JP2008148516A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2008148516A
JP2008148516A JP2006335502A JP2006335502A JP2008148516A JP 2008148516 A JP2008148516 A JP 2008148516A JP 2006335502 A JP2006335502 A JP 2006335502A JP 2006335502 A JP2006335502 A JP 2006335502A JP 2008148516 A JP2008148516 A JP 2008148516A
Authority
JP
Japan
Prior art keywords
stator
core
axial direction
rotor
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335502A
Other languages
Japanese (ja)
Inventor
Hidekazu Uchiyama
英和 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2006335502A priority Critical patent/JP2008148516A/en
Publication of JP2008148516A publication Critical patent/JP2008148516A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary electric machine capable of improving output characteristics and efficiency of a motor at low- and high-speed operation. <P>SOLUTION: The rotary electric machine has a stator 6, a rotor 4 provided coaxially and freely rotatably with the stator, and stator moving means 11, 12 for changing the relative position of the stator in a rotor's axial A line direction for the rotor. The stator is provided with an armature coil 9 and a core 6a having the armature coil wound therearound, and the other part is provided with a magnet 5 so as to oppose the core. The core continuously has two or more members having different magnetic characteristics along the axial line A, and a low iron loss member is provided on the core 6a on a side opposite to a direction where the stator is moved in the axial direction by the stator 6 moving means 11, 12 so that an area between a magnetic pole surface 5a of the magnet 5 and an opposite surface of the core opposing the magnetic pole surface 5a may become small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、出力特性の調整が自在な回転電機に関するものである。   The present invention relates to a rotating electrical machine that can freely adjust output characteristics.

従来、電動モータまたは発電機として用いられる回転電機であって例えば電動モータにおいて、出力を調整可能にするためにステータとロータとを通過する磁束を変化させることができる回転電機があり、例えばロータを軸線方向に移動させてロータとステータとの間の互いに重なり合う面積を増減させるようにしたもの(例えば特許文献1参照)や、ロータとステータとの対峙面間のギャップ(間隙)を調整するようにしたものがあった(例えば特許文献2参照)。また本件出願人により、上記の重なり合う面積の増減に加えて、コイルの巻回数を選択可能として磁束の変化をより大きくした回転電機が開示されている(特許文献3参照)。   2. Description of the Related Art Conventionally, a rotating electrical machine used as an electric motor or a generator, for example, in an electric motor, there is a rotating electrical machine that can change a magnetic flux passing through a stator and a rotor so that the output can be adjusted. Adjusting the gap (gap) between the opposing surfaces of the rotor and the stator that are moved in the axial direction to increase or decrease the overlapping area between the rotor and the stator (see, for example, Patent Document 1) (For example, refer to Patent Document 2). In addition to the increase / decrease of the overlapping area, the applicant of the present application discloses a rotating electrical machine in which the number of turns of the coil can be selected and the change in magnetic flux is further increased (see Patent Document 3).

上記したような電動モータにあっては、低速回転時にはステータを通過する有効磁束が大きくなるようにして高トルクを達成し、高速回転時にはステータを通過する有効磁束が小さくなるようにして高速回転を達成することを目的としている。
特開平5−300712号公報 特開2004−80847号公報 特願2006−256952号
In the electric motor as described above, high torque is achieved by increasing the effective magnetic flux passing through the stator at low speed rotation, and high speed rotation is performed by reducing the effective magnetic flux passing through the stator at high speed rotation. The goal is to achieve.
JP-A-5-300712 JP 2004-80847 A Japanese Patent Application No. 2006-256952

しかしながら、従来の方法では磁束を変化させるためにステータとロータ(電機子コイルが巻かれたコアとマグネット)との対向する面積の変更及びステータとロータ(電機子コイルが巻かれたコアとマグネット)との間のエアギャップの変更といった機械的な変更のみに注目しており、磁束が作用するステータの材質及び磁気特性の変更については考慮されていなかった。   However, in the conventional method, in order to change the magnetic flux, the facing area of the stator and the rotor (core and magnet around which the armature coil is wound) is changed, and the stator and rotor (the core and magnet around which the armature coil is wound). Only the mechanical change such as the change of the air gap between them and the change of the material and magnetic characteristics of the stator on which the magnetic flux acts was not taken into consideration.

鉄損は、電機子コイルが巻かれたコアにおいて発生するヒステリシス損及び渦電流損からなり、それらは材料の磁気特性と磁束密度及び周波数により異なる。低鉄損を実現するには材料の選定と磁束密度及び周波数を低く設定することが重要になる。一方、モータの発生トルクはコアを通過する磁束量に比例するので、高トルクを実現するにはコアは最大磁束密度の高い材料が適している。モータの低速回転時については、高トルクが必要とされるため、飽和磁束密度が高い部材が適しており、高速回転時については、高トルクは必要とされず代わりに高速回転に伴う鉄損を低減すために低鉄損材が適している。従来のように単一の部材から電機子コイルが巻かれたコアを形成すると、低速回転時及び高速回転時の双方に最適な特性を得ることができないという課題がある。   Iron loss consists of hysteresis loss and eddy current loss that occurs in the core around which the armature coil is wound, and these depend on the magnetic properties, magnetic flux density and frequency of the material. In order to achieve low iron loss, it is important to select a material and to set the magnetic flux density and frequency low. On the other hand, since the generated torque of the motor is proportional to the amount of magnetic flux passing through the core, a material having a high maximum magnetic flux density is suitable for the core in order to achieve high torque. Since high torque is required when the motor rotates at low speed, a member with a high saturation magnetic flux density is suitable.At high speed rotation, high torque is not required and instead iron loss associated with high-speed rotation occurs. A low iron loss material is suitable for the reduction. If a core around which an armature coil is wound is formed from a single member as in the prior art, there is a problem that optimum characteristics cannot be obtained at both low-speed rotation and high-speed rotation.

本発明では、このような課題を解決してステータとロータとを通過する磁束を増減させることで出力を調整可能にした回転電機において、更に磁束が通過するステータの材質を変更させることで、低速回転時及び高速回転時での特性を向上させることができる回転電機を提供する。   In the present invention, in a rotating electrical machine that solves such a problem and makes it possible to adjust the output by increasing or decreasing the magnetic flux passing through the stator and the rotor, the material of the stator through which the magnetic flux passes can be further changed to reduce the speed. Provided is a rotating electrical machine capable of improving characteristics during rotation and high-speed rotation.

本発明の回転電機は、ステータと、前記ステータに対して同軸をなして回転自在に設けられたロータと、前記ロータに対する前記ステータの前記ロータの軸線方向での相対位置を変化させるステータ移動手段とを有し、前記ステータに電機子コイル及び前記電機子コイルが巻かれたコアが設けられ、他方に前記コアに対峙するようにマグネットが設けられた回転電機であって、前記コアは2以上の磁気特性の異なる部材を前記軸線に沿って連続的に有し、前記ステータ移動手段により前記ステータが、前記マグネットの磁極面と前記磁極面に対峙する前記コアの対峙面との相対する面積が小さくなるように前記軸線方向に移動させられる方向と相反する側の前記コアの部分に低鉄損の部材が設けられるようにする。   The rotating electrical machine of the present invention includes a stator, a rotor that is coaxially rotatable with respect to the stator, and a stator moving unit that changes a relative position of the stator in the axial direction of the rotor with respect to the rotor. The stator is provided with an armature coil and a core around which the armature coil is wound, and the other is provided with a magnet so as to face the core. The members having different magnetic characteristics are continuously provided along the axis, and the stator is moved by the stator so that the stator has a small area facing the magnetic pole surface of the magnet and the facing surface of the core facing the magnetic pole surface. Thus, a low iron loss member is provided on the core portion on the side opposite to the direction of movement in the axial direction.

また、前記コアは2以上の磁気特性の異なる部材を前記軸線に沿って連続的に有し、前記ステータ移動手段により前記ステータが、前記マグネットの磁極面と前記磁極面に対峙する前記コアの対峙面との相対する面積が小さくなるように前記軸線方向に移動させられる方向と相反する側の前記コアの部分に低鉄損の部材が設けられ、かつ前記方向側の前記コアの部分に飽和磁束密度が高い部材が設けられるようにする。また、前記低鉄損の部材はケイ素鋼板を前記軸線方向に積層させた部材を含むと良い。また、前記飽和磁束密度が高い部材は冷間圧延鋼板を前記軸線方向に積層させた部材を含むようにすると良い。また、前記低鉄損の部材及び前記飽和磁束密度が高い部材は、同じ種類の材料からなる薄板を前記軸線方向に積層させて形成され、前記低鉄損の部材を形成する薄板の前記軸線方向の厚みが、前記飽和磁束密度が高い部材を形成する薄板の前記軸線方向の厚みに比べて薄くなるようにしても同様の目的を達成することができる。   The core has two or more members having different magnetic characteristics continuously along the axis, and the stator is opposed to the magnetic pole surface of the magnet by the stator moving means. A member having a low iron loss is provided in the core portion on the side opposite to the direction of movement in the axial direction so that the area facing the surface is small, and a saturation magnetic flux is provided in the core portion on the direction side. A member having a high density is provided. The low iron loss member may include a member in which silicon steel plates are laminated in the axial direction. The member having a high saturation magnetic flux density may include a member obtained by laminating cold rolled steel plates in the axial direction. The low iron loss member and the high saturation magnetic flux density member are formed by laminating thin plates made of the same type of material in the axial direction, and the axial direction of the thin plate forming the low iron loss member The same object can be achieved even if the thickness of the sheet is made thinner than the thickness of the thin plate forming the member having a high saturation magnetic flux density in the axial direction.

本発明によれば、ステータコアが、2以上の磁気特性の異なる部材を有し、ステータ移動手段によりステータが、マグネットの磁極面と磁極面に対峙するコアの対峙面との相対する面積が小さくなるように前記軸線方向に移動させられる方向と相反する側に低鉄損の部材を有する構成とすることで、ステータがロータ及びマグネットから一部離脱するモータの高速回転時には、低鉄損の部材からなるステータコアの部分がマグネットに主として相対するようになる。これにより高速回転時の鉄損を低く抑えることができる。   According to the present invention, the stator core has two or more members having different magnetic characteristics, and the stator moving means reduces the area of the stator facing the magnetic pole surface of the magnet and the facing surface of the core facing the magnetic pole surface. As described above, the structure having the low iron loss member on the side opposite to the direction of movement in the axial direction as described above allows the stator to be separated from the low iron loss member during high speed rotation of the motor that is partially separated from the rotor and the magnet. The portion of the stator core that comes to be mainly opposed to the magnet. Thereby, the iron loss at the time of high speed rotation can be suppressed low.

また、ステータ移動手段によりステータが、マグネットの磁極面と磁極面に対峙するコアの対峙面との相対する面積が小さくなるように前記軸線方向の側に飽和磁束密度が高い部材を設けるようにすることで、ステータとマグネットとの相対する面積が大きくなるモータの低速回転時には、飽和磁束密度が高い部材がマグネットに相対するようになる。これにより低速回転時のステータに作用する有効磁束が大きくなり、高トルクを得ることができる。結果として、低速回転時及び高速回転時の双方に適したステータコアの特性を実現することができる。   Further, the stator is provided with a member having a high saturation magnetic flux density on the side in the axial direction so that the area of the stator facing the magnetic pole surface of the magnet and the facing surface of the core facing the magnetic pole surface is reduced by the stator moving means. As a result, when the motor rotates at a low speed, the area where the stator and the magnet are opposed to each other, a member having a high saturation magnetic flux density is opposed to the magnet. As a result, the effective magnetic flux acting on the stator during low-speed rotation is increased, and high torque can be obtained. As a result, it is possible to realize a stator core characteristic suitable for both low-speed rotation and high-speed rotation.

また、低鉄損の部材は材質の特性が低鉄損の材料を用いることによって得るだけでなく、コアをロータの回転軸方向に薄板を積層させるとによって形成し、この薄板のロータの回転軸方向の厚みを薄くすることによっても、低鉄損の部材を得ることができる。   The low iron loss member is not only obtained by using a material having low iron loss, but also formed by laminating a thin plate in the direction of the rotation axis of the rotor. A member with low iron loss can also be obtained by reducing the thickness in the direction.

<<第1実施形態の構成>>
以下、本発明の第1実施形態を、図面を参照しながら説明する。図1は、本発明が適用された電気自動車の駆動輪Wの例を示す模式的断面図である。図1において、車体1に固定支持軸2が突設かつ固定されており、その固定支持軸2には一対の軸受3a・3bを介してロータ4が回転自在に支持されている。ロータ4の外周部にはホイールを介して駆動輪Wが取り付けられている。
<< Configuration of First Embodiment >>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of drive wheels W of an electric vehicle to which the present invention is applied. In FIG. 1, a fixed support shaft 2 protrudes and is fixed to a vehicle body 1, and a rotor 4 is rotatably supported on the fixed support shaft 2 via a pair of bearings 3a and 3b. Drive wheels W are attached to the outer periphery of the rotor 4 via wheels.

ロータ4は、支持軸2と同軸に大小径のボス部4a・4bが形成されており、両ボス部4a・4b間の空間が車体1側に開放されている。大径ボス部4bの内周面には、周方向にN・S極を並べた複数のマグネット5が配設されている。また、両ボス部4a・4bによる空間に受容されるようにステータ6が設けられている。   The rotor 4 is formed with large and small boss portions 4a and 4b coaxially with the support shaft 2, and a space between the boss portions 4a and 4b is opened to the vehicle body 1 side. A plurality of magnets 5 having N and S poles arranged in the circumferential direction are disposed on the inner peripheral surface of the large-diameter boss portion 4b. Moreover, the stator 6 is provided so that it may be received in the space by both boss | hub parts 4a * 4b.

ステータ6は、小径ボス部4a側に位置するようにされた環状部材8の外周面に固着されたステータコア6a・6bと、その複数のステータコア6a・6bに巻回された電機子コイル9とを一体に有する。ここでステータコアは2種の部材6a・6bからなり、ステータ6がロータ4の軸線A方向でロータ4から離脱する方向Bと相反する側のステータコアの部分6aに低鉄損の部材が設けられ、ステータ6がロータ4の軸線A方向でロータ4から離脱する側のステータコアの部分6bに飽和磁束密度が高い部材が設けられる。例えば、低鉄損の部材はケイ素鋼板を軸線A方向に積層させた部材であり、飽和磁束密度が高い部材は冷間圧延鋼板を軸線A方向に積層させた部材である。このようにして構成されたステータ6と上記ロータ4とにより本発明が適用される回転電機としてのモータMが構成される。   The stator 6 includes a stator core 6a and 6b fixed to the outer peripheral surface of the annular member 8 positioned on the small diameter boss portion 4a side, and an armature coil 9 wound around the plurality of stator cores 6a and 6b. Have one. Here, the stator core is composed of two kinds of members 6a and 6b, and a member having a low iron loss is provided on the stator core portion 6a on the side opposite to the direction B in which the stator 6 is separated from the rotor 4 in the axis A direction of the rotor 4, A member having a high saturation magnetic flux density is provided on the portion 6 b of the stator core on the side where the stator 6 is separated from the rotor 4 in the direction of the axis A of the rotor 4. For example, the low iron loss member is a member obtained by laminating silicon steel plates in the axis A direction, and the member having a high saturation magnetic flux density is a member obtained by laminating cold rolled steel plates in the axis A direction. The stator 6 thus configured and the rotor 4 constitute a motor M as a rotating electrical machine to which the present invention is applied.

環状部材8は、車体1から突設固定され小径ボス4aの外周に位置するガイド軸7によりスライド自在に支持されていると共に、車体1に取り付けられた例えばモータ駆動型のアクチュエータ11の回転に伴う駆動軸12と勘合された雌ネジ部13の出没運動により支持軸2(ロータ4)の軸線方向に往復運動可能にされている。   The annular member 8 protrudes and is fixed from the vehicle body 1 and is slidably supported by a guide shaft 7 positioned on the outer periphery of the small-diameter boss 4a, and is accompanied by the rotation of, for example, a motor-driven actuator 11 attached to the vehicle body 1. A reciprocating motion in the axial direction of the support shaft 2 (rotor 4) is made possible by the movement of the female screw portion 13 fitted to the drive shaft 12.

<<第1実施形態の作用効果>>
上記の構成とすることで、アクチュエータ11を駆動することにより環状部材8すなわちステータ6はロータの軸線Aに沿って両ボス部4a・4b間の空間を、マグネット5の磁極面5aとステータコア6a・6bの磁極面5aに対峙する対峙面の相対する面積が最大となる位置(図1中実線)から軸線方向でマグネット5とステータコア6a・6bの磁極面5aに対峙する対峙面の相対する面積が減少する方向Bへと移動することができる。また、マグネット5の磁極面とステータコア6a・6bのマグネット5に対峙する対峙面の相対する面積が減少した位置から、軸線A方向で方向Bと相反する方向Cへと移動することができる。その変位量はマグネット5の磁極面5aに対して、図1に示されるように磁極面5aに対向するステータ6のマグネット5に相対する面6aがロータ4の軸線方向について完全に重なる位置と、図1の二点差線で示される位置との2位置間であって良い。なお、完全に重なる位置からの変位量にあっては、例えば完全に外れた位置までの変位量を100%とした場合に約50%としてもよい。なお、50%の位置の場合には磁極面5aと対峙面とのロータ軸線方向についての重なり量が半分となる。
<< Effects of First Embodiment >>
With the above configuration, by driving the actuator 11, the annular member 8, that is, the stator 6, has a space between the boss portions 4a and 4b along the axis A of the rotor, the magnetic pole surface 5a of the magnet 5 and the stator core 6a. The opposing area of the facing surface facing the magnetic surface 5a of the magnet 5 and the stator cores 6a and 6b in the axial direction from the position (solid line in FIG. 1) where the opposing surface of the facing surface facing the magnetic pole surface 5a of 6b is maximized. It is possible to move in the decreasing direction B. Moreover, it can move to the direction C opposite to the direction B in the direction of the axis A from the position where the opposing area of the facing surface of the magnet 5 facing the magnet 5 of the stator cores 6a and 6b has decreased. The displacement amount is such that the surface 6a facing the magnet 5 of the stator 6 facing the magnetic pole surface 5a completely overlaps with the magnetic pole surface 5a of the magnet 5 in the axial direction of the rotor 4 as shown in FIG. It may be between two positions with the position indicated by the two-dot chain line in FIG. Note that the displacement amount from the completely overlapping position may be about 50%, for example, when the displacement amount to the completely deviated position is 100%. In the case of the position of 50%, the overlapping amount in the rotor axial direction between the magnetic pole surface 5a and the opposing surface is halved.

図1に示すようにモータMが低速回転するときには、ステータ6はロータ4内に収まり、マグネット5とステータコア6a・6bの相対する面積は大きくなる。この状態では低鉄損の部材6a及び飽和磁束密度が高い部材6bが共にマグネット5と相対し、ステータコア6aに作用する有効磁束は最大となる。そのため、モータMの低速回転に適した高トルクを供給することができる。   As shown in FIG. 1, when the motor M rotates at a low speed, the stator 6 is accommodated in the rotor 4, and the opposing areas of the magnet 5 and the stator cores 6a and 6b are increased. In this state, the low iron loss member 6a and the high saturation magnetic flux density member 6b are both opposed to the magnet 5, and the effective magnetic flux acting on the stator core 6a is maximized. Therefore, high torque suitable for low-speed rotation of the motor M can be supplied.

図2は、本発明の第1実施形態に係る回転電機を表す模式的断面図であって、ステータの位置が50%変位しモータMが高速回転を行う状態を示す。モータMが高速回転するときには、ステータコア6a・6bは軸線A方向で方向Bに移動し、マグネット5とステータコア6a・6bの相対する面積は小さくなる。この高速回転時の状態では飽和磁束密度が高い部材6bはマグネット5から離脱して、一部で相対するのみか又は全く重なり合わない状態となる。そしてマグネット5は主として低鉄損の部材6aからなるステータコアの部分に相対する。このためステータコアを通過する磁束は主として低鉄損の部材を通過することになり、モータMの高速回転時に発生する鉄損を低く抑えることができる。   FIG. 2 is a schematic cross-sectional view showing the rotating electrical machine according to the first embodiment of the present invention, and shows a state in which the position of the stator is displaced by 50% and the motor M rotates at a high speed. When the motor M rotates at a high speed, the stator cores 6a and 6b move in the direction B in the direction of the axis A, and the opposing areas of the magnet 5 and the stator cores 6a and 6b become smaller. In this state at the time of high speed rotation, the member 6b having a high saturation magnetic flux density is detached from the magnet 5 and is only partially opposed or not overlapped at all. The magnet 5 is opposed to a stator core portion mainly composed of a low iron loss member 6a. For this reason, the magnetic flux passing through the stator core mainly passes through the low iron loss member, and the iron loss generated when the motor M rotates at high speed can be kept low.

また、ステータコア6a・6bを同じ種類の材料からなる薄板をロータの軸線A方向に積層させて形成し、低鉄損のコア部分6aを形成する薄板の軸線A方向の厚みを、飽和磁束密度が高いコアの部分6bを形成する薄板の軸線A方向の厚みより薄くするようにしても低鉄損のコア部6aを得ることができ、第1実施形態に係る回転電機と似た効果を得ることができる。   Further, the stator cores 6a and 6b are formed by laminating thin plates made of the same type of material in the direction of the axis A of the rotor, and the thickness in the direction of the axis A of the thin plate forming the core portion 6a with low iron loss is determined by the saturation magnetic flux density. Even if the thickness of the thin plate forming the high core portion 6b is made thinner than the thickness in the direction of the axis A, the core portion 6a with low iron loss can be obtained, and an effect similar to that of the rotating electrical machine according to the first embodiment can be obtained. Can do.

<<その他の実施形態の構成>>
図3は、本発明の第2実施形態に係る回転電機を表す模式的断面図である。第2実施形態では、ステータコアは鉄損の異なるn個の部材からなり、n個の異なる部材はステータコアがロータ4の軸線A方向でマグネット5から離脱する方向Bとは相反する側に最も鉄損が低い部材6aが設けられ、そこからステータコアがロータ4の軸線に沿ってマグネット5から離脱する方向へと鉄損が連続して増加し、同時に飽和磁束密度も増加する材料で配置される。その他の構成は第1実施形態と同様である。
<< Configuration of Other Embodiments >>
FIG. 3 is a schematic cross-sectional view showing a rotating electrical machine according to the second embodiment of the present invention. In the second embodiment, the stator core is composed of n members having different iron losses, and the n different members are most iron loss on the side opposite to the direction B in which the stator core is separated from the magnet 5 in the direction of the axis A of the rotor 4. Is provided with a material in which the iron core continuously increases in the direction in which the stator core separates from the magnet 5 along the axis of the rotor 4 and at the same time the saturation magnetic flux density also increases. Other configurations are the same as those of the first embodiment.

<<その他の実施形態の作用効果>>
その他の実施形態での作用効果は第1実施形態での作用効果と同様であるが、上記の構成とすることでステータコア6cの鉄損特性をロータ4の軸線に沿って更に細かく規定することができる。その結果、モータMの回転数に合わせたモータ特性の最適化をより細かく調整することができる。
<< Operational Effects of Other Embodiments >>
The operational effects of the other embodiments are the same as the operational effects of the first embodiment. However, the iron loss characteristics of the stator core 6c can be further defined along the axis of the rotor 4 by adopting the above configuration. it can. As a result, it is possible to finely adjust the optimization of the motor characteristics in accordance with the rotational speed of the motor M.

本発明に係る回転電機は、低速回転時のトルク性能を向上させることができると共に、高速回転時の鉄損を減少させてモータ効率を高めることができ、電動モータや発電機として有用である。   The rotating electrical machine according to the present invention can improve the torque performance at the time of low-speed rotation, reduce the iron loss at the time of high-speed rotation and increase the motor efficiency, and is useful as an electric motor or a generator.

第1実施形態が適用された電気自動車の駆動輪Mの例を示す模式的断面図である。It is typical sectional drawing which shows the example of the drive wheel M of the electric vehicle to which 1st Embodiment was applied. 第1実施形態に係る回転電機の模式的断面図である。It is a typical sectional view of the rotary electric machine concerning a 1st embodiment. その他の実施形態に係る回転電機の模式的断面図である。It is typical sectional drawing of the rotary electric machine which concerns on other embodiment.

符号の説明Explanation of symbols

1 車体
2 支持軸
3 軸受
4 ロータ
5 マグネット
6 ステータ
6a・6b ステータコア
8 環状部材
11 アクチュエータ
12 駆動軸
DESCRIPTION OF SYMBOLS 1 Car body 2 Support shaft 3 Bearing 4 Rotor 5 Magnet 6 Stator 6a, 6b Stator core 8 Annular member 11 Actuator 12 Drive shaft

Claims (5)

ステータと、前記ステータに対して同軸をなして回転自在に設けられたロータと、前記ロータに対する前記ステータの前記ロータの軸線方向での相対位置を変化させるステータ移動手段とを有し、前記ステータに電機子コイル及び前記電機子コイルが巻かれたコアが設けられ、他方に前記コアに対峙するようにマグネットが設けられた回転電機であって、
前記コアは2以上の磁気特性の異なる部材を前記軸線に沿って連続的に有し、前記ステータ移動手段により前記ステータが、前記マグネットの磁極面と前記磁極面に対峙する前記コアの対峙面との相対する面積が小さくなるように前記軸線方向に移動させられる方向と相反する側の前記コアの部分に低鉄損の部材が設けられることを特徴とする回転電機。
A stator, a rotor provided coaxially with the stator and rotatable, and stator moving means for changing a relative position of the stator in the axial direction of the rotor with respect to the rotor; A rotating electric machine in which a core around which an armature coil and the armature coil are wound is provided, and a magnet is provided on the other side to face the core;
The core has two or more members having different magnetic characteristics continuously along the axis, and the stator moves the stator so that the stator faces the magnetic pole face of the magnet and the face of the core facing the magnetic pole face. A rotating electric machine characterized in that a member with a low iron loss is provided in a portion of the core on the side opposite to the direction of movement in the axial direction so as to reduce the opposing area of the core.
前記コアは2以上の磁気特性の異なる部材を前記軸線に沿って連続的に有し、前記ステータ移動手段により前記ステータが、前記マグネットの磁極面と前記磁極面に対峙する前記コアの対峙面との相対する面積が小さくなるように前記軸線方向に移動させられる方向と相反する側の前記コアの部分に低鉄損の部材が設けられ、かつ前記方向側の前記コアの部分に飽和磁束密度が高い部材が設けられることを特徴とする請求項1に記載の回転電機。   The core has two or more members having different magnetic characteristics continuously along the axis, and the stator moves the stator so that the stator faces the magnetic pole face of the magnet and the face of the core facing the magnetic pole face. A member having a low iron loss is provided in a portion of the core opposite to the direction moved in the axial direction so that the opposing area of the core is small, and a saturation magnetic flux density is provided in the core portion on the direction side. The rotating electrical machine according to claim 1, wherein a high member is provided. 前記低鉄損の部材はケイ素鋼板を前記軸線方向に積層させた部材を含むことを特徴とする請求項1又は2に記載の回転電機。   The rotating electrical machine according to claim 1, wherein the low iron loss member includes a member in which silicon steel plates are laminated in the axial direction. 前記飽和磁束密度が高い部材は冷間圧延鋼板を前記軸線方向に積層させた部材を含むことを特徴とする請求項2に記載の回転電機。   The rotating electrical machine according to claim 2, wherein the member having a high saturation magnetic flux density includes a member obtained by laminating cold rolled steel plates in the axial direction. 前記低鉄損の部材及び前記飽和磁束密度が高い部材は、同じ種類の材料からなる薄板を前記軸線方向に積層させて形成され、前記低鉄損の部材を形成する薄板の前記軸線方向の厚みが、前記飽和磁束密度が高い部材を形成する薄板の前記軸線方向の厚みに比べて薄いことを特徴とする請求項1又は2に記載の回転電機。   The low iron loss member and the high saturation magnetic flux density member are formed by laminating thin plates made of the same type of material in the axial direction, and the thin plate forming the low iron loss member has a thickness in the axial direction. 3. The rotating electrical machine according to claim 1, wherein the rotating electric machine is thinner than a thickness of the thin plate forming the member having a high saturation magnetic flux density in the axial direction.
JP2006335502A 2006-12-13 2006-12-13 Rotary electric machine Pending JP2008148516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335502A JP2008148516A (en) 2006-12-13 2006-12-13 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335502A JP2008148516A (en) 2006-12-13 2006-12-13 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2008148516A true JP2008148516A (en) 2008-06-26

Family

ID=39608070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335502A Pending JP2008148516A (en) 2006-12-13 2006-12-13 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2008148516A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206952A (en) * 2009-03-04 2010-09-16 Honda Motor Co Ltd Motor and controller thereof
KR101338086B1 (en) 2012-10-08 2013-12-06 현대자동차주식회사 Motor for environment-friendly vehicle
CN106849394A (en) * 2015-10-16 2017-06-13 大众汽车有限公司 For the stator lasmination and motor of motor
JP2020188563A (en) * 2019-05-13 2020-11-19 Thk株式会社 Rotary electric machine and in-wheel motor using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206952A (en) * 2009-03-04 2010-09-16 Honda Motor Co Ltd Motor and controller thereof
KR101338086B1 (en) 2012-10-08 2013-12-06 현대자동차주식회사 Motor for environment-friendly vehicle
CN103715820A (en) * 2012-10-08 2014-04-09 现代自动车株式会社 Motor for an environmentally friendly vehicle
US9257879B2 (en) 2012-10-08 2016-02-09 Hyundai Motor Company Motor for environment-friendly vehicle
CN106849394A (en) * 2015-10-16 2017-06-13 大众汽车有限公司 For the stator lasmination and motor of motor
JP2020188563A (en) * 2019-05-13 2020-11-19 Thk株式会社 Rotary electric machine and in-wheel motor using the same
JP7319087B2 (en) 2019-05-13 2023-08-01 Thk株式会社 Rotating electric machine and in-wheel motor using this rotating electric machine

Similar Documents

Publication Publication Date Title
JP4519928B2 (en) Hybrid excitation type synchronous machine
US8339010B2 (en) Dual rotor electric machine having a field-controlling rotor
EP1509988B1 (en) Rotary permanent magnet electric motor having stator pole shoes of varying dimensions
JP5688684B2 (en) Rotating electric machine
JP4791013B2 (en) Brushless motor
JP4369384B2 (en) Rotating electric machine
WO2012042844A1 (en) Dynamo-electric machine
US7750527B2 (en) Motor/generator
JP6214990B2 (en) Rotating electric machine
JP2007244027A (en) Dynamo-electric machine
JP2013150538A (en) Dynamo-electric machine
US9444317B2 (en) Electric rotating machine
JP6327474B2 (en) Outer rotor type variable field motor
JP2008141900A (en) Rotating electric machine
JP2006246662A (en) Permanent magnet rotary machine
JP2008148516A (en) Rotary electric machine
JP4732930B2 (en) Synchronous machine
JP2001275326A (en) Motor
JP2008199894A (en) Permanent-magnet rotating machine and electric power-steering apparatus
JP2009095147A (en) Variable field magnet motor
JP2005529576A (en) Rotating electric motor having a plurality of shifted stator poles and / or rotor poles
JP2007129869A (en) Permanent magnetic motor
JP2004166369A (en) Rotary electric machine
JP2005529575A (en) Rotating permanent magnet type electric motor with varying air gap between interacting stator and rotor elements
JP2006333566A (en) Rotary electric machine