JP2008142722A - Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same - Google Patents

Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2008142722A
JP2008142722A JP2006330201A JP2006330201A JP2008142722A JP 2008142722 A JP2008142722 A JP 2008142722A JP 2006330201 A JP2006330201 A JP 2006330201A JP 2006330201 A JP2006330201 A JP 2006330201A JP 2008142722 A JP2008142722 A JP 2008142722A
Authority
JP
Japan
Prior art keywords
welding
plate
metal foil
metal
exposed portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006330201A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishioka
努 西岡
Yukio Harima
幸男 播磨
Tadashi Imai
正 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006330201A priority Critical patent/JP2008142722A/en
Publication of JP2008142722A publication Critical patent/JP2008142722A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, in the parallel welding of an electrode plate and a current collection lead sheet, regarding the conventional welding pedestal made of a metal material, a split is generated in the welding pedestal, and heat is dispersed into the metal foil and current collection lead, thus welding conditions are made instable, and to provide a nonaqueous secondary battery capable of performing stable lead sheet connection to the electrode plate, and having high reliability. <P>SOLUTION: A method for manufacturing the nonaqueous secondary battery is characterized in that a metal foil exposed part 3 of an electrode plate 5, and a current collection lead sheet 2 are set so as to be superimposed on a pedestal 1 for welding made of an insulator, and a pair of welding electrodes 6 are arranged on the current collection lead sheet 2, and the welding electrode 6 is energized while pressurizing the current collection lead sheet 2, thus welding the metal foil exposed part 3 of the electrode plate 5, and the current collection lead sheet 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属箔と金属薄板の抵抗溶接方法であって、一対の溶接電極を溶接部に配置するパラレル抵抗溶接に関するもので、特にこのパラレル抵抗溶接を用いた非水系二次電池の製造方法に関するものである。   The present invention relates to a resistance welding method for a metal foil and a metal thin plate, and relates to parallel resistance welding in which a pair of welding electrodes are arranged in a welded portion, and in particular, a method for manufacturing a nonaqueous secondary battery using this parallel resistance welding It is about.

一対の溶接電極を溶接対象上に配置して加圧しながら通電を行うパラレル抵抗溶接は薄物の溶接に用いられている。特に二次電池では帯状の金属箔に活物質を塗布して作製される正極板と負極板とをセパレータを介して渦巻状に巻回して構成される電極群から外部端子へと電流を取り出すためには正極板、負極板に集電リード板を取り付け、外部端子と接合する必要がある。   Parallel resistance welding, in which a pair of welding electrodes are arranged on a welding target and energized while being pressurized, is used for welding thin objects. In particular, in a secondary battery, a current is taken out from an electrode group formed by winding a positive electrode plate and a negative electrode plate, which are produced by applying an active material to a strip-shaped metal foil, in a spiral shape through a separator, to an external terminal. It is necessary to attach a current collecting lead plate to the positive electrode plate and the negative electrode plate and to join to the external terminal.

正極板と負極板に集電リード板を取り付ける方法として、正極板、負極板の金属箔の露出部分に集電リード板を溶接する方法が一般的に採用されており、この金属箔の露出部分と集電リード板の抵抗溶接方法では、溶接台座上に金属箔の露出部と集電リード板を重ね合わせ、集電リード板上に一対の溶接電極を配置して加圧しながら通電して溶接を行うパラレル抵抗溶接方法が採用されてきた。   As a method of attaching the current collecting lead plate to the positive electrode plate and the negative electrode plate, a method of welding the current collecting lead plate to the exposed portion of the metal foil of the positive electrode plate and the negative electrode plate is generally employed. In the resistance welding method of the current collector lead plate, the exposed portion of the metal foil and the current collector lead plate are overlapped on the welding pedestal, and a pair of welding electrodes are placed on the current collector lead plate so as to be energized while welding and welding. A parallel resistance welding method has been employed.

ここで、図6に示したように、パラレル抵抗溶接に用いる溶接台座20の材質にタングステン等に代表される高抵抗材料を用いることにより、溶接台座10の発熱を利用して集電リード板としての金属薄板22と金属箔21を一対の溶接電極23A,23Bにて溶接する方法が提案されている(例えば、特許文献1参照)。
特開2003−19569号公報
Here, as shown in FIG. 6, by using a high resistance material typified by tungsten or the like as the material of the welding pedestal 20 used for parallel resistance welding, the heat generation of the welding pedestal 10 is used as a current collecting lead plate. A method of welding the thin metal plate 22 and the metal foil 21 with a pair of welding electrodes 23A and 23B has been proposed (see, for example, Patent Document 1).
JP 2003-19569 A

しかしながら、従来技術である特許文献においては図6に示すように溶接台座20に高抵抗材料を使用すると、図7に示したように抵抗溶接時の電流経路は最も電流が流れる経路である金属薄板22側では溶接電極23A、金属薄板22、溶接電極23Bの電流経路をたどり、金属箔21側の経路では溶接電極23A、金属薄板22、金属箔21、金属薄板22、溶接電極23Bの電流経路をたどるが、これらの経路以外に溶接電極23A、金属薄板22、金属箔21、溶接台座20、金属箔21、金属薄板22、溶接電極23Bとなる溶接台座20への溶接電流の分流が発生する。よって、発熱は金属薄板22と金属箔21の間、溶接台座20の表層部に分散するために溶接状態が不安定になるという課題を有していた。   However, in the prior art patent document, when a high resistance material is used for the welding pedestal 20 as shown in FIG. 6, the current path during resistance welding is the path through which the most current flows as shown in FIG. The current path of the welding electrode 23A, the metal thin plate 22, and the welding electrode 23B is traced on the 22 side, and the current path of the welding electrode 23A, the metal thin plate 22, the metal foil 21, the metal thin plate 22, and the welding electrode 23B is traced on the path of the metal foil 21 side. However, in addition to these paths, the welding electrode 23A, the metal thin plate 22, the metal foil 21, the welding pedestal 20, the metal foil 21, the metal thin plate 22, and the shunt current of the welding pedestal 20 serving as the welding electrode 23B are generated. Therefore, since heat generation is dispersed between the metal thin plate 22 and the metal foil 21 and on the surface layer portion of the welding pedestal 20, the welding state becomes unstable.

また、溶接台座20への通電により、溶接台座20が変形するために溶接電極23の押さえ状態が変化し金属薄板22の変形が発生するという課題を有していた。さらに、溶接台座20が高抵抗材料の金属材質であるために溶接台座20へ金属箔21が付着し、金属箔21の破損や生産性の低下という課題を有していた。   Moreover, since the welding pedestal 20 is deformed by energization of the welding pedestal 20, the pressing state of the welding electrode 23 is changed and the metal thin plate 22 is deformed. Furthermore, since the welding pedestal 20 is a metal material of a high resistance material, the metal foil 21 adheres to the welding pedestal 20, and there is a problem that the metal foil 21 is damaged or the productivity is lowered.

本発明は上記従来の課題に鑑みてなされたもので、溶接台座を耐熱性を有する絶縁体にすることで溶接台座への分流を防止することにより、安定した金属薄板と金属箔の接続を行うことが可能であり、信頼性の高い非水系二次電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and by making the welding pedestal an insulating material having heat resistance, it prevents a diversion to the welding pedestal, thereby stably connecting the metal thin plate and the metal foil. It is possible to provide a highly reliable non-aqueous secondary battery.

上記目的を達成するために本発明の金属薄板と金属箔の抵抗溶接方法は耐熱性を有する絶縁体からなる溶接用台座の上に金属箔と金属薄板を重ね合わせて設置し、前記金属薄板上に一対の溶接電極を配置し溶接電極にて前記金属薄板を加圧した状態で通電を行うことで金属箔と金属薄板を溶接すること特徴とするものである。   In order to achieve the above object, the method of resistance welding of a metal thin plate and a metal foil according to the present invention is performed by placing the metal foil and the metal thin plate on a welding pedestal made of a heat-resistant insulator, A metal foil and a thin metal plate are welded by arranging a pair of welding electrodes and energizing the metal thin plate under pressure with the welding electrode.

以上のように本発明は耐熱性を有する絶縁体からなる溶接用台座の上に金属箔と金属薄板を重ね合わせて設置し、前記金属薄板上に一対の溶接電極を配置し溶接電極にて前記金属薄板を加圧した状態で通電を行うことで金属箔と金属薄板を溶接することにより、溶接台座への分流を無くし、金属薄板に熱を集中させることにより安定した溶接状態を得ることができる。   As described above, in the present invention, a metal foil and a metal thin plate are placed on a welding pedestal made of an insulating material having heat resistance, a pair of welding electrodes are arranged on the metal thin plate, and the welding electrode is used to By welding the metal foil and the metal thin plate by energizing the metal thin plate in a pressurized state, the shunt flow to the welding base is eliminated, and a stable welding state can be obtained by concentrating the heat on the metal thin plate. .

本発明の第1の発明においては、耐熱性を有する絶縁体からなる溶接用台座の上に金属薄板と金属箔を重ね合わせて設置し、金属薄板上に一対の溶接電極を配置し溶接電極にて金属薄板を加圧した状態で通電を行うことで金属箔と金属薄板を溶接することにより、溶接台座への分流を無くし金属薄板に熱を集中させることにより安定した溶接が可能となる。   In the first invention of the present invention, a thin metal plate and a metal foil are placed on a welding pedestal made of an insulating material having heat resistance, and a pair of welding electrodes are disposed on the thin metal plate to form a welding electrode. By welding the metal foil and the metal thin plate by energizing the metal thin plate in a pressurized state, it is possible to eliminate the diversion to the welding base and to concentrate heat on the metal thin plate, thereby enabling stable welding.

本発明の第2の発明においては、溶接台座に用いる耐熱性を有する絶縁体をセラミックスで構成することにより、溶接台座の変形や電極の押さえ状態の変化を無くし、金属薄板の変形を防ぐことが可能である。   In the second invention of the present invention, the heat-resistant insulator used for the welding pedestal is made of ceramics, thereby eliminating the deformation of the welding pedestal and the pressing state of the electrode and preventing the deformation of the thin metal plate. Is possible.

本発明の第3の発明においては、一対の電極間の距離を0.5mm〜1.0mmとすることにより、溶接部の熱集中を適正化して安定した溶接が可能である。   In the third aspect of the present invention, by setting the distance between the pair of electrodes to 0.5 mm to 1.0 mm, it is possible to optimize the heat concentration of the welded portion and perform stable welding.

本発明の第4の発明においては、帯状の金属箔に正極活物質を金属箔の露出部を残した状態で塗着し金属箔の露出部に金属薄板からなる集電リード板を溶接した正極板と、負極活物質を金属箔の露出部を残した状態で塗着し、金属箔の露出部に金属薄板からなる集電リード板を溶接した負極板とを、セパレータを介して渦巻状に巻回して構成される電極群を非水電解液とともに電池缶の内部に収容し封口板で電池缶の開口部を封口する二次電池の製造方法であって、正極板または負極板を形成する工程として金属箔の露出部と金属薄板からなる集電リード板を耐熱性を有する絶縁体からなる溶接用台座の上に金属箔の露出部と集電リード板を重ね合わせて設置し、集電リード板上に一対の溶接電極を配置し溶接電極にて集電リード板を加圧した状態で通電して金属箔の露出部と集電リード板とを溶接することことにより、溶接台座への分流を無くし、集電リード板に熱を集中させて安定した溶接が可能となり、信頼性の高い非水系二次電池を得ることが可能である。   In the fourth invention of the present invention, a positive electrode active material is applied to a strip-shaped metal foil with the exposed portion of the metal foil left, and a current collector lead plate made of a thin metal plate is welded to the exposed portion of the metal foil. A negative electrode plate coated with a negative electrode active material with the exposed portion of the metal foil left and a current collecting lead plate made of a thin metal plate welded to the exposed portion of the metal foil in a spiral shape via a separator A method of manufacturing a secondary battery in which a wound electrode group is housed in a battery can together with a non-aqueous electrolyte, and an opening of the battery can is sealed with a sealing plate, and a positive electrode plate or a negative electrode plate is formed. As a process, the exposed portion of the metal foil and the current collector lead plate made of a thin metal plate are placed on the welding pedestal made of a heat-resistant insulator so that the exposed portion of the metal foil and the current collector lead plate are stacked. A pair of welding electrodes is placed on the lead plate, and the current collector lead plate is pressurized with the welding electrode. By energizing in the state and welding the exposed part of the metal foil and the current collector lead plate, there is no shunting to the welding pedestal, and heat can be concentrated on the current collector lead plate, enabling stable welding and reliability. High non-aqueous secondary batteries can be obtained.

以下に本発明の最良の実施形態である金属薄板と金属箔の抵抗溶接方法について、図面を参照にしながら詳細に説明する。なお、本発明の金属薄板と金属箔は以下の形態に限定されるものではない。   Hereinafter, a resistance welding method between a metal thin plate and a metal foil, which is the best embodiment of the present invention, will be described in detail with reference to the drawings. In addition, the metal thin plate and metal foil of this invention are not limited to the following forms.

溶接装置としては、図1に示すように一対の溶接電極6と溶接電源8を取り付けた加圧ヘッド7と溶接対象物を配置する溶接台座1からなっている。以下この装置を用いた二次電池の電極板の金属箔露出部への集電リード板溶接について説明する。   As shown in FIG. 1, the welding apparatus includes a pressure head 7 to which a pair of welding electrodes 6 and a welding power source 8 are attached, and a welding base 1 on which an object to be welded is arranged. Hereinafter, the current collector lead plate welding to the exposed portion of the metal foil of the electrode plate of the secondary battery using this apparatus will be described.

まず、非水系二次電池の構成としては図4に示すように、金属箔露出部に正極集電リード板17を溶接することにより構成した正極板16、金属箔露出部に負極集電リード板15を溶接することにより構成した負極板14、セパレータ13を巻回して構成した電極群12を、図3に示すように電池缶10に非水電解液と共に収容し、封口板11で電池缶1
0の開口部を封口することにより構成されている。なお、電池缶10と負極集電リード板15、封口板11と正極集電リード板17をそれぞれ接合することにより、外部への電流取り出しを可能としている。
First, as shown in FIG. 4, the structure of the non-aqueous secondary battery is a positive electrode plate 16 formed by welding a positive electrode current collecting lead plate 17 to a metal foil exposed portion, and a negative electrode current collecting lead plate to the metal foil exposed portion. A negative electrode plate 14 formed by welding 15 and an electrode group 12 formed by winding a separator 13 are housed in a battery can 10 together with a non-aqueous electrolyte as shown in FIG.
It is configured by sealing the 0 opening. The battery can 10 and the negative electrode current collector lead plate 15, and the sealing plate 11 and the positive electrode current collector lead plate 17 are joined to each other, thereby allowing current to be taken out to the outside.

ここで、正極板16、負極板14を二次電池の電極板5といい、この電極板5は金属箔露出部3と活物質塗着部4から構成されており、各電極板は金属箔に活物質を塗布して構成されている。なお、正極板16は金属箔であるアルミニウム箔からなる帯状芯材の両面にリチウム複合酸化物からなる正極活物質を塗布して構成され、負極板14は銅箔からなる帯状芯材の両面に炭素材料を含む負極活物質を塗布して構成されている。   Here, the positive electrode plate 16 and the negative electrode plate 14 are referred to as an electrode plate 5 of a secondary battery, and the electrode plate 5 includes a metal foil exposed portion 3 and an active material coating portion 4, and each electrode plate is a metal foil. It is configured by applying an active material. The positive electrode plate 16 is configured by applying a positive electrode active material made of a lithium composite oxide on both surfaces of a strip-shaped core material made of an aluminum foil, which is a metal foil, and the negative electrode plate 14 is formed on both surfaces of a strip-shaped core material made of a copper foil. It is configured by applying a negative electrode active material containing a carbon material.

各電極板には活物質の塗布されていない金属箔露出部3が形成されており、図1に示したようにこの金属箔露出部3と負極板14ではニッケル、正極板16ではアルミニウムからなる集電リード板2を重ね合わせ、耐熱性を有した絶縁体である炭化ケイ素からなる溶接台座1の上で、集電リード板2上に一対の溶接電極6A、6Bを配置し、溶接電極6で集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接し、正極板16、負極板14、セパレータ13を渦巻状に巻回して、電池缶10に非水電解液と共に収容し、封口板11で前記電池缶10の開口部を封口することにより電極板5からの集電を可能とした。   Each electrode plate is formed with a metal foil exposed portion 3 to which no active material is applied. As shown in FIG. 1, the metal foil exposed portion 3 and the negative electrode plate 14 are made of nickel, and the positive electrode plate 16 is made of aluminum. A pair of welding electrodes 6A and 6B are arranged on the current collecting lead plate 2 on the welding pedestal 1 made of silicon carbide, which is an insulating material having heat resistance, and the current collecting lead plate 2 is overlapped. The current collector lead plate 2 is energized while being energized to weld the exposed metal foil portion 3 and the current collector lead plate 2, and the positive electrode plate 16, the negative electrode plate 14, and the separator 13 are wound in a spiral shape. It was accommodated together with the non-aqueous electrolyte, and the opening of the battery can 10 was sealed with the sealing plate 11, thereby allowing current collection from the electrode plate 5.

次に、本発明の二次電池の製造方法としては、金属箔の露出部を形成された正極板、負極板である電極板5の金属箔露出部3に集電リード板2を重ね合わせ耐熱性を有した絶縁体である炭化ケイ素からなる溶接台座1の上で、集電リード板2上に一対の溶接電極6を配置し、溶接電極6で集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接し、正極板、負極板、セパレータを渦巻状に巻回して、電池缶に非水電解液と共に収容し、封口板で前記電池缶の開口部を封口することにより本発明の二次電池は構成される。   Next, as a method for manufacturing the secondary battery of the present invention, the current collector lead plate 2 is superposed on the metal foil exposed portion 3 of the positive electrode plate 5 and the electrode plate 5 which is a negative electrode plate, on which the exposed portion of the metal foil is formed. A pair of welding electrodes 6 are arranged on the current collecting lead plate 2 on the welding pedestal 1 made of silicon carbide, which is an insulating material, and the current collecting lead plate 2 is energized while being pressurized by the welding electrodes 6. The metal foil exposed portion 3 and the current collecting lead plate 2 are welded, and the positive electrode plate, the negative electrode plate, and the separator are wound in a spiral shape and accommodated in a battery can together with a non-aqueous electrolyte, and the opening of the battery can is opened with a sealing plate The secondary battery of the present invention is configured by sealing the part.

本発明の金属薄板と金属箔の抵抗溶接方法によると、図2に示すように、溶接台座1に耐熱性を有する絶縁体を用いることにより、抵抗溶接時の電流経路は最も電流が流れる経路である溶接電極6A、集電リード板2、溶接電極6Bの電流経路をたどり金属箔露出部3側の経路では溶接電極6A、集電リード板2、金属箔露出部3、集電リード板2、溶接電極6Bの電流経路をたどることで、溶接台座1への分流が無くなる。よって、集電リード板2と電極板5の金属箔露出部3の間に発熱が集中するために安定した溶接状態を得ることが可能となる。なお、本発明では耐熱性を有する絶縁体として炭化ケイ素を用いたがこれに限定されるものではない。
以下、本発明の実施例を、図を参照にしながら詳細に説明する。なお、本発明の実施例は負極板を用いて行った。
According to the resistance welding method between a thin metal plate and a metal foil of the present invention, as shown in FIG. 2, the current path during resistance welding is the path through which the most current flows by using a heat-resistant insulator for the welding base 1. The current path of the welding electrode 6A, the current collecting lead plate 2, and the welding electrode 6B is traced, and in the path on the metal foil exposed portion 3 side, the welding electrode 6A, the current collecting lead plate 2, the metal foil exposed portion 3, the current collecting lead plate 2, By following the current path of the welding electrode 6B, the shunt to the welding base 1 is eliminated. Therefore, since heat generation is concentrated between the current collector lead plate 2 and the metal foil exposed portion 3 of the electrode plate 5, a stable welding state can be obtained. In the present invention, silicon carbide is used as the heat-resistant insulator, but the present invention is not limited to this.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the Example of this invention was performed using the negative electrode plate.

図1に示すように、材質を炭化ケイ素とする溶接台座1の上に電極板5の金属箔露出部3と集電リード板2を重ね合わせ、集電リード板2上に電極間距離0.5mmとした一対の溶接電極6A,6Bを配置し、溶接電極6A,6Bで集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接して構成した電極板5を実施例1とした。   As shown in FIG. 1, the metal foil exposed portion 3 of the electrode plate 5 and the current collecting lead plate 2 are superposed on the welding pedestal 1 made of silicon carbide, and the distance between the electrodes is set on the current collecting lead plate 2. An electrode formed by arranging a pair of welding electrodes 6A and 6B of 5 mm, and energizing the current collector lead plate 2 with the welding electrodes 6A and 6B while welding the metal foil exposed portion 3 and the current collector lead plate 2 The plate 5 was taken as Example 1.

なお、電極板5は厚さ12μmの銅箔と負極活物質からなり、集電リード板2は幅3mm、厚さ0.1mmのニッケルからなる。さらに、溶接電極6はアルミナ分散銅からなり、溶接条件としては、加圧2kg,溶接電圧3V,通電時間0.8msecとした。   The electrode plate 5 is made of a copper foil having a thickness of 12 μm and a negative electrode active material, and the current collecting lead plate 2 is made of nickel having a width of 3 mm and a thickness of 0.1 mm. Furthermore, the welding electrode 6 was made of alumina-dispersed copper, and the welding conditions were a pressure of 2 kg, a welding voltage of 3 V, and an energization time of 0.8 msec.

図1に示すように、材質を窒化ケイ素とする溶接台座1の上に電極板5の金属箔露出部
3と集電リード板2を重ね合わせ、集電リード板2上に電極間距離0.5mmとした一対の溶接電極6A,6Bを配置し、溶接電極6A,6Bで集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接して構成した電極板5を実施例2とした。
As shown in FIG. 1, the metal foil exposed portion 3 of the electrode plate 5 and the current collecting lead plate 2 are superposed on the welding pedestal 1 made of silicon nitride, and the distance between the electrodes is set on the current collecting lead plate 2. An electrode formed by arranging a pair of welding electrodes 6A and 6B of 5 mm, and welding the metal foil exposed portion 3 and the current collecting lead plate 2 by energizing the current collecting lead plate 2 with the welding electrodes 6A and 6B. The plate 5 was referred to as Example 2.

なお、電極板5は厚さ12μmの銅箔と負極活物質からなり、集電リード板2は幅3mm、厚さ0.1mmのニッケルからなる。さらに、溶接電極6はアルミナ分散銅からなり、溶接条件としては、加圧2kg,溶接電圧3V,通電時間0.8msecとした。   The electrode plate 5 is made of a copper foil having a thickness of 12 μm and a negative electrode active material, and the current collecting lead plate 2 is made of nickel having a width of 3 mm and a thickness of 0.1 mm. Furthermore, the welding electrode 6 was made of alumina-dispersed copper, and the welding conditions were a pressure of 2 kg, a welding voltage of 3 V, and an energization time of 0.8 msec.

図1に示すように、材質をアルミナとする溶接台座1の上に電極板5の金属箔露出部3と集電リード板2を重ね合わせ、集電リード板2上に電極間距離0.5mmとした一対の溶接電極6A,6Bを配置し、溶接電極6A,Bで集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接して構成した電極板5を実施例3とした。   As shown in FIG. 1, the metal foil exposed portion 3 of the electrode plate 5 and the current collecting lead plate 2 are superimposed on the welding pedestal 1 made of alumina, and the distance between the electrodes is 0.5 mm on the current collecting lead plate 2. A pair of welding electrodes 6A and 6B are arranged, and the current collector lead plate 2 is energized with the welding electrodes 6A and B, and the metal foil exposed portion 3 and the current collector lead plate 2 are welded to form an electrode plate. 5 was taken as Example 3.

なお、電極板5は厚さ12μmの銅箔と負極活物質からなり、集電リード板2は幅3mm、厚さ0.1mmのニッケルからなる。さらに、溶接電極6はアルミナ分散銅からなり、溶接条件としては、加圧2kg,電圧3V,通電時間0.8msecとした。   The electrode plate 5 is made of a copper foil having a thickness of 12 μm and a negative electrode active material, and the current collecting lead plate 2 is made of nickel having a width of 3 mm and a thickness of 0.1 mm. Furthermore, the welding electrode 6 was made of alumina-dispersed copper, and the welding conditions were a pressure of 2 kg, a voltage of 3 V, and an energization time of 0.8 msec.

(比較例1)
図1に示すように、材質をフェノール樹脂とする溶接台座1の上に電極板5の金属箔露出部3と集電リード板2を重ね合わせ、集電リード板2上に電極間距離0.5mmとした一対の溶接電極6A,6Bを配置し、溶接電極6A,6Bで集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接して構成した電極板5を比較例1とした。
(Comparative Example 1)
As shown in FIG. 1, the metal foil exposed portion 3 of the electrode plate 5 and the current collecting lead plate 2 are superposed on the welding pedestal 1 made of phenol resin, and the distance between the electrodes is set on the current collecting lead plate 2. An electrode formed by arranging a pair of welding electrodes 6A and 6B of 5 mm, and welding the metal foil exposed portion 3 and the current collecting lead plate 2 by energizing the current collecting lead plate 2 with the welding electrodes 6A and 6B. The plate 5 was designated as Comparative Example 1.

なお、電極板5は厚さ12μmの銅箔と負極活物質からなり、集電リード板2は幅3mm、厚さ0.1mmのニッケルからなる。さらに、溶接電極6はアルミナ分散銅からなり、溶接条件としては、加圧2kg,溶接電圧3V,通電時間0.8msecとした。   The electrode plate 5 is made of a copper foil having a thickness of 12 μm and a negative electrode active material, and the current collecting lead plate 2 is made of nickel having a width of 3 mm and a thickness of 0.1 mm. Furthermore, the welding electrode 6 was made of alumina-dispersed copper, and the welding conditions were a pressure of 2 kg, a welding voltage of 3 V, and an energization time of 0.8 msec.

(比較例2)
図1に示すように、材質をタングステンとする溶接台座1の上に電極板5の金属箔露出部3と集電リード板2を重ね合わせ、集電リード板2上に電極間距離0.5mmとした一対の溶接電極6A,6Bを配置し、溶接電極6A,6Bで集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接して構成した電極板5を比較例2とした。
(Comparative Example 2)
As shown in FIG. 1, the metal foil exposed portion 3 of the electrode plate 5 and the current collecting lead plate 2 are superimposed on the welding pedestal 1 made of tungsten, and the distance between the electrodes is 0.5 mm on the current collecting lead plate 2. The electrode plate formed by arranging the pair of welding electrodes 6A and 6B and welding the metal foil exposed portion 3 and the current collecting lead plate 2 by energizing the current collecting lead plate 2 with the welding electrodes 6A and 6B. 5 was designated as Comparative Example 2.

なお、電極板5は厚さ12μmの銅箔と負極活物質からなり、集電リード板2は幅3mm、厚さ0.1mmのニッケルからなる。さらに、溶接電極6はアルミナ分散銅からなり、溶接条件としては、加圧2kg,溶接電圧3V,通電時間0.8msecとした。
上記実施例1〜3および比較例1〜2により作製した電極板を用いて、下記試験を行うことにより評価を行った。また、電極板作成過程の比較検討を行った。なお、電極板は1000個作成し、評価した結果を(表1)に示す。
The electrode plate 5 is made of a copper foil having a thickness of 12 μm and a negative electrode active material, and the current collecting lead plate 2 is made of nickel having a width of 3 mm and a thickness of 0.1 mm. Furthermore, the welding electrode 6 was made of alumina-dispersed copper, and the welding conditions were a pressure of 2 kg, a welding voltage of 3 V, and an energization time of 0.8 msec.
Evaluation was performed by conducting the following tests using the electrode plates produced in Examples 1-3 and Comparative Examples 1-2. In addition, a comparative study of the electrode plate making process was conducted. In addition, 1000 electrode plates were prepared and the evaluation results are shown in Table 1.

電極板5に溶接した集電リード板2を引っ張ることにより剥離を行ない、電極板5の破断面積を測定し、溶着面積と比較することにより破断比率の計算を行った。なお、破断比率は図5に示すように溶着部分の面積を100%として破断面積との比較計算により算出した。このとき、溶着部分18は溶接電極6の接触面と電極間の合計となるので、溶着面積は溶接電極6の面積と電極間距離の面積の和であり、この実験の溶着面積は8.1mm2である。 Peeling was performed by pulling the current collecting lead plate 2 welded to the electrode plate 5, the fracture area of the electrode plate 5 was measured, and the fracture ratio was calculated by comparing with the weld area. As shown in FIG. 5, the fracture ratio was calculated by comparison with the fracture area with the welded area as 100%. At this time, since the welded portion 18 is the sum between the contact surface of the welding electrode 6 and the electrode, the welding area is the sum of the area of the welding electrode 6 and the distance between the electrodes, and the welding area in this experiment is 8.1 mm. 2 .

Figure 2008142722
(表1)の結果から明らかなように、実施例1〜3の方が比較例1〜2よりも破断比率が大きくなっており、溶接状態は実施例1〜3の方が安定している。よって、実施例1〜3の方が信頼性の高い非水系の二次電池ができる。一方、比較例2では溶接台座1への通電により、溶接台座1が発熱し、溶接状態が不安定となるために、若干の溶接不良や溶接台座1への付着が発生した。
Figure 2008142722
As is clear from the results of (Table 1), Examples 1 to 3 have a larger fracture ratio than Comparative Examples 1 and 2, and the welding state is more stable in Examples 1 to 3. . Therefore, non-aqueous secondary batteries with higher reliability can be obtained in Examples 1 to 3. On the other hand, in Comparative Example 2, the welding pedestal 1 generated heat due to energization of the welding pedestal 1 and the welding state became unstable, so that some welding failure and adhesion to the welding pedestal 1 occurred.

しかし、実施例1〜3では溶接台座1への通電が無いために集電リード板2に熱が集中し、安定した溶接を行うことができた。また、比較例1では溶接時の発熱により溶接台座1が溶解し、溶接不良が発生した。   However, in Examples 1 to 3, since the welding pedestal 1 was not energized, heat was concentrated on the current collecting lead plate 2 and stable welding could be performed. Further, in Comparative Example 1, the welding pedestal 1 was melted due to heat generated during welding, resulting in poor welding.

図1に示すように、材質を炭化ケイ素とする溶接台座1の上に電極板5の金属箔露出部3と集電リード板2を重ね合わせ、集電リード板2上に一対の溶接電極6A,6Bを配置し、溶接電極6A,6Bで集電リード板2を加圧しながら通電して金属箔露出部3と集電リード板2を溶接して構成した電極板5を実施例4とした。このとき、電極間距離を0.3mm,0.5mm,0.7mm,1.0mm,1.2mmの5種類に変更し電極板5の作成を行った。なお、電極板5は厚さ12μmの銅箔と負極活物質からなり、集電リード板2は幅3mm、厚さ0.1mmのニッケルからなる。さらに、溶接電極6はアルミナ分散銅からなり、溶接条件としては、加圧2kg,溶接電圧3V,通電時間0.8msecとした。   As shown in FIG. 1, a metal foil exposed portion 3 and a current collecting lead plate 2 of an electrode plate 5 are superimposed on a welding pedestal 1 made of silicon carbide, and a pair of welding electrodes 6A are disposed on the current collecting lead plate 2. 6B, and the electrode plate 5 constituted by welding the metal foil exposed portion 3 and the current collector lead plate 2 by applying current while pressurizing the current collector lead plate 2 with the welding electrodes 6A and 6B is referred to as Example 4. . At this time, the electrode plate 5 was created by changing the distance between the electrodes to five types of 0.3 mm, 0.5 mm, 0.7 mm, 1.0 mm, and 1.2 mm. The electrode plate 5 is made of a copper foil having a thickness of 12 μm and a negative electrode active material, and the current collecting lead plate 2 is made of nickel having a width of 3 mm and a thickness of 0.1 mm. Furthermore, the welding electrode 6 was made of alumina-dispersed copper, and the welding conditions were a pressure of 2 kg, a welding voltage of 3 V, and an energization time of 0.8 msec.

電極板5に溶接した集電リード板2を引っ張ることにより剥離を行ない、電極板5の破断面積を測定し、溶着面積と比較することにより破断比率の計算を行った結果を(表2)に示す。なお、破断比率は図5に示すように溶着部分18の面積を100%として破断面積との比較計算により算出した。   Peeling is performed by pulling the current collecting lead plate 2 welded to the electrode plate 5, the fracture area of the electrode plate 5 is measured, and the fracture ratio is calculated by comparing with the weld area (Table 2). Show. As shown in FIG. 5, the fracture ratio was calculated by comparison with the fracture area, with the area of the welded portion 18 being 100%.

Figure 2008142722
(表2)の結果から明らかなように、電極間距離は0.5mm〜1.0mmが溶接不良の発生が無く、破断比率が大きかった。電極間距離0.3mmでは熱が一部に集中しすぎるために溶接部分に穴あきが発生し易くなった。また電極間距離1.2mmでは、熱の集中が悪くなり、溶接強度が低下し、溶接外れが発生した。以上より、電極間距離は0.5mm〜1.0mmで信頼性の高い非水系の二次電池ができる。
Figure 2008142722
As is clear from the results of (Table 2), the distance between the electrodes was 0.5 mm to 1.0 mm, and no welding failure occurred, and the fracture ratio was large. When the distance between the electrodes was 0.3 mm, the heat was excessively concentrated on a part, so that a hole was easily formed in the welded part. In addition, when the distance between the electrodes was 1.2 mm, the heat concentration was poor, the welding strength was reduced, and welding was lost. As described above, a highly reliable non-aqueous secondary battery having a distance between electrodes of 0.5 mm to 1.0 mm can be obtained.

本発明の金属薄板と金属箔の抵抗溶接方法によれば、絶縁体からなる溶接台座の上で集電リード板と電極板を溶接することにより、溶接台座への分流を無くし、集電リード板に熱を集中させることにより安定した溶接状態を得ることができるので、信頼性の高い電池の電極板製造方法等に有用である。   According to the resistance welding method of the metal thin plate and the metal foil of the present invention, the current collecting lead plate and the electrode plate are welded on the welding pedestal made of an insulator, thereby eliminating the shunt to the welding pedestal, and the current collecting lead plate Since a stable welded state can be obtained by concentrating heat on the battery, it is useful for a highly reliable method for manufacturing an electrode plate of a battery.

本発明の溶接装置を示す概略図Schematic showing the welding apparatus of the present invention 本発明の電流経路、熱拡散の概略図Schematic of current path and thermal diffusion of the present invention 非水系二次電池の一部切欠斜視図Partially cutaway perspective view of non-aqueous secondary battery 電極群の一部展開斜視図Partially exploded perspective view of electrode group 本発明の溶着部分を示す概略図Schematic showing the welded part of the present invention 従来技術の溶接状態を示す概略図Schematic showing the welding state of the prior art 従来技術の電流経路、熱拡散の概略図Schematic diagram of current path and heat diffusion in the prior art

符号の説明Explanation of symbols

1 溶接台座
2 集電リード板
3 金属箔露出部
4 活物質塗着部
5 電極板
6 溶接電極
7 加圧ヘッド
8 溶接電源
9 熱拡散領域
10 電池缶
11 封口板
12 電極群
13 セパレータ
14 負極板
15 負極集電リード板
16 正極板
17 正極集電リード板
18 溶着部分
DESCRIPTION OF SYMBOLS 1 Welding base 2 Current collecting lead plate 3 Metal foil exposed part 4 Active material application part 5 Electrode plate 6 Welding electrode 7 Pressurizing head 8 Welding power source 9 Thermal diffusion region 10 Battery can 11 Sealing plate 12 Electrode group 13 Separator 14 Negative electrode plate 15 Negative electrode current collector lead plate 16 Positive electrode plate 17 Positive electrode current collector lead plate 18 Welded part

Claims (4)

耐熱性を有する絶縁体からなる溶接用台座の上に金属箔と金属薄板を重ね合わせて設置し、前記金属薄板上に一対の溶接電極を配置し溶接電極にて前記金属薄板を加圧した状態で通電を行うことで金属箔と金属薄板を溶接することを特徴とする金属薄板と金属箔の抵抗溶接方法。   A state in which a metal foil and a metal thin plate are placed on top of a welding pedestal made of a heat-resistant insulator, a pair of welding electrodes are arranged on the metal thin plate, and the metal thin plate is pressurized by the welding electrode A resistance welding method for a thin metal plate and a metal foil, wherein the thin metal plate and the thin metal plate are welded by energizing the metal foil. 溶接台座に用いる耐熱性を有する絶縁体をセラミックスで構成することを特徴とする請求項1に記載の金属薄板と金属箔の抵抗溶接方法。   The resistance welding method for a metal thin plate and a metal foil according to claim 1, wherein the heat-resistant insulator used for the welding base is made of ceramics. 一対の電極間の距離を0.5mm〜1.0mmとすることを特徴とする請求項1または請求項2に記載の金属薄板と金属箔の抵抗溶接方法。   The distance welding between a pair of electrodes shall be 0.5 mm-1.0 mm, The resistance welding method of the metal thin plate and metal foil of Claim 1 or Claim 2 characterized by the above-mentioned. 帯状の金属箔に正極活物質を金属箔の露出部を残した状態で塗着し前記金属箔の露出部に金属薄板からなる集電リード板を溶接した正極板と、負極活物質を金属箔の露出部を残した状態で塗着し前記金属箔の露出部に金属薄板からなる集電リード板を溶接した負極板とを、セパレータを介して渦巻状に巻回して構成される電極群を非水電解液とともに電池缶の内部に収容し封口板で前記電池缶の開口部を封口する二次電池の製造方法であって、前記正極板または負極板を形成する工程として金属箔の露出部と金属薄板からなる集電リード板を耐熱性を有する絶縁体からなる溶接用台座の上に金属箔の露出部と集電リード板を重ね合わせて設置し、前記集電リード板上に一対の溶接電極を配置し溶接電極にて集電リード板を加圧した状態で通電して金属箔の露出部と集電リード板とを溶接することを特徴とする非水系二次電池の製造方法。   A positive electrode plate in which a positive electrode active material is applied to a strip-shaped metal foil while leaving an exposed portion of the metal foil, and a current collector lead plate made of a thin metal plate is welded to the exposed portion of the metal foil; A negative electrode plate coated with the exposed portion of the metal foil and welded with a current collector lead plate made of a thin metal plate on the exposed portion of the metal foil. A method for manufacturing a secondary battery which is housed in a battery can together with a non-aqueous electrolyte and seals the opening of the battery can with a sealing plate, wherein the exposed portion of the metal foil is formed as a step of forming the positive electrode plate or the negative electrode plate And a current collector lead plate made of a thin metal plate on a welding pedestal made of a heat-resistant insulator, with the exposed portion of the metal foil and the current collector lead plate placed on top of each other, and a pair of current collector lead plates on the current collector lead plate Energization with welding electrode placed and pressure applied to current collector lead plate Method for producing a nonaqueous secondary battery, characterized by welding the exposed portion and the current collecting lead plate of metal foil Te.
JP2006330201A 2006-12-07 2006-12-07 Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same Pending JP2008142722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330201A JP2008142722A (en) 2006-12-07 2006-12-07 Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330201A JP2008142722A (en) 2006-12-07 2006-12-07 Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2008142722A true JP2008142722A (en) 2008-06-26

Family

ID=39603475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330201A Pending JP2008142722A (en) 2006-12-07 2006-12-07 Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2008142722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086162A (en) * 2011-10-21 2013-05-13 Akim Kk Welding method and welding equipment
CN106410254A (en) * 2016-09-28 2017-02-15 惠州金源精密自动化设备有限公司 Resistance welding assembly machine
CN111354916A (en) * 2020-04-24 2020-06-30 福建南平延平区南孚新能源科技有限公司 Electric connection method, electric connection structure and product of button cell pole shell and electrode lug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086162A (en) * 2011-10-21 2013-05-13 Akim Kk Welding method and welding equipment
CN106410254A (en) * 2016-09-28 2017-02-15 惠州金源精密自动化设备有限公司 Resistance welding assembly machine
CN106410254B (en) * 2016-09-28 2018-09-18 惠州金源精密自动化设备有限公司 Electric resistance welding kludge
CN111354916A (en) * 2020-04-24 2020-06-30 福建南平延平区南孚新能源科技有限公司 Electric connection method, electric connection structure and product of button cell pole shell and electrode lug

Similar Documents

Publication Publication Date Title
US20230290927A1 (en) Connecting contact leads to lithium-based electrodes
JP2011040389A (en) Secondary battery and its manufacturing method
JP2005216825A (en) Square battery and its manufacturing method
JP2011092995A (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JP2016030280A (en) Method and apparatus for laser welding of metal foil
WO2006043505A1 (en) Fuel cell stack and separator joining method
JP2018018600A (en) Laminate battery and method for manufacturing the same
US20210167455A1 (en) Battery module and method for manufacturing same
JP2003217562A (en) Coin type battery
JP5223272B2 (en) Method of welding metal separator for fuel cell and welding apparatus for metal separator for fuel cell
JP5602113B2 (en) Copper-coated steel foil assembly and current-carrying member
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
JP5198134B2 (en) Method for manufacturing cylindrical battery
JP6072676B2 (en) Method for manufacturing prismatic secondary battery
US8133604B1 (en) Electrochemical device assembly having electrode tabs connected to a clad spacer
JP2016051699A (en) Fuel battery unit cell with interconnector and method of manufacturing the same, fuel battery stack
JP2006012453A (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP2008142722A (en) Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same
JP2002008623A (en) Battery
JPH10146679A (en) Electric resistance welding method for different kinds of materials
JP2011204439A (en) Battery pack, resistance welding method, and method for manufacturing battery pack
JP2001093507A (en) Method of manufacturing battery
KR101124964B1 (en) Method for connecting between cathod lead or anode lead of secondary battery and external element
JPS607058A (en) Method of welding terminal for current collection
JP2019160558A (en) Fuel cell separator assembly and method of manufacturing fuel cell separator assembly