JP2008146856A - Substrate for light-emitting device, and its manufacturing method - Google Patents

Substrate for light-emitting device, and its manufacturing method Download PDF

Info

Publication number
JP2008146856A
JP2008146856A JP2006329327A JP2006329327A JP2008146856A JP 2008146856 A JP2008146856 A JP 2008146856A JP 2006329327 A JP2006329327 A JP 2006329327A JP 2006329327 A JP2006329327 A JP 2006329327A JP 2008146856 A JP2008146856 A JP 2008146856A
Authority
JP
Japan
Prior art keywords
substrate
vertices
resin
emitting device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006329327A
Other languages
Japanese (ja)
Inventor
Hidetaka Yakabe
秀隆 矢ヶ部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006329327A priority Critical patent/JP2008146856A/en
Publication of JP2008146856A publication Critical patent/JP2008146856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a light-emitting device with smooth places and regular concaves and convexes formed on the same plane, and to provide its manufacturing method. <P>SOLUTION: The substrate for a light-emitting device has resin with rugged parts and smooth parts on its surface formed on a metal thin plate. Concaves and convexes of the rugged parts are of a curved surface shape, in which, a ratio of a length of the shortest side to that of the longest side out of four sides of an rectangle made by connecting four vertices of adjacent convexes is to be 1.0 to 1.3, when opposing two vertices are connected with straight lines of a rectangle made by linking four vertices of adjacent convexes with straight lines, a ratio of the longer line to the shorter line is to be 1.0 to 2.0, an interval between two opposing vertices of a rectangle made by linking four vertices of adjacent convexes with straight lines is to be 0.1 to 5.0 μm, a height of the ruggedness is to be 0.1 to 6.0 μm, and a displacement of roughness at the smooth parts is to be less than 0.1 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光装置用基板に関するものであり、特に、有機EL、無機EL、LEDを発光源に用いた自発光型の表示装置、例えば、電子ペーパー、フレキシブルディスプレイや照明に利用される発光装置用基板に関するものである。   The present invention relates to a substrate for a light-emitting device, and in particular, a self-luminous display device using an organic EL, an inorganic EL, or an LED as a light-emitting source, such as an electronic paper, a flexible display, or a light-emitting device used for illumination. It is related with the board | substrate.

電子ペーパーやフレキシブルディスプレイに用いられるディスプレイ用基板として、ガラス、プラスチックまたは金属薄板を用いるものが知られている。これらのディスプレイの駆動方式は、導線を格子状に配置した単純マトリクス方式と薄膜トランジスタ(以下TFTと略記する)をスイッチング素子としたアクティブマトリクス方式があり、後者の方がコントラストが高く、反応速度が速い。
このTFTは高い寸法精度で電極材料・絶縁膜・アモルファスシリコン(以下、チャンネル層)を高温で繰り返し積層し、フォトエッチングによりパターニングする。このとき基板と積層膜の熱膨張差が大きい場合、基板が歪みパターンの位置合わせ精度が低下するといった問題があるため基板には低熱膨張性が求められる。
As a display substrate used for electronic paper or a flexible display, a substrate using glass, plastic, or a metal thin plate is known. There are two driving methods for these displays: a simple matrix method in which conductive wires are arranged in a grid pattern and an active matrix method in which thin film transistors (hereinafter abbreviated as TFTs) are used as switching elements. The latter has higher contrast and a faster reaction speed. .
In this TFT, an electrode material, an insulating film, and amorphous silicon (hereinafter referred to as a channel layer) are repeatedly laminated at a high temperature with high dimensional accuracy, and patterned by photoetching. At this time, when the difference in thermal expansion between the substrate and the laminated film is large, there is a problem that the alignment accuracy of the distortion pattern of the substrate is lowered, and thus the substrate is required to have low thermal expansion.

また、基板表面に急峻で大きな凹凸があると、TFTのリーク電流の増加や駆動回路の断線が起こる惧れがあり、従って基板には平滑性が要求される。更に、基板上には駆動回路を形成するため絶縁性を有する必要がある。
これらの低熱膨張性・平滑性・絶縁性を兼ね備えた材料の一つがガラスであり、ディスプレイ用基板として広く普及している。
Further, if there are sharp and large irregularities on the surface of the substrate, there is a risk that the leakage current of the TFT will increase or the drive circuit may be disconnected. Therefore, the substrate is required to have smoothness. Furthermore, in order to form a drive circuit on a board | substrate, it needs to have insulation.
One of these materials having low thermal expansion, smoothness and insulation is glass, which is widely used as a display substrate.

しかし、ディスプレイを携帯する需要が増加し、落下などの衝撃に耐え得る耐衝撃性や薄型・軽量・フレキシブル性が要求されるようになり、ガラスに取って代わるディスプレイ用基板の検討が急務となっており、このような携帯性に優れた基板は、付加的に薄型・軽量・フレキシブル性・耐衝撃性の4つの特性を兼ね備えたものが求められる。
例えばディスプレイ用基板として、本出願人も特開2004−191463号(特許文献1参照)、特開2005−195771号(特許文献2参照)、特開2006−3775号公報(特許文献3参照)や特開2006−243199(特許文献4参照)として、薄型化・軽量化・耐衝撃性・フレキシブル性・低熱膨張特性・絶縁性・耐熱性・平滑性を兼ね備えた薄型ディスプレイ用途に使用される基板を提案した。
また、自発光型表示装置用基板に凹凸を形成して、発光効率等の性能を向上させた公知例として、特開2003−36969号公報(特許文献5参照)がある。
However, as the demand for carrying displays increases, impact resistance, thinness, lightness, and flexibility that can withstand impacts such as dropping are required, and it is an urgent task to examine display substrates that replace glass. Such a substrate having excellent portability is additionally required to have a combination of four characteristics: thin, lightweight, flexible, and impact resistance.
For example, as a display substrate, the present applicant also discloses Japanese Patent Application Laid-Open No. 2004-191463 (see Patent Document 1), Japanese Patent Application Laid-Open No. 2005-195571 (see Patent Document 2), Japanese Patent Application Laid-Open No. 2006-3775 (see Patent Document 3), Japanese Patent Application Laid-Open No. 2006-243199 (see Patent Document 4) describes a substrate used for a thin display that combines thinning, lightening, impact resistance, flexibility, low thermal expansion characteristics, insulation, heat resistance, and smoothness. Proposed.
Japanese Patent Laid-Open No. 2003-36969 (see Patent Document 5) is a known example in which irregularities are formed on a self-luminous display device substrate to improve performance such as luminous efficiency.

特開2004−191463号公報JP 2004-191463 A 特開2005−195771号公報Japanese Patent Laid-Open No. 2005-195771 特開2006−3775号公報JP 2006-3775 A 特開2006−243199号公報JP 2006-243199 A 特開2003−36969号公報JP 2003-36969 A

上述した特許文献1〜4は、ガラス基板では実現不可能な耐衝撃性・フレキシブル性を金属薄板と表面が平滑な樹脂層との組み合わせにより実現している。しかし、特許文献1〜4のディスプレイ用基板を自発光型のディスプレイ用基板として使用する場合、発光量が少なく、輝度が小さいと言った問題がある。
一方、特許文献5は、発光デバイスの基板に凹凸を形成することにより、デバイスの光取出し効率を高めたものである。この方法は、基板に凹凸を形成することで、発光層で発光した光を散乱させて、外部への光取り出し効率を高めている。しかし、この方法も凹凸が尖った形状であり、基板に積層する発光層や電極にピンホールが発生し易いと言った問題があるため、この基板上にさらに平坦化層を形成している。
上述したように、従来の発光装置用基板においては、全面が平滑であるか、或いは全面に凹凸形状が付与されているかの何れかであった。例えば基板上にTFTのチャンネル層部分を形成しようとすると、その個所は平滑であることが望ましく、また、外部への光取り出し効率に加え、発光層の表面積増大による発光量増大や発光量のムラの低減を期待しようとすると、その個所は規則的な凹凸が形成されることが望まれる。
本発明の目的は、同一基板内に、平滑な個所と規則的な凹凸が形成されている発光装置用基板とその製造方法を提供することである。
In Patent Documents 1 to 4 described above, impact resistance and flexibility that cannot be realized with a glass substrate are realized by a combination of a thin metal plate and a resin layer having a smooth surface. However, when the display substrates of Patent Documents 1 to 4 are used as self-luminous display substrates, there is a problem that the amount of light emission is small and the luminance is small.
On the other hand, Patent Document 5 increases the light extraction efficiency of the device by forming irregularities on the substrate of the light emitting device. In this method, unevenness is formed on the substrate, whereby the light emitted from the light emitting layer is scattered to increase the light extraction efficiency to the outside. However, this method also has a shape with sharp irregularities, and there is a problem that pinholes are likely to occur in the light emitting layer and the electrode laminated on the substrate. Therefore, a planarizing layer is further formed on this substrate.
As described above, in the conventional light emitting device substrate, the entire surface is either smooth or the entire surface is provided with an uneven shape. For example, when an attempt is made to form a channel layer portion of a TFT on a substrate, it is desirable that the portion be smooth, and in addition to the light extraction efficiency to the outside, the emission amount increases due to the increase in the surface area of the emission layer and the uneven emission amount. In order to expect a reduction in the thickness, it is desirable that regular irregularities be formed at the location.
The objective of this invention is providing the board | substrate for light-emitting devices in which the smooth part and regular unevenness | corrugation are formed in the same board | substrate, and its manufacturing method.

本発明は上述した問題に鑑みてなされたものである。
即ち本発明は、表面に凹凸部分と平滑部分とを有する樹脂が、金属薄板上に形成された発光装置用基板であって、前記凹凸部分の凹凸は曲面形状であり、且つ、隣り合う凸部の4つの頂点を線で結んだ四角形の4辺の最短長さの辺に対する最長長さの辺の比が1.0〜1.3、隣り合う凸部の4つの頂点を直線で結んだ四角形の対向する2つの頂点同士を直線で結んだ時、2つの直線の長さの短い方の直線に対する長い方の直線の比が1.0〜〜2.0、隣り合う凸部の4つの頂点を直線で結んだ四角形の対向する2つの頂点同士の間隔が0.1〜15.0μm、凹凸高さが0.1〜6.0μm、平滑部分の粗さの変位は0.1μm未満である発光装置用基板である。
The present invention has been made in view of the above-described problems.
That is, the present invention is a light-emitting device substrate in which a resin having a concavo-convex portion and a smooth portion on a surface is formed on a thin metal plate, and the concavo-convex portion of the concavo-convex portion has a curved shape, and adjacent convex portions. The ratio of the longest length side to the shortest length side of the four sides of the quadrilateral that connects the four vertices with lines is 1.0 to 1.3, and the quadrilateral that connects the four vertices of adjacent convex portions with straight lines When two opposing vertices are connected by a straight line, the ratio of the longer straight line to the shorter straight line of the two straight lines is 1.0 to 2.0, and the four vertices of the adjacent convex portions The distance between two opposing vertices of a quadrilateral that is connected by a straight line is 0.1 to 15.0 μm, the unevenness height is 0.1 to 6.0 μm, and the roughness displacement of the smooth portion is less than 0.1 μm. It is a board | substrate for light-emitting devices.

上述の樹脂は、熱分解温度が200℃以上であり、凹凸形状の隣り合う凸部の4つの頂点を線で結んだ四角形の対向する2つの頂点を直線で結んだ時、何れの凹凸構造の断面形状とも(1)式で近似される正弦波状の曲線が連続的につながっており、凹凸高さの半値を表すAが0.05μm≦A≦3.0μm、山間隔の変数を表すBが0.4μm−1≦B≦62.8μm−1、凹凸高さの半値Aと山間隔の変数Bの積ABが0.6≦AB≦4.7、近似式(1)と実形状の高さ方向のズレを表す平均誤差Mが式(2)で表される発光装置用基板である。
y=A×sin(Bx)…(1)
M≦A×0.5…(2)
また、本発明において好ましくは、上述の樹脂の厚みは2μm〜15μmであり、金属薄板の厚みは20〜150μm、30℃〜300℃迄の熱膨張係数が1〜10×10−6/℃である発光装置用基板である。
The above-mentioned resin has a thermal decomposition temperature of 200 ° C. or higher, and when any two vertices of a quadrangular shape in which four vertices of adjacent convex portions of the concavo-convex shape are connected by lines are connected by straight lines, Both cross-sectional shapes are continuously connected with sinusoidal curves approximated by the equation (1), A representing the half value of the uneven height is 0.05 μm ≦ A ≦ 3.0 μm, and B representing the variable of the peak interval is 0.4μm -1 ≦ B ≦ 62.8μm -1, unevenness of the variable B in the height of the half a and peak distance product AB is 0.6 ≦ AB ≦ 4.7, the approximate expression (1) and the actual shape high In the light emitting device substrate, the average error M representing the deviation in the vertical direction is represented by the formula (2).
y = A × sin (Bx) (1)
M ≦ A × 0.5 (2)
Further, in the present invention, preferably, the thickness of the resin is 2 μm to 15 μm, the thickness of the metal thin plate is 20 to 150 μm, and the thermal expansion coefficient from 30 ° C. to 300 ° C. is 1 to 10 × 10 −6 / ° C. This is a substrate for a light emitting device.

また、上述の本発明の発光装置用基板の製造方法は、金属薄板上に熱分解温度が200℃以上である樹脂を被覆した基板素材の樹脂表面を、樹脂のガラス転移温度以上に加熱した後、樹脂表面に形成する凹凸部分と平滑部分とを有する型を前記樹脂に圧着し、剥離することにより、樹脂に凹凸部分と平滑部分を形成する発光装置用基板の製造方法である。   In the method for manufacturing a substrate for a light-emitting device according to the present invention described above, after the resin surface of the substrate material coated with the resin having a thermal decomposition temperature of 200 ° C. or higher on the metal thin plate is heated above the glass transition temperature of the resin. A method for manufacturing a substrate for a light-emitting device, wherein a concavo-convex portion and a smooth portion formed on a resin surface are pressure-bonded to the resin and peeled to form a concavo-convex portion and a smooth portion on the resin.

本発明の発光装置用基板は、表面に凹凸部分と平滑部分とを有する樹脂が、金属薄板上に形成されているため、例えば、ディスプレイ用基板として用いる場合は、TFTのチャンネル層部分を平滑部分に形成すれば、スイッチング電流であるドレイン電流の減少が少ないため、TFTの応答速度を高速化でき、また、規則的な凹凸部分によって、外部への光取り出し効果に加え、発光量の増大や発光量のムラの低減が期待できるため、これを用いて成る発光装置は高い発光量を奏することが可能となり、従来にはない画期的な発光装置用基板を提供することができる。   In the substrate for a light emitting device of the present invention, since the resin having an uneven portion and a smooth portion on the surface is formed on a thin metal plate, for example, when used as a display substrate, the channel layer portion of the TFT is a smooth portion. If it is formed, the drain current, which is a switching current, does not decrease much, so the response speed of the TFT can be increased. In addition to the effect of extracting light to the outside due to the regular uneven portions, the amount of emitted light and the light emission are increased. Since a reduction in unevenness of the amount can be expected, a light emitting device using the same can exhibit a high light emission amount, and can provide an epoch-making substrate for a light emitting device that has not existed before.

上述したように、本発明の重要な特徴は、表面に凹凸部分と平滑部分とを併せ持つ樹脂が、金属薄板上に形成されていることにある。以下に本発明を詳しく説明する。
本発明で金属薄板を用いた理由は、金属は構成元素と組成によって熱膨張率を調節できることから、所望の熱膨張特性に合わせた材質の選定の自由度が高く、塑性加工によって薄くし易く、重量も軽量であること、薄くするとフレキシブル性を有し、衝撃に強いことなど、薄型・軽量・耐衝撃性、低熱膨張性を確保するのに最適であり、基板表面に規則的に配列した凹凸部分や平滑部分を有する基板である、発光装置の基体として適した素材だからである。
As described above, an important feature of the present invention is that the resin having both the uneven portion and the smooth portion on the surface is formed on the thin metal plate. The present invention is described in detail below.
The reason why the metal thin plate is used in the present invention is that the metal can adjust the coefficient of thermal expansion depending on the constituent elements and composition, so the degree of freedom in selecting a material according to the desired thermal expansion characteristics is high, and it is easy to make it thin by plastic working, It is ideal for ensuring thinness, light weight, impact resistance, and low thermal expansion, such as light weight, flexibility when thin, and resistance to impact, and irregularities regularly arranged on the substrate surface This is because it is a material suitable as a substrate of a light emitting device, which is a substrate having a portion and a smooth portion.

本発明では、基板表面が凹凸部分と平滑部分を有する。
例えば、平滑部上にTFTを設けようとした場合、スイッチング素子であるTFTは、図1に示す様に、基板(1)上にゲート電極(2)、ゲート絶縁膜(3)、チャンネル層(4)、保護膜(5)、層間絶縁膜(6)、ソース電極(7)、ドレイン電極(8)が積層及びパターニングされた構造である。これにアノード電極(9)、発光層(10)およびカソード電極(11)が接続され発光素子が形成される。この時、TFTのスイッチング電流であるドレイン電流の減少を防ぐことが望まれる。
上述のドレイン電流の減少は、TFTのソース電極(7)とドレイン電極(8)間における、チャンネル層(4)の平面方向長さが長くなると、起こり易くなる。もし、基板表面のチャンネル層形成部分に凹凸が形成されていれば、ソース電極とドレイン電極間の平面方向長さが長くなるので、ドレイン電流が減少し、TFT応答速度の遅延が生じる。従って、チャンネル長の増加による、TFT応答速度の遅延を防止するには、平滑部分の形成が必要となる。
なお、上記のTFT応答速度の遅延を防止するに必要な平滑部分の粗さ(高さ)の変位は、0.1μm未満であり、平滑部分の粗さの変位が0.1μm以上となると、TFT応答速度の低下が顕著となる。この範囲であれば、ドレイン電流は減少せず、TFTの応答速度が遅くなることを防止できる。平滑部分の凹凸高さは、原子間力顕微鏡(AFM)を用いて測定できる。
In the present invention, the substrate surface has an uneven portion and a smooth portion.
For example, when a TFT is provided on a smooth portion, as shown in FIG. 1, a TFT serving as a switching element has a gate electrode (2), a gate insulating film (3), a channel layer (on a substrate (1)). 4) A protective film (5), an interlayer insulating film (6), a source electrode (7), and a drain electrode (8) are laminated and patterned. An anode electrode (9), a light emitting layer (10), and a cathode electrode (11) are connected to this, and a light emitting element is formed. At this time, it is desired to prevent a decrease in drain current which is a switching current of the TFT.
The decrease in the drain current described above is likely to occur when the planar direction length of the channel layer (4) between the source electrode (7) and the drain electrode (8) of the TFT is increased. If irregularities are formed in the channel layer forming portion on the substrate surface, the length in the planar direction between the source electrode and the drain electrode is increased, so that the drain current is reduced and the TFT response speed is delayed. Accordingly, in order to prevent a delay in TFT response speed due to an increase in channel length, it is necessary to form a smooth portion.
The smooth portion roughness (height) displacement necessary to prevent the TFT response speed delay is less than 0.1 μm, and when the smooth portion roughness displacement is 0.1 μm or more, The decrease in TFT response speed becomes significant. Within this range, the drain current does not decrease, and the response speed of the TFT can be prevented from slowing down. The unevenness height of the smooth portion can be measured using an atomic force microscope (AFM).

次に凹凸部分は、例えば、発光装置では、基板表面に凹凸が形成されていれば、発光層にも凹凸が反映されるため、表面積の増加により、発光量も増加する。しかし、凹凸が過度に不規則に形成されていれば、発光面積が一定しないので、デバイスを作製した際に、発光量にムラを生じたりする。これを防止するには、基板表面の凹凸の配列はほぼ規則的になるように配列する必要がある。
最も表面積を広げるには、隣り合う凸部の4つ頂点を四角形となるように、直線で結んだ時に隣り合う凸部の4つの頂点を線で結んだ四角形の対向する2つの頂点同士を直線で結んだ時、2つの直線の長さの短い方の直線に対する長い方の直線の比が1.7の菱形状に近い形状とするのが良い。しかし、この形状とするに必要な型の作製が困難である。そこで、現実的には、凹凸部分では、できる限り表面積を広く確保しつつ、隣り合う凸部の4つ頂点を四角形となるように、直線で結んだ時には正方形に近づけるように配列を行い、更に、直線で結んだ隣り合う頂点同士の間隔もある程度の距離を確保し、且つ凸部の高さ、凹部の深さを有る程度確保して、効率良く光を外部へ取り出す形状とするのが良い。
Next, in the light emitting device, for example, in the light emitting device, if the unevenness is formed on the substrate surface, the unevenness is reflected in the light emitting layer, so that the amount of light emission increases due to the increase in the surface area. However, if the irregularities are excessively irregularly formed, the light emitting area is not constant, and thus the amount of emitted light is uneven when a device is manufactured. In order to prevent this, it is necessary to arrange the irregularities on the substrate surface so as to be almost regular.
In order to increase the surface area most, when the four vertices of the adjacent convex portions are connected to each other by a straight line so that the four vertices of the adjacent convex portions become a square, the two opposite vertices of the quadrangular shape that connects the four vertices of the adjacent convex portions by a straight line It is preferable that the ratio of the longer straight line to the shorter straight line of the two straight lines is close to a rhombus shape having a length of 1.7. However, it is difficult to produce a mold necessary for this shape. Therefore, in actuality, in the uneven part, while ensuring the surface area as wide as possible, the four vertices of the adjacent convex parts are arranged so as to form a square, and when arranged in a straight line, the arrangement is made so as to be close to a square. The distance between adjacent vertices connected by a straight line should be a certain distance, and the height of the convex part and the depth of the concave part should be ensured so that the light is efficiently extracted to the outside. .

具体的に説明すると、樹脂表面の凹凸形状は、凹凸の隣り合う凸部の4つの頂点を直線で結んだ四角形の4辺の最短長さの辺に対する最長長さの辺の比が1.0〜1.3(好ましくは1.0〜1.2、更に好ましくは1.0〜1.1)、隣り合う凸部の4つの頂点を線で結んだ四角形の対向する2つの頂点同士を直線で結んだ時、2つの直線の長さの短い方の直線に対する長い方の直線の比が1.0〜2.0(好ましくは1.0〜1.9、更に好ましくは1.0〜1.8)とする、規則的な凹凸形状である。
これに加えて、更に、凹凸高さが0.1〜6.0μm(好ましくは0.1〜3.0μm、更に好ましくは0.1〜1.5μm)、山間隔が0.1〜15.0μm(好ましくは0.1〜10.0μm、更に好ましくは0.1〜5.0μm)として、凹凸形状の規則化をはかる。
この形状であれば、基板の表面積が十分確保できる上、効率良く光を外部に取り出すことができ、発光量のムラを低減できる上、基板表面のチャンネル層を形成する部分を平滑にすることで、応答速度の速いディスプレイを作製できるが、凹凸の隣り合う凸部の4つの頂点を直線で結んだ四角形の4辺の最短長さの辺に対する最長長さの辺の比、隣り合う凸部の4つの頂点を線で結んだ四角形の対向する2つの頂点同士を直線で結んだ時、2つの直線の長さの短い方の直線に対する長い方の直線の比、凹凸高さ及び山間隔の何れかの値が本発明で規定する範囲外となるようであれば、発光量にムラが生じて、光を外部に取り出す効果が不十分となる。
More specifically, the uneven shape on the resin surface is such that the ratio of the longest length side to the shortest length side of the four sides of a quadrilateral that connects four vertices of adjacent convex portions of the unevenness with a straight line is 1.0. -1.3 (preferably 1.0-1.2, more preferably 1.0-1.1), two opposing vertices of a quadrilateral connecting four vertices of adjacent convex portions with a straight line The ratio of the longer straight line to the shorter straight line is 1.0 to 2.0 (preferably 1.0 to 1.9, more preferably 1.0 to 1). 8), a regular uneven shape.
In addition to this, the uneven height is 0.1 to 6.0 μm (preferably 0.1 to 3.0 μm, more preferably 0.1 to 1.5 μm), and the crest interval is 0.1 to 15 μm. The irregular shape is regularized to 0 μm (preferably 0.1 to 10.0 μm, more preferably 0.1 to 5.0 μm).
With this shape, a sufficient surface area of the substrate can be secured, light can be efficiently extracted to the outside, unevenness in the amount of light emission can be reduced, and the portion of the substrate surface where the channel layer is formed can be smoothed. A display having a high response speed can be manufactured, but the ratio of the longest side to the shortest side of the four sides of the quadrilateral that connects the four vertices of the adjacent convex portions of the concave and convex portions with a straight line, When two opposing vertices of a quadrilateral with four vertices connected by a line are connected by a straight line, the ratio of the longer straight line to the shorter straight line of the two straight lines, the height of irregularities, and the crest spacing If such a value is outside the range defined in the present invention, the amount of emitted light is uneven, and the effect of extracting light to the outside is insufficient.

上述の直線の長さの測定を図2にて説明すると、図2(a)は本発明の発光装置用基板の凹凸部分の表面電子顕微鏡写真であり、凹凸を分かり易くするために30°の傾斜をかけている。白く光る個所が凸部(12)でその最も高い個所が頂点である。
まず、この隣り合う凸部(12)の4つの頂点を直線で結び四角形ABCDを作製する。次に、この四角形の4辺の長さ(AB、BC、CD、DA)を測定し、最短長さ及び最長長さを決定する。同様に、対向する2つの頂点同士を結んだ直線(AC、BD)の長さを測定し、短い方の直線及び長い方の直線を決定し、それぞれの比を求める。
なお、前述の凹凸の隣り合う凸部の4つの頂点を直線で結んだ四角形の4辺の最短長さの辺に対する最長長さの辺の比、隣り合う凸部の4つの頂点を線で結んだ四角形の対向する2つの頂点同士を直線で結んだ時、2つの直線の長さの短い方の直線に対する長い方の直線の比、凹凸高さ及び山間隔の測定は、原子間力顕微鏡(AFM)を用いて測定できる。
また、図2に示すような形態であることを確認するためには、ランダムに少なくとも5〜10視野を選び、測定を行って、表面形状を確認することが望ましい。
The above-described measurement of the length of the straight line will be described with reference to FIG. 2. FIG. 2 (a) is a surface electron micrograph of the uneven portion of the light emitting device substrate of the present invention. Inclined. The part that shines white is the convex part (12), and the highest part is the apex.
First, a quadrilateral ABCD is produced by connecting four vertices of the adjacent convex portions (12) with straight lines. Next, the lengths (AB, BC, CD, DA) of the four sides of this square are measured, and the shortest length and the longest length are determined. Similarly, the length of a straight line (AC, BD) connecting two opposing vertices is measured, the shorter straight line and the longer straight line are determined, and the respective ratios are obtained.
In addition, the ratio of the longest length side to the shortest length side of the four sides of the quadrilateral that connects the four vertices of the adjacent convex portions of the above-described unevenness with a straight line, and the four vertices of the adjacent convex portions are connected by lines. When connecting two opposite vertices of a quadrilateral with a straight line, the ratio of the longer straight line to the shorter straight line of the two straight lines, the height of the irregularities, and the distance between peaks are measured with an atomic force microscope ( AFM).
Moreover, in order to confirm that it is a form as shown in FIG. 2, it is desirable to select at least 5 to 10 visual fields at random and perform measurement to confirm the surface shape.

また、本発明において、より一層、発光層の表面積を増加させて発光量を増大させたり、光取り出し効果を増大させるには、基板表面の凹凸の断面形状を調整するのが良い。
ディスプレイ用基板では、基板上に上述の複数の薄膜を形成するが、何れの薄膜も数百nmの薄さであるので、凹凸が急峻な形状である場合、膜にピンホールが発生したり、TFTのリーク電流の増加や駆動回路の断線が起こる惧れがある。そのため、凹凸は緩やかに形成することが重要であり、凹凸を曲面形状、つまり断面形状が正弦波に近似するような、正弦波状の曲線が連続的につながった凹凸をディスプレイ用基板の発光層を形成する部分に形成して発光装置用基板とすることが好ましい。
上述した発光装置用基板の凹凸部分の断面形状は、次の(1)式で近似される正弦波状の曲線が連続的につながっていることが好ましい。
y=A×sin(Bx)…(1)
更に凹凸の高さ及び山間隔は、凹凸高さの半値を表すAが0.05μm≦A≦3.0μm、山間隔の変数を表すBが0.4μm−1≦B≦62.8μm−1、凹凸高さの半値Aと山間隔の変数Bの積ABが0.3≦AB≦4.7、そして更に、近似式(1)と実形状の高さ方向のズレを表す平均誤差Mが式(2)表される形状に規定した。
M≦A×0.5…(2)
これは、凹凸高さの半値を表すA、山間隔の変数を表すB、凹凸高さの半値Aと山間隔の変数Bの積AB、近似式(1)と実形状の高さ方向のズレを表す平均誤差Mの何れもが本発明で規定する範囲外となると、所望の反応層の光取り出し効果が十分得られない場合があるためである。
In the present invention, in order to further increase the surface area of the light emitting layer to increase the light emission amount or increase the light extraction effect, it is preferable to adjust the cross-sectional shape of the irregularities on the substrate surface.
In the display substrate, the above-described plurality of thin films are formed on the substrate, but since each thin film is several hundreds of nanometers thick, when the unevenness is a steep shape, pinholes are generated in the film, There is a possibility that the leakage current of the TFT increases or the drive circuit is disconnected. Therefore, it is important to form the unevenness gently, and the light emitting layer on the display substrate has an unevenness with a curved surface shape, that is, a continuous connection of sinusoidal curves whose cross-sectional shape approximates a sine wave. It is preferable to form the light emitting device substrate by forming it at a portion to be formed.
As for the cross-sectional shape of the uneven portion of the light emitting device substrate described above, it is preferable that sinusoidal curves approximated by the following equation (1) are continuously connected.
y = A × sin (Bx) (1)
Further, regarding the height of the unevenness and the interval between the peaks, A representing the half value of the unevenness height is 0.05 μm ≦ A ≦ 3.0 μm, and B representing the variable of the peak interval is 0.4 μm −1 ≦ B ≦ 62.8 μm −1. The product AB of the half-value A of the unevenness height and the variable B of the crest interval is 0.3 ≦ AB ≦ 4.7, and the average error M representing the deviation in the height direction of the approximate expression (1) and the actual shape is It was defined in the shape represented by Formula (2).
M ≦ A × 0.5 (2)
This is because A represents the half value of the uneven height, B represents the variable of the peak interval, the product AB of the half value A of the uneven height and the variable B of the peak interval, the approximate expression (1) and the deviation in the height direction of the actual shape. This is because the desired light extraction effect of the reaction layer may not be sufficiently obtained if any of the average errors M representing the above is outside the range defined by the present invention.

なお、高さ方向のズレを表す平均誤差は、樹脂表面に形成された凹凸構造の断面形状が、実形状は正確な正弦波になっていない場合があるために規定したものである。平均誤差とは、ある測定範囲における、近似値と実測値の誤差の絶対値の平均値(JIS Z 8103)であり、次式により計算される。
但し、測定点の間隔は0.01μm以下とし、15μm以上の区間を測定するものとする。
The average error representing the deviation in the height direction is defined because the sectional shape of the concavo-convex structure formed on the resin surface may not be an accurate sine wave in some cases. The average error is an average value (JIS Z 8103) of absolute values of errors between the approximate value and the actual measurement value in a certain measurement range, and is calculated by the following equation.
However, the interval between the measurement points is 0.01 μm or less, and a section of 15 μm or more is measured.

また、凹凸形状が、(1)式を満たす場合でも、ABが0.3以下では、発光量の増大効果が十分得られず、ABが4.7以上では、発光層にクラック、ピンホールやリーク電流が発生しやすくなるため、0.3≦AB≦4.7とする。この範囲であれば、山間隔に対する凹凸高さの比が0.1〜1.5となり、所望の光取り出し効果と発光量の増大効果が得られる。   Further, even when the concavo-convex shape satisfies the formula (1), when the AB is 0.3 or less, the effect of increasing the light emission amount is not sufficiently obtained, and when AB is 4.7 or more, the light emitting layer is cracked, pinholes, Since leakage current is likely to occur, 0.3 ≦ AB ≦ 4.7. If it is this range, the ratio of the unevenness height relative to the crest interval becomes 0.1 to 1.5, and a desired light extraction effect and a light emission increase effect can be obtained.

上述の正弦波状の曲線の測定を図2にて説明する。
図2(a)は白く光る個所が凸部(12)でその最も高い個所を頂点とする。この隣り合う凸部(12)の4つの頂点を直線で結んだ四角形の対向する2つ頂点を直線(図2(b)で示す)で結んだ時の断面形状にて正弦波状の曲線の測定を行う。
なお、図3は隣り合う凸部(12)の4つの頂点を線で結んだ四角形(ABCD)の対向する2つ頂点を直線(図2(b)で示すACまたはBD)で結んだ時の断面形状の模式図であり、本発明で言う凹凸高さとは図3に示すように、正弦波の山(最高部)と谷(低底部)の高さ方向の距離のことを言い、山間隔とは、隣り合う山同士の平面方向の距離のことを言う。断面形状も、原子間力顕微鏡(AFM)を用いて測定することができる。
The measurement of the above sinusoidal curve will be described with reference to FIG.
In FIG. 2A, the portion that shines white is the convex portion (12), and the highest portion is the vertex. Measurement of a sinusoidal curve with a cross-sectional shape when two opposing vertices of a quadrilateral connecting the four vertices of the adjacent convex portions (12) with a straight line (shown in FIG. 2B) are connected. I do.
Note that FIG. 3 shows a case where two opposing vertices of a quadrangle (ABCD) in which four vertices of adjacent convex portions (12) are connected by a line are connected by a straight line (AC or BD shown in FIG. 2B). FIG. 3 is a schematic diagram of a cross-sectional shape, and the uneven height as used in the present invention refers to the distance in the height direction between a sine wave peak (highest part) and a valley (low bottom part) as shown in FIG. Means the distance in the plane direction between adjacent mountains. The cross-sectional shape can also be measured using an atomic force microscope (AFM).

ところで、本発明で用いる樹脂は、熱分解温度が200℃以上である樹脂を用いるのが好ましい。
例えば、金属薄板/樹脂という発光装置用基板上にTFTを形成する場合においては、ゲート電極、ゲート絶縁膜、アモルファスシリコン(チャンネル層)、保護膜を高温で積層する。特に、チャンネル層の積層は、プラズマCVDを用いて基板を300℃以上に加熱することがある。この時の加熱により発光装置用基板を構成する樹脂が分解すると、分解ガスがチャンネル層内に不純物として取り込まれ、スイッチング特性が低下し、画面が正常に表示されなくなる惧れがある。このため本発明で用いる樹脂の熱分解温度は200℃以上とする必要があり、好ましくは250℃以上、更に好ましくは300℃以上である。
本発明で規定する熱分解温度を満たす樹脂には、例えばポリアミド、ポリイミド、ポリアミドイミド、ポリアミドエーテルイミド、ポリエーテルサルフォンなどがある。
なお、本発明で言う熱分解温度とは5%質量減少温度のことを指し、差動型示差熱天秤を用いて測定できる。
By the way, the resin used in the present invention is preferably a resin having a thermal decomposition temperature of 200 ° C. or higher.
For example, in the case where a TFT is formed on a light emitting device substrate of metal thin plate / resin, a gate electrode, a gate insulating film, amorphous silicon (channel layer), and a protective film are stacked at a high temperature. In particular, in the lamination of the channel layer, the substrate may be heated to 300 ° C. or higher by using plasma CVD. If the resin constituting the light emitting device substrate is decomposed by heating at this time, the decomposed gas is taken in as impurities in the channel layer, the switching characteristics may be deteriorated, and the screen may not be displayed normally. For this reason, the thermal decomposition temperature of the resin used in the present invention needs to be 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
Examples of the resin that satisfies the thermal decomposition temperature defined in the present invention include polyamide, polyimide, polyamideimide, polyamide etherimide, and polyethersulfone.
In addition, the thermal decomposition temperature said by this invention means the 5% mass reduction | decrease temperature, and can measure it using a differential type differential thermal balance.

次に樹脂の厚みを規定した理由を説明する。
本発明の発光装置用基板は、基板上に駆動回路を形成するため、絶縁性が必要であり、樹脂被覆により絶縁性を付与する。ディスプレイ用基板の場合における絶縁性の要求値はディスプレイの精細度によって異なるが、例えば紙媒体の印刷物に近い精細度である600ppiであれば、20Vの電圧を印加した際にリーク電流が10−10A/cm以下であると良く、これを満足するための樹脂の樹脂の厚みは2μm以上あれば良い。
また、凹凸形成のプロセスの詳細は後述するが、凹凸形成のプロセス上、樹脂の厚みが厚いほど凹凸を形成し易いが、厚すぎる場合コストアップに繋がるため、樹脂の厚みの上限は15μmであれば十分である。好ましい樹脂の厚みは3μm〜8μmである。
Next, the reason why the thickness of the resin is specified will be described.
The substrate for a light-emitting device of the present invention is required to have an insulating property in order to form a drive circuit on the substrate, and the insulating property is imparted by a resin coating. The required value of insulation in the case of a display substrate varies depending on the definition of the display. For example, if the resolution is 600 ppi, which is a definition close to a printed matter on a paper medium, the leakage current is 10 −10 when a voltage of 20 V is applied. It is good that it is A / cm 2 or less, and the resin thickness of the resin for satisfying this should be 2 μm or more.
Although the details of the unevenness forming process will be described later, in the unevenness forming process, the thicker the resin, the easier it is to form unevenness, but if it is too thick, the cost will increase, so the upper limit of the resin thickness should be 15 μm. It is enough. A preferable resin thickness is 3 μm to 8 μm.

本発明で用いる金属薄板は、従来のディスプレイ用基板として用いられているガラス基板と同等の熱膨張特性を有する材料を用いることが好ましい。
上述したようにディスプレイの製造プロセス上300℃以上に加熱されるため、熱膨張の大きな材料を用いた場合、例えばTFTの各積層膜をパターニングする際の位置合わせ精度が悪くなりディスプレイの高精細化は難しくなる。
また、用いられるガラスの種類によっても熱膨張特性(特に熱膨張係数)は若干異なるが、低熱膨張性が求められるため20℃〜300℃までの熱膨張係数が1〜10×10−6/℃以下と規定する。好ましくは2〜6×10−6/℃の範囲である。
このような範囲の熱膨張係数を持つ金属材料には、鉄−ニッケル系合金、鉄−ニッケル−コバルト系合金、鉄−ニッケル−クロム系合金があり、薄板化し易いことや、入手のし易さ等を考えると、安価な鉄−ニッケル系合金を用いるのが良い。
また、凹凸付金属基板に用いる金属薄板の厚みとしては、軽量化、薄型化のためには薄いほど好ましい。しかし、薄すぎる場合、曲げ強度が低いため搬送・保持でき難くなること、及び圧延の精度の問題や工数の増大によるコスト上昇が発生することから、厚みは20〜150μmであることが好ましい。
The metal thin plate used in the present invention is preferably made of a material having a thermal expansion characteristic equivalent to that of a glass substrate used as a conventional display substrate.
As described above, since the display is heated to 300 ° C. or higher in the manufacturing process of the display, if a material having a large thermal expansion is used, for example, the alignment accuracy when patterning each laminated film of TFT deteriorates, and the display becomes higher in definition. Becomes difficult.
Further, although the thermal expansion characteristics (particularly the thermal expansion coefficient) are slightly different depending on the type of glass used, the thermal expansion coefficient from 20 ° C. to 300 ° C. is 1 to 10 × 10 −6 / ° C. because low thermal expansion is required. It is defined as follows. Preferably it is the range of 2-6x10 < -6 > / degreeC.
There are iron-nickel alloys, iron-nickel-cobalt alloys, and iron-nickel-chromium alloys among the metal materials having a thermal expansion coefficient in such a range, and they are easily thinned and easily available. In view of the above, it is preferable to use an inexpensive iron-nickel alloy.
Moreover, as thickness of the metal thin plate used for a metal board with an unevenness | corrugation, it is so preferable that it is thin for weight reduction and thickness reduction. However, if it is too thin, the bending strength is low, and it becomes difficult to convey and hold, and a problem of rolling accuracy and cost increase due to an increase in man-hours occur. Therefore, the thickness is preferably 20 to 150 μm.

次に本発明の発光装置用基板の製造方法について説明する。
発光装置用基板の凹凸の形成法には、熱転写、光転写、エッチング、サンドブラスト等がある。これらの方法の内、エッチングを用いる方法は、対象物の結晶配向や結晶粒の大きさによって凹凸の形状、山間隔が支配されるため形状制御が難しく、光取り出し効果に寄与しない凹凸も多数形成されるため、効果が小さい。またサンドブラストでも凹凸形状を制御することが困難である。
一方、熱転写、光転写は比較的自由な形状を樹脂などの表面に形成でき、優れた方法である。しかし、光転写は樹脂材料に高価な感光性樹脂を用いる必要があり、コストアップになるため、熱転写法で凹凸を形成することが好ましい。本発明のディスプレイ用基板の製造方法を図4を用いて以下に説明する。
Next, the manufacturing method of the board | substrate for light-emitting devices of this invention is demonstrated.
Examples of the method for forming the unevenness of the substrate for a light emitting device include thermal transfer, optical transfer, etching, and sandblasting. Among these methods, the etching method is difficult to control the shape because the shape of the unevenness and the crest spacing are governed by the crystal orientation and crystal grain size of the target, and many unevennesses that do not contribute to the light extraction effect are formed. Therefore, the effect is small. Moreover, it is difficult to control the uneven shape even by sandblasting.
On the other hand, thermal transfer and optical transfer are excellent methods that can form a relatively free shape on the surface of a resin or the like. However, since optical transfer requires the use of an expensive photosensitive resin as the resin material, which increases the cost, it is preferable to form irregularities by a thermal transfer method. The manufacturing method of the display substrate of the present invention will be described below with reference to FIG.

本発明の場合、金属薄板(13)上に樹脂(14)を被覆した基板素材(15)を用意する。
本発明で適用する熱転写法ではまず、上記の(1)式で近似される凹凸部分(16)と平滑部分(17)を有する型(18)を樹脂のガラス転移温度以上に加熱して、樹脂に圧着する(図4(a),(b))。この圧着時に置いては、20MPa以上で樹脂に圧着を行うと、型の凹凸を確実に樹脂側に転写することが可能である。
また、本発明で使用する型は、型の凹凸部分と平滑部分の配置がそのまま樹脂に転写されるので、ディスプレイ用基板に用いる場合は、凹凸部分と平滑部分の配置(発光層とチャンネル層の配置)に対応させて、型の凹凸部分(16)と平滑部分(17)を配置させる。なお、用いる型は例えば電鋳法で作製することができる。
また、微小凹凸の形成時には、予め型も基板と同時にガラス転移温度以上に加熱しておくと良い。型を加熱しておけば、樹脂と型の温度差による転写不良を防ぐことができる。
その後、型を剥離することにより、樹脂表面に型の形状を転写させて、凹凸部分(16)と平滑部分(17)を形成し、発光装置用基板(19)とする(図4(c))。
この方法であれば、型の位置をずらして(a)〜(c)を繰り返すことで、大面積の発光装置用基板を製造できる。
In the case of this invention, the board | substrate raw material (15) which coat | covered resin (14) on the metal thin plate (13) is prepared.
In the thermal transfer method applied in the present invention, first, the mold (18) having the concavo-convex portion (16) approximated by the above formula (1) and the smooth portion (17) is heated to a temperature equal to or higher than the glass transition temperature of the resin. (Fig. 4 (a), (b)). When the pressure is applied to the resin at 20 MPa or more, the mold irregularities can be reliably transferred to the resin side.
Also, in the mold used in the present invention, the arrangement of the concavo-convex part and the smooth part of the mold is directly transferred to the resin. Therefore, when used for a display substrate, the arrangement of the concavo-convex part and the smooth part (the light emitting layer and the channel layer) Corresponding to the (arrangement), the uneven portion (16) and the smooth portion (17) of the mold are arranged. The mold to be used can be produced, for example, by electroforming.
Further, when forming the micro unevenness, the mold is preferably heated to the glass transition temperature or higher at the same time as the substrate. If the mold is heated, transfer failure due to a temperature difference between the resin and the mold can be prevented.
Thereafter, the mold is peeled to transfer the shape of the mold to the resin surface, thereby forming the uneven portion (16) and the smooth portion (17), thereby forming the light emitting device substrate (19) (FIG. 4C). ).
If it is this method, the board | substrate for light emitting devices of a large area can be manufactured by shifting the position of a type | mold and repeating (a)-(c).

以下の実施例で本発明を更に詳しく説明する。
4.3×10−6/℃の熱膨張係数を持った厚さ100μmの鉄−42質量%ニッケル系合金薄板を準備し、アルカリ性脱脂液及び希塩酸を用いて洗浄した。その後、スピンコーターを用いて鉄−ニッケル系合金薄板にポリイミド樹脂を被覆し、硬化・乾燥させて基板素材を作製した。
被覆した樹脂の厚みは8μmであり、熱分解温度を測定したところ、500℃であった。
次に、樹脂表面に形成する凹凸部分と平滑部分を有する型を準備し、型と基板素材を樹脂のガラス転移温度以上に加熱した。
その後、30MPaで金型を樹脂表面に押し当てた後、樹脂のガラス転移温度以下に冷却し、型を剥離して発光装置用基板とした。
樹脂表面に形成した凹凸の形状は、原子間力顕微鏡(AFM;パシフィック ナノテクノロジー社製、Nano−Rシステム)を用いて5視野の測定を行い、四角形ABCDの4辺の長さ、対向する2つの頂点を結んだ直線の長さを測定し、最短長さの辺に対する最長長さの辺の比を求めると表1のようになった。
The following examples further illustrate the present invention.
A 100 μm-thick iron-42 mass% nickel-based alloy sheet having a thermal expansion coefficient of 4.3 × 10 −6 / ° C. was prepared and washed with an alkaline degreasing solution and dilute hydrochloric acid. Thereafter, a polyimide resin was coated on the iron-nickel alloy thin plate using a spin coater, and cured and dried to produce a substrate material.
The thickness of the coated resin was 8 μm, and the thermal decomposition temperature was measured and found to be 500 ° C.
Next, a mold having uneven portions and a smooth portion formed on the resin surface was prepared, and the mold and the substrate material were heated to a temperature higher than the glass transition temperature of the resin.
Then, after pressing a metal mold | die on the resin surface at 30 Mpa, it cooled below to the glass transition temperature of resin, peeled the type | mold, and was set as the board | substrate for light-emitting devices.
The shape of the irregularities formed on the resin surface was measured using five atomic fields using an atomic force microscope (AFM; manufactured by Pacific Nanotechnology Co., Ltd., Nano-R system). The length of the straight line connecting the two vertices was measured, and the ratio of the longest side to the shortest side was obtained as shown in Table 1.

次に凹凸高さ及び凹凸間隔を測定したところ、それぞれ0.7μm、1.4μmであった。この断面形状を正弦波で近似すると、y=0.35×sin(4.5x)であり、A=0.35μm、B=4.5μm−1、AB=1.6、高さ方向のズレを表す平均誤差Mが0.07μmであった。
また、平滑部分の粗さ(高さ)の変位を同様の方法で5視野を測定したところ、0.05μm〜0.03μmであった。
Next, when the unevenness height and the unevenness interval were measured, they were 0.7 μm and 1.4 μm, respectively. When this cross-sectional shape is approximated by a sine wave, y = 0.35 × sin (4.5x), A = 0.35 μm, B = 4.5 μm −1 , AB = 1.6, deviation in the height direction. The average error M representing was 0.07 μm.
Further, when the five visual fields were measured for the roughness (height) displacement of the smooth portion by the same method, it was 0.05 μm to 0.03 μm.

本実施例で示した発光装置用基板は、基板表面に規則的な凹凸部分と平滑部分を形成することにより、高い光取出し効果と発光量の増加が期待できるため、これを用いてなる発光装置は高輝度と速い応答速度を奏することが期待できる。
なお、基板表面の凹凸部分は、正弦波の凹凸であるため、発光材料薄膜のクラックやピンホールを防止ことも可能となる。
The light emitting device substrate shown in this embodiment can be expected to have a high light extraction effect and an increase in light emission amount by forming regular uneven portions and smooth portions on the substrate surface. Can be expected to have high brightness and fast response speed.
In addition, since the uneven | corrugated | grooved part of the board | substrate surface is a sine wave unevenness | corrugation, it also becomes possible to prevent the light emitting material thin film from a crack and a pinhole.

本発明を用いることにより、低熱膨張で規則的な凹凸部分と平滑部分を有する発光装置用基板が得られるので、高輝度・高速応答を発揮する発光装置を作製できるため、今後需要の増大が予想される本分野にとって、欠くことのできない技術となる。   By using the present invention, a substrate for a light emitting device having a regular uneven portion and a smooth portion with low thermal expansion can be obtained, and thus a light emitting device exhibiting high brightness and high speed response can be manufactured. This is an indispensable technology for this field.

発光素子模式図である。It is a light emitting element schematic diagram. 本発明の発光装置用基板でなる凹凸部分の表面電子顕微鏡写真である。It is a surface electron micrograph of the uneven | corrugated | grooved part which consists of a board | substrate for light-emitting devices of this invention. 本発明の発光装置用基板でなる凹凸部分の断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of the uneven | corrugated | grooved part which consists of a board | substrate for light-emitting devices of this invention. 本発明の発光装置用基板の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the board | substrate for light-emitting devices of this invention.

符号の説明Explanation of symbols

1.発光装置用基板
2.ゲート電極
3.ゲート絶縁膜
4.チャンネル層
5.保護膜
6.層間絶縁膜
7.ソース電極
8.ドレイン電極
9.アノード電極
10.発光層
11.カソード電極
12.凸部
13.金属薄板
14.樹脂
15.基板素材
16.凹凸部分
17.平滑部分
18.型
19.発光装置用基板
1. 1. Light emitting device substrate 2. Gate electrode 3. Gate insulating film 4. Channel layer Protective film 6. Interlayer insulating film Source electrode 8. 8. drain electrode Anode electrode 10. Light emitting layer 11. Cathode electrode 12. Convex part 13. Metal thin plate 14. Resin 15. Substrate material 16. Uneven portion 17. Smooth portion 18. Type 19. Light emitting device substrate

Claims (4)

表面に凹凸部分と平滑部分とを有する樹脂が、金属薄板上に形成された発光装置用基板であって、前記凹凸部分の凹凸は曲面形状であり、且つ、隣り合う凸部の4つの頂点を線で結んだ四角形の4辺の最短長さの辺に対する最長長さの辺の比が1.0〜1.3、隣り合う凸部の4つの頂点を直線で結んだ四角形の対向する2つの頂点同士を直線で結んだ時、2つの直線の長さの短い方の直線に対する長い方の直線の比が1.0〜2.0、隣り合う凸部の4つの頂点を直線で結んだ四角形の対向する2つの頂点同士の間隔が0.1〜15.0μm、凹凸高さが0.1〜6.0μm、平滑部分の粗さの変位は0.1μm未満であることを特徴とする発光装置用基板。 A resin having a concavo-convex portion and a smooth portion on the surface is a substrate for a light emitting device formed on a thin metal plate, the concavo-convex portion of the concavo-convex portion is a curved surface shape, and four vertices of adjacent convex portions are formed. The ratio of the longest length side to the shortest length side of the four sides of the quadrilateral connected by the line is 1.0 to 1.3, and the two opposing quadrangles that connect the four vertices of the adjacent convex portions with a straight line When the vertices are connected by a straight line, the ratio of the longer straight line to the shorter straight line of the two straight lines is 1.0 to 2.0, and the four vertices of adjacent convex parts are connected by a straight line. The distance between the two vertices facing each other is 0.1 to 15.0 μm, the uneven height is 0.1 to 6.0 μm, and the roughness displacement of the smooth portion is less than 0.1 μm. Device substrate. 樹脂は、熱分解温度が200℃以上であり、凹凸形状の隣り合う凸部の4つの頂点を線で結んだ四角形の対向する2つの頂点を直線で結んだ時、何れの凹凸構造の断面形状とも(1)式で近似される正弦波状の曲線が連続的につながっており、凹凸高さの半値を表すAが0.05μm≦A≦3.0μm、山間隔の変数を表すBが0.4μm−1≦B≦62.8μm−1、凹凸高さの半値Aと山間隔の変数Bの積ABが0.3≦AB≦4.7、近似式(1)と実形状の高さ方向のズレを表す平均誤差Mが式(2)で表されることを特徴とする請求項1に記載の発光装置用基板。
y=A×sin(Bx)…(1)
M≦A×0.5…(2)
The resin has a thermal decomposition temperature of 200 ° C. or higher, and when the two opposite vertices of the quadrangular shape in which the four vertices of adjacent convex portions of the concavo-convex shape are connected by a straight line, the cross-sectional shape of any concavo-convex structure In both cases, sinusoidal curves approximated by the equation (1) are continuously connected, A representing the half value of the uneven height is 0.05 μm ≦ A ≦ 3.0 μm, and B representing the crest interval variable is 0.00. 4μm -1 ≦ B ≦ 62.8μm -1, product AB is 0.3 ≦ AB ≦ 4.7 in variable B of half a and peak distance of the unevenness height, the height direction of the approximate expression (1) actual shape The light-emitting device substrate according to claim 1, wherein an average error M representing the deviation of the light-emitting device is expressed by Expression (2).
y = A × sin (Bx) (1)
M ≦ A × 0.5 (2)
樹脂の厚みは2μm〜15μmであり、金属薄板の厚みは20〜150μm、30℃〜300℃迄の熱膨張係数が1〜10×10−6/℃であることを特徴とする請求項1乃至2に記載の発光装置用基板。 The thickness of the resin is 2 μm to 15 μm, the thickness of the metal thin plate is 20 to 150 μm, and the thermal expansion coefficient from 30 ° C. to 300 ° C. is 1 to 10 × 10 −6 / ° C. 2. The substrate for a light emitting device according to 2. 請求項1乃至3の何れかに記載の発光装置用基板の製造方法であって、金属薄板上に被覆した樹脂表面を、樹脂のガラス転移温度以上に加熱した後、樹脂表面に形成する凹凸部分と平滑部分とを有する型を前記樹脂に圧着し、剥離することにより、樹脂に凹凸部分と平滑部分を形成することを特徴とする発光装置用基板の製造方法。 The method for manufacturing a substrate for a light-emitting device according to any one of claims 1 to 3, wherein the uneven surface formed on the resin surface after heating the resin surface coated on the metal thin plate to a temperature equal to or higher than the glass transition temperature of the resin. A method for manufacturing a substrate for a light-emitting device, comprising forming a concavo-convex portion and a smooth portion on a resin by pressure-bonding and peeling a mold having a smooth portion on the resin.
JP2006329327A 2006-12-06 2006-12-06 Substrate for light-emitting device, and its manufacturing method Pending JP2008146856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329327A JP2008146856A (en) 2006-12-06 2006-12-06 Substrate for light-emitting device, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329327A JP2008146856A (en) 2006-12-06 2006-12-06 Substrate for light-emitting device, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008146856A true JP2008146856A (en) 2008-06-26

Family

ID=39606803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329327A Pending JP2008146856A (en) 2006-12-06 2006-12-06 Substrate for light-emitting device, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008146856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129544A (en) * 2008-11-28 2010-06-10 Commissariat A L'energie Atomique Method for fabricating nanostructured substrate for oled, and method for fabricating oled
WO2012091018A1 (en) * 2010-12-28 2012-07-05 シャープ株式会社 Organic el display unit, organic el display device, and method for producing organic el display unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129544A (en) * 2008-11-28 2010-06-10 Commissariat A L'energie Atomique Method for fabricating nanostructured substrate for oled, and method for fabricating oled
WO2012091018A1 (en) * 2010-12-28 2012-07-05 シャープ株式会社 Organic el display unit, organic el display device, and method for producing organic el display unit
CN103299714A (en) * 2010-12-28 2013-09-11 夏普株式会社 Organic EL display unit, organic EL display device, and method for producing organic EL display unit
US9082730B2 (en) 2010-12-28 2015-07-14 Sharp Kabushiki Kaisha Organic EL display unit and organic EL display device
CN103299714B (en) * 2010-12-28 2016-01-20 夏普株式会社 The manufacture method of organic EL display unit, organic EL display and organic EL display unit
JP5858367B2 (en) * 2010-12-28 2016-02-10 シャープ株式会社 ORGANIC EL DISPLAY UNIT, ORGANIC EL DISPLAY DEVICE, AND ORGANIC EL DISPLAY UNIT MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
US10833106B2 (en) Flexible array substrate, manufacturing method thereof, and display panel
US11302763B2 (en) Flexible OLED display panel and manufacturing method thereof
JP4964130B2 (en) Novel conductor structures for electronic circuits made on flexible substrates
CN109904341B (en) O L ED display panel and preparation method thereof
CN107579141B (en) Micro light-emitting element and manufacturing method thereof, display device and transition carrier plate device
US10103358B2 (en) OLED substrate and producing method thereof, panel, and display apparatus
US8164000B2 (en) Flexible printed circuit boards including carbon nanotube bundles
US20130119352A1 (en) Multi-structure cathode for flexible organic light emitting diode (oled) device and method of making same
WO2020113794A1 (en) Display panel and fabricating method therefor
US11316136B2 (en) Manufacturing method of flexible display device and flexible display device
CN105789262A (en) Flexible display substrate and manufacturing method thereof, and flexible display device
US7667387B2 (en) Organic electroluminescent device and method manufacturing the same
JP2008520463A (en) Method for preparing a flexible, mechanically compensated transparent laminate material
JP2012523072A (en) Method for manufacturing a structure with a textured surface as an attachment for an organic light emitting diode device, and an OLED structure with a textured surface
US20200251683A1 (en) Organic light emitting diode display panel and preparation method thereof
CN106298798A (en) Flexible display device and manufacture method thereof
WO2019153831A1 (en) Electroluminescent element package structure, fabrication method thereof, and display device
TW202044287A (en) Conductive film, method for making same, and touch module
WO2020237827A1 (en) Organic light-emitting diode display panel
JP2007288143A (en) Metal substrate with projections and recesses, and its manufacturing method
US11121333B2 (en) OLED display panel and method for fabricating same
JP2008146856A (en) Substrate for light-emitting device, and its manufacturing method
TW202006686A (en) Flexible display panel
US11398617B2 (en) Packaging cover plate and manufacturing method thereof, display panel, and display device each having packaging sheet with shaped plurality channels
CN104091821A (en) Flexible display device and folding-resistant metal wire