JP2008147271A - Antistatic part and its manufacturing method - Google Patents

Antistatic part and its manufacturing method Download PDF

Info

Publication number
JP2008147271A
JP2008147271A JP2006330198A JP2006330198A JP2008147271A JP 2008147271 A JP2008147271 A JP 2008147271A JP 2006330198 A JP2006330198 A JP 2006330198A JP 2006330198 A JP2006330198 A JP 2006330198A JP 2008147271 A JP2008147271 A JP 2008147271A
Authority
JP
Japan
Prior art keywords
insulating substrate
electrodes
face
electrode
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006330198A
Other languages
Japanese (ja)
Inventor
Kenji Nozoe
研治 野添
Takeshi Izeki
健 井関
Takashi Morino
貴 森野
Koichi Yoshioka
功一 吉岡
Hideaki Tokunaga
英晃 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006330198A priority Critical patent/JP2008147271A/en
Publication of JP2008147271A publication Critical patent/JP2008147271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-terminal type antistatic part for a plurality of circuits being little subject to influence of crosstalks among adjacent signal terminals. <P>SOLUTION: The antistatic part has a plurality of pairs of top-face electrodes 17 formed at both end sections on the long-side side of the top face of an insulating substrate 11 and end-face electrodes 24 formed on the end faces of the insulating substrate 11 so as to be electrically connected to the plurality of pairs of top-face electrodes 17. The antistatic part further has top-face ground electrodes 16 formed extensively over a central section from both end sections on the short-side side of the top face of the insulating substrate 11 and end-face ground electrodes 23 formed on the end faces of the insulating substrate 11 so as to be electrically connected to the top-face ground electrodes 16. The antistatic part further has gaps formed among either of the plurality of pairs of top-face electrodes 17 and the top-face ground electrodes 23, overvoltage protection material layers 20 filling the gaps and top-face protection resin layers 21 completely coating the overvoltage protection material layers 20. The overvoltage protection material layers 20 are formed individually for each of the plurality of top-face electrodes 17. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電子機器を静電気から保護する静電気対策部品、特に集積回路の保護に用いる複数回路用多端子タイプの静電気対策部品およびその製造方法に関するものである。   The present invention relates to an antistatic component for protecting an electronic device from static electricity, and more particularly to a multi-terminal type antistatic component for multiple circuits used for protecting an integrated circuit and a method for manufacturing the same.

近年、携帯電話等の電子機器の小型化、高性能化が急速に進み、それに伴い電子機器に用いられる電子部品の小型化も急速に進んでいる。しかしながら、その反面、この小型化に伴って電子機器や電子部品の耐電圧は低下するもので、これにより、人体と電子機器の端子が接触した時に発生する静電気パルスによって機器内部の電気回路が損傷するのが増えてきている。これは静電気パルスによって1ナノ秒以下の立ち上がり速度でかつ数百ボルトから数キロボルトという高電圧が機器内部の電気回路に印加されるからである。   In recent years, electronic devices such as mobile phones have been rapidly reduced in size and performance, and accordingly, electronic components used in electronic devices have also been rapidly reduced in size. However, with this miniaturization, the withstand voltage of electronic equipment and electronic components decreases, and this causes damage to the electrical circuits inside the equipment due to electrostatic pulses generated when the human body contacts the terminals of the electronic equipment. Increasingly. This is because a high voltage of several hundred volts to several kilovolts is applied to an electric circuit inside the device at a rising speed of 1 nanosecond or less by electrostatic pulses.

従来から、このような静電気パルスへの対策として、静電気が入るラインとグランド間に対策部品を設ける方法がとられているが、近年では信号ラインの伝送速度が数百Mbps以上といった高速化が進んでおり、前記した対策部品の浮遊容量が大きい場合には信号品質が劣るため、より小さい方が好ましく、したがって、数百Mbps以上の伝送速度になると1pF以下の低静電容量の対策部品が必要になってくるものである。   Conventionally, as a countermeasure against such an electrostatic pulse, a method of providing a countermeasure component between a line where static electricity enters and a ground has been taken, but in recent years, the transmission speed of a signal line has been increased to several hundred Mbps or more. In the case where the stray capacitance of the countermeasure component described above is large, the signal quality is inferior, so the smaller one is preferable. Therefore, a countermeasure component having a low capacitance of 1 pF or less is required at a transmission speed of several hundred Mbps or more. It will become.

このような高速伝送ラインでの静電気対策として、従来においては複数の信号端子とグランド端子を有する集積回路を静電気から保護するために複数の静電気対策部品を使用していた。ここで集積回路の信号端子とグランド端子の順序および間隔に対応させて実装効率を高めるために、複数の静電気対策部品を1個のチップ部品で提供することへの要望が高まってきている。   As a countermeasure against static electricity in such a high-speed transmission line, conventionally, a plurality of antistatic parts have been used to protect an integrated circuit having a plurality of signal terminals and a ground terminal from static electricity. Here, in order to increase the mounting efficiency in accordance with the order and interval between the signal terminal and the ground terminal of the integrated circuit, there is an increasing demand for providing a plurality of antistatic components with one chip component.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2000−188368号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP 2000-188368 A

特許文献1に記載の従来の静電気対策部品においては、図10に示すように、集積回路のグランド端子に接続される共通電極1と、集積回路の複数の信号端子に接続される複数の上面電極2が、ギャップ3を隔てて絶縁基板4の上面に形成され、そして前記複数の上面電極2間の空間と、前記複数の上面電極2と前記共通電極1との間のギャップ3の両方を充填するように過電圧保護材料層5が形成されているものである。   In the conventional antistatic component described in Patent Document 1, as shown in FIG. 10, a common electrode 1 connected to a ground terminal of an integrated circuit and a plurality of upper surface electrodes connected to a plurality of signal terminals of the integrated circuit. 2 is formed on the upper surface of the insulating substrate 4 with a gap 3 therebetween, and fills both the space between the plurality of upper surface electrodes 2 and the gap 3 between the plurality of upper surface electrodes 2 and the common electrode 1. Thus, the overvoltage protection material layer 5 is formed.

上記した複数の上面電極2と共通電極1との間のギャップ3に過電圧保護材料層5を充填するタイプの静電気対策部品における特性発現のメカニズムは、複数の上面電極2と共通電極1との間のギャップ3に静電気による過電圧が印加された際に、複数の上面電極2と共通電極1との間のギャップ3に充填された過電圧保護材料層5中に散在する導電粒子間あるいは半導体粒子間に放電電流のようなものが流れ、それを電流としてグランド端子にバイパスさせるというものである。特許文献1に記載の従来の静電気対策部品では、複数の上面電極2間の空間を充填するように過電圧保護材料層5が形成されているため、隣接する信号端子の間においてクロストークが発生しやすくなり、また、アルミナからなる絶縁基板4と保護樹脂層との接合面積が小さいため、保護樹脂層の密着力が不足し信頼性が不十分なものであった。さらに、過電圧保護材料層5の使用量が多くなるため、コストダウンが困難であるという課題も有していた。   The characteristic manifestation mechanism in the static electricity countermeasure component of the type in which the gap 3 between the plurality of upper surface electrodes 2 and the common electrode 1 is filled with the overvoltage protection material layer 5 is the relationship between the plurality of upper surface electrodes 2 and the common electrode 1. When an overvoltage due to static electricity is applied to the gap 3, between the conductive particles or the semiconductor particles scattered in the overvoltage protection material layer 5 filled in the gap 3 between the plurality of upper surface electrodes 2 and the common electrode 1. Something like discharge current flows, and it is bypassed as a current to the ground terminal. In the conventional antistatic component described in Patent Document 1, since the overvoltage protective material layer 5 is formed so as to fill the space between the plurality of upper surface electrodes 2, crosstalk occurs between adjacent signal terminals. In addition, since the bonding area between the insulating substrate 4 made of alumina and the protective resin layer is small, the adhesion of the protective resin layer is insufficient and the reliability is insufficient. Furthermore, since the usage amount of the overvoltage protection material layer 5 is increased, there is a problem that it is difficult to reduce the cost.

本発明は上記従来の課題を解決するもので、隣接する信号端子間でのクロストークの影響が少なく、信頼性に優れた複数回路用多端子タイプの静電気対策部品およびその製造方法を提供することを目的とするものである。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and provides a multi-terminal type multi-terminal type anti-static component for multiple circuits that is less affected by crosstalk between adjacent signal terminals and excellent in reliability, and a method for manufacturing the same. It is intended.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、絶縁基板の上面の長辺側両端部に形成された複数対の上面電極と、この複数対の上面電極と電気的に接続されるように前記絶縁基板の端面に形成された端面電極と、前記絶縁基板の上面の短辺側両端部から中央部にかけて形成された上面グランド電極と、この上面グランド電極と電気的に接続されるように絶縁基板の端面に形成された一対の端面グランド電極と、前記複数対の上面電極のいずれか一方と前記上面グランド電極との間に形成されたギャップと、このギャップを充填する過電圧保護材料層と、この過電圧保護材料層を完全に覆う上面保護樹脂層とを備え、前記過電圧保護材料層を前記複数の上面電極毎に独立するように形成したもので、この構成によれば、前記過電圧保護材料層を前記複数の上面電極毎に独立するように形成しているため、集電回路の複数の信号端子に複数の上面電極が接続された場合に隣接する信号端子間でクロストークの影響が生じることは少なくなり、これにより、高周波回路においても信号品質の確保が確実で動作の安定した複数回路用多端子タイプの静電気対策部品が得られるものである。また、従来のように過電圧保護材料層を複数の上面電極間を充填するように形成する場合に比べて、絶縁基板と上面保護樹脂層とが接する面積が広くなるため、絶縁基板と上面保護樹脂層との密着力が高まり、これにより、静電気対策部品の信頼性が向上するという作用効果が得られるものである。   According to a first aspect of the present invention, there is provided a plurality of pairs of upper surface electrodes formed at both ends of the long side of the upper surface of the insulating substrate, and the insulation so as to be electrically connected to the plurality of pairs of upper surface electrodes. An end surface electrode formed on the end surface of the substrate, an upper surface ground electrode formed from both ends of the short side of the upper surface of the insulating substrate to the center, and an insulating substrate so as to be electrically connected to the upper surface ground electrode A pair of end surface ground electrodes formed on the end surface; a gap formed between one of the plurality of pairs of upper surface electrodes and the upper surface ground electrode; an overvoltage protection material layer filling the gap; and the overvoltage An upper surface protective resin layer that completely covers the protective material layer, and the overvoltage protective material layer is formed so as to be independent for each of the plurality of upper surface electrodes. According to this configuration, the overvoltage protective material layer is plural Since each surface electrode is formed so as to be independent, when a plurality of upper surface electrodes are connected to a plurality of signal terminals of the current collecting circuit, the influence of crosstalk between adjacent signal terminals is reduced. As a result, it is possible to obtain a multi-terminal type anti-static component for multiple circuits that ensures signal quality even in a high-frequency circuit and has stable operation. In addition, since the area where the insulating substrate and the upper surface protective resin layer are in contact with each other is larger than the conventional case where the overvoltage protective material layer is formed so as to fill between the plurality of upper surface electrodes, the insulating substrate and the upper surface protective resin Adhesive strength with the layer is increased, and thereby, the effect of improving the reliability of the anti-static component can be obtained.

本発明の請求項2に記載の発明は、絶縁基板の上面に金を主成分とする導体を形成する工程と、前記絶縁基板の上面の長辺側両端部に位置する複数対の上面電極およびこの複数対の上面電極のいずれか一方とギャップを隔てて対向し前記絶縁基板の上面の短辺側両端部から中央部にかけて位置する上面グランド電極を形成するために前記導体の不要部分を除去する工程と、前記ギャップを充填する過電圧保護材料層を前記複数の上面電極毎に独立するように形成する工程と、この過電圧保護材料層を完全に覆うように上面保護樹脂層を形成する工程と、前記複数対の上面電極と電気的に接続されるように前記絶縁基板の端面に端面電極を形成する工程と、前記上面グランド電極と電気的に接続されるように前記絶縁基板の端面に端面グランド電極を形成する工程とを備えたもので、この製造方法によれば、前記複数対の上面電極のいずれか一方と上面グランド電極との間に形成されるギャップを充填する過電圧保護材料層を前記複数の上面電極毎に独立するように形成しているため、集積回路の複数の信号端子に複数の上面電極が接続された場合に隣接する信号端子間でクロストークの影響が生じることは少なくなり、これにより、高周波回路においても信号品質の確保が確実で動作の安定した多端子タイプの静電気対策部品が得られるものである。また、従来のように過電圧保護材料層を複数の上面電極間を充填するように形成する場合に比べて、絶縁基板と上面保護樹脂層とが接する面積が広くなるため、絶縁基板と上面保護樹脂層との密着力が高まり、これにより、静電気対策部品の信頼性が向上するという作用効果が得られるものである。   According to a second aspect of the present invention, there is provided a step of forming a conductor mainly composed of gold on an upper surface of an insulating substrate, a plurality of pairs of upper surface electrodes located at both ends of the long side of the upper surface of the insulating substrate, and An unnecessary portion of the conductor is removed in order to form an upper surface ground electrode facing either one of the plurality of pairs of upper surface electrodes with a gap therebetween and positioned from both ends of the short side of the upper surface of the insulating substrate to the center. Forming an overvoltage protection material layer filling the gap so as to be independent for each of the plurality of upper surface electrodes, and forming an upper surface protection resin layer so as to completely cover the overvoltage protection material layer; Forming an end face electrode on the end face of the insulating substrate to be electrically connected to the plurality of pairs of upper face electrodes; and an end face ground to the end face of the insulating substrate to be electrically connected to the upper face ground electrode. Forming an electrode, and according to this manufacturing method, the overvoltage protection material layer filling a gap formed between any one of the plurality of pairs of upper surface electrodes and the upper surface ground electrode is provided. Since it is formed so as to be independent for each of the plurality of upper surface electrodes, when the plurality of upper surface electrodes are connected to the plurality of signal terminals of the integrated circuit, the influence of crosstalk between adjacent signal terminals is reduced. As a result, it is possible to obtain a multi-terminal type anti-static component that ensures signal quality and stable operation even in a high-frequency circuit. In addition, since the area where the insulating substrate and the upper surface protective resin layer are in contact with each other is larger than the conventional case where the overvoltage protective material layer is formed so as to fill between the plurality of upper surface electrodes, the insulating substrate and the upper surface protective resin Adhesive strength with the layer is increased, and thereby, the effect of improving the reliability of the anti-static component can be obtained.

以上のように本発明の静電気対策部品は、過電圧保護材料層を複数の上面電極毎に独立するように形成しているため、集積回路の複数の信号端子に複数の上面電極が接続された場合に隣接する信号端子間でクロストークの影響が生じることは少なくなり、これにより、高周波回路においても信号品質の確保が確実で動作の安定した複数回路用多端子タイプの静電気対策部品が得られ、また、従来のように過電圧保護材料層を複数の上面電極間を充填するように形成する場合に比べて、絶縁基板と上面保護樹脂層とが接する面積が広くなるため、絶縁基板と上面保護樹脂層との密着力が高まり、これにより、静電気対策部品の信頼性が向上するという優れた効果を奏するものである。   As described above, since the anti-static component of the present invention has the overvoltage protection material layer formed independently for each of the plurality of upper surface electrodes, when the plurality of upper surface electrodes are connected to the plurality of signal terminals of the integrated circuit. This reduces the effects of crosstalk between adjacent signal terminals, and as a result, it is possible to obtain a multi-terminal type anti-static component for multiple circuits with reliable signal quality and stable operation even in high-frequency circuits. In addition, since the area where the insulating substrate and the upper surface protective resin layer are in contact with each other is larger than the conventional case where the overvoltage protective material layer is formed so as to fill between the plurality of upper surface electrodes, the insulating substrate and the upper surface protective resin are increased. Adhesive strength with the layer is increased, and thereby, an excellent effect of improving the reliability of the anti-static component is achieved.

(実施の形態1)
以下、本発明の実施の形態1における静電気対策部品の製造方法について、図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the manufacturing method of the static electricity countermeasure component in Embodiment 1 of this invention is demonstrated, referring drawings.

図1(a)〜(c)、図2(a)〜(c)、図3(a)、(b)および図4は本発明の実施の形態1における静電気対策部品の製造方法を示す製造工程図である。なお、図1(a)〜(c)、図2(a)〜(c)および図3(a)、(b)では、複数回路用多端子タイプの静電気対策部品の仕掛かり品の個片領域における上面図あるいは裏面図を示しているが、実際の製造工程においては、個片領域が縦横に複数個連なったシート状の絶縁基板を用いて製造されるものである。   1 (a) to 1 (c), 2 (a) to (c), 3 (a), 3 (b), and 4 show the manufacturing method of the antistatic component according to Embodiment 1 of the present invention. It is process drawing. In FIGS. 1A to 1C, FIGS. 2A to 3C, and FIGS. 3A and 3B, pieces of work-in-progress of multi-terminal type antistatic parts for multiple circuits. Although a top view or a back view of the region is shown, in an actual manufacturing process, the region is manufactured using a sheet-like insulating substrate in which a plurality of individual regions are connected vertically and horizontally.

まず、図1(a)に示すように、アルミナ等の誘電率が50以下、好ましくは10以下の低誘電率材料を900℃〜1600℃で焼成することにより得られる絶縁基板11の上面に、金レジネートペーストからなる導体12をスクリーン印刷して焼成する。この焼成により、導体12の焼成後の厚みは0.2μm〜2.0μmと薄く形成されるため、後述する絶縁基板11のダイシング工程においては、電極を形成する金属にバリは発生しにくく、安定した寸法形状が得られるものである。   First, as shown in FIG. 1A, on the upper surface of the insulating substrate 11 obtained by firing a low dielectric constant material such as alumina at a temperature of 900 ° C. to 1600 ° C., which is 50 or less, preferably 10 or less, A conductor 12 made of a gold resinate paste is screen-printed and fired. Due to this firing, the thickness of the conductor 12 after firing is as thin as 0.2 μm to 2.0 μm. Therefore, in the dicing process of the insulating substrate 11 to be described later, it is difficult for burrs to occur in the metal forming the electrode, and stable. Dimensional shape can be obtained.

次に、図1(b)に示すように、絶縁基板11の裏面に銀ペースト、銀パラジウムペースト等をスクリーン印刷して焼成することにより、複数の裏面電極13および裏面グランド電極14を形成する。この裏面電極13および裏面グランド電極14は、静電気対策部品を回路基板の配線パターン上に実装する際に、静電気対策部品の裏面にもはんだが浸入して安定した状態で実装できる効果を狙って形成するものであり、後述する端面電極および端面グランド電極が絶縁基板11の裏面と接する部分まで回路基板の配線パターン形状に対応して形成されていれば、裏面電極13および裏面グランド電極14は必ずしも形成する必要がないものである。   Next, as shown in FIG. 1B, a plurality of back electrodes 13 and back ground electrodes 14 are formed by screen printing silver paste, silver palladium paste or the like on the back surface of the insulating substrate 11 and baking it. The back electrode 13 and the back ground electrode 14 are formed for the purpose of mounting the antistatic component on the wiring pattern of the circuit board in such a manner that solder can enter the stable surface of the antistatic component. If the end face electrode and the end face ground electrode, which will be described later, are formed corresponding to the wiring pattern shape of the circuit board up to the portion in contact with the back face of the insulating substrate 11, the back face electrode 13 and the back face ground electrode 14 are not necessarily formed. There is no need to do it.

なお、前記裏面電極13および裏面グランド電極14の形成方法は、銀ペースト、銀パラジウムペースト等をスクリーン印刷して焼成する方法に限定されるものではなく、金レジネートペースト等の金を主成分とする材料を印刷して焼成することにより形成しても良いものである。ここで、金を主成分とする材料を用いて裏面電極13および裏面グランド電極14を形成した場合は、金のはんだ食われ対策として裏面電極13および裏面グランド電極14の上面に硬化用樹脂と銀の混合物ペーストからなる再裏面電極を形成するものである。   In addition, the formation method of the said back surface electrode 13 and the back surface ground electrode 14 is not limited to the method of screen-printing and baking a silver paste, a silver palladium paste, etc., and gold, such as a gold resinate paste, is the main component. It may be formed by printing and firing the material. Here, when the back electrode 13 and the back ground electrode 14 are formed using a material containing gold as a main component, a curing resin and silver are formed on the top surfaces of the back electrode 13 and the back ground electrode 14 as a measure against gold solder erosion. A re-back electrode made of the mixture paste is formed.

次に、図1(c)に示すように、絶縁基板11の上面に感光性のレジスト15を塗布し、このレジスト15をマスクパターン(図示せず)を通して露光し、この露光されたレジスト15の不要部分を現像して除去することにより、レジスト15に上面グランド電極および複数対の上面電極となるパターンを形成する。   Next, as shown in FIG. 1C, a photosensitive resist 15 is applied to the upper surface of the insulating substrate 11, the resist 15 is exposed through a mask pattern (not shown), and the exposed resist 15 is exposed. Unnecessary portions are developed and removed, thereby forming a pattern on the resist 15 to be the upper surface ground electrode and a plurality of pairs of upper surface electrodes.

次に、図2(a)(b)に示すように、レジスト15で一対の上面グランド電極および複数対の上面電極となるパターンを形成した絶縁基板11にエッチング処理を施して導体12の不要部分を除去することにより、絶縁基板11の上面のいずれか一方(短辺側)の両端部から中央部にかけて位置する上面グランド電極16と、絶縁基板11のいずれか他方(長辺側)の両端部に複数対の上面電極17と、この複数対の上面電極17のいずれか一方と上面グランド電極16との間に設けられる幅約10μmのギャップ18を形成する。ここで、裏面電極13および裏面グランド電極14を構成する材料がエッチング液で腐食されやすい材料の場合は、裏面電極13および裏面グランド電極14の腐食を抑制するために、エッチングを行う前に絶縁基板11の裏面をレジスト等を用いてマスキングしておく必要がある。   Next, as shown in FIGS. 2A and 2B, an etching process is performed on the insulating substrate 11 on which a pattern to be a pair of upper surface ground electrodes and a plurality of pairs of upper surface electrodes is formed with a resist 15, and unnecessary portions of the conductor 12 are formed. Is removed, and the upper surface ground electrode 16 located from both ends (short side) of the upper surface of the insulating substrate 11 to the center portion and both ends of the other (long side) of the insulating substrate 11 are removed. A plurality of pairs of upper surface electrodes 17 and a gap 18 having a width of about 10 μm provided between one of the plurality of pairs of upper surface electrodes 17 and the upper surface ground electrode 16 are formed. Here, in the case where the material constituting the back electrode 13 and the back ground electrode 14 is a material that is easily corroded by the etching solution, in order to suppress corrosion of the back electrode 13 and the back ground electrode 14, an insulating substrate is used before etching. It is necessary to mask the back surface of 11 using a resist or the like.

次に、図2(c)に示すように、上面グランド電極16および上面電極17の一部を覆い、かつ絶縁基板11の端面(シート状の絶縁基板における一次分割ラインと二次分割ライン)を覆わないように、樹脂と銀の混合物ペーストからなる再上面電極19をスクリーン印刷法を用いて3μm〜20μmの厚みで印刷し、かつ100℃〜200℃で5分〜15分間乾燥させることにより再上面電極19を形成する。この再上面電極19は、金を主成分とする材料からなる上面グランド電極16および上面電極17のはんだ食われ対策として形成するものである。   Next, as shown in FIG. 2C, the upper surface ground electrode 16 and the upper surface electrode 17 are partially covered, and the end surfaces of the insulating substrate 11 (primary dividing lines and secondary dividing lines in the sheet-like insulating substrate) are covered. In order not to cover, the re-upper surface electrode 19 made of a resin and silver mixture paste is printed with a thickness of 3 μm to 20 μm using a screen printing method and dried at 100 ° C. to 200 ° C. for 5 to 15 minutes. A top electrode 19 is formed. The re-upper surface electrode 19 is formed as a measure against solder erosion of the upper surface ground electrode 16 and the upper surface electrode 17 made of a material mainly composed of gold.

次に、図3(a)に示すように、絶縁基板11の上面にギャップ18(図示せず)、上面電極17および上面グランド電極16を覆うように過電圧保護材料ペーストをスクリーン印刷法を用いて5μm〜50μmの厚みで印刷し、かつ150℃〜200℃で5分〜15分間乾燥させることにより過電圧保護材料層20を複数の上面電極17毎に独立するように形成する。この過電圧保護材料層20を構成する過電圧保護材料ペーストは、平均粒径が0.3μm〜10μmで球状のNi,Al,Ag,Pd,Cuの少なくとも一種類からなる金属粉とメチルシリコーン等のシリコーン系樹脂の混合物に適当な有機溶剤を加え、これらを3本ロールミルにより混練して分散させることにより作製するものである。なお、ここで絶縁粒子とメチルシリコーンからなる中間層間ペーストをスクリーン印刷法を用いてギャップ18の上部に位置する過電圧保護材料層20とほぼ同じ大きさで、過電圧保護材料層20を完全に覆うように印刷して乾燥させることにより、中間層を形成しても良いものである。過電圧保護材料層20と中間層の乾燥後の厚みの和は、静電気耐量が所望の条件を満たすように30μm以上とするのが好ましい。   Next, as shown in FIG. 3A, an overvoltage protective material paste is applied to the upper surface of the insulating substrate 11 by screen printing so as to cover the gap 18 (not shown), the upper surface electrode 17 and the upper surface ground electrode 16. The overvoltage protection material layer 20 is formed independently for each of the plurality of upper surface electrodes 17 by printing at a thickness of 5 μm to 50 μm and drying at 150 ° C. to 200 ° C. for 5 minutes to 15 minutes. The overvoltage protection material paste constituting the overvoltage protection material layer 20 is made of a metal powder composed of at least one kind of spherical Ni, Al, Ag, Pd, and Cu having an average particle diameter of 0.3 μm to 10 μm and silicone such as methylsilicone. An appropriate organic solvent is added to the mixture of the resin, and these are kneaded and dispersed by a three-roll mill. Here, an intermediate interlayer paste made of insulating particles and methylsilicone is approximately the same size as the overvoltage protection material layer 20 located above the gap 18 by screen printing so as to completely cover the overvoltage protection material layer 20. The intermediate layer may be formed by printing on and drying. The sum of the thicknesses of the overvoltage protective material layer 20 and the intermediate layer after drying is preferably 30 μm or more so that the electrostatic resistance can satisfy a desired condition.

次に、図3(b)に示すように、前記上面グランド電極16と過電圧保護材料層20とを完全に覆い、かつ絶縁基板11の端部に上面グランド電極16、上面電極17および再上面電極19の一部が残った状態となるように、エポキシ樹脂、フェノール樹脂等からなる保護樹脂ペーストをスクリーン印刷法を用いて印刷し、かつ100℃〜150℃で5分〜15分間乾燥させ、その後、150℃〜200℃で15分〜60分間硬化させることにより、上面保護樹脂層21を形成する。この上面保護樹脂層21は絶縁基板11の上面に形成された機能素子を保護するだけでなく、絶縁基板11との密着性があまり良くない過電圧保護材料層20の密着力を高めて安定な特性が得られるようにする役割を担うものである。そして前記過電圧保護材料層20の上部に位置する上面保護樹脂層21の乾燥後の厚みは15μm〜35μmとなるようにする。なお、ここでは、図3(a)(b)に示すように、上面保護樹脂層21の上面で上面グランド電極16と上面電極17の隙間部(過電圧保護材料層20が形成されていない部分)に対応する位置に、捺印樹脂層22を印刷して形成しても良いものである。この捺印樹脂層22を形成すれば、絶縁基板11の上面において過電圧保護材料層20の部分が盛り上がっていたのを平滑にすることができるため、静電気対策部品を実装ノズルに吸着した際には傾きにくくなって安定した状態で実装できるという効果が得られるものである。また、捺印樹脂層22を上面保護樹脂層21と異なる色で形成すれば、静電気対策部品において上面電極17の方向を容易に判別することができるため、検査工程の合理化が図れるものである。   Next, as shown in FIG. 3B, the upper surface ground electrode 16 and the overvoltage protection material layer 20 are completely covered, and the upper surface ground electrode 16, the upper surface electrode 17, and the upper surface electrode are formed at the end of the insulating substrate 11. A protective resin paste made of epoxy resin, phenol resin or the like is printed using a screen printing method so that a part of 19 remains, and is dried at 100 to 150 ° C. for 5 to 15 minutes, and then The upper surface protective resin layer 21 is formed by curing at 150 to 200 ° C. for 15 to 60 minutes. This upper surface protective resin layer 21 not only protects the functional element formed on the upper surface of the insulating substrate 11, but also enhances the adhesion of the overvoltage protection material layer 20 that has poor adhesion to the insulating substrate 11, and has stable characteristics. It plays a role to be able to obtain. And the thickness after drying of the upper surface protection resin layer 21 located in the upper part of the said overvoltage protection material layer 20 shall be 15 micrometers-35 micrometers. Here, as shown in FIGS. 3A and 3B, the gap between the upper surface ground electrode 16 and the upper surface electrode 17 on the upper surface of the upper surface protective resin layer 21 (the portion where the overvoltage protection material layer 20 is not formed). The stamping resin layer 22 may be printed and formed at a position corresponding to. By forming this stamping resin layer 22, it is possible to smooth the bulge of the overvoltage protection material layer 20 on the upper surface of the insulating substrate 11. This makes it difficult to achieve a stable mounting. Further, if the marking resin layer 22 is formed in a color different from that of the upper surface protective resin layer 21, the direction of the upper surface electrode 17 can be easily discriminated in the static electricity countermeasure component, so that the inspection process can be rationalized.

次に、図4に示すように、シート状の絶縁基板11をダイシング工法を用いて個片状に分割した後に、硬化用樹脂と銀を主成分とする導電性ペーストを塗布して乾燥硬化させることにより、上面グランド電極16および裏面グランド電極14(図示せず)と電気的に接続される端面グランド電極23を形成し、その後、硬化用樹脂と銀を主成分とする導電性ペーストを塗布して乾燥硬化させることにより、上面電極17および裏面電極13(図示せず)と電気的に接続される端面電極24(図示せず)を形成する。さらに、ベレルメッキ法を用いて上面グランド電極16、上面電極17、再上面電極19、端面グランド電極23および端面電極24を覆うようにニッケルめっき層(図示せず)と、このニッケルめっき層(図示せず)を覆う錫めっき層(図示せず)を形成した後、完成品検査を経て本発明の実施の形態1における静電気対策部品を得ることができるものである。   Next, as shown in FIG. 4, after the sheet-like insulating substrate 11 is divided into individual pieces using a dicing method, a conductive paste mainly composed of a curing resin and silver is applied and dried and cured. Thus, an end surface ground electrode 23 electrically connected to the upper surface ground electrode 16 and the back surface ground electrode 14 (not shown) is formed, and then a conductive paste mainly composed of a curing resin and silver is applied. By drying and curing, an end face electrode 24 (not shown) that is electrically connected to the top electrode 17 and the back electrode 13 (not shown) is formed. Further, a nickel plating layer (not shown) and a nickel plating layer (not shown) are formed so as to cover the upper surface ground electrode 16, the upper surface electrode 17, the re-upper surface electrode 19, the end surface ground electrode 23, and the end surface electrode 24 using the bereel plating method. After the formation of a tin plating layer (not shown) that covers the sheet), the antistatic component in Embodiment 1 of the present invention can be obtained through a finished product inspection.

図5は上記した本発明の実施の形態1における静電気対策部品を、集積回路素子25と共に回路基板26上に実装した状態を示した図であり、この図5を用いてその動作原理を説明する。なお、ここでは説明のために、本発明の実施の形態1における静電気対策部品の上面斜視図から上面保護樹脂層21と捺印樹脂層22を省略した図を示している。   FIG. 5 is a diagram showing a state in which the antistatic component in the first embodiment of the present invention described above is mounted on the circuit board 26 together with the integrated circuit element 25, and the operation principle will be described with reference to FIG. . Here, for the sake of explanation, a view in which the top surface protective resin layer 21 and the stamping resin layer 22 are omitted from the top perspective view of the antistatic component in Embodiment 1 of the present invention is shown.

図5から明らかなように、集積回路素子25の通常使用時(定格電圧下)においては、上面電極17と上面グランド電極16との間のギャップ18(図示せず)に存在する過電圧保護材料層20のシリコーン系樹脂が絶縁性を有するため、上面電極17と上面グランド電極16との間は電気的にオープンになり、そのため、集積回路素子25からの信号は回路基板26上に設けられた配線パターン27を通って伝達される。しかしながら、集積回路素子25の少なくとも1つの信号端子28に静電気パルス等の高電圧が印加された場合には、過電圧保護材料層20中のシリコーン系樹脂を介して存在する金属粒子間で放電電流が生じてインピーダンスが著しく減少するため、本発明の実施の形態1における静電気対策部品はその現象を利用して静電気パルス、サージ等の異常電圧を配線パターン27から端面電極24、上面電極17、過電圧保護材料層20、上面グランド電極16、端面グランド電極23を通ってグランド端子29にバイパスさせることにより、集積回路素子25を保護するものである。   As apparent from FIG. 5, when the integrated circuit element 25 is in normal use (under the rated voltage), an overvoltage protection material layer exists in the gap 18 (not shown) between the upper surface electrode 17 and the upper surface ground electrode 16. Since the 20 silicone-based resin is insulative, the upper surface electrode 17 and the upper surface ground electrode 16 are electrically open. Therefore, a signal from the integrated circuit element 25 is a wiring provided on the circuit board 26. It is transmitted through the pattern 27. However, when a high voltage such as an electrostatic pulse is applied to at least one signal terminal 28 of the integrated circuit element 25, a discharge current is generated between the metal particles existing through the silicone resin in the overvoltage protection material layer 20. Since the impedance is remarkably reduced, the antistatic component in the first embodiment of the present invention uses the phenomenon to generate abnormal voltage such as electrostatic pulse and surge from the wiring pattern 27 to the end face electrode 24, the upper surface electrode 17, and the overvoltage protection. By bypassing to the ground terminal 29 through the material layer 20, the upper surface ground electrode 16, and the end surface ground electrode 23, the integrated circuit element 25 is protected.

上記した本発明の実施の形態1における静電気対策部品においては、過電圧保護材料層20を複数の上面電極17毎に独立するように形成しているため、集積回路素子25の複数の信号端子28に複数の上面電極17が接続された場合に隣接する信号端子28間でクロストークの影響が生じることは少なくなり、これにより、高周波回路においても信号品質の確保が確実で動作の安定した複数回路用多端子タイプの静電気対策部品が得られるものである。また、従来のように過電圧保護材料層20を複数の上面電極17間を充填するように形成する場合に比べて、絶縁基板11と上面保護樹脂層21とが接する面積が広くなるため、絶縁基板11と上面保護樹脂層21との密着力が高まり、これにより、静電気対策部品の信頼性が向上するものである。そしてまた、前記絶縁基板11の裏面において複数対の裏面電極13間を接続する裏面配線を設けていないため、複数対の裏面電極13間を接続する裏面配線を設けている場合に比べて、工数ならびに検査工程が削減されることになり、これにより、静電気対策部品を安価に製造できるものである。   In the static electricity countermeasure component in the first embodiment of the present invention described above, the overvoltage protection material layer 20 is formed so as to be independent for each of the plurality of upper surface electrodes 17, so that the plurality of signal terminals 28 of the integrated circuit element 25 are provided. When a plurality of upper surface electrodes 17 are connected, the influence of crosstalk is less likely to occur between adjacent signal terminals 28, thereby ensuring signal quality and ensuring stable operation even in high frequency circuits. Multi-terminal type anti-static parts can be obtained. In addition, since the overvoltage protection material layer 20 is formed so as to fill the space between the plurality of upper surface electrodes 17 as in the prior art, the area where the insulating substrate 11 and the upper surface protective resin layer 21 are in contact with each other is increased. 11 and the upper surface protective resin layer 21 are enhanced, thereby improving the reliability of the anti-static component. In addition, since no back surface wiring for connecting a plurality of pairs of back electrodes 13 is provided on the back surface of the insulating substrate 11, the number of man-hours is compared with the case of providing a back surface wiring for connecting a plurality of pairs of back electrodes 13. As a result, the number of inspection steps can be reduced, which makes it possible to manufacture antistatic parts at low cost.

なお、上記本発明の実施の形態1においては、シート状の絶縁基板を個片状に分割する際に、ダイシング工法を用いた例について説明したが、このダイシング工法に限定されるものではなく、これ以外の方法、例えば、あらかじめ縦横の分割溝を有するシート状の絶縁基板を用いて機能素子を形成し、その後絶縁基板に応力を付加して分割する方法を用いても良いものである。   In the first embodiment of the present invention, the example in which the dicing method is used when the sheet-like insulating substrate is divided into individual pieces has been described, but it is not limited to this dicing method. Other methods, for example, a method in which a functional element is formed in advance using a sheet-like insulating substrate having vertical and horizontal dividing grooves, and then the insulating substrate is divided by applying stress may be used.

(実施の形態2)
以下、本発明の実施の形態2における静電気対策部品の製造方法について、図面を参照しながら説明する。
(Embodiment 2)
Hereinafter, a method for manufacturing an anti-static component in Embodiment 2 of the present invention will be described with reference to the drawings.

図6(a)〜(c)および図7(a)(b)は本発明の実施の形態2における静電気対策部品の製造方法を示す製造工程図であり、以下、この製造方法について説明する。なお、図6(a)〜(c)および図7(a)(b)では、複数回路用多端子タイプの静電気対策部品の仕掛かり品の個片領域における上面図あるいは裏面図を示しているが、実際の製造工程においては、個片領域が縦横に複数個連なったシート状の絶縁基板を用いて製造されるものである。   6 (a) to 6 (c) and FIGS. 7 (a) and 7 (b) are manufacturing process diagrams showing a manufacturing method of the antistatic component in the second embodiment of the present invention, and this manufacturing method will be described below. 6 (a) to 6 (c) and FIGS. 7 (a) and 7 (b) show a top view or a back view of a work piece area of a multi-terminal type antistatic component for multiple circuits. However, in an actual manufacturing process, it is manufactured by using a sheet-like insulating substrate in which a plurality of individual regions are arranged vertically and horizontally.

まず、図6(a)に示すように、アルミナ等の誘電率が50以下、好ましくは10以下の低誘電率材料を900℃〜1600℃で焼成することにより得られる絶縁基板41の裏面に銀ペースト、銀パラジウムペースト等をスクリーン印刷して焼成することにより、複数の裏面電極42および裏面グランド電極43を形成する。この裏面電極42および裏面グランド電極43は、静電気対策部品を回路基板の配線パターン上に実装する際に、静電気対策部品の裏面にもはんだが浸入して安定した状態で実装できる効果を狙って形成するものであり、後述する端面電極および端面グランド電極が絶縁基板41の裏面と接する部分まで回路基板の配線パターン形状に対応して形成されていれば、裏面電極42および裏面グランド電極43は必ずしも形成する必要はないものである。   First, as shown in FIG. 6A, silver is formed on the back surface of an insulating substrate 41 obtained by firing a low dielectric constant material such as alumina at a temperature of 900 ° C. to 1600 ° C. at a dielectric constant of 50 or less, preferably 10 or less. A plurality of back surface electrodes 42 and back surface ground electrodes 43 are formed by screen printing and baking paste, silver palladium paste, or the like. The back surface electrode 42 and the back surface ground electrode 43 are formed for the purpose of mounting the antistatic component on the wiring pattern of the circuit board so that the solder can enter the back surface of the antistatic component in a stable state. If the end face electrode and the end face ground electrode, which will be described later, are formed corresponding to the wiring pattern shape of the circuit board up to the portion in contact with the back face of the insulating substrate 41, the back face electrode 42 and the back face ground electrode 43 are not necessarily formed. There is no need to do that.

なお、上記裏面電極42および裏面グランド電極43の形成方法は、銀ペースト、銀パラジウムペースト等をスクリーン印刷して焼成する方法に限定されるものではなく、金レジネートペースト等の金を主成分とする材料を印刷して焼成することにより形成しても良いものである。ここで、金を主成分とする材料を用いて裏面電極42および裏面グランド電極43を形成した場合は、金のはんだ食われ対策として、裏面電極42および裏面グランド電極43の上面に硬化用樹脂と銀の混合物ペーストからなる再裏面電極を形成するものである。   In addition, the formation method of the said back surface electrode 42 and the back surface ground electrode 43 is not limited to the method of screen-printing and baking a silver paste, a silver palladium paste, etc., and gold, such as a gold resinate paste, is the main component. It may be formed by printing and firing the material. Here, when the back surface electrode 42 and the back surface ground electrode 43 are formed using a material mainly composed of gold, a curing resin is applied to the upper surfaces of the back surface electrode 42 and the back surface ground electrode 43 as a countermeasure against the solder erosion of gold. A re-back electrode made of a silver mixture paste is formed.

次に、図6(b)に示すように、絶縁基板41の上面に、金レジネートペーストからなる上面電極44および導体45をスクリーン印刷して焼成する。この焼成により、上面電極44および導体45の焼成後の厚みは0.2μm〜2.0μmと薄く形成されるため、絶縁基板41のダイシング工程においては、電極を形成する金属にバリは発生しにくく、安定した寸法形状が得られるものである。   Next, as shown in FIG. 6B, the upper surface electrode 44 and the conductor 45 made of a gold resinate paste are screen printed on the upper surface of the insulating substrate 41 and fired. Due to this firing, the thickness of the upper electrode 44 and the conductor 45 after firing is as thin as 0.2 μm to 2.0 μm, and therefore, in the dicing process of the insulating substrate 41, burrs are unlikely to occur in the metal forming the electrode. A stable dimensional shape can be obtained.

次に、図6(c)に示すように、導体45の不要部分をUVレーザー等を用いて切断除去することにより、絶縁基板41の上面のいずれか一方(短辺側)の両端部から中央部にかけて位置する上面グランド電極46と、絶縁基板41のいずれか他方(長辺側)の一端部に位置する複数の上面電極44と、この上面電極44と上面グランド電極46との間に設けられる幅約10μmのギャップ47を形成する。なお、このギャップ47の形成方法は、上記したUVレーザーカットに限定されるものではなく、ダイシング等の他の切断手段を用いて形成しても良いものである。   Next, as shown in FIG. 6C, unnecessary portions of the conductor 45 are cut and removed by using a UV laser or the like, so that either one of the upper surfaces (short side) of the insulating substrate 41 is centered from both ends. The upper surface ground electrode 46 located over the upper portion, the plurality of upper surface electrodes 44 located at one end of the other (long side) of the insulating substrate 41, and the upper surface electrode 44 and the upper surface ground electrode 46 are provided. A gap 47 having a width of about 10 μm is formed. In addition, the formation method of this gap 47 is not limited to the above-mentioned UV laser cut, You may form using other cutting means, such as dicing.

次に、図7(a)に示すように、上面電極44および上面グランド電極46の一部を覆い、かつ絶縁基板41の端面(シート状の絶縁基板における一次分割ラインと二次分割ライン)を覆わないように、樹脂と銀の混合物ペーストからなる再上面電極48をスクリーン印刷法を用いて3μm〜20μmの厚みで印刷し、かつ100℃〜200℃で5分〜15分間乾燥させることにより再上面電極48を形成する。この再上面電極48は、金を主成分とする材料からなる上面電極44および上面グランド電極46のはんだ食われ対策として形成するものである。   Next, as shown in FIG. 7A, a part of the upper surface electrode 44 and the upper surface ground electrode 46 are covered, and the end surfaces of the insulating substrate 41 (primary dividing lines and secondary dividing lines in the sheet-like insulating substrate) are covered. In order not to cover, the re-top electrode 48 made of a resin and silver mixture paste is printed by screen printing at a thickness of 3 μm to 20 μm and dried at 100 ° C. to 200 ° C. for 5 minutes to 15 minutes. A top electrode 48 is formed. The re-upper surface electrode 48 is formed as a measure against solder erosion of the upper surface electrode 44 and the upper surface ground electrode 46 made of a material mainly composed of gold.

次に、図7(b)に示すように、絶縁基板41の上面にギャップ47(図示せず)と上面電極44を覆うように過電圧保護材料ペーストをスクリーン印刷法を用いて5μm〜50μmの厚みで印刷し、かつ150℃〜200℃で5分〜15分間乾燥させることにより過電圧保護材料層49を複数の上面電極44毎に独立するように形成する。この過電圧保護材料層49を構成する過電圧保護材料ペーストは、平均粒径が0.3μm〜10μmで球状のNi,Al,Ag,Pd,Cuの少なくとも一種類からなる金属粉とメチルシリコーン等のシリコーン系樹脂の混合物に適当な有機溶剤を加え、これらを3本ロールミルにより混練して分散させることにより作製するものである。なお、ここで絶縁粒子とメチルシリコーンからなる中間層間ペーストをスクリーン印刷法を用いてギャップ47の上部に位置する過電圧保護材料層49とほぼ同じ大きさで、過電圧保護材料層49を完全に覆うように印刷して乾燥させることにより、中間層を形成しても良いものである。過電圧保護材料層49と中間層の乾燥後の厚みの和は、静電気耐量が所望の条件を満たすように30μm以上とするのが好ましい。   Next, as shown in FIG. 7B, an overvoltage protective material paste is applied to the upper surface of the insulating substrate 41 so as to cover the gap 47 (not shown) and the upper surface electrode 44 by using a screen printing method to a thickness of 5 μm to 50 μm. And the overvoltage protection material layer 49 is formed independently for each of the plurality of upper surface electrodes 44 by drying at 150 to 200 ° C. for 5 to 15 minutes. The overvoltage protection material paste constituting the overvoltage protection material layer 49 is made of a metal powder made of at least one kind of spherical Ni, Al, Ag, Pd, and Cu having an average particle diameter of 0.3 μm to 10 μm and silicone such as methylsilicone. An appropriate organic solvent is added to the mixture of the resin, and these are kneaded and dispersed by a three-roll mill. Here, an intermediate interlayer paste made of insulating particles and methylsilicone is almost the same size as the overvoltage protection material layer 49 located above the gap 47 by screen printing so as to completely cover the overvoltage protection material layer 49. The intermediate layer may be formed by printing on and drying. The sum of the thicknesses of the overvoltage protection material layer 49 and the intermediate layer after drying is preferably 30 μm or more so that the electrostatic resistance can satisfy a desired condition.

この後、上面保護樹脂層、捺印樹脂層、端面グランド電極、端面電極、ニッケルめっき層および錫めっき層を形成することにより、本発明の実施の形態2における静電気対策部品を得ることができるが、その工程は本発明の実施の形態1において図3(b)および図4を用いて説明した工程と同様であり、また、その静電気対策部品の動作原理も、本発明の実施の形態1において図5を用いて説明した動作原理と同様であるため、以下の工程ならびに動作原理の説明は省略する。   Thereafter, by forming the upper surface protective resin layer, the marking resin layer, the end surface ground electrode, the end surface electrode, the nickel plating layer, and the tin plating layer, the antistatic component in Embodiment 2 of the present invention can be obtained. The process is the same as the process described with reference to FIGS. 3B and 4 in the first embodiment of the present invention, and the operation principle of the anti-static component is also illustrated in the first embodiment of the present invention. 5 is the same as the operation principle described with reference to FIG.

上記した本発明の実施の形態2における静電気対策部品においては、前述した本発明の実施の形態1において説明した効果に加えて、ギャップ47をUVレーザーを用いて形成しているため、幅約10μmの狭いギャップ47を精度良く形成することができ、これにより、過電圧保護特性の安定した複数回路用多端子タイプの静電気対策部品が得られるものである。   In the above-described antistatic component in the second embodiment of the present invention, in addition to the effects described in the first embodiment of the present invention, the gap 47 is formed by using a UV laser, so that the width is about 10 μm. Narrow gap 47 can be formed with high accuracy, and a multi-terminal type antistatic component for multiple circuits having stable overvoltage protection characteristics can be obtained.

なお、上記本発明の実施の形態2においては、絶縁基板41の長辺側において上面電極44の間隔が一定である例について説明したが、図8に示すように上面電極44の間隔を中央で広く取るようにしても良いものである。この図8において、44aおよび44bは第1のデータライン、44cおよび44dは第2のデータラインにそれぞれ接続される上面電極であり、この場合、第1のデータライン44a,44bと第2のデータライン44c,44d間のクロストークの影響が最も大きく現れるため、上面電極44bと上面電極44cの間隔を他の間隔よりも広く取ってこの間のクロストークの影響を緩和することが、クロストークの影響を低減して高周波回路においても信号品質の確保が確実で動作の安定した多端子タイプの静電気対策部品を得るのに有効な手段である。   In the second embodiment of the present invention, the example in which the distance between the upper surface electrodes 44 is constant on the long side of the insulating substrate 41 has been described. However, as illustrated in FIG. It may be taken widely. In FIG. 8, 44a and 44b are first data lines, and 44c and 44d are upper surface electrodes connected to the second data lines, respectively. In this case, the first data lines 44a and 44b and the second data are connected. Since the influence of the crosstalk between the lines 44c and 44d appears to be the largest, the influence of the crosstalk can be reduced by setting the distance between the upper surface electrode 44b and the upper surface electrode 44c wider than the other distances to mitigate the influence of the crosstalk between them. This is an effective means for obtaining a multi-terminal type anti-static component that ensures signal quality and ensures stable operation even in a high-frequency circuit.

また、本発明の実施の形態2においては、上面グランド電極46を絶縁基板41の短辺側両端部から中央部にかけて形成し、そしてこの上面グランド電極46の一方の短部と他方の短部が電気的に接続されている例について説明したが、図9に示すように、上面グランド電極46を絶縁基板41の短辺側両端部にそれぞれ独立するように形成しても良いものである。この構成によれば、めっき層形成時において上面グランド電極46に流れる電流と上面電極44に流れる電流との間にばらつきが少なくなり、これにより、上面グランド電極46に形成されるめっき層と上面電極44に形成されるめっき層との間のばらつきが少なくなり、安定した寸法形状が得られるものである。   In the second embodiment of the present invention, the upper surface ground electrode 46 is formed from both ends of the short side of the insulating substrate 41 to the center, and one short portion and the other short portion of the upper surface ground electrode 46 are formed. Although an example of electrical connection has been described, as shown in FIG. 9, the upper surface ground electrode 46 may be formed independently at both ends of the short side of the insulating substrate 41. According to this configuration, there is less variation between the current flowing through the upper surface ground electrode 46 and the current flowing through the upper surface electrode 44 when the plating layer is formed, whereby the plating layer and the upper surface electrode formed on the upper surface ground electrode 46 are reduced. The variation between the plating layer and the plating layer formed on 44 is reduced, and a stable dimensional shape can be obtained.

そしてまた、本発明の実施の形態2においては、絶縁基板41の上面の短辺側両端部から中央部にかけて上面グランド電極46を配置し、かつ絶縁基板41の上面の長辺側両端部に複数対の上面電極44を配置した例について説明したが、この配置を逆にして、絶縁基板41の上面の長辺側両端部から中央部にかけて上面グランド電極46を配置し、かつ絶縁基板41の上面の短辺側両端部に複数対の上面電極44を配置しても良いものである。この構成によれば、上面グランド電極46の面積を広くとることができるため、極めて高電圧の静電気が印加されて上面グランド電極46に大電流が流れる可能性のある回路に適用することができるものである。   Further, in the second embodiment of the present invention, the upper surface ground electrode 46 is arranged from both ends of the short side of the upper surface of the insulating substrate 41 to the center portion, and a plurality of both are provided at both ends of the long side of the upper surface of the insulating substrate 41. The example in which the pair of upper surface electrodes 44 are arranged has been described. However, this arrangement is reversed, and the upper surface ground electrode 46 is arranged from both ends of the upper side of the upper surface of the insulating substrate 41 to the center, and the upper surface of the insulating substrate 41 is arranged. A plurality of pairs of upper surface electrodes 44 may be disposed at both ends of the short side. According to this configuration, since the area of the upper surface ground electrode 46 can be increased, it can be applied to a circuit in which a very high voltage static electricity is applied and a large current may flow through the upper surface ground electrode 46. It is.

本発明に係る静電気対策部品は、過電圧保護材料層を複数の上面電極毎に独立するように形成しているため、集積回路素子の複数の信号端子に複数の上面電極が接続された場合に隣接する信号端子間でクロストークの影響が生じることは少なくなるという効果を有するものであり、特に集積回路素子を静電気から保護する複数回路用多端子タイプの静電気対策部品に適用することにより有用となるものである。   In the anti-static component according to the present invention, since the overvoltage protection material layer is formed so as to be independent for each of the plurality of upper surface electrodes, it is adjacent when the plurality of upper surface electrodes are connected to the plurality of signal terminals of the integrated circuit element. This has the effect of reducing the influence of crosstalk between signal terminals to be used, and is particularly useful when applied to a multi-terminal type antistatic component for multiple circuits that protects an integrated circuit element from static electricity. Is.

(a)〜(c)本発明の実施の形態1における静電気対策部品の製造方法を示す製造工程図(A)-(c) Manufacturing process figure which shows the manufacturing method of the antistatic component in Embodiment 1 of this invention (a)〜(c)同静電気対策部品の製造方法を示す製造工程図(A)-(c) Manufacturing process drawing which shows the manufacturing method of the static electricity countermeasure components (a)(b)同静電気対策部品の製造方法を示す製造工程図(A) (b) Manufacturing process diagram showing the manufacturing method of the static electricity countermeasure component 同静電気対策部品の製造方法を示す製造工程図Manufacturing process diagram showing the manufacturing method of the anti-static component 同静電気対策部品の動作原理を示す図Diagram showing the operating principle of the anti-static component (a)〜(c)本発明の実施の形態2における静電気対策部品の製造方法を示す製造工程図(A)-(c) Manufacturing process figure which shows the manufacturing method of the antistatic component in Embodiment 2 of this invention (a)(b)同静電気対策部品の製造方法を示す製造工程図(A) (b) Manufacturing process diagram showing the manufacturing method of the static electricity countermeasure component 本発明の静電気対策部品の他の実施の形態を示す図The figure which shows other embodiment of the antistatic component of this invention 同静電気対策部品の他の実施の形態を示す図The figure which shows other embodiment of the electrostatic countermeasure component 従来の静電気対策部品の仕掛かり品の上面図Top view of work-in-process for conventional anti-static parts

符号の説明Explanation of symbols

11 絶縁基板
12 導体
16 上面グランド電極
17 上面電極
18 ギャップ
20 過電圧保護材料層
21 上面保護樹脂層
23 端面グランド電極
24 端面電極
41 絶縁基板
44 上面電極
44a〜44d 上面電極
45 導体
46 上面グランド電極
47 ギャップ
49 過電圧保護材料層
DESCRIPTION OF SYMBOLS 11 Insulating substrate 12 Conductor 16 Upper surface ground electrode 17 Upper surface electrode 18 Gap 20 Overvoltage protection material layer 21 Upper surface protective resin layer 23 End surface ground electrode 24 End surface electrode 41 Insulating substrate 44 Upper surface electrode 44a-44d Upper surface electrode 45 Conductor 46 Upper surface ground electrode 47 Gap 49 Overvoltage protection material layer

Claims (2)

絶縁基板の上面の長辺側両端部に形成された複数対の上面電極と、この複数対の上面電極と電気的に接続されるように前記絶縁基板の端面に形成された端面電極と、前記絶縁基板の上面の短辺側両端部から中央部にかけて形成された上面グランド電極と、この上面グランド電極と電気的に接続されるように絶縁基板の端面に形成された一対の端面グランド電極と、前記複数対の上面電極のいずれか一方と前記上面グランド電極との間に形成されたギャップと、このギャップを充填する過電圧保護材料層と、この過電圧保護材料層を完全に覆う上面保護樹脂層とを備え、前記過電圧保護材料層を前記複数の上面電極毎に独立するように形成した静電気対策部品。 A plurality of pairs of upper surface electrodes formed at both ends of the long side of the upper surface of the insulating substrate; end surface electrodes formed on the end surface of the insulating substrate so as to be electrically connected to the plurality of pairs of upper surface electrodes; An upper surface ground electrode formed from both ends on the short side of the upper surface of the insulating substrate to the center, and a pair of end surface ground electrodes formed on the end surface of the insulating substrate so as to be electrically connected to the upper surface ground electrode; A gap formed between any one of the plurality of pairs of upper surface electrodes and the upper surface ground electrode, an overvoltage protection material layer filling the gap, and an upper surface protection resin layer completely covering the overvoltage protection material layer And the overvoltage protection material layer is formed so as to be independent for each of the plurality of upper surface electrodes. 絶縁基板の上面に金を主成分とする導体を形成する工程と、前記絶縁基板の上面の長辺側両端部に位置する複数対の上面電極およびこの複数対の上面電極のいずれか一方とギャップを隔てて対向し前記絶縁基板の上面の短辺側両端部から中央部にかけて位置する上面グランド電極を形成するために前記導体の不要部分を除去する工程と、前記ギャップを充填する過電圧保護材料層を前記複数の上面電極毎に独立するように形成する工程と、この過電圧保護材料層を完全に覆うように上面保護樹脂層を形成する工程と、前記複数対の上面電極と電気的に接続されるように前記絶縁基板の端面に端面電極を形成する工程と、前記上面グランド電極と電気的に接続されるように前記絶縁基板の端面に端面グランド電極を形成する工程とを備えた静電気対策部品の製造方法。 Forming a conductor mainly composed of gold on the upper surface of the insulating substrate; and a gap between any one of the plurality of pairs of upper surface electrodes located at both ends of the long side of the upper surface of the insulating substrate and the plurality of pairs of upper surface electrodes. Removing an unnecessary portion of the conductor to form an upper surface ground electrode opposed to each other across the short side of the upper surface of the insulating substrate from the both ends to the center, and an overvoltage protection material layer filling the gap Are formed so as to be independent for each of the plurality of upper surface electrodes, a step of forming an upper surface protective resin layer so as to completely cover the overvoltage protection material layer, and the plurality of pairs of upper surface electrodes are electrically connected. Forming an end face electrode on the end face of the insulating substrate, and forming an end face ground electrode on the end face of the insulating substrate so as to be electrically connected to the upper surface ground electrode. Method of manufacturing the protection component.
JP2006330198A 2006-12-07 2006-12-07 Antistatic part and its manufacturing method Pending JP2008147271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330198A JP2008147271A (en) 2006-12-07 2006-12-07 Antistatic part and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330198A JP2008147271A (en) 2006-12-07 2006-12-07 Antistatic part and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008147271A true JP2008147271A (en) 2008-06-26

Family

ID=39607143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330198A Pending JP2008147271A (en) 2006-12-07 2006-12-07 Antistatic part and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008147271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016648A1 (en) * 2008-08-06 2010-02-11 (주)넥스트론 Method for manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016648A1 (en) * 2008-08-06 2010-02-11 (주)넥스트론 Method for manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method
KR100975530B1 (en) 2008-08-06 2010-08-12 주식회사 넥스트론 Transient pulse filter manufacturing method using anodic aluminum oxide and the Transient pulse filter
US8129745B2 (en) 2008-08-06 2012-03-06 Nextron Corporation Method of manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method

Similar Documents

Publication Publication Date Title
US6013358A (en) Transient voltage protection device with ceramic substrate
JP4844631B2 (en) Manufacturing method of anti-static parts
JP4697306B2 (en) Static electricity countermeasure parts and manufacturing method thereof
JP5206415B2 (en) Static electricity countermeasure parts and manufacturing method thereof
JP2007037397A (en) Transient voltage suppression device, transient voltage suppression chip device, manufacturing method of transient voltage suppression device, impedance material, and manufacturing method of impedance material
JP2007265713A (en) Static electricity protective material paste and static electricity countermeasure part using it
CN104427749B (en) Printed circuit board
JP2009152348A (en) Electrostatic countermeasure component
JP2009117735A (en) Antistatic component, and manufacturing method thereof
JP2008294325A (en) Electrostatic discharge protection element and method of manufacturing the same
JP2008147271A (en) Antistatic part and its manufacturing method
JP4000633B2 (en) Wiring board manufacturing method
KR20160040956A (en) Multi-terminal electronic component, manufacturing method of the same and board having the same mounted thereon
KR20170141039A (en) Board and manufacturing method thereof
JP2010027636A (en) Electrostatic countermeasure component
JP2008172130A (en) Electrostatic countermeasure component and its manufacturing method
CN101548347A (en) Static electricity resistant component and method for manufacturing the same
JP2009147315A (en) Anti-static component
CN108806902A (en) Chip resistor and plate resistor device assembly
US11830641B2 (en) Chip resistor component
CN110911069B (en) Electronic assembly and method of manufacturing the same
JP2009147129A (en) Wiring board and manufacturing method thereof
KR20170073400A (en) Resistor element and board having the same mounted thereon
JP2009105189A (en) Mounting method of electrostatic countermeasure component
JP4245033B2 (en) Wiring board