hとなるように制御し、第二RO膜装置13の透過水量を調整する。 The second RO membrane device permeated water amount is adjusted by controlling the opening degree of the second RO membrane device flow rate control valve 26 based on the indicated value of the second RO membrane device permeated water flow meter 14. That is, the indication value of the second RO membrane device permeated water flow meter 14 has a required treatment water amount of the second RO membrane device 13 (required supply water amount of the second RO membrane device 13 × RO recovery rate / 100) as a target value. It is preferable. The RO recovery rate of the second RO membrane device 13 is preferably adjusted to a range of 60% to 90%. For example, when the required supply water amount of the second RO membrane device 13 is 2.5 m 3 / h and the recovery rate is 70%, the required treated water amount (target value) is preferably 1.75 m 3 / h. If the required amount of treated water is less than the target value, the second RO membrane device flow rate adjustment valve 26 is closed and the indicated value is controlled to be 1.75 m 3 / h. Further, if the indicated value of the second RO membrane device permeate flow meter 14 exceeds the target value, the second RO membrane device flow rate control valve 26 is opened to control the indicated value to be 1.75 m 3 / h, The permeated water amount of the two RO membrane device 13 is adjusted.

2)原水が海水の場合
まず、弁19、弁21、弁23、第一RO膜装置流量調節弁25及び第二RO膜装置流量調節弁26を全開とし、その他の弁を全閉とする。そして、高圧ポンプ27を起動し、第三経路に通水する。
2) When raw water is seawater First, the valve 19, the valve 21, the valve 23, the first RO membrane device flow rate adjustment valve 25 and the second RO membrane device flow rate adjustment valve 26 are fully opened, and the other valves are fully closed. And the high pressure pump 27 is started and water is passed through the third path.

本水処理経路(第三経路)では、まず、第一RO膜装置供給水流量計7の指示値が目標値(第一RO膜装置8の必要供給水量:例えば、4.0m3/h)未満となれば、高圧ポンプ27の回転数を上げて指示値が目標値となるように制御する。また、第一RO供給水流量計7の指示値が目標値を超えれば回転数を下げて指示値が目標値になるように制御し、第一RO膜装置8への供給水量を調整する。 In the main water treatment route (third route), first, the indicated value of the first RO membrane device supply water flow meter 7 is less than the target value (necessary supply water amount of the first RO membrane device 8: 4.0 m 3 / h, for example). Then, the number of revolutions of the high-pressure pump 27 is increased so that the indicated value becomes the target value. Further, if the indicated value of the first RO supply water flow meter 7 exceeds the target value, the number of revolutions is reduced to control the indicated value to the target value, and the amount of water supplied to the first RO membrane device 8 is adjusted.

その後、第二RO膜装置透過水流量計14の指示値が目標値(第二RO膜装置13の必要供給水量×RO回収率/100:例えば、1.6m3/h)未満となれば、第二RO膜装置流量調節弁26を閉じて指示値が目標値となるように制御する。また、第二RO膜装置透過水流量計14の指示値が目標値を超えれば、第二RO膜装置流量調節弁26を開いて指示値が目標値となるように制御し、第二RO膜装置13の透過水量を調整する。 Then, if the indicated value of the second RO membrane device permeate flow meter 14 is less than the target value (required water supply amount of the second RO membrane device 13 × RO recovery rate / 100: for example, 1.6 m 3 / h), The two RO membrane device flow rate adjustment valve 26 is closed and control is performed so that the indicated value becomes the target value. When the indicated value of the second RO membrane device permeate flow meter 14 exceeds the target value, the second RO membrane device flow rate adjustment valve 26 is opened to control the indicated value to be the target value. The amount of permeated water of the device 13 is adjusted.

また、第二RO透過水量の制御と併せて、第一RO透過水量の制御を行う。すなわち、第一RO膜装置透過水流量計9の指示値が目標値(第一RO膜装置8の必要透過水量:第一RO膜装置8の必要供給水量×RO回収率/100:例えば、2.0m3/h)未満となれば、第一RO膜装置流量調節弁25を閉じて指示値が目標値となるように制御する。また、第一RO膜装置透過水流量計9の指示値が目標値を超えれば、第一RO膜装置流量調節弁25を開いて指示値が目標値となるように制御し、第一RO膜装置8の透過水量を調整する。 In addition to the control of the second RO permeate amount, the first RO permeate amount is controlled. That is, the indicated value of the first RO membrane device permeate flow meter 9 is a target value (required permeated water amount of the first RO membrane device 8: required supply water amount of the first RO membrane device 8 × RO recovery rate / 100: 2.0, for example, If it is less than m 3 / h), the first RO membrane device flow rate adjustment valve 25 is closed to control the indicated value to be the target value. If the indicated value of the first RO membrane device permeate flow meter 9 exceeds the target value, the first RO membrane device flow rate adjustment valve 25 is opened to control the indicated value to be the target value. The amount of permeated water of the device 8 is adjusted.

本発明の飲料水製造用水処理システムは、災害地や飲料水供給設備を持たない地域に派遣される高機動車等の車両に搭載可能なシステムであって、海水にも淡水にも対応しうるシステムとして有用である。   The drinking water production water treatment system of the present invention is a system that can be mounted on a vehicle such as a high mobility vehicle dispatched to a disaster area or an area that does not have a drinking water supply facility, and can handle both seawater and fresh water. Useful as a system.

本発明の飲料水製造用水処理システムの一例を示すフロー図である。It is a flowchart which shows an example of the water treatment system for drinking water manufacture of this invention. 本発明の飲料水製造用水処理システムの別の一例を示すフロー図である。It is a flowchart which shows another example of the water treatment system for drinking water manufacture of this invention. 従来の飲料水製造用水処理システムの一例を示すフロー図である。It is a flow figure showing an example of the conventional water treatment system for drinking water manufacture.

符号の説明Explanation of symbols

1,31:揚水ポンプ
2:プレフィルター(簡易フィルター)
3,35:ろ過ポンプ:
4,36:MF膜分離装置(又はUF膜分離装置)
5,38:MF膜処理水タンク(又はUF膜処理水タンク)
6:第一ポンプ
7:第一RO膜装置供給水流量計
8:第一RO膜装置(高圧RO膜装置)
9:第一RO膜装置透過水流量計
10,43:サックバックタンク
11:第二ポンプ
12:第三経路RO膜装置供給水流量計
13:第二RO膜装置(低圧RO膜装置)
14:第二RO膜装置透過水流量計
15,48:活性炭吸着装置
16:第三ポンプ
17:第二経路RO膜装置供給水流量計
18,19,20,21,22,23,24:弁
25:第一RO膜装置流量調節弁
26:第二RO膜装置流量調節弁
27,40:高圧ポンプ
32,34,37,39,42,44,47:経路
33:長毛ろ過器
45:低圧ポンプ
経路A→B:第一経路
経路C→D:第二経路
経路A→F:第三経路
1, 31: Pumping pump 2: Pre-filter (simple filter)
3, 35: Filtration pump:
4, 36: MF membrane separator (or UF membrane separator)
5,38: MF membrane treated water tank (or UF membrane treated water tank)
6: First pump 7: First RO membrane device supply water flow meter 8: First RO membrane device (high pressure RO membrane device)
9: First RO membrane device permeate flow meter 10, 43: Suck back tank 11: Second pump 12: Third path RO membrane device supply water flow meter 13: Second RO membrane device (low pressure RO membrane device)
14: Second RO membrane device permeate flow meter 15, 48: Activated carbon adsorption device 16: Third pump 17: Second path RO membrane device feed water flow meter 18, 19, 20, 21, 22, 23, 24: Valve 25: First RO membrane device flow rate adjustment valve 26: Second RO membrane device flow rate adjustment valve 27, 40: High pressure pump 32, 34, 37, 39, 42, 44, 47: Route 33: Long hair filter 45: Low pressure pump Route A → B: First route Route C → D: Second route Route A → F: Third route

Claims (10)

除濁装置と、
第一逆浸透膜装置と、
第二逆浸透膜装置とを備え、
除濁装置の処理水を第一逆浸透膜装置及び/又は第二逆浸透膜装置で処理する飲料水製造用水処理システムであって、
原水が淡水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水を飲料水とする第一経路と、
除濁装置の処理水を第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第二経路とを併用し、
原水が海水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水をさらに第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第三経路を使用することを特徴とする飲料水製造用水処理システム。
A decontamination device,
A first reverse osmosis membrane device;
A second reverse osmosis membrane device,
A drinking water production water treatment system for treating treated water of a turbidity removal device with a first reverse osmosis membrane device and / or a second reverse osmosis membrane device,
When the raw water is fresh water, supply the treated water of the turbidity removal device to the first reverse osmosis membrane device, and the first path using the permeated water of the first reverse osmosis membrane device as drinking water,
Supplying the treated water of the turbidity removing device to the second reverse osmosis membrane device, using the second route with the permeated water of the second reverse osmosis membrane device as drinking water,
When the raw water is seawater, the treated water of the turbidity removal device is supplied to the first reverse osmosis membrane device, the permeated water of the first reverse osmosis membrane device is further supplied to the second reverse osmosis membrane device, and the second reverse osmosis membrane device is supplied. A water treatment system for producing drinking water, wherein a third path using the permeated water of the osmotic membrane device as drinking water is used.
除濁装置が精密ろ過膜分離装置又は限外ろ過膜分離装置である請求項1に記載の飲料水製造用水処理システム。   The water treatment system for drinking water production according to claim 1, wherein the turbidity removing device is a microfiltration membrane separation device or an ultrafiltration membrane separation device. 逆浸透膜分離装置へと膜分離装置の処理水を供給する膜処理水供給経路の加圧ポンプ上流と、
逆浸透膜分離装置の透過水出口側経路とにそれぞれ流量計を備え、
加圧ポンプ上流の流量計の指示値が、逆浸透膜分離装置の必要供給水量未満の場合には加圧ポンプの回転数を上げ、
逆浸透膜分離装置の透過水出口側経路の流量計の指示値が、逆浸透膜分離装置の必要処理水量未満の場合には濃縮水排出口側の流量調節弁を絞ることにより、逆浸透膜分離装置の供給水及び処理水量を運転中一定に保つ請求項1又は2に記載の飲料水製造用水処理システム。
Upstream of the pressure pump of the membrane treated water supply path for supplying the treated water of the membrane separator to the reverse osmosis membrane separator,
Each is equipped with a flow meter in the permeate outlet side path of the reverse osmosis membrane separator,
If the indicated value of the flow meter upstream of the pressurization pump is less than the required water supply of the reverse osmosis membrane separator, increase the rotation speed of the pressurization pump,
If the indicated value of the flow meter on the permeate outlet side path of the reverse osmosis membrane separation device is less than the required treatment water amount of the reverse osmosis membrane separation device, the flow control valve on the concentrated water outlet side is throttled to reverse the reverse osmosis membrane The water treatment system for drinking water production according to claim 1 or 2, wherein the supply water and treated water amount of the separator are kept constant during operation.
第二逆浸透膜装置への供給水圧が0.5MPa以上2.0MPa以下である請求項1乃至3のいずれか1項に記載の飲料水製造用水処理システム。   The water treatment system for drinking water production according to any one of claims 1 to 3, wherein a supply water pressure to the second reverse osmosis membrane device is 0.5 MPa or more and 2.0 MPa or less. 第一逆浸透膜装置への供給水圧が、淡水を処理する場合には0.5MPa以上2.0MPa以下であり、海水を処理する場合には5.0MPa以上7.0MPa以下である請求項1乃至4のいずれか1項に記載の飲料水製造用水処理システム。   The supply water pressure to the first reverse osmosis membrane device is 0.5 MPa or more and 2.0 MPa or less when processing fresh water, and 5.0 MPa or more and 7.0 MPa or less when processing seawater. The water treatment system for drinking water production according to claim 1. 除濁装置と、
第一逆浸透膜装置と、
第二逆浸透膜装置とを備え、
除濁装置の処理水を第一逆浸透膜装置及び/又は第二逆浸透膜装置で処理する飲料水製造用水処理システムにおいて、
原水が淡水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水を飲料水とする第一経路と、
除濁装置の処理水を第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第二経路とを併用し、
原水が海水である場合には、除濁装置の処理水を第一逆浸透膜装置に供給し、第一逆浸透膜装置の透過水をさらに第二逆浸透膜装置に供給し、第二逆浸透膜装置の透過水を飲料水とする第三経路を使用することを特徴とする飲料水製造用水処理システムの運転方法。
A decontamination device,
A first reverse osmosis membrane device;
A second reverse osmosis membrane device,
In a drinking water production water treatment system for treating treated water of a turbidity removal device with a first reverse osmosis membrane device and / or a second reverse osmosis membrane device,
When the raw water is fresh water, supply the treated water of the turbidity removal device to the first reverse osmosis membrane device, and the first path using the permeated water of the first reverse osmosis membrane device as drinking water,
Supplying the treated water of the turbidity removing device to the second reverse osmosis membrane device, using the second route with the permeated water of the second reverse osmosis membrane device as drinking water,
When the raw water is seawater, the treated water of the turbidity removal device is supplied to the first reverse osmosis membrane device, the permeated water of the first reverse osmosis membrane device is further supplied to the second reverse osmosis membrane device, and the second reverse osmosis membrane device is supplied. A method for operating a water treatment system for producing drinking water, wherein a third path using the permeated water of the osmotic membrane device as drinking water is used.
除濁装置が精密ろ過膜分離装置又は限外ろ過膜分離装置である請求項6に記載の飲料水製造用水処理システムの運転方法。   The method of operating a water treatment system for drinking water production according to claim 6, wherein the turbidity removal device is a microfiltration membrane separation device or an ultrafiltration membrane separation device. 逆浸透膜分離装置へと膜分離装置の処理水を供給する膜処理水供給経路の加圧ポンプ上流と、
逆浸透膜分離装置の透過水出口側経路とにそれぞれ流量計を備え、
加圧ポンプ上流の流量計の指示値が、逆浸透膜分離装置の必要供給水量未満の場合には加圧ポンプの回転数を上げ、
逆浸透膜分離装置の透過水出口側経路の流量計の指示値が、逆浸透膜分離装置の必要処理水量未満の場合には濃縮水排出口側の流量調節弁を絞ることにより、
逆浸透膜分離装置の供給水及び処理水量を運転中一定に保つ請求項6又は7に記載の飲料水製造用水処理システムの運転方法。
Upstream of the pressure pump of the membrane treated water supply path for supplying the treated water of the membrane separator to the reverse osmosis membrane separator,
Each is equipped with a flow meter in the permeate outlet side path of the reverse osmosis membrane separator,
If the indicated value of the flow meter upstream of the pressurization pump is less than the required water supply of the reverse osmosis membrane separator, increase the rotation speed of the pressurization pump,
If the indicated value of the flow meter on the permeate outlet side path of the reverse osmosis membrane separator is less than the required amount of treated water of the reverse osmosis membrane separator, the flow control valve on the concentrated water outlet side is throttled
The operation method of the water treatment system for drinking water production according to claim 6 or 7, wherein the supply water and treated water amount of the reverse osmosis membrane separation device are kept constant during operation.
第二逆浸透膜装置への供給水圧が0.5MPa以上2.0MPa以下である請求項6乃至8のいずれか1項に記載の飲料水製造用水処理システムの運転方法。   The operation method of the water treatment system for drinking water production according to any one of claims 6 to 8, wherein a supply water pressure to the second reverse osmosis membrane device is 0.5 MPa or more and 2.0 MPa or less. 第一逆浸透膜装置への供給水圧が、淡水を処理する場合には0.5MPa以上2.0MPa以下であり、海水を処理する場合には5.0MPa以上7.0MPa以下である請求項6乃至9のいずれか1項に記載の飲料水製造用水処理システムの運転方法。   The supply water pressure to the first reverse osmosis membrane device is 0.5 MPa or more and 2.0 MPa or less when treating fresh water, and 5.0 MPa or more and 7.0 MPa or less when treating seawater. The operating method of the water treatment system for potable water manufacture of Claim 1.
JP2006341600A 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof Expired - Fee Related JP3957080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341600A JP3957080B1 (en) 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341600A JP3957080B1 (en) 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof

Publications (2)

Publication Number Publication Date
JP3957080B1 JP3957080B1 (en) 2007-08-08
JP2008149284A true JP2008149284A (en) 2008-07-03

Family

ID=38456442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341600A Expired - Fee Related JP3957080B1 (en) 2006-12-19 2006-12-19 Water treatment system for drinking water production and operation method thereof

Country Status (1)

Country Link
JP (1) JP3957080B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051345B1 (en) * 2010-09-09 2011-07-22 지에스건설 주식회사 Apparatus and method for two-step reverse osmosis desalination
JP2013252502A (en) * 2012-06-08 2013-12-19 Toray Ind Inc Device for desalination of salt water and water producing method
JP2014128767A (en) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd Pure water production system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903113B2 (en) * 2007-11-13 2012-03-28 株式会社神鋼環境ソリューション Water treatment system and operation method thereof
WO2010150309A1 (en) * 2009-06-23 2010-12-29 株式会社 いちごホールディングス Solar car
US20130140233A1 (en) 2010-08-17 2013-06-06 Masahide Taniguchi Fresh water producing apparatus and method for operating same
JP6169009B2 (en) * 2014-01-29 2017-07-26 株式会社ウェルシィ Reverse osmosis membrane device and operating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051345B1 (en) * 2010-09-09 2011-07-22 지에스건설 주식회사 Apparatus and method for two-step reverse osmosis desalination
WO2012033257A1 (en) * 2010-09-09 2012-03-15 Gs Engineering & Construction Corp. Two-pass reverse osmosis desalination apparatus and method
JP2013252502A (en) * 2012-06-08 2013-12-19 Toray Ind Inc Device for desalination of salt water and water producing method
JP2014128767A (en) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd Pure water production system

Also Published As

Publication number Publication date
JP3957080B1 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4903113B2 (en) Water treatment system and operation method thereof
JP3995704B1 (en) Water treatment system for drinking water production and operation method thereof
JP2007181822A (en) Water treatment system for producing drinking water and its operation method
JP3957081B1 (en) Water treatment system for drinking water production and operation method thereof
JP3957080B1 (en) Water treatment system for drinking water production and operation method thereof
JP4984017B2 (en) Fresh water generation method
JP5843522B2 (en) Seawater desalination method
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JP2007000788A (en) Water treatment apparatus using reverse osmosis membrane
JP4113568B1 (en) Water treatment system for drinking water production and operation method thereof
JP2008100220A (en) Method for producing freshwater
EP2586748A1 (en) Freshwater-generating device, and freshwater-generating method
KR20110067748A (en) Dual osmosis device and desalination method using such device
US20180297866A1 (en) Water treatment system and water treatment method
JP2003200160A (en) Water making method and water making apparatus
JP2007152271A (en) Water treatment system and its operation method
JP5587223B2 (en) Combined desalination system
JP4973823B1 (en) Seawater desalination system
WO2013031545A1 (en) Desalination system and desalination method
CN103910442A (en) Fresh water system
KR102061975B1 (en) Reverse osmotic water purifier and merhod for purifying water using the water purifier
JP4973822B1 (en) Seawater desalination system
JP3200676U (en) Water purifier
EP2581347A1 (en) Fresh water-generating device and fresh water-generating method
JP4941613B1 (en) Seawater desalination system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Ref document number: 3957080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees