JP2008143747A - Manufacturing method of sodium bisulfite solution - Google Patents

Manufacturing method of sodium bisulfite solution Download PDF

Info

Publication number
JP2008143747A
JP2008143747A JP2006333473A JP2006333473A JP2008143747A JP 2008143747 A JP2008143747 A JP 2008143747A JP 2006333473 A JP2006333473 A JP 2006333473A JP 2006333473 A JP2006333473 A JP 2006333473A JP 2008143747 A JP2008143747 A JP 2008143747A
Authority
JP
Japan
Prior art keywords
sodium bisulfite
gas
raw material
absorption
bisulfite solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006333473A
Other languages
Japanese (ja)
Other versions
JP4968582B2 (en
Inventor
Hidekazu Aoki
英和 青木
Yasushi Isshiki
靖志 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006333473A priority Critical patent/JP4968582B2/en
Publication of JP2008143747A publication Critical patent/JP2008143747A/en
Application granted granted Critical
Publication of JP4968582B2 publication Critical patent/JP4968582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of sodium bisulfite solution, in which the concentration rate of sulfurous acid, an impurity, can be reduced by controlling the flow of an absorption liquid circulating in an absorption column during the process of manufacturing sodium bisulfite solution using as an original material a gas like copper smelter gas, whose concentration rates of sulfurous acid and oxygen vary. <P>SOLUTION: In the process of manufacturing sodium bisulfite solution by using, as an original material, a raw material gas (1) whose concentration rates of sulfurous acid and oxygen vary and contacting the raw material gas (1) with sulfurous acid gas and caustic soda (3) in a reaction column (2) to react to form an absorption liquid (4), the concentration rate of oxygen in the raw material gas (1) is measured continuously and the circulation amount of the absorption liquid (4) in the absorption column (2) is automatically adjusted to 250 L/min to 400 L/min corresponding to the variation of the oxygen concentration rate in the range of 9.0% to 16.0%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、銅製錬排ガスのように、亜硫酸及び酸素の濃度が変動するガスを原料として、吸収塔内で原料ガスの亜硫酸ガスと苛性ソーダとを接触反応させて吸収液とし、この吸収液から重亜硫酸ソーダ液を製造する工程において、吸収塔内で循環する吸収液の流量を制御し、不純物としての硫酸ソーダの濃度を低減させる重亜硫酸ソーダ液の製造方法に関する。 The present invention uses a gas whose concentration of sulfurous acid and oxygen fluctuate, such as copper smelting exhaust gas, as a raw material, and makes sulfur dioxide gas and caustic soda, which are raw material gases, contact and react in an absorption tower to form an absorbing liquid. The present invention relates to a method for producing a sodium bisulfite solution in which a concentration of sodium sulfate as an impurity is reduced by controlling a flow rate of an absorbent circulated in an absorption tower in a step of producing a sodium sulfite solution.

銅製錬工程において発生する亜硫酸(SO)ガスは、製錬排ガスとして硫酸工場に送られ、硫酸工場では、製錬排ガスを原料として、ガス精製工程、乾燥工程、転化工程、吸収工程を経ることにより、濃硫酸が製造されている。製錬排ガス中の亜硫酸は、ガス精製工程で不純物を除去され、乾燥工程で乾燥され、転化工程で三酸化硫黄(SO)に転化され、吸収工程で吸収塔内の循環酸中に吸収され、循環酸が所定の硫酸濃度の濃硫酸になると、そこから抜き出されて、製品タンクに送られる。 Sulfurous acid (SO 2 ) gas generated in the copper smelting process is sent to the sulfuric acid factory as a smelting exhaust gas. In the sulfuric acid factory, the smelting exhaust gas is used as a raw material to undergo a gas purification process, a drying process, a conversion process, and an absorption process. As a result, concentrated sulfuric acid is produced. Sulfurous acid in the smelting exhaust gas is freed of impurities in the gas purification process, dried in the drying process, converted into sulfur trioxide (SO 3 ) in the conversion process, and absorbed in the circulating acid in the absorption tower in the absorption process. When the circulating acid becomes concentrated sulfuric acid having a predetermined sulfuric acid concentration, it is extracted therefrom and sent to the product tank.

濃硫酸を製造する吸収工程からの排ガスは、上記の工程を通じて反応しきれずに残留した未反応の亜硫酸(SO)ガスを含んでいるので、最終的に大気中に排出する前に、該亜硫酸ガスを排ガス中から除去する必要がある。例えば特許文献1は、該亜硫酸(SO)ガスを苛性ソーダ(NaOH)に吸収させ、硫酸ソーダ(NaSO)として効率よく除去し、石膏製造に利用する方法を開示している。さらに、特許文献1によると、該亜硫酸(SO)ガスを苛性ソーダ(NaOH)に吸収させ、硫酸ソーダ(NaSO)を得る過程において、亜硫酸ソーダ(NaSO)及び重亜硫酸ソーダ(NaHSO)が中間的に生成することが挙げられ、pH等の反応条件を調整することにより、効率よく硫酸ソーダ(NaSO)を生成させる方法が記載されている。 Since the exhaust gas from the absorption process for producing concentrated sulfuric acid contains unreacted sulfurous acid (SO 2 ) gas that has remained unreacted through the above process, the sulfurous acid is finally discharged before being discharged into the atmosphere. It is necessary to remove gas from the exhaust gas. For example, Patent Document 1 discloses a method in which the sulfurous acid (SO 2 ) gas is absorbed in caustic soda (NaOH) and efficiently removed as sodium sulfate (Na 2 SO 4 ) and used for gypsum production. Furthermore, according to Patent Document 1, in the process of obtaining the sodium sulfate (Na 2 SO 4 ) by absorbing the sulfurous acid (SO 2 ) gas into caustic soda (NaOH), sodium sulfite (Na 2 SO 3 ) and sodium bisulfite ( NaHSO 3 ) is generated intermediately, and a method for efficiently producing sodium sulfate (Na 2 SO 4 ) by adjusting reaction conditions such as pH is described.

なお、上記の中間生成物が生成する反応は、亜硫酸ソーダ(NaSO)について下記の化学式1に、重亜硫酸ソーダ(NaHSO)について下記の化学式2に、また、硫酸ソーダ(NaSO)について下記の化学式3に、それぞれ記載する通りである。 Incidentally, the reaction intermediate product described above is generated in the chemical formula 1 below for sodium sulfite (Na 2 SO 3), the following chemical formula 2 for sodium bisulfite (NaHSO 3), also sodium sulphate (Na 2 SO 4 ) is as described in Chemical Formula 3 below.

(化学式1) 2NaOH+SO→ NaSO+H
(化学式2) NaSO+HO+SO→ 2NaHSO
(化学式3) NaSO+1/2O→ NaSO
(Chemical Formula 1) 2NaOH + SO 2 → Na 2 SO 3 + H 2 O
(Chemical formula 2) Na 2 SO 3 + H 2 O + SO 2 → 2NaHSO 3
(Chemical formula 3) Na 2 SO 3 + 1 / 2O 2 → Na 2 SO 4

特許文献1で、吸収液中における中間的な生成物として位置づけられている重亜硫酸ソーダ(NaHSO)は、還元剤、漂白剤、食品添加物等として広く利用されており、粉末または重亜硫酸ソーダ液(製品規格:重亜硫酸ソーダ濃度34%以上、硫酸ソーダ濃度1%以下)として市販されているが、一般的には、特許文献1に記載されている通り、吸収液中で生成する硫酸ソーダ(NaSO)の濃度は、5〜10%程度と製品規格を超えているため、そのままでは市販可能な重亜硫酸ソーダ液にはならない。 Sodium bisulfite (NaHSO 3 ), which is positioned as an intermediate product in the absorption liquid in Patent Document 1, is widely used as a reducing agent, a bleaching agent, a food additive, and the like. Powder or sodium bisulfite Although it is marketed as a liquid (product standard: sodium bisulfite concentration 34% or more, sodium sulfate concentration 1% or less), generally, as described in Patent Document 1, sodium sulfate produced in the absorbing solution Since the concentration of (Na 2 SO 4 ) exceeds about 5 to 10% and the product standard, it cannot be a commercially available sodium bisulfite solution as it is.

したがって、上記の工程における中間生成物としての重亜硫酸ソーダ(NaHSO)を市販可能な重亜硫酸ソーダ液とするためには、硫酸ソーダ(NaSO)の濃度を1%以下にすることが重要である。 Therefore, to make sodium bisulfite (NaHSO 3 ) as an intermediate product in the above process into a commercially available sodium bisulfite solution, the concentration of sodium sulfate (Na 2 SO 4 ) should be 1% or less. is important.

一方、例えば特許文献2には、2基の吸収塔を用い、それぞれの吸収塔内の吸収液についてpH等の反応条件を調整することにより、重亜硫酸ソーダ液を製造する方法が公開されているが、該方法に使用する亜硫酸ガスは、コークス炉ガスに脱硫処理を施し、脱硫処理によって生じた廃液中の硫黄分を燃焼させ、燃焼によって生じた燃焼廃ガスに由来するものである。このため、銅製錬排ガスのように亜硫酸濃度及び酸素濃度が変動するガスを原料とする場合には、その技術をそのまま適用することが困難であるという問題点と、2基の吸収塔を使用し、それぞれの吸収塔内のpHを個別に調整するため、既存の吸収塔に、別の吸収塔を新規に追加設置する必要があり、コスト的に不利になるという問題点とがある。
特開2004−275895号公報 特開平09−248421号公報(特許第3650210号公報)
On the other hand, for example, Patent Document 2 discloses a method for producing a sodium bisulfite solution by using two absorption towers and adjusting reaction conditions such as pH of the absorption liquid in each absorption tower. However, the sulfurous acid gas used in the method is derived from the combustion waste gas generated by combustion by subjecting the coke oven gas to desulfurization treatment and burning the sulfur content in the waste liquid generated by the desulfurization treatment. For this reason, in the case of using a gas whose sulfite concentration and oxygen concentration fluctuate as raw materials such as copper smelting exhaust gas, it is difficult to apply the technology as it is, and two absorption towers are used. In order to individually adjust the pH in each absorption tower, it is necessary to newly install another absorption tower in the existing absorption tower, which is disadvantageous in terms of cost.
JP 2004-275895 A JP 09-248421 A (Patent No. 3650210)

したがって、発明の課題は、上記のような問題点を解決するためになされたものであり、銅製錬排ガスのように亜硫酸及び酸素の濃度が変動するガスを原料として、重亜硫酸ソーダ液を製造する工程において、吸収塔内で循環する吸収液の流量を制御し、製品中の不純物である硫酸ソーダの濃度を低減させる重亜硫酸ソーダ液の製造方法を提供することにある。 Accordingly, an object of the present invention is to solve the above-described problems, and a sodium bisulfite liquid is produced using a gas whose concentration of sulfurous acid and oxygen varies, such as copper smelting exhaust gas, as a raw material. It is an object of the present invention to provide a method for producing a sodium bisulfite solution that controls the flow rate of the absorption liquid circulating in the absorption tower and reduces the concentration of sodium sulfate, which is an impurity in the product.

本発明者らは、上記課題を解決するために、原料ガス中の酸素濃度を測定し、酸素濃度の変動を把握することで、吸収塔内の吸収液を酸素濃度に適した循環流量に自動調整することによって、製品規格を安定的に満たす重亜硫酸ソーダ液を製造できることを見出し、本発明を完成した。 In order to solve the above problems, the inventors of the present invention have automatically measured the oxygen concentration in the raw material gas and grasped the fluctuation of the oxygen concentration to automatically adjust the absorption liquid in the absorption tower to a circulation flow rate suitable for the oxygen concentration. By adjusting, it discovered that the sodium bisulfite liquid which satisfy | fills a product specification stably could be manufactured, and completed this invention.

すなわち、本発明に係る重亜硫酸ソーダ液の製造方法は、亜硫酸及び酸素の濃度が変動する原料ガス(1)を原料とし、吸収塔(2)の内部で原料ガス(1)中の亜硫酸ガスと苛性ソーダ(3)とを接触反応させて吸収液(4)とし、この吸収液(4)から重亜硫酸ソーダ液(17)を製造する工程において、原料ガス(1)中の酸素濃度を連続的に測定して、酸素濃度が9.0%〜16.0%の範囲で変動する場合に応じ、吸収塔(2)内の吸収液(4)を250L/分〜400L/分の循環流量に自動調整することを特徴とする(請求項1)。また、本発明に係る重亜硫酸ソーダ液の製造方法は、上記の請求項1において、酸素濃度が9.0%〜14.0%の範囲で変動するとき、吸収塔(2)内の吸収液(4)を250L/分の循環流量に自動調整し、酸素濃度が13.0%〜16.0%の範囲で変動するとき、吸収塔(2)内の吸収液(4)を400L/分の循環流量に自動調整することを特徴とする(請求項2)。 That is, the method for producing a sodium bisulfite solution according to the present invention uses a raw material gas (1) with varying concentrations of sulfurous acid and oxygen as a raw material, and sulfite gas in the raw material gas (1) inside the absorption tower (2) In the step of reacting with caustic soda (3) to obtain an absorption liquid (4) and producing sodium bisulfite liquid (17) from the absorption liquid (4), the oxygen concentration in the raw material gas (1) is continuously changed. Measured automatically according to the case where the oxygen concentration fluctuates in the range of 9.0% to 16.0%, the absorption liquid (4) in the absorption tower (2) is automatically circulated at a flow rate of 250 L / min to 400 L / min. It is characterized by adjusting (Claim 1). Further, the method for producing a sodium bisulfite solution according to the present invention is the absorption liquid in the absorption tower (2) when the oxygen concentration fluctuates in the range of 9.0% to 14.0%. (4) is automatically adjusted to a circulation flow rate of 250 L / min, and when the oxygen concentration fluctuates in the range of 13.0% to 16.0%, the absorption liquid (4) in the absorption tower (2) is 400 L / min. The circulation flow rate is automatically adjusted (claim 2).

本発明による重亜硫酸ソーダ液の製造方法は、新規な吸収塔の増設を必要とせず、重亜硫酸ソーダ液の品質向上や不良品を処分するためのコスト低減を実現できるため、その工業的価値は極めて大きい(請求項1)。また、酸素濃度の範囲に応じて、適切な循環流量が自動調整されるから、硫酸ソーダの含有率が安定して1%以下となり、品質のよい重亜硫酸ソーダ液が得られる(請求項2)。 The manufacturing method of the sodium bisulfite liquid according to the present invention does not require the addition of a new absorption tower, and can improve the quality of the sodium bisulfite liquid and reduce the cost for disposing of defective products. Very large (claim 1). In addition, since an appropriate circulation flow rate is automatically adjusted according to the range of oxygen concentration, the content of sodium sulfate is stably 1% or less, and a high-quality sodium bisulfite solution is obtained (Claim 2). .

先ず、図1は、本発明の前提となる従来の方法による系統図である。図1において、原料ガス1は、吸収塔2に導かれ、吸収塔2の内部で苛性ソーダ3と接触反応し、工業用水8の注入によって吸収液4となる。吸収液4は、吸収塔2から抜き出されて吸収塔ポンプタンク5に導かれ、循環ポンプ6により開閉弁15を経て吸収塔2の内部に還流され、吸収塔2を含む循環系内を循環する。吸収液4が循環する間に、測定ユニット7は、吸収液4の比重及びpHの測定を行う。このpH測定の結果に応じて、吸収液4は、吸収塔2の内部で、必要に応じて工業用水8によって希釈される。吸収液4が所定の特性を満足したとき、その吸収液4は、重亜硫酸ソーダ液17となり、開閉弁16を経て製品タンク9に貯留される。 First, FIG. 1 is a system diagram according to a conventional method as a premise of the present invention. In FIG. 1, a raw material gas 1 is guided to an absorption tower 2, contacts and reacts with caustic soda 3 inside the absorption tower 2, and becomes an absorption liquid 4 by injection of industrial water 8. The absorption liquid 4 is extracted from the absorption tower 2, led to the absorption tower pump tank 5, and returned to the inside of the absorption tower 2 through the open / close valve 15 by the circulation pump 6, and circulates in the circulation system including the absorption tower 2. To do. While the absorption liquid 4 circulates, the measurement unit 7 measures the specific gravity and pH of the absorption liquid 4. Depending on the result of this pH measurement, the absorbing liquid 4 is diluted with industrial water 8 inside the absorption tower 2 as necessary. When the absorbing liquid 4 satisfies predetermined characteristics, the absorbing liquid 4 becomes a sodium bisulfite liquid 17 and is stored in the product tank 9 through the on-off valve 16.

なお、実操業においては、原料ガス1の供給は、前工程である硫酸製造工程の操業に依存し、硫酸製造工程が稼動している間は、原料ガス1が連続的に供給され、連続的に原料ガス1の処理が必要となるため、測定ユニット7では、工程内検査として、瞬時に測定可能な重亜硫酸ソーダ液17の代替特性として比重及びpHの測定を実施している。 In actual operation, the supply of the raw material gas 1 depends on the operation of the sulfuric acid production process, which is a previous process. During the operation of the sulfuric acid production process, the raw material gas 1 is continuously supplied and continuously supplied. Since the raw material gas 1 needs to be processed, the measurement unit 7 measures specific gravity and pH as an alternative characteristic of the sodium bisulfite solution 17 that can be measured instantaneously as an in-process inspection.

既述のように、本発明者らは、原料ガス1中の酸素濃度を測定し、酸素濃度の変動を把握することで、吸収塔2内の吸収液4を酸素濃度に適した循環流量に自動調整することにより、製品規格を安定的に満たす重亜硫酸ソーダ液17を製造できることを見出し、本発明の重亜硫酸ソーダ液の製造方法を完成した。 As described above, the present inventors measure the oxygen concentration in the raw material gas 1 and grasp the fluctuation of the oxygen concentration, so that the absorption liquid 4 in the absorption tower 2 has a circulation flow rate suitable for the oxygen concentration. It has been found that the sodium bisulfite solution 17 that stably satisfies the product specifications can be produced by automatic adjustment, and the method for producing the sodium bisulfite solution of the present invention has been completed.

図2は、本発明に係る重亜硫酸ソーダ液の製造方法による系統図である。図2の系統図は図1の従来の系統図に、酸素濃度計11、流量計12及び自動弁13を追加したものとなっている。すなわち、酸素濃度計11は、原料ガス1のラインに設置し、流量計12及び自動弁13は、循環する吸収液4の循環ラインにそれぞれ設置する。酸素濃度計11の測定信号は、制御器14の入力となり、制御器14は、前記測定信号に基づいて自動弁13の開度を操作し、流量計12によって吸収液4の循環流量を監視する。 FIG. 2 is a system diagram of the method for producing a sodium bisulfite solution according to the present invention. The system diagram of FIG. 2 is obtained by adding an oxygen concentration meter 11, a flow meter 12, and an automatic valve 13 to the conventional system diagram of FIG. That is, the oxygen concentration meter 11 is installed in the raw material gas 1 line, and the flow meter 12 and the automatic valve 13 are installed in the circulating line of the absorbing liquid 4 to be circulated. The measurement signal of the oximeter 11 becomes an input to the controller 14, and the controller 14 operates the opening of the automatic valve 13 based on the measurement signal, and monitors the circulating flow rate of the absorbent 4 by the flow meter 12. .

図2の系統図でも、吸収塔2は、図1の従来の系統図と同じように稼働する。吸収塔2の稼働中において、原料ガス1の酸素濃度が9%〜14%程度の範囲にあるときに、制御器14は、流量計12及び自動弁13を制御して、吸収液4の循環流量を250L/分程度となるように設定する。また、原料ガス1の酸素濃度が13%〜16%程度の範囲にあるときに、制御器14は、流量計12及び自動弁13を制御して、吸収液4の循環流量を400L/分程度となるように設定する。 In the system diagram of FIG. 2, the absorption tower 2 operates in the same manner as the conventional system diagram of FIG. During operation of the absorption tower 2, when the oxygen concentration of the raw material gas 1 is in the range of about 9% to 14%, the controller 14 controls the flow meter 12 and the automatic valve 13 to circulate the absorption liquid 4. The flow rate is set to be about 250 L / min. Further, when the oxygen concentration of the raw material gas 1 is in the range of about 13% to 16%, the controller 14 controls the flow meter 12 and the automatic valve 13 so that the circulating flow rate of the absorbing liquid 4 is about 400 L / min. Set to be.

以上説明したとおり、図2のように、酸素濃度計11、流量計12及び自動弁13を設置し、原料ガス1中の酸素濃度を酸素濃度計11により連続的に測定し、酸素濃度が9.0%〜16.0%の範囲で変動する場合に応じて、流量計12及び自動弁13を操作し、吸収塔2内の吸収液4の循環流量を250L/分〜400L/分に自動調整することによって、硫酸ソーダ(NaSO)の含有率が安定して1%以下となる、重亜硫酸ソーダ液17の製造方法が提供できる。 As described above, as shown in FIG. 2, the oxygen concentration meter 11, the flow meter 12 and the automatic valve 13 are installed, and the oxygen concentration in the raw material gas 1 is continuously measured by the oxygen concentration meter 11. The flow meter 12 and the automatic valve 13 are operated in accordance with the fluctuation in the range of 0.0% to 16.0%, and the circulating flow rate of the absorbing liquid 4 in the absorption tower 2 is automatically set to 250 L / min to 400 L / min. By adjusting, the manufacturing method of the sodium bisulfite liquid 17 in which the content rate of sodium sulfate (Na 2 SO 4 ) is stably 1% or less can be provided.

なお、図2において、流量計12を設置したことにより、従来の方法における吸収液4の循環流量は、上記の250L/分〜400L/分を大幅に越え、600L/分であったことが判明している。すなわち、本発明の方法は、原料ガス1中の酸素濃度に応じて吸収液4の循環流量を低下させることになる。また、本発明の方法により吸収液4中に含有される硫酸ソーダ(NaSO)の含有率が安定して、1%以下となる状況については、後の実施例の中で説明する。 In FIG. 2, it was found that the circulation flow rate of the absorbent 4 in the conventional method was 600 L / min, significantly exceeding the above 250 L / min to 400 L / min by installing the flow meter 12. is doing. That is, according to the method of the present invention, the circulating flow rate of the absorbing liquid 4 is lowered according to the oxygen concentration in the raw material gas 1. The situation in which the content of sodium sulfate (Na 2 SO 4 ) contained in the absorbent 4 by the method of the present invention is stabilized to 1% or less will be described in later examples.

一方、原料ガス1中の酸素濃度に応じて吸収液4の循環流量を制御することによって、吸収液4中の硫酸ソーダ(NaSO)の含有率が安定して1%以下となるが、その原理は明確ではない。 On the other hand, by controlling the circulation flow rate of the absorbing liquid 4 according to the oxygen concentration in the raw material gas 1, the content of sodium sulfate (Na 2 SO 4 ) in the absorbing liquid 4 is stably 1% or less. The principle is not clear.

しかしながら、前述の化学式3から、系内の酸素濃度が上昇することによって、硫酸ソーダ(NaSO)の生成が促進されることが容易に推測され、重亜硫酸ソーダ液17の製造には不利であることがわかる。本発明の方法では、このような状況になった場合に、吸収液4の循環流量を従来よりも低下させており、相対的に原料ガス1が吸収液4を早く通過させることになるため、前述の化学式3の左辺において、吸収液4中に生成している亜硫酸ソーダ(NaSO)が酸素(O)により酸化されるという反応が充分に起らず、すなわち、前述の化学式3の右辺への反応が遅くなるため、結果として、吸収液4中の硫酸ソーダ(NaSO)含有率も上昇しなくなるものと、本発明者らは推測している。 However, from the above chemical formula 3, it is easily estimated that the production of sodium sulfate (Na 2 SO 4 ) is promoted by increasing the oxygen concentration in the system, which is disadvantageous for the production of the sodium bisulfite solution 17. It can be seen that it is. In the method of the present invention, when such a situation occurs, the circulation flow rate of the absorbing liquid 4 is reduced as compared with the conventional case, and the raw material gas 1 passes through the absorbing liquid 4 relatively quickly. On the left side of the chemical formula 3, the reaction that the sodium sulfite (Na 2 SO 3 ) generated in the absorbent 4 is oxidized by oxygen (O 2 ) does not occur sufficiently, that is, the chemical formula 3 As a result, the present inventors presume that the content of sodium sulfate (Na 2 SO 4 ) in the absorbent 4 does not increase.

図3は、吸収液4の循環流量毎の酸素(O)濃度と硫酸ソーダ(NaSO)濃度との関係を示すグラフである。この図3中で、「■」印で示したものは、原料ガス1中のO2濃度が13%〜16%に変動した場合に、吸収液4の循環流量を400L/分にした結果である。また、図3中で、「▲」印で示したものは、原料ガス1中のO濃度が9%〜14%に変動した場合に、吸収液4の循環流量を250L/分にした結果である。なお、「◆」印で示したものは、従来法(吸収液4の循環流量は600L/分)の結果を示している。 FIG. 3 is a graph showing the relationship between the oxygen (O 2 ) concentration and the sodium sulfate (Na 2 SO 4 ) concentration for each circulation flow rate of the absorbing liquid 4. In FIG. 3, what is indicated by “■” is the result of setting the circulation flow rate of the absorbent 4 to 400 L / min when the O2 concentration in the raw material gas 1 varies from 13% to 16%. . Further, in FIG. 3, what is indicated by “▲” is a result of setting the circulation flow rate of the absorbing liquid 4 to 250 L / min when the O 2 concentration in the raw material gas 1 varies from 9% to 14%. It is. In addition, what was shown by "♦" mark has shown the result of the conventional method (the circulation flow rate of the absorption liquid 4 is 600 L / min).

図3によると、従来法の場合は、重亜硫酸ソーダ液17の製品規格である、硫酸ソーダ(NaSO)濃度1%の境界を超過したものがあるのに対して、本発明の方法による結果では、該境界を超過したものはひとつも無いことがわかる。 According to FIG. 3, in the case of the conventional method, there is a product standard of the sodium bisulfite solution 17 that exceeds the boundary of the sodium sulfate (Na 2 SO 4 ) concentration of 1%, whereas the method of the present invention. From the result of, it is understood that there is no one exceeding the boundary.

本発明は、銅製錬での排ガスに限らず、その他の排ガスで、亜硫酸及び酸素の濃度の変動するガスを原料とし、重亜硫酸ソーダ液を製造する工程にも適用できる。 The present invention is not limited to exhaust gas in copper smelting, but can also be applied to a process for producing sodium bisulfite liquid using other exhaust gas and using a gas whose concentration of sulfurous acid and oxygen varies as raw materials.

従来の方法による系統図である。It is a systematic diagram by the conventional method. 本発明の方法による系統図である。It is a systematic diagram by the method of the present invention. 吸収液の循環流量毎のO濃度とNaSO濃度との関係を示すグラフである。Is a graph showing the relationship between the O 2 concentration and the Na 2 SO 4 concentration of each circulation flow rate of the absorption liquid.

符号の説明Explanation of symbols

1 原料ガス
2 吸収塔
3 苛性ソーダ
4 吸収液
5 吸収塔ポンプタンク
6 循環ポンプ
7 測定ユニット
8 工業用水
9 製品タンク
10 排ガス
11 酸素(O)濃度計
12 流量計
13 自動弁
14 制御ライン
15 開閉弁
16 開閉弁
17 重亜硫酸ソーダ液
1 raw gas 2 absorber 3 sodium hydroxide 4 absorption liquid 5 absorption tower pump tank 6 circulation pump 7 measuring unit 8 industrial water 9 product tank 10 exhaust gas 11 of oxygen (O 2) concentration meter 12 flow meter 13 automatic valve 14 control line 15 on-off valve 16 On-off valve 17 Sodium bisulfite solution

Claims (2)

亜硫酸及び酸素の濃度が変動する原料ガス(1)を原料とし、吸収塔(2)の内部で原料ガス(1)中の亜硫酸ガスと苛性ソーダ(3)とを接触反応させて吸収液(4)とし、吸収液(4)から重亜硫酸ソーダ液(17)を製造する工程において、原料ガス(1)中の酸素濃度を連続的に測定し、酸素濃度が9.0%〜16.0%の範囲で変動する場合に応じて、吸収塔(2)内の吸収液(4)を250L/分〜400L/分の循環流量に自動調整することを特徴とする重亜硫酸ソーダ液の製造方法。 The raw material gas (1) with varying concentrations of sulfurous acid and oxygen is used as a raw material, and the sulfurous acid gas in the raw material gas (1) is contacted with the caustic soda (3) inside the absorption tower (2) to absorb the liquid (4). In the step of producing the sodium bisulfite solution (17) from the absorbing solution (4), the oxygen concentration in the raw material gas (1) is continuously measured, and the oxygen concentration is 9.0% to 16.0%. A method for producing a sodium bisulfite solution, wherein the absorption liquid (4) in the absorption tower (2) is automatically adjusted to a circulation flow rate of 250 L / min to 400 L / min depending on the case where the range fluctuates. 酸素濃度が9.0%〜14.0%の範囲で変動するとき、吸収塔(2)内の吸収液(4)を250L/分の循環流量に自動調整し、酸素濃度が13.0%〜16.0%の範囲で変動するとき、吸収塔(2)内の吸収液(4)を400L/分の循環流量に自動調整することを特徴とする請求項1記載の重亜硫酸ソーダ液の製造方法。 When the oxygen concentration fluctuates in the range of 9.0% to 14.0%, the absorption liquid (4) in the absorption tower (2) is automatically adjusted to a circulation flow rate of 250 L / min, and the oxygen concentration is 13.0%. The sodium bisulfite solution according to claim 1, wherein the absorption liquid (4) in the absorption tower (2) is automatically adjusted to a circulation flow rate of 400 L / min when fluctuating in a range of -16.0%. Production method.
JP2006333473A 2006-12-11 2006-12-11 Method for producing sodium bisulfite solution Active JP4968582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333473A JP4968582B2 (en) 2006-12-11 2006-12-11 Method for producing sodium bisulfite solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333473A JP4968582B2 (en) 2006-12-11 2006-12-11 Method for producing sodium bisulfite solution

Publications (2)

Publication Number Publication Date
JP2008143747A true JP2008143747A (en) 2008-06-26
JP4968582B2 JP4968582B2 (en) 2012-07-04

Family

ID=39604327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333473A Active JP4968582B2 (en) 2006-12-11 2006-12-11 Method for producing sodium bisulfite solution

Country Status (1)

Country Link
JP (1) JP4968582B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114172A (en) * 2012-12-06 2014-06-26 Sumitomo Metal Mining Co Ltd Production method of sodium bisulfite
KR20160014522A (en) * 2014-07-29 2016-02-11 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118987A (en) * 1974-02-19 1975-09-18
JPS51146372A (en) * 1975-06-11 1976-12-15 Kurabo Ind Ltd A wet desulfurization process for exhaust gas
JPS51149866A (en) * 1975-06-19 1976-12-23 Mitsui Miike Mach Co Ltd A wet desulfurizing process for exhaust gases
JPS5285980A (en) * 1976-01-08 1977-07-16 Davy Powergas Inc Removal of sulfur dioxide
JPS52127475A (en) * 1976-04-20 1977-10-26 Davy Powergas Inc Sulfur dioxide removal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118987A (en) * 1974-02-19 1975-09-18
JPS51146372A (en) * 1975-06-11 1976-12-15 Kurabo Ind Ltd A wet desulfurization process for exhaust gas
JPS51149866A (en) * 1975-06-19 1976-12-23 Mitsui Miike Mach Co Ltd A wet desulfurizing process for exhaust gases
JPS5285980A (en) * 1976-01-08 1977-07-16 Davy Powergas Inc Removal of sulfur dioxide
JPS52127475A (en) * 1976-04-20 1977-10-26 Davy Powergas Inc Sulfur dioxide removal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114172A (en) * 2012-12-06 2014-06-26 Sumitomo Metal Mining Co Ltd Production method of sodium bisulfite
KR20160014522A (en) * 2014-07-29 2016-02-11 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation
KR20220044261A (en) * 2014-07-29 2022-04-07 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation
KR102404352B1 (en) 2014-07-29 2022-05-31 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation
KR102503334B1 (en) 2014-07-29 2023-02-23 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation
KR20230028353A (en) * 2014-07-29 2023-02-28 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation
KR102584705B1 (en) 2014-07-29 2023-10-04 소후 인코포레이티드 Paste-phased composite material with lowered thermal degradation

Also Published As

Publication number Publication date
JP4968582B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN105467954B (en) A kind of method and device of desulfurization method of limestone-gypsum ORP and pH double controls
CN202953829U (en) Acid gas desulfurizing device
JP2010536549A (en) Exhaust gas purification method
CA2980264C (en) Wet type flue gas desulfurization apparatus and operation method of the same
CN112206645B (en) Thermal power plant desulfurization efficiency control method and system
JP4968582B2 (en) Method for producing sodium bisulfite solution
CA2239390A1 (en) Desulfurization process for flue gases
CN107648988B (en) Device and method for adjusting desulfurization slurry supply flow through double loops
SE513708C2 (en) Process for removing nitrogen oxides from the flue gases from a soda boiler in a cellulose factory
CN100390061C (en) Method for preparing anhydrous sodium sulfite using industrial by-product anhydrous sodium sulfate
JP2013237044A (en) Oxidation control for improving flue gas desulfurization capability
CN109928370A (en) A kind of technique that sulfur dioxide flue gas prepares the high-purity sodium sulfite of producing sulfuric acid and jointly
JP6680151B2 (en) Ammonium sulfate manufacturing method and ammonium sulfate manufacturing facility
CN105013317A (en) Process flow for recovering high-purity magnesium sulfite by magnesium oxide flue gas desulphurization
CN110935303B (en) Wet ammonia absorption method for removing SO (SO) applied to comprehensive energy2And NOxIs coupled control method of (a)
CN104401947A (en) Method combining sulfur and exhaust gas to produce acid
TW201408588A (en) Method for controlling the temperature in the combustion furnace of a Claus plant
JP2004275895A (en) Method for treating exhaust gas from sulfuric acid manufacturing process
CN114907149A (en) Method for improving quality of ammonium sulfate fertilizer by using ammonium persulfate
US4587112A (en) Effluent gas desulfurization with conversion to gypsum of large particle size
CN113509830A (en) Device for removing nitric oxide in tail gas in production of daily glass
JPS61433A (en) Waste gas desulfurization
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JP6024430B2 (en) Method for producing sodium bisulfite
JP3650210B2 (en) Desulfurization waste liquid treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150