JP2008142749A - Irradiation optical system and irradiation apparatus - Google Patents

Irradiation optical system and irradiation apparatus Download PDF

Info

Publication number
JP2008142749A
JP2008142749A JP2006333748A JP2006333748A JP2008142749A JP 2008142749 A JP2008142749 A JP 2008142749A JP 2006333748 A JP2006333748 A JP 2006333748A JP 2006333748 A JP2006333748 A JP 2006333748A JP 2008142749 A JP2008142749 A JP 2008142749A
Authority
JP
Japan
Prior art keywords
prism
optical system
irradiation apparatus
irradiation
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006333748A
Other languages
Japanese (ja)
Other versions
JP5196778B2 (en
Inventor
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006333748A priority Critical patent/JP5196778B2/en
Publication of JP2008142749A publication Critical patent/JP2008142749A/en
Application granted granted Critical
Publication of JP5196778B2 publication Critical patent/JP5196778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an irradiation apparatus capable of simultaneously conducting irradiation of a plurality of points or continuous annular patterns with a simple structure by using a single light source. <P>SOLUTION: The irradiation apparatus is provided with: an image-formation optical system 11, which makes the light irradiated from a light source 10 form an image; a conical prism 12, which is disposed in the image-formation side of the image-formation optical system 11 and radially deflects the light emitted from the image-formation optical system 11; and a reflecting member 13 radially deflecting the light emitted from the conical prism 12 in the optical axis direction by an internal reflection effect and irradiating an object 14 to be irradiated, which is set on the optical axis, with the deflected light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、光学レンズ等をホルダに保持して熱溶着固定するのに好適な照射装置に関する。   The present invention relates to an irradiation apparatus suitable for holding and fixing an optical lens or the like on a holder, for example.

従来、レンズをホルダに固定するには、一般に、図13に示すように、かしめ爪1を有するホルダ2にレンズ3を保持し、次いで、かしめ工具4によってかしめ爪1をレンズ3にかしめて固定する。   Conventionally, in order to fix a lens to a holder, generally, as shown in FIG. 13, the lens 3 is held by a holder 2 having a caulking claw 1, and then the caulking tool 1 is caulked and fixed to the lens 3. To do.

しかし、近年、撮影光学系等に用いられる光学レンズはますます小径化が進み、かしめカシメ方式でレンズを固定する場合、変形後のかしめ爪の強度確保のためレンズ径に相対してかしめ爪の肉厚を厚くする必要がある。この場合、かしめ爪のレンズへのかかり代を確実にするため、その分の余裕をみてレンズの外径を大きくしなくてはならなくなってしまう。また、凹レンズにかしめ爪をかしめる場合は、かしめ爪の肉厚分だけ光軸方向に突起が生じることになるため、他の部材との干渉が生じ易くなり、該干渉を防止するために広いスペースが必要になる。   However, in recent years, the diameter of optical lenses used in photographic optical systems and the like has been further reduced. When fixing the lens by the caulking caulking method, the caulking nail is relatively in proportion to the lens diameter in order to ensure the strength of the caulking nail after deformation. It is necessary to increase the wall thickness. In this case, in order to ensure the allowance of the caulking claw to the lens, the outer diameter of the lens must be increased with a margin for that. In addition, when caulking claws are caulked to the concave lens, protrusions are generated in the optical axis direction by the thickness of the caulking nails, so that interference with other members is likely to occur, and a wide area is used to prevent the interference. Space is needed.

一方、レンズをホルダに紫外線硬化性接着剤を介して接着固定することも行われているが、硬化前の接着剤は液体であるため塗布充填に際しては流れ出しに留意しなければならず、特に小径レンズに対しての取り扱いが難しい。また、紫外線で接着剤を硬化させる時間も長くかかるため生産性が悪い。   On the other hand, the lens is also bonded and fixed to the holder via an ultraviolet curable adhesive, but since the adhesive before curing is a liquid, attention must be paid to the flow out during application filling, especially the small diameter. It is difficult to handle the lens. Moreover, since it takes a long time to cure the adhesive with ultraviolet rays, the productivity is poor.

ところで、近年、高出力なレーザ光源を用い、レーザ光の集光熱を利用して、例えば板プレートにマーキングしたり、物体を熱溶着固定したりする照射装置が提案されている。   By the way, in recent years, there has been proposed an irradiation apparatus that uses a high-power laser light source and uses, for example, condensing heat of laser light to mark, for example, a plate or heat-fix an object.

このような照射装置は、特に、物体の固定に関しては、固定作業の時間短縮化や固定される物体の位置決め精度の向上を図るために、複数の照射点に対して同時にレーザを照射することが望まれる。   Such an irradiation apparatus can irradiate a plurality of irradiation points simultaneously with a laser beam particularly for fixing an object in order to shorten the fixing work time and improve the positioning accuracy of the object to be fixed. desired.

従来、複数の照射点に同時にレーザを照射するためには、一般に、要求される照射点の数と同数分の光源を用意している。   Conventionally, in order to simultaneously irradiate a plurality of irradiation points with a laser, generally, as many light sources as the number of required irradiation points are prepared.

また、複数の照射点を連続的に繋げて環状の線分としてレーザ照射する技術として、2つの反射部材を用い、一方の反射部材によって光線分離及び偏向を行い、他方の反射部材によってレーザ光線を被照射物体へ向かわせる技術が提案されている(特許文献1)。
特開平6−142965公報
In addition, as a technique for continuously irradiating a plurality of irradiation points and irradiating a laser as an annular line segment, two reflecting members are used, light separation and deflection are performed by one reflecting member, and laser beams are emitted by the other reflecting member. A technique for directing the object to be irradiated has been proposed (Patent Document 1).
JP-A-6-142965

しかし、要求される照射点の数と同数分の光源を用意する場合は、装置全体が大型化すると共に、光学系が複雑となるため、コスト高になる。   However, when the same number of light sources as the required number of irradiation points are prepared, the entire apparatus becomes large and the optical system becomes complicated, resulting in high cost.

また、上記特許文献1のように、2つの反射部材を用いて環状の線分パターンのレーザ光を照射する場合は、反射部材の取り付け誤差による照射位置のずれや、照射光の特性ずれが生じやすくなる。また、照射光学系の大型化、および照射位置の調整方法の煩雑化を招くという問題がある。   Also, as in Patent Document 1, when two laser beams are used to irradiate a laser beam with an annular line segment pattern, the irradiation position shifts due to the reflection member mounting error, and the light beam characteristics shift. It becomes easy. In addition, there is a problem that the irradiation optical system is enlarged and the adjustment method of the irradiation position is complicated.

そこで、本発明は、単一の光源を使用して簡単な構造で同時に複数点又は連続した環状パターンの照射を行うことができる照射装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an irradiation apparatus that can perform irradiation of a plurality of points or a continuous annular pattern simultaneously with a simple structure using a single light source.

上記目的を達成するために、本発明の照射装置は、光源から照射された光線を結像する結像光学系と、該結像光学系の結像側に配置され、該結像光学系から射出された光線を放射状に偏向する錐型プリズムと、該錐型プリズムから射出された光線を内面反射作用により光軸方向に偏向して、光軸上に配置された被照射物体に照射する反射部材と、を備えることを特徴とする。   In order to achieve the above object, an irradiation apparatus according to the present invention includes an imaging optical system that forms an image of a light beam emitted from a light source, and an imaging optical system that is disposed on the imaging side of the imaging optical system. A cone-shaped prism that radially deflects the emitted light beam, and a reflection that deflects the light beam emitted from the cone-shaped prism in the direction of the optical axis by internal reflection and irradiates the irradiated object disposed on the optical axis. And a member.

本発明によれば、単一の光源を使用して簡単な構造で同時に複数点又は連続した環状パターンの照射を行うことができる。   According to the present invention, it is possible to irradiate a plurality of points or a continuous annular pattern simultaneously with a simple structure using a single light source.

以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明の実施の形態の一例である照射装置を説明するための説明図、図2は図1の部分拡大図である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view for explaining an irradiation apparatus as an example of an embodiment of the present invention, and FIG. 2 is a partially enlarged view of FIG.

本発明の実施の形態の一例である照射装置は、図1に示すように、光源10、結像光学系11、円錐型プリズム12、および反射部材である円柱形状のプリズム13を備える。   As shown in FIG. 1, an irradiation apparatus as an example of an embodiment of the present invention includes a light source 10, an imaging optical system 11, a conical prism 12, and a cylindrical prism 13 that is a reflecting member.

光源10、結像光学系11、円錐型プリズム12、および円柱型プリズム13は、いずれも光軸上に同軸配置されている。また、円柱型プリズム13の円錐型プリズム12から離間する側の光軸上には、例えば熱可塑性の樹脂からなる光学レンズ15を保持する円筒状のレンズ保持枠14が配置されている。レンズ保持枠14は、赤外光を透過する特性を有する樹脂で形成されている。   The light source 10, the imaging optical system 11, the conical prism 12, and the cylindrical prism 13 are all coaxially arranged on the optical axis. A cylindrical lens holding frame 14 for holding an optical lens 15 made of, for example, a thermoplastic resin is disposed on the optical axis of the cylindrical prism 13 on the side away from the conical prism 12. The lens holding frame 14 is formed of a resin having a characteristic of transmitting infrared light.

光源10は、強度中心波長が930nm近辺である赤外の単波長の高出力レーザ光を照射可能であり、該レーザ光の集光作用によって樹脂を溶解して接着作用を得ることができるものを用いている。光源10から照射されたレーザ光は結像光学系11によって結像される。   The light source 10 can irradiate infrared single-wavelength high-power laser light whose intensity center wavelength is around 930 nm, and can obtain an adhesive action by dissolving the resin by the condensing action of the laser light. Used. The laser light emitted from the light source 10 is imaged by the imaging optical system 11.

円錐型プリズム12は、結像光学系11の結像側に配置され、該結像光学系11から射出されたレーザ光を側面の屈折作用により放射状に偏向して円柱型プリズム13に向けて射出する。   The conical prism 12 is arranged on the image forming side of the image forming optical system 11, and the laser light emitted from the image forming optical system 11 is radially deflected by the refraction action of the side surface and emitted toward the cylindrical prism 13. To do.

円柱型プリズム13は、その外周面の裏面13aが全反射面とされており、円錐型プリズム12から射出されたレーザ光が円柱型プリズム13の上端面から入射する。そして、円柱型プリズム13の上端面から入射したレーザ光は面13aで全反射して光軸方向に偏向し、光軸上に配置された光学レンズ(被固定部材)15を保持するレンズ保持枠(被照射物体)14の外周部に向けて射出する。   The cylindrical prism 13 has a back surface 13 a on the outer peripheral surface thereof as a total reflection surface, and laser light emitted from the conical prism 12 enters from the upper end surface of the cylindrical prism 13. The laser beam incident from the upper end surface of the cylindrical prism 13 is totally reflected by the surface 13a and deflected in the optical axis direction, and a lens holding frame that holds an optical lens (fixed member) 15 disposed on the optical axis. (Irradiated object) Injected toward the outer peripheral portion of 14.

これにより、図2に示すように、レンズ保持枠14の外周部にレーザ光の照射点が連続する環状の線分パターンが照射されて加熱され、樹脂の溶着によりレーザ保持枠14に光学レンズ15が固定される。なお、光学レンズ15が熱可塑性樹脂以外の材質で形成されている場合は、熱可塑性を有するシート材をレンズ保持枠14とレンズとの間に介装するか、熱可塑性を有する溶剤をレンズに塗布するとよい。   As a result, as shown in FIG. 2, an annular line segment pattern in which the laser light irradiation points are continuous is irradiated on the outer peripheral portion of the lens holding frame 14 and heated, and the optical lens 15 is attached to the laser holding frame 14 by welding of the resin. Is fixed. When the optical lens 15 is formed of a material other than the thermoplastic resin, a sheet material having thermoplasticity is interposed between the lens holding frame 14 and the lens, or a solvent having thermoplasticity is used for the lens. Apply.

以上説明したように、この実施の形態では、単一のレーザ光源10を使用して光学レンズ15を保持するレンズ保持枠14に対して連続した環状パターンのレーザ照射を行うことができる。これにより、簡単な構造で小型化および低コスト化を実現できるとともに、生産性に優れた照射装置を提供することができる。   As described above, in this embodiment, it is possible to perform laser irradiation in a continuous annular pattern on the lens holding frame 14 that holds the optical lens 15 using the single laser light source 10. Accordingly, it is possible to realize a reduction in size and cost with a simple structure, and it is possible to provide an irradiation apparatus with excellent productivity.

なお、本発明は上記実施の形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   In addition, this invention is not limited to what was illustrated to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.

例えば、上記実施の形態では、反射部材として、外周面の裏面が反射面とされた円柱形状のプリズムを例示したが、これに代えて、内壁面が円筒形状の反射面とされた中空光学部材を用いてもよい(図7参照)。   For example, in the above-described embodiment, a cylindrical prism whose outer peripheral surface is a reflecting surface is exemplified as the reflecting member. Instead, a hollow optical member whose inner wall surface is a cylindrical reflecting surface. May be used (see FIG. 7).

また、上記実施の形態では、反射部材として、円柱形状のプリズム13を例示したが、これに代えて、外周面の裏面が反射面とされた円錐台形状のプリズム33を用いてもよい(図5参照)。反射部材として、円錐台形状のプリズム33を用いた場合は、反射面の反射角度を調整することでレンズ保持枠14への照射角度と焦点位置とが調整し易くなる。   In the above-described embodiment, the cylindrical prism 13 is exemplified as the reflecting member, but instead of this, a truncated cone prism 33 whose outer peripheral surface is a reflecting surface may be used (see FIG. 5). When the truncated cone prism 33 is used as the reflecting member, it is easy to adjust the irradiation angle to the lens holding frame 14 and the focal position by adjusting the reflection angle of the reflecting surface.

さらに、反射部材として、円錐台形状のプリズム33を用いた場合は、円錐台形状のプリズム33を光軸上にて移動することで、反射位置を容易に変化させることができる。反射位置を変化させることで、レーザ照射されるレンズ保持枠14の径(光学レンズ15の径)の変化に対応することができる。なお、この場合も、内壁面が円錐台形状の反射面とされた中空光学部材23を用いてもよい(図4参照)。   Furthermore, when the truncated cone prism 33 is used as the reflecting member, the reflection position can be easily changed by moving the truncated cone prism 33 on the optical axis. By changing the reflection position, it is possible to cope with a change in the diameter of the lens holding frame 14 irradiated with the laser (the diameter of the optical lens 15). In this case, a hollow optical member 23 whose inner wall surface is a frustoconical reflecting surface may also be used (see FIG. 4).

さらに、上記実施の形態では、結像光学系11の結像側に円錐型プリズム12を配置し、円柱形状のプリズム13を採用した場合を例示したが、これに限定されない。例えば、結像光学系11の結像側に、円錐型プリズム12に代えて多角錐型プリズム12aを配置し、円柱形状のプリズム13に代えて多角柱形状のプリズム63を採用してもよい。   Furthermore, in the above-described embodiment, the case where the conical prism 12 is disposed on the image forming side of the image forming optical system 11 and the columnar prism 13 is employed is illustrated, but the present invention is not limited thereto. For example, a polygonal pyramid prism 12 a may be disposed on the image forming side of the imaging optical system 11 instead of the conical prism 12, and a polygonal prism 63 may be employed instead of the columnar prism 13.

この場合、多角錐型プリズム12aは、結像光学系11から射出されたレーザ光を側面の屈折作用により複数に分割して放射状に偏向し、多角柱形状のプリズムに向けて射出する。   In this case, the polygonal pyramid prism 12a divides the laser light emitted from the imaging optical system 11 into a plurality of parts by the refraction action of the side surfaces, deflects them radially, and emits them toward the polygonal prism.

多角柱形状のプリズムは、その外周面の裏面が全反射面とされており、多角錐型プリズム12aから射出された分割レーザ光が上端面から入射する。そして、多角柱形状のプリズムの上端面から入射したレーザ光は面13aで全反射して光軸方向に偏向し、光軸上に配置された光学レンズ(被固定部材)を保持するレンズ保持枠(被照射物体)の外周部の円周方向の複数点に向けて射出する。   In the polygonal prism, the back surface of the outer peripheral surface thereof is a total reflection surface, and the divided laser light emitted from the polygonal pyramid prism 12a is incident from the upper end surface. Then, the laser beam incident from the upper end surface of the polygonal prism is totally reflected by the surface 13a and deflected in the optical axis direction, and a lens holding frame for holding an optical lens (fixed member) disposed on the optical axis. Injecting toward a plurality of points in the circumferential direction of the outer peripheral portion of the (irradiated object).

これにより、図2のように、レンズ保持枠14の外周部の円周方向の複数点にレーザ光が照射されて加熱され、樹脂の溶着によりレーザ保持枠14に光学レンズ15が固定される。   As a result, as shown in FIG. 2, a plurality of points in the circumferential direction of the outer periphery of the lens holding frame 14 are irradiated with laser light and heated, and the optical lens 15 is fixed to the laser holding frame 14 by welding of the resin.

なお、この場合も、外周面の裏面が反射面とされた多角柱形状のプリズムに代えて、内壁面が多角筒形状の反射面とされた中空光学部材を用いてもよい。   In this case as well, a hollow optical member whose inner wall surface is a polygonal cylindrical reflecting surface may be used instead of the polygonal prism having the outer peripheral surface as the reflecting surface.

また、反射部材13として、多角柱形状のプリズムに代えて、多角錐台形状のプリズム63を用いてもよい(図9および図10参照)。多角錐台形状のプリズム63を用いた場合は、反射面の反射角度を調整することでレンズ保持枠14への照射角度と焦点位置とが調整し易くなる。   Further, as the reflecting member 13, a polygonal truncated cone prism 63 may be used instead of the polygonal prism (see FIGS. 9 and 10). When the prism 63 having a polygonal truncated pyramid shape is used, it is easy to adjust the irradiation angle to the lens holding frame 14 and the focal position by adjusting the reflection angle of the reflecting surface.

さらに、多角錐台形状のプリズム63を用いた場合は、反射部材13を光軸上に移動可能に配置することで、反射位置を容易に変化させることができる。これにより、レーザ照射されるレンズ保持枠14の径(光学レンズ15の径)が変化しても対応可能となる。なお、この場合も、多角錐台形状のプリズムに代えて、内壁面が多角錐台形状の反射面とされた中空光学部材を用いてもよい。   Further, when the prism 63 having a polygonal truncated pyramid shape is used, the reflection position can be easily changed by arranging the reflection member 13 so as to be movable on the optical axis. Thereby, even if the diameter of the lens holding frame 14 irradiated with the laser (the diameter of the optical lens 15) is changed, it is possible to cope with it. In this case, a hollow optical member whose inner wall surface is a reflecting surface having a polygonal frustum shape may be used instead of the prism having a polygonal frustum shape.

さらに、上記実施の形態では、レーザ保持枠14に光学レンズ15をレーザ光による熱溶着により固定する場合を例示したが、本発明はこれに限定されない。例えば、レーザ光による加工、位置決めを行うために基準点を照射光で示すような光学的な位置決め装置や照明等にも本発明を適用することができる。   Further, in the above embodiment, the case where the optical lens 15 is fixed to the laser holding frame 14 by heat welding with laser light is exemplified, but the present invention is not limited to this. For example, the present invention can be applied to an optical positioning device, illumination, or the like in which a reference point is indicated by irradiation light in order to perform processing and positioning with a laser beam.

次に、図4〜図12を参照して、本発明の実施例1〜7について具体的な数値例を挙げて説明する。なお、上記実施の形態と重複又は相当する部分については各図に同一符号を付して説明する。   Next, Examples 1 to 7 of the present invention will be described with specific numerical examples with reference to FIGS. Note that portions overlapping or corresponding to those in the above embodiment are described with the same reference numerals in the drawings.

まず、図3に、実施例1〜7に共通する結像光学系11の数値実施例を示す。結像光学系11は、光源10から第1面までの距離が57.6mmとされ、図3において、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。   First, FIG. 3 shows a numerical example of the imaging optical system 11 common to Examples 1-7. The imaging optical system 11 has a distance from the light source 10 to the first surface of 57.6 mm. In FIG. 3, Nd is the refractive index at the d-line, Vd is the Abbe number, and N (930 nm) is the refraction at a wavelength of 930 nm. Indicates the rate.

(実施例1)
実施例1は、図4(a)に示すように、光源10からのレーザ光の進行方向側に結像光学系11を配置し、該結像光学系11と結像位置との間に、円錐型プリズム12と内壁面23aが円錐台形状の反射面とされた中空光学部材23を配置した例である。
(Example 1)
In Example 1, as shown in FIG. 4A, the imaging optical system 11 is arranged on the traveling direction side of the laser light from the light source 10, and between the imaging optical system 11 and the imaging position, This is an example in which a hollow optical member 23 in which a conical prism 12 and an inner wall surface 23a are frustoconical reflecting surfaces is disposed.

実施例1の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から円錐型プリズム12の頂点までの距離、L2は円錐型プリズム12の底面から中空光学部材23までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=35.5mm
円錐型プリズム12の形状:光軸方向長さ=8mm、底面径=φ8mm
円錐型プリズム12の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
L2=13mm
中空光学部材23の形状:光軸方向長さ=23mm、光源側中空径=φ9mm、照射側中空径=φ11mm
実施例1では、例えばファイバーの先端から立体角的な広がりでレーザ光が射出されるような光源10からの光線を結像光学系11で集光する。そして、結像光学系11と集光点との間に円錐型プリズム12を、頂点を光源10側に向け、かつ頂点と底面の中心とを結ぶ線が結像光学系11の光軸と一致するように配置する。
A numerical example of the first embodiment is as follows. Here, L1 indicates the distance from the surface vertex of the imaging optical system 11 closest to the imaging side to the vertex of the conical prism 12, and L2 indicates the distance from the bottom surface of the conical prism 12 to the hollow optical member 23. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 35.5mm
Shape of conical prism 12: optical axis length = 8 mm, bottom diameter = φ8 mm
Material of the conical prism 12: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 13mm
Shape of hollow optical member 23: length in optical axis direction = 23 mm, light source side hollow diameter = φ9 mm, irradiation side hollow diameter = φ11 mm
In the first embodiment, for example, the imaging optical system 11 condenses the light beam from the light source 10 such that the laser beam is emitted with a solid angular spread from the tip of the fiber. Then, the conical prism 12 is placed between the imaging optical system 11 and the condensing point, and the line connecting the apex and the bottom center coincides with the optical axis of the imaging optical system 11. Arrange to do.

これにより、レーザ光線が円錐型プリズム12の側面に入射され、該側面の屈折作用によって入射光線を環状光線に偏向する。なお、円錐型プリズム12の底面を光源10側に向けて配置して、入射光線が円錐型プリズム12の側面から射出する際の屈折偏向作用を得るようにしてもよい。   As a result, the laser beam is incident on the side surface of the conical prism 12, and the incident beam is deflected into an annular beam by the refracting action of the side surface. Note that the bottom surface of the conical prism 12 may be disposed toward the light source 10 so as to obtain a refractive deflection action when the incident light beam is emitted from the side surface of the conical prism 12.

また、中空光学部材23の円錐台形状の内壁面(反射面)に前記環状光線が入射するように中空光学部材23の上面の中心と底面の中心とを結ぶ線が結像光学系11の光軸線に一致するように配置し、前記内壁面の反射作用により発散していた環状光線を収斂させる。   In addition, a line connecting the center of the top surface and the center of the bottom surface of the hollow optical member 23 so that the annular light beam is incident on the frustoconical inner wall surface (reflection surface) of the hollow optical member 23 is the light of the imaging optical system 11. It arrange | positions so that it may correspond to an axis line, and the ring-shaped light rays which were diverging by the reflection effect of the said inner wall surface are converged.

そして、環状光線の光線幅が略極小になる位置に、図2を参照して、例えば円形のレンズ部品15等をレンズ保持枠14で保持し、レンズ保持枠14の外周部全周にレーザ光線が照射されるようにする。   Then, with reference to FIG. 2, for example, a circular lens component 15 is held by the lens holding frame 14 at a position where the beam width of the annular light beam becomes substantially minimum, and the laser beam is applied to the entire outer periphery of the lens holding frame 14. To be irradiated.

この場合、中空光学部材23を光軸上に移動可能に配置することにより、円錐型プリズム12からの射出光が反射される部位の内径を変化させて、前記環状光線の光線幅が略極小になる位置を変化させることができる。このため、被照射物体であるレンズ保持枠14の外径(レンズ外径)を変更した際においても対応可能となる。例えば、この実施例1では、レンズ保持枠14の径をφ6mmからφ8mmに変更した場合、図4(b)に示すように、中空光学部材23を光源10側に向けて光軸方向に8mm移動させている。   In this case, by disposing the hollow optical member 23 so as to be movable on the optical axis, the inner diameter of the portion where the light emitted from the conical prism 12 is reflected is changed, so that the light beam width of the annular light beam is substantially minimized. The position can be changed. For this reason, even when the outer diameter (lens outer diameter) of the lens holding frame 14 that is an irradiated object is changed, it is possible to cope. For example, in Example 1, when the diameter of the lens holding frame 14 is changed from φ6 mm to φ8 mm, the hollow optical member 23 is moved 8 mm in the optical axis direction toward the light source 10 as shown in FIG. 4B. I am letting.

(実施例2)
実施例2は、実施例1に対して、図5(a)に示すように、反射部材として、外周面の裏面33aが反射面とされた円錐台形状のプリズム33を用いた例であり、前記反射面の全反射作用により前記環状光線を収斂させる。なお、この場合も、反射部材13を光軸上に移動可能に配置することにより、円錐型プリズム12からの射出光が反射される部位の内径を変化させて、前記環状光線の光線幅が略極小になる位置を変化させることができる(図5(b)参照)。
(Example 2)
Example 2 is an example in which, as shown in FIG. 5A, a truncated cone-shaped prism 33 in which the rear surface 33a of the outer peripheral surface is a reflecting surface is used as a reflecting member, as compared to Example 1. The annular light beam is converged by the total reflection action of the reflecting surface. Also in this case, by arranging the reflecting member 13 so as to be movable on the optical axis, the inner diameter of the portion where the light emitted from the conical prism 12 is reflected is changed, so that the light beam width of the annular light beam is substantially reduced. The position where it becomes minimum can be changed (see FIG. 5B).

実施例2の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から円錐型プリズム12の頂点までの距離、L2は円錐型プリズム12の底面から円錐台型プリズム33までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=35.5mm
円錐型プリズム12の形状:長さ=8mm、底面径=φ8mm
円錐型プリズム12の材質:Nd=1.51633、Vd= 64.1、N(930nm) =1.5081
L2=14mm
円錐台型プリズム33の形状:光軸方向長さ=20mm、光源側径=φ10mm、照射側径=φ11mm
円錐台型プリズム33の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
(実施例3)
実施例3は、図6に示すように、反射部材として、外周面の裏面が反射面とされた円柱形状のプリズム13を用いた例である。この例では、被照射物体であるレンズ保持枠14への照射角度をより垂直方向に近づけるために、円錐型プリズム12はより偏向作用が大きくなるように頂点角度を鋭角方向に設定している。また、これに応じて、円柱型プリズム13の外径を大きくしている。
A numerical example of the second embodiment is as follows. Here, L1 indicates the distance from the surface apex of the imaging optical system 11 to the apex of the conical prism 12, and L2 indicates the distance from the bottom surface of the conical prism 12 to the truncated cone prism 33. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 35.5mm
Shape of the conical prism 12: length = 8 mm, bottom surface diameter = φ8 mm
Material of the conical prism 12: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 14mm
Shape of the truncated cone prism 33: length in the optical axis direction = 20 mm, light source side diameter = φ10 mm, irradiation side diameter = φ11 mm
Material of the truncated cone prism 33: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
(Example 3)
As shown in FIG. 6, the third embodiment is an example in which a cylindrical prism 13 having an outer peripheral surface as a reflection surface is used as a reflection member. In this example, the apex angle of the conical prism 12 is set to an acute angle direction so that the deflection action is larger in order to make the irradiation angle to the lens holding frame 14 that is an object to be irradiated closer to the vertical direction. In accordance with this, the outer diameter of the cylindrical prism 13 is increased.

実施例3の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から円錐型プリズム12の頂点までの距離、L2は円錐型プリズム12の底面から円柱型プリズム13までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=43.5mm
円錐型プリズム12の形状:光軸方向長さ=13mm、底面径=φ7mm
円錐型プリズム12の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
L2=11.5mm
円柱型プリズム13の形状:光軸方向長さ=14mm、外径=φ18mm
円柱型プリズム13の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
(実施例4)
実施例4は、図7に示すように、反射部材として、内壁面が円筒形状の反射面とされた中空光学部材43を用いた例である。
A numerical example of the third embodiment is as follows. Here, L1 indicates the distance from the surface vertex of the imaging optical system 11 closest to the imaging side to the vertex of the conical prism 12, and L2 indicates the distance from the bottom surface of the conical prism 12 to the cylindrical prism 13. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 43.5mm
Shape of the conical prism 12: length in the optical axis direction = 13 mm, bottom surface diameter = φ7 mm
Material of the conical prism 12: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 11.5mm
Shape of cylindrical prism 13: optical axis length = 14 mm, outer diameter = φ18 mm
Material of the cylindrical prism 13: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
Example 4
Example 4 is an example in which a hollow optical member 43 whose inner wall surface is a cylindrical reflecting surface is used as a reflecting member, as shown in FIG.

実施例4の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から円錐型プリズム12の頂点までの距離、L2は円錐型プリズム12の底面から反射部材13までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=43.5mm
円錐型プリズム12の形状:光軸方向長さ=13mm、底面径=φ7mm
円錐型プリズム12の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
L2=9.5mm
中空光学部材43の形状:光軸方向長さ=10mm、中空径=φ17mm
(実施例5)
実施例5は、図8に示すように、円錐型プリズム12と円柱型プリズム53とを接合した例である。円柱型プリズム53の外周面の裏面53aは、反射面なっている。この例では、円錐型プリズム12と円柱型プリズム53との相互の光軸偏心が生じないようにすることができる。
A numerical example of the fourth embodiment is as follows. Here, L1 indicates the distance from the surface vertex of the imaging optical system 11 closest to the imaging side to the vertex of the conical prism 12, and L2 indicates the distance from the bottom surface of the conical prism 12 to the reflecting member 13. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 43.5mm
Shape of the conical prism 12: length in the optical axis direction = 13 mm, bottom surface diameter = φ7 mm
Material of the conical prism 12: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 9.5mm
Shape of hollow optical member 43: length in optical axis direction = 10 mm, hollow diameter = φ17 mm
(Example 5)
Example 5 is an example in which a conical prism 12 and a cylindrical prism 53 are joined as shown in FIG. The back surface 53a of the outer peripheral surface of the cylindrical prism 53 is a reflective surface. In this example, it is possible to prevent the optical axis eccentricity between the conical prism 12 and the cylindrical prism 53 from occurring.

実施例5の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から円錐型プリズム12の頂点までの距離、L2は円錐型プリズム12の底面から円柱型プリズム53までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=43.5mm
円錐型プリズム12の形状:光軸方向長さ=13mm、底面径=φ7mm
円錐型プリズム12の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
L2=0(接合)
円柱型プリズム53の形状:光軸方向長さ=40mm、外径=φ19mm
円柱型プリズム53の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
(実施例6)
実施例6は、図9および図10に示すように、頂点側を結像光学系11に向けて配置された四角錐プリズム12aにより結像光学系11からの光線を4方向に偏向させるように4分割した例である。4分割された光線は、四角錐プリズム12aの底面側に配置された四角錐台形状のプリズム63に入射する。そして、4分割された光線は四角錐台型プリズム63の側面63aで全反射することにより光軸方向に集光し、被照射物体14aの側面に4点の同時照射が行われる。この実施例6は、例えば立方体や直方体形状の物体と他物体との溶着や熱加工、照明等に適している。
A numerical example of the fifth embodiment is as follows. Here, L1 represents the distance from the surface vertex of the imaging optical system 11 closest to the imaging side to the vertex of the conical prism 12, and L2 represents the distance from the bottom surface of the conical prism 12 to the cylindrical prism 53. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 43.5mm
Shape of the conical prism 12: length in the optical axis direction = 13 mm, bottom surface diameter = φ7 mm
Material of the conical prism 12: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 0 (joining)
Shape of cylindrical prism 53: length in optical axis direction = 40 mm, outer diameter = φ19 mm
Material of the cylindrical prism 53: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
(Example 6)
In the sixth embodiment, as shown in FIGS. 9 and 10, the light from the imaging optical system 11 is deflected in four directions by the quadrangular pyramid prism 12 a arranged with the apex side facing the imaging optical system 11. This is an example divided into four. The light beam divided into four is incident on a prism 63 having a truncated pyramid shape arranged on the bottom surface side of the rectangular pyramid prism 12a. The four divided light beams are totally reflected by the side surface 63a of the quadrangular frustum prism 63 to be condensed in the optical axis direction, and four points are simultaneously irradiated on the side surface of the irradiated object 14a. The sixth embodiment is suitable for, for example, welding of a cube-shaped or rectangular parallelepiped object to another object, thermal processing, illumination, or the like.

実施例6の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から四角錐型プリズム12aの頂点までの距離、L2は四角錐型プリズム12aの底面から四角錐台型プリズム63までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=35.5mm
四角錐型プリズム12aの形状:光軸方向長さ=13mm、底面辺長=20mm
四角錐型プリズム12aの材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
L2=11.5mm
四角錐台型プリズム63の形状:光軸方向長さ=25mm、上面辺長=24mm、底面辺長=26mm
四角錐台型プリズム63の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
なお、四角錐台形状のプリズム63かに代えて、内壁面が四角錐台形状の反射面とされた中空光学部材を用いてもよい。
A numerical example of the sixth embodiment is as follows. Here, L1 is the distance from the surface apex of the imaging optical system 11 to the apex of the quadrangular pyramid prism 12a, and L2 is the distance from the bottom of the quadrangular pyramid prism 12a to the quadrangular pyramid prism 63. Show. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 35.5mm
Shape of the quadrangular pyramid prism 12a: optical axis direction length = 13 mm, bottom side length = 20 mm
Material of the quadrangular pyramid prism 12a: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 11.5mm
Shape of the square frustum prism 63: optical axis length = 25 mm, top side length = 24 mm, bottom side length = 26 mm
Material of the quadrangular pyramid prism 63: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
In place of the prism 63 having the truncated pyramid shape, a hollow optical member having an inner wall surface that is a reflecting surface having a truncated pyramid shape may be used.

(実施例7)
実施例7は、図11および図12に示すように、頂点を結像光学系11側に向けて配置されたに三角錐型プリズム12bにより結像光学系11からの光線を3方向に偏向させるように3分割した例である。3分割された光線は、三角錐型プリズム12bの底面側に配置された内壁面が円錐台形状の反射面とされた中空光学部材73に入射する。そして、3分割された光線は、中空光学部材73の内壁面73aで反射することにより光軸方向に集光し、被照射物体14bの側面に3点の同時照射が行われる。この実施例7は、例えば三角柱形状の物体と他物体との溶着や熱加工、照明等に適している。
(Example 7)
In the seventh embodiment, as shown in FIGS. 11 and 12, the light rays from the imaging optical system 11 are deflected in three directions by the triangular pyramid prism 12b with the apex arranged toward the imaging optical system 11 side. This is an example of three divisions. The light beam divided into three is incident on a hollow optical member 73 whose inner wall surface disposed on the bottom surface side of the triangular pyramid prism 12b has a frustoconical reflecting surface. The three-divided light beams are reflected in the optical axis direction by being reflected by the inner wall surface 73a of the hollow optical member 73, and three points of simultaneous irradiation are performed on the side surface of the irradiated object 14b. The seventh embodiment is suitable for welding, for example, a triangular prism-shaped object and another object, thermal processing, illumination, and the like.

実施例7の数値実施例は、次の通りである。ここで、L1は結像光学系11の最も結像側の面頂点から三角錐型プリズム12bの頂点までの距離、L2は三角錐型プリズム12bの底面から中空光学部材73までの距離を示す。また、Ndはd線における屈折率、Vdはアッベ数、N(930nm)は930nm波長での屈折率を示す。
L1=34.5mm
三角錐型プリズム12bの形状:一辺19.5mmの正四面体
三角錐型プリズム12bの材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
L2=6mm
中空光学部材73の形状:光軸方向の長さ=15mm、上面内径=φ48mm、底面内径=φ44mm
中空光学部材73の材質:Nd=1.51633、Vd=64.1、N(930nm)=1.5081
なお、内壁面が円錐台形状の反射面とされた中空光学部材73に代えて、外周面の裏面が反射面とされた円錐台形状のプリズムを用いてもよい。
A numerical example of the seventh embodiment is as follows. Here, L1 indicates the distance from the surface vertex of the imaging optical system 11 closest to the imaging side to the vertex of the triangular pyramid prism 12b, and L2 indicates the distance from the bottom surface of the triangular pyramid prism 12b to the hollow optical member 73. Nd represents the refractive index at the d-line, Vd represents the Abbe number, and N (930 nm) represents the refractive index at a wavelength of 930 nm.
L1 = 34.5mm
Shape of the triangular pyramid prism 12b: material of a regular tetrahedral triangular pyramid prism 12b having a side of 19.5 mm: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
L2 = 6mm
Shape of the hollow optical member 73: length in the optical axis direction = 15 mm, top inner diameter = φ48 mm, bottom inner diameter = φ44 mm
Material of the hollow optical member 73: Nd = 1.51633, Vd = 64.1, N (930 nm) = 1.5081
Instead of the hollow optical member 73 whose inner wall surface is a frustoconical reflecting surface, a frustoconical prism whose outer surface is a reflecting surface may be used.

本発明の実施の形態の一例である照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus which is an example of embodiment of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 結像光学系の数値実施例を示す図である。It is a figure which shows the numerical Example of an imaging optical system. 実施例1の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 1. FIG. 実施例2の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 2. FIG. 実施例3の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 3. FIG. 実施例4の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 4. FIG. 実施例5の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 5. FIG. 実施例6の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 6. FIG. 図9に示す照射装置の斜視図である。It is a perspective view of the irradiation apparatus shown in FIG. 実施例7の照射装置を説明するための説明図である。It is explanatory drawing for demonstrating the irradiation apparatus of Example 7. FIG. 図11に示す照射装置の斜視図である。It is a perspective view of the irradiation apparatus shown in FIG. 従来のかしめ方式によるレンズの固定方法を説明するための図である。It is a figure for demonstrating the fixing method of the lens by the conventional crimping system.

符号の説明Explanation of symbols

10 光源
11 結像光学系
12 円錐型プリズム
12a 四角錐型プリズム(多角錐型プリズム)
12b 三角錐型プリズム(多角錐型プリズム)
13 円柱型プリズム
14 レンズ保持枠(被照射物体)
15 光学レンズ(被固定部材)
DESCRIPTION OF SYMBOLS 10 Light source 11 Imaging optical system 12 Conical prism 12a Square pyramid prism (polygonal pyramid prism)
12b Triangular pyramid prism (polygonal pyramid prism)
13 Cylindrical prism 14 Lens holding frame (irradiated object)
15 Optical lens (fixed member)

Claims (11)

光源から照射された光線を結像する結像光学系と、該結像光学系の結像側に配置され、該結像光学系から射出された光線を放射状に偏向する錐型プリズムと、該錐型プリズムから射出された光線を内面反射作用により光軸方向に偏向して、光軸上に配置された被照射物体に照射する反射部材と、を備えることを特徴とする照射装置。   An imaging optical system that forms an image of a light beam emitted from a light source; a conical prism that is disposed on the imaging side of the imaging optical system and deflects the light beam emitted from the imaging optical system radially; An irradiating apparatus comprising: a reflecting member that deflects a light beam emitted from a cone-shaped prism in an optical axis direction by an internal reflection effect and irradiates an irradiated object disposed on the optical axis. 前記錐形プリズムが円錐型プリズムである、ことを特徴とする請求項1に記載の照射装置。   The irradiation apparatus according to claim 1, wherein the conical prism is a conical prism. 前記反射部材が円柱形状若しくは円錐台形状のプリズム、又は内周壁に円柱形状若しくは円錐台形状の反射面を有する中空部材である、ことを特徴とする請求項1又は2に記載の照射装置。   The irradiation device according to claim 1, wherein the reflecting member is a prism having a cylindrical shape or a truncated cone shape, or a hollow member having a reflecting surface having a cylindrical shape or a truncated cone shape on an inner peripheral wall. 前記錐型プリズムが多角錐型プリズムである、ことを特徴とする請求項1に記載の照射装置。   The irradiation apparatus according to claim 1, wherein the conical prism is a polygonal pyramid prism. 前記反射部材が多角柱形状又は多角錐台形状のプリズム、又は内周壁に多角柱形状又は多角錐台形状の反射面を有する中空部材である、ことを特徴とする請求項1又は4に記載の照射装置。   5. The reflecting member according to claim 1, wherein the reflecting member is a prism having a polygonal column shape or a truncated pyramid shape, or a hollow member having a reflecting surface having a polygonal column shape or a truncated pyramid shape on an inner peripheral wall. Irradiation device. 前記反射部材は光軸方向に移動可能に配置されている、ことを特徴とする請求項1〜5のいずれか一項に記載の照射装置。   The irradiation device according to claim 1, wherein the reflection member is arranged to be movable in the optical axis direction. 前記被照射物体が略円筒形状であり、該被照射物体の外周面に対して前記光線を照射する、ことを特徴とする請求項1〜6のいずれか一項に記載の照射装置。   The irradiation apparatus according to claim 1, wherein the irradiated object has a substantially cylindrical shape, and irradiates the outer peripheral surface of the irradiated object with the light beam. 前記光源は単波長のレーザ光を照射する、ことを特徴とする請求項1〜7のいずれか一項に記載の照射装置。   The irradiation apparatus according to claim 1, wherein the light source irradiates a single wavelength laser beam. 前記光源は赤外域のレーザ光を照射する、ことを特徴とする請求項8に記載の照射装置。   The irradiation apparatus according to claim 8, wherein the light source emits laser light in an infrared region. 前記被照射物体は赤外線透過物質によって形成され、該被照射物体の外周部に前記レーザ光を照射することにより該被照射物体にレーザ溶着される被固定部材の外周部を保持する、ことを特徴とする請求項9に記載の照射装置。   The irradiated object is formed of an infrared transmitting material, and the outer peripheral portion of the fixing member to be laser-welded to the irradiated object is held by irradiating the outer peripheral portion of the irradiated object with the laser beam. The irradiation apparatus according to claim 9. 前記被固定部品と前記保持部材との間に熱可塑性物質を介装し、該介装部位に前記レーザ光を照射する、ことを特徴とする請求項10に記載の照射装置。   The irradiation apparatus according to claim 10, wherein a thermoplastic substance is interposed between the fixed part and the holding member, and the laser beam is irradiated to the interposed part.
JP2006333748A 2006-12-11 2006-12-11 Irradiation optical system and irradiation apparatus Expired - Fee Related JP5196778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333748A JP5196778B2 (en) 2006-12-11 2006-12-11 Irradiation optical system and irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333748A JP5196778B2 (en) 2006-12-11 2006-12-11 Irradiation optical system and irradiation apparatus

Publications (2)

Publication Number Publication Date
JP2008142749A true JP2008142749A (en) 2008-06-26
JP5196778B2 JP5196778B2 (en) 2013-05-15

Family

ID=39603499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333748A Expired - Fee Related JP5196778B2 (en) 2006-12-11 2006-12-11 Irradiation optical system and irradiation apparatus

Country Status (1)

Country Link
JP (1) JP5196778B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175813A (en) * 2015-03-20 2016-10-06 アウレアワークス株式会社 Single crystal growth apparatus with laser beam division device
CN108873257A (en) * 2018-07-11 2018-11-23 大族激光科技产业集团股份有限公司 Lens group and laser process equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013006369U1 (en) * 2013-07-16 2013-09-03 Jenoptik Optical Systems Gmbh F-Theta lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001084A (en) * 2002-03-28 2004-01-08 Ishikawajima Harima Heavy Ind Co Ltd Twin spotting laser welding method and equipment
JP2005088585A (en) * 2003-09-20 2005-04-07 Leister Process Technologies Method and apparatus for joining components by laser beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001084A (en) * 2002-03-28 2004-01-08 Ishikawajima Harima Heavy Ind Co Ltd Twin spotting laser welding method and equipment
JP2005088585A (en) * 2003-09-20 2005-04-07 Leister Process Technologies Method and apparatus for joining components by laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175813A (en) * 2015-03-20 2016-10-06 アウレアワークス株式会社 Single crystal growth apparatus with laser beam division device
CN108873257A (en) * 2018-07-11 2018-11-23 大族激光科技产业集团股份有限公司 Lens group and laser process equipment

Also Published As

Publication number Publication date
JP5196778B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5525136B2 (en) Optical device for generating sheet light
US20060086898A1 (en) Method and apparatus of making highly repetitive micro-pattern using laser writer
JP2018151624A5 (en)
WO2011129068A1 (en) Eccentric amount measuring method
US10795169B2 (en) Laser homogenizing and beam shaping illumination optical system and method
WO2016125384A1 (en) Illumination optical system and projector
JP6394134B2 (en) Projector and head-up display device
CN1310352A (en) Equipment for controlling light direction dynamically in wide view field
CN109581827B (en) Photoetching projection objective lens optimal focal plane detection device and method
JP5196778B2 (en) Irradiation optical system and irradiation apparatus
KR101939876B1 (en) Raser repair device
KR101669825B1 (en) Manufacturing method of holographic optical elements using spatial light modulator
JP2009186699A (en) Lens unit and method of manufacturing the same
JP2014115144A (en) Shape measurement apparatus, optical device, method of manufacturing shape measurement apparatus, structure manufacturing system, and structure manufacturing method
JP2008170905A (en) Lens-fixing method and lens unit
US11163095B2 (en) Method of manufacturing an optical system including forming a plurality of diaphragm apertures from a screening element
JP2009288075A (en) Aberration measuring device and aberration measuring method
US9964857B2 (en) Beam exposure device
JP2014115445A (en) Optical device
JP3129506U (en) Laser equipment
JP5057787B2 (en) Defect correction device
JPH0980330A (en) Multibeam scanning optical system
Symes et al. Progress on positioning of solid targets for Gemini
WO2007063343A1 (en) Laser processing tool
JP2005157146A (en) Optical microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5196778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees