JP2008141737A - Charge detector - Google Patents

Charge detector Download PDF

Info

Publication number
JP2008141737A
JP2008141737A JP2007278392A JP2007278392A JP2008141737A JP 2008141737 A JP2008141737 A JP 2008141737A JP 2007278392 A JP2007278392 A JP 2007278392A JP 2007278392 A JP2007278392 A JP 2007278392A JP 2008141737 A JP2008141737 A JP 2008141737A
Authority
JP
Japan
Prior art keywords
capacitor
charge
difference
photocurrent
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007278392A
Other languages
Japanese (ja)
Inventor
Toshihito Shirai
白井  稔人
Tomoshi Sasaki
朋詩 佐々木
Masayoshi Sakai
坂井  正善
Takayuki Hamamoto
隆之 浜本
Hisamasa Taruki
久征 樽木
Suguru Ono
英 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Tokyo University of Science
Original Assignee
Nippon Signal Co Ltd
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd, Tokyo University of Science filed Critical Nippon Signal Co Ltd
Priority to JP2007278392A priority Critical patent/JP2008141737A/en
Publication of JP2008141737A publication Critical patent/JP2008141737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge detector capable of surely detecting a difference of electric charge amounts with small-capacity capacitors when distributing an optical current of a light-receiving element to two capacitors synchronously with brightness/darkness of modulation light and detecting the difference of the electric charge amounts between both the capacitors. <P>SOLUTION: A control circuit 4 controls driving of a switch circuit 1 and a differential accumulation circuit 2, a photoelectric current Iin generated in a photo-diode PD that performs photoelectric conversion on the modulation light, is distributed to a capacitor CH and a capacitor CL by the switch circuit 1, and the same electric charge amount as an accumulated electric charge amount VCL of the capacitor CL is subtracted from an accumulated electric charge amount VCH of the capacitor CH by the differential accumulation circuit 2, so that the difference is remained in the capacitor CH. The operation is repeated for a predetermined time to accumulate the differential electric charge amount. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、変調光の明暗に同期して受光素子で生じる光電流に基づいて2つのコンデンサに振り分けた電荷量の差分を検出する電荷検出装置に関し、特に、小容量のコンデンサで確実に電荷量の差分を検出可能な電荷検出装置に関する。   The present invention relates to a charge detection device that detects a difference between charge amounts distributed to two capacitors based on a photocurrent generated in a light receiving element in synchronization with light and darkness of modulated light. It is related with the electric charge detection apparatus which can detect the difference of these.

物体検出方式の代表的な手法として、予め取得した背景画像データと現在の画像データとの差分から背景の変化を検出して物体を検出する背景差分法がある。背景差分法の場合、照明や太陽光等の背景に照射されている光の量や向きが変化すると、背景に変化がなくても恰も変化したかのように検出されて、誤検出する虞れがある。
かかる問題を解消するため、背景に変調光を照射し、変調光の明暗に同期してイメージセンサの受光素子に発生する光電流を2つのコンデンサに振り分けて電荷を蓄積し、その差分に基づいて背景画像データと現在の画像データとを比較することにより、背景光の変化の影響を排除して物体を検出する手法が知られている。
As a typical method of the object detection method, there is a background difference method in which an object is detected by detecting a change in the background from a difference between background image data acquired in advance and current image data. In the case of the background subtraction method, if the amount or direction of light illuminating the background, such as lighting or sunlight, changes, even if there is no change in the background, it will be detected as if it has changed, and there is a risk of false detection. There is.
In order to solve such a problem, the background is irradiated with modulated light, the photocurrent generated in the light receiving element of the image sensor in synchronization with the brightness of the modulated light is distributed to two capacitors, and electric charges are accumulated. A method for detecting an object by comparing the background image data with the current image data and eliminating the influence of a change in background light is known.

そして、変調光の明暗に同期して2つのコンデンサに振り分けた電荷の差分を読み出す従来の手法としては、例えば特許文献1に記載されたものがあり、これを図12に示す。
図12の従来回路では、通常はVXFRを低電位に維持して2つのコンデンサC3、C4を充電し、走査時にVXFRを高電位に切替えることにより、FETQ3を介して2つのコンデンサC3,C4の蓄積電荷の差分に応じた電圧を検出することにより、差分を読取る。
特開平10−281868号公報
A conventional technique for reading out the difference between the charges distributed to the two capacitors in synchronism with the brightness of the modulated light is described in Patent Document 1, for example, and is shown in FIG.
In the conventional circuit shown in FIG. 12, normally, two capacitors C3 and C4 are charged while maintaining V XFR at a low potential, and V XFR is switched to a high potential during scanning, whereby two capacitors C3 and C4 are connected via FET Q3. The difference is read by detecting a voltage corresponding to the difference between the accumulated charges.
Japanese Patent Laid-Open No. 10-281868

しかしながら、上述の従来回路では、2つのコンデンサC3,C4に蓄積された電荷の差が少ない場合、FETQ3を通して読み出される電荷量が少なく、検出できない虞れがある。また、フォトダイオードPDによる光電流の量が大きい場合にコンデンサC3,C4の飽和を避けようとすれば、予め大きな容量のコンデンサにしておく必要があり、イメージセンサの回路面積が大きくなるという問題がある。   However, in the above-described conventional circuit, when the difference between the charges accumulated in the two capacitors C3 and C4 is small, there is a possibility that the amount of charge read through the FET Q3 is small and cannot be detected. Further, if it is attempted to avoid the saturation of the capacitors C3 and C4 when the amount of photocurrent generated by the photodiode PD is large, it is necessary to use a capacitor having a large capacity in advance, which increases the circuit area of the image sensor. is there.

本発明は上記問題点に着目してなされたもので、小容量のコンデンサで確実に電荷量の差分を検出可能な電荷検出装置を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a charge detection device capable of reliably detecting a difference in charge amount with a small-capacitance capacitor.

このため、請求項1に記載の発明の電荷検出装置は、変調した光の明暗に同期してイメージセンサ内の受光素子で生じる光電流をそれぞれ第1及び第2のコンデンサに振り分けて供給し、前記光電流に基づいて前記第1のコンデンサに蓄えられる電荷量と前記第2のコンデンサに蓄えられる電荷量の差分を蓄積する構成としたことを特徴とする。   For this reason, the charge detection device according to the first aspect of the present invention distributes and supplies the photocurrent generated in the light receiving element in the image sensor to the first and second capacitors in synchronization with the brightness of the modulated light, A difference between the charge amount stored in the first capacitor and the charge amount stored in the second capacitor is accumulated based on the photocurrent.

かかる構成では、変調光の明暗に同期してイメージセンサ内の受光素子で生じる光電流をそれぞれ第1及び第2のコンデンサに振り分けて供給することにより、第1のコンデンサに明るい時の電荷量が蓄えられ、第2のコンデンサに暗い時の電荷量が蓄えられる。そして、第1コンデンサの電荷量と第2のコンデンサ電荷量の差分を蓄積することにより、差分を増大させることができるようになる。   In such a configuration, the photocurrent generated in the light receiving element in the image sensor in synchronization with the brightness of the modulated light is distributed and supplied to the first and second capacitors, respectively, so that the first capacitor has a bright charge amount. It is stored, and the amount of charge in the dark is stored in the second capacitor. Then, the difference can be increased by accumulating the difference between the charge amount of the first capacitor and the second capacitor charge amount.

請求項2のように、前記光電流の振り分けを複数回繰返し、前記第1及び第2のコンデンサに前記光電流に基づく電荷をそれぞれ蓄積した後に、これら蓄積電荷量の差分を蓄積する構成とするとよい。
かかる構成では、1回の振り分け量が微量な場合でもこれを複数回繰返して蓄積することにより、第1及び第2のコンデンサそれぞれの蓄積電荷量が多くなり、差分の検出が容易にある。
As described in claim 2, the photocurrent distribution is repeated a plurality of times, and the charge based on the photocurrent is accumulated in the first and second capacitors, respectively, and then the difference between these accumulated charge amounts is accumulated. Good.
In such a configuration, even if the amount of distribution at one time is very small, the accumulated charge amount of each of the first and second capacitors is increased by repeatedly accumulating this several times, so that the difference can be easily detected.

具体的には、請求項3のように、前記変調光の明暗に同期してスイッチングし、前記受光素子で生じる光電流を前記第1のコンデンサと第2のコンデンサに振り分けて供給するスイッチ手段と、前記第1のコンデンサに蓄えられる電荷量から前記第2のコンデンサに蓄えられる電荷量を減算してその差分を蓄積させる差分蓄積手段と、を備え、前記変調光の明暗に同期させて前記スイッチ手段を駆動制御し、所定タイミングで前記差分蓄積手段を駆動させる構成とするとよい。
かかる構成では、スイッチ手段が変調光の明暗に同期したスイッチング動作して、受光素子で生じる光電流を第1のコンデンサと第2のコンデンサとに振り分けて供給する。また、所定タイミングで差分蓄積手段が駆動し、差分蓄積手段により第1及び第2のコンデンサにそれぞれ蓄えられた電荷量の差分を蓄積する。
Specifically, as in claim 3, switch means that switches in synchronization with the brightness of the modulated light and distributes and supplies the photocurrent generated in the light receiving element to the first capacitor and the second capacitor. Difference accumulation means for subtracting the amount of charge stored in the second capacitor from the amount of charge stored in the first capacitor and storing the difference, and synchronizing the brightness of the modulated light with the switch It is preferable to control the driving means and drive the difference accumulating means at a predetermined timing.
In such a configuration, the switching means performs a switching operation synchronized with the brightness of the modulated light, and distributes and supplies the photocurrent generated in the light receiving element to the first capacitor and the second capacitor. Further, the difference accumulation unit is driven at a predetermined timing, and the difference accumulation unit accumulates the difference between the charge amounts respectively stored in the first and second capacitors.

請求項4のように、蓄えられる電荷量の多い前記第1のコンデンサの電荷量を検出し、検出電荷量を予め定めた閾値と比較して検出電荷量が閾値以上になった時に、前記差分蓄積手段を駆動させる駆動指令を発生する比較手段を備える構成とするとよい。
かかる構成では、蓄えられる電荷量の多い第1のコンデンサの電荷量が閾値以上になった時に比較手段の駆動指令に基づいて差分蓄積手段が駆動するようになる。これにより、第1のコンデンサが飽和することを確実に回避できると共に、閾値の設定により、差分蓄積手段の動作タイミングを変更させることが可能になる。
According to a fourth aspect of the present invention, when the charge amount of the first capacitor that stores a large amount of charge is detected, the detected charge amount is compared with a predetermined threshold value, and when the detected charge amount is equal to or greater than the threshold value, It may be configured to include comparison means for generating a drive command for driving the storage means.
In such a configuration, the difference accumulating unit is driven based on the drive command of the comparing unit when the amount of charge of the first capacitor having a large amount of stored charge becomes equal to or greater than the threshold value. As a result, it is possible to reliably avoid saturation of the first capacitor, and it is possible to change the operation timing of the difference accumulating means by setting the threshold value.

請求項5のように、前記差分蓄積手段は、蓄えられる電荷量の少ない前記第2のコンデンサを基準とし、前記駆動指令に基づいてカレントミラー回路を駆動し、前記第1及び第2のコンデンサから同量の電荷量を放電させて前記第1のコンデンサに前記差分を残存させる構成であり、前記差分蓄積手段を繰返し動作させて前記第1のコンデンサに前記差分を蓄積する構成とするとよい。   The difference accumulation means drives the current mirror circuit based on the drive command based on the second capacitor with a small amount of stored charge as a reference, and from the first and second capacitors. It is preferable that the difference is left in the first capacitor by discharging the same amount of charge, and the difference is stored in the first capacitor by repeatedly operating the difference accumulation unit.

請求項6のように、前記スイッチ手段は、前記受光素子で生じる光電流を前記第1及び第2のコンデンサにそれぞれ振り分けるためのカレントミラー回路と、該カレントミラー回路で振り分けた光電流を前記変調光の明暗に同期してスイッチングし第1及び第2コンデンサにそれぞれ供給するためのスイッチ部とを備える構成とした。   The switch means includes a current mirror circuit for distributing the photocurrent generated in the light receiving element to the first and second capacitors, and the modulation of the photocurrent distributed by the current mirror circuit. And a switch unit for switching in synchronization with the brightness of light and supplying the first and second capacitors respectively.

請求項7のように、前記カレントミラー回路は、電源と前記受光素子の間に直列に接続しゲート端子が前記受光素子に接続し前記受光素子で生じる前記光電流が流れる第1MOSトランジスタと、電源と前記第1のコンデンサの間に直列に介装しゲート端子が前記第1MOSトランジスタのゲート端子に接続し前記スイッチ部のスイッチング動作に同期して変調光が明るい時の前記光電流に対応する出力電流が流れる第2MOSトランジスタと、電源と前記第2のコンデンサの間に直列に介装しゲート端子が前記第1MOSトランジスタのゲート端子に接続し前記スイッチ部のスイッチング動作に同期して変調光が暗い時の前記光電流に対応する出力電流が流れる第3MOSトランジスタと、を備える構成とした。   The current mirror circuit includes a first MOS transistor connected in series between a power source and the light receiving element, a gate terminal connected to the light receiving element, and the photocurrent generated in the light receiving element flowing therein; And a gate terminal connected in series to the gate terminal of the first MOS transistor, and an output corresponding to the photocurrent when the modulated light is bright in synchronization with the switching operation of the switch unit. A second MOS transistor through which a current flows, a power supply and the second capacitor are connected in series, and the gate terminal is connected to the gate terminal of the first MOS transistor, and the modulated light is dark in synchronization with the switching operation of the switch unit. And a third MOS transistor through which an output current corresponding to the photocurrent at the time flows.

請求項8のように、前記スイッチ部は、前記電源と前記第2MOSトランジスタの間に介装され変調光が明るい期間に駆動信号の入力で前記第2MOSトランジスタを電源に接続し駆動信号の停止で前記第2MOSトランジスタをGNDに切換接続する第1切換スイッチと、前記電源と前記第3MOSトランジスタの間に介装され変調光が暗い期間に駆動信号の入力で前記第3MOSトランジスタを電源に接続し駆動信号の停止で前記第3MOSトランジスタをGNDに切換接続する第2切換スイッチと、を備えて構成とするとよい。   According to another aspect of the present invention, the switch unit is interposed between the power source and the second MOS transistor and connects the second MOS transistor to the power source by inputting the driving signal during a period when the modulated light is bright, and stops the driving signal. A first changeover switch for switchingly connecting the second MOS transistor to GND, and a drive signal that is interposed between the power supply and the third MOS transistor and is input with a drive signal during a period in which the modulated light is dark. A second change-over switch that switches and connects the third MOS transistor to GND when the signal is stopped may be provided.

また、請求項9のように、前記カレントミラー回路を、前記第1MOSトランジスタのバルク端子を電源に接続し、前記第2及び第3MOSトランジスタのバルク端子を、それぞれ電圧が可変できる可変電圧源に接続する構成とすると共に、前記受光素子の電圧を予め定めた設定値に保持するよう前記受光素子の電圧変化に応じて第1MOSトランジスタのゲート端子電圧を可変制御するオペアンプを、前記スイッチ手段に設ける構成としてもよい。
かかる構成では、第1MOSトランジスタがサブスレショールド領域で動作するときの応答特性を改善できるようになる。
Further, as in claim 9, the current mirror circuit is connected to the power supply at the bulk terminal of the first MOS transistor, and the bulk terminal of the second and third MOS transistors is connected to a variable voltage source capable of varying the voltage. And an operational amplifier that variably controls the gate terminal voltage of the first MOS transistor in accordance with a change in the voltage of the light receiving element so as to hold the voltage of the light receiving element at a predetermined set value. It is good.
With such a configuration, the response characteristic when the first MOS transistor operates in the subthreshold region can be improved.

請求項10のように、前記受光素子で生じる前記光電流にオフセット電流を付加する構成とするとよい。
かかる構成では、オフセット電流を付加することで、カレントミラー回路の応答速度を高め、動作を安定化できるようになる。
It is preferable that an offset current is added to the photocurrent generated in the light receiving element.
In such a configuration, by adding an offset current, the response speed of the current mirror circuit can be increased and the operation can be stabilized.

請求項11のように、多数の受光素子からなるイメージセンサからの画像データに基づいて、予め取得した背景画像データと現在の画像データとの差分から物体を検出する背景差分法を利用する物体検出装置に適用するとよい。   12. Object detection using a background subtraction method for detecting an object from a difference between background image data acquired in advance and current image data based on image data from an image sensor composed of a large number of light receiving elements. It is good to apply to the device.

本発明の電荷検出装置によれば、変調光の明暗に同期させて2つのコンデンサに振り分けて蓄えた電荷量の差分を蓄積することで差分を増大する構成としたので、変調光の明るい時と暗い時の電荷量の差が僅かでも検出可能な十分な差分電荷量を得ることができ、ダイナミックレンジを拡大できる。また、第1のコンデンサに蓄えた変調光の明るい時の電荷量から第2のコンデンサに蓄えた変調光の暗い時の電荷量を減算しその差分を蓄積するので、受光素子の光電流の量が大きい場合でもコンデンサが飽和する虞れはなく、コンデンサを小さい容量にでき回路面積を小さくできる。   According to the charge detection device of the present invention, the difference is increased by accumulating the difference between the charge amounts distributed and stored in the two capacitors in synchronization with the brightness of the modulated light. A sufficient differential charge amount that can be detected even when the difference in charge amount in the dark is small, and the dynamic range can be expanded. In addition, since the amount of dark light of the modulated light stored in the second capacitor is subtracted from the amount of light of the modulated light stored in the first capacitor when it is bright, the difference is accumulated. Even when the capacitor is large, there is no possibility that the capacitor is saturated, and the capacitor can be made small in capacity and the circuit area can be reduced.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る電荷検出装置の第1実施形態の構成を示す概略図である。
図1において、本実施形態の電荷検出装置は、変調光を含む光を光電変換する受光素子であるフォトダイオードPDに生じる光電流Iinを第1のコンデンサCHと第2のコンデンサCLに振り分け供給するスイッチ手段としてのスイッチ回路1と、コンデンサCHに蓄えられる電荷量に相当する電圧VCHからコンデンサCLに蓄えられる電荷量に相当する電圧VCLを減算し、その差分をコンデンサCHに蓄積させる差分蓄積手段としての差分蓄積回路2と、フォトダイオードPDの光電流Iinにオフセット電流Ioffを付加する電流源3とを備え、制御信号の入力で、制御回路4により変調光の明暗に同期したn−sw1,n−sw2の各信号をスイッチ回路1に出力してスイッチ回路1を駆動制御し、所定タイミングで差分蓄積回路2にVsel,n−Vselの各信号及びflag信号を出力して差分蓄積回路2を駆動制御する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of a first embodiment of a charge detection device according to the present invention.
In FIG. 1, the charge detection device of this embodiment distributes and supplies a photocurrent Iin generated in a photodiode PD, which is a light receiving element that photoelectrically converts light including modulated light, to a first capacitor CH and a second capacitor CL. Switch circuit 1 as a switch means, and difference accumulation means for subtracting voltage VCL corresponding to the amount of charge stored in capacitor CL from voltage VCH corresponding to the amount of charge stored in capacitor CH and storing the difference in capacitor CH Differential storage circuit 2 and a current source 3 for adding an offset current Ioff to the photocurrent Iin of the photodiode PD, and n-sw1, n synchronized with the brightness of the modulated light by the control circuit 4 by the input of the control signal -Sw2 signals are output to the switch circuit 1 to drive and control the switch circuit 1, and the difference is accumulated at a predetermined timing. Vsel the road 2, and outputs each signal and flag signals n-Vsel controls driving of the difference storage circuit 2.

図2に、電荷検出装置の具体的回路構成を示す。
図2において、スイッチ回路1は、3つのPMOSQ11〜Q13で構成され、フォトダイオードPDで生じる光電流Iinを第1及び第2のコンデンサCH,CLにそれぞれ振り分けるためのカレントミラー回路と、PMOSQ14,15で構成され、前記カレントミラー回路で振り分けた光電流を変調光の明暗に同期するn−sw1,n−sw2の各信号によりスイッチングして第1及び第2のコンデンサCH,CLにそれぞれ供給するためのスイッチ部とを備えて構成される。
FIG. 2 shows a specific circuit configuration of the charge detection device.
In FIG. 2, the switch circuit 1 is composed of three PMOSs Q11 to Q13, and a current mirror circuit for distributing the photocurrent Iin generated in the photodiode PD to the first and second capacitors CH and CL, and PMOSs Q14 and 15 respectively. The photocurrents distributed by the current mirror circuit are switched by the n-sw1 and n-sw2 signals synchronized with the brightness of the modulated light and supplied to the first and second capacitors CH and CL, respectively. And a switch unit.

前記差分蓄積回路2は、一対のPMOSQ21とNMOSQ22で構成されflag信号の入力を制御するためのゲート回路と、4つのNMOSQ23〜Q26で構成され、蓄えられる電荷量の少ない第2のコンデンサCLを基準としてflag信号の入力で駆動し、第1及び第2のコンデンサCH,CLから同量の電荷量を放電させ第1のコンデンサCHに両者の電荷量の差分を残存させるためのカレントミラー回路と、n−Vsel信号によりflag信号がNMOSQ23とQ24に印加されていない時にこれらのゲート電圧を0VにするNMOSQ27とを備えて構成される。   The differential accumulation circuit 2 is composed of a pair of PMOS Q21 and NMOS Q22, and is composed of a gate circuit for controlling the input of a flag signal and four NMOSs Q23 to Q26, and is based on a second capacitor CL with a small amount of stored charge. A current mirror circuit that is driven by the input of a flag signal, discharges the same amount of charge from the first and second capacitors CH and CL, and leaves the difference between the amounts of charge in the first capacitor CH; The n-Vsel signal is configured to include an NMOS Q27 that sets the gate voltage to 0 V when the flag signal is not applied to the NMOSs Q23 and Q24.

前記電流源3は、外部からバイアス電圧biasが印加されて光電流Iinに付加してオフセット電流Ioffを流すためのNMOSQ31で構成される。
更に、電荷検出装置は、各コンデンサCH,CLの電荷蓄積をリセットするためのNMOSQ41,42と、信号線Φ1へのコンデンサCHの蓄積電荷量の読出しを制御するためのPMOSQ43,Q44と、信号線Φ2へのコンデンサCLの蓄積電荷量の読出しを制御するためのPMOSQ45,Q46と、各信号線Φ1,Φ2に読出した蓄積電荷量を外部に信号電圧として出力するために必要な、ゲート端子に所定のバイアス電圧bias2(前述のバイアス電圧biasとは異なる)が印加されたソースフォロワのPMOSQ47,Q48とを備える。
尚、前記PMOSQ47,Q48は、実際の2次元アレイ回路では、図3に示すように、1つの列に共通に1つ設ければよい。図中の10は、図2に示す電荷検出回路から制御回路とPMOSQ47,Q48を除いた回路部分に相当する。
The current source 3 is composed of an NMOS Q31 for applying an external bias voltage bias and adding it to the photocurrent Iin to flow an offset current Ioff.
Further, the charge detection device includes NMOSs Q41 and 42 for resetting the charge accumulation of the capacitors CH and CL, PMOSs Q43 and Q44 for controlling the reading of the accumulated charge amount of the capacitor CH to the signal line Φ1, and the signal lines. PMOSs Q45 and Q46 for controlling reading of the accumulated charge amount of the capacitor CL to Φ2, and a gate terminal required to output the accumulated charge amount read to the signal lines Φ1 and Φ2 to the outside as a signal voltage. Source follower PMOSs Q47 and Q48 to which a bias voltage bias2 (which is different from the bias voltage bias described above) is applied.
In the actual two-dimensional array circuit, the PMOSs Q47 and Q48 may be provided in common in one column as shown in FIG. 10 in the figure corresponds to a circuit portion obtained by removing the control circuit and PMOSs Q47 and Q48 from the charge detection circuit shown in FIG.

次に、図2の回路の動作を図4のタイムチャートを参照して説明する。
制御回路4からのrst信号をハイにし、NMOSQ41,42をONして両コンデンサCH,CLの電荷をリセットし、電荷リセット後はrst信号をローにしてNMOSQ41,42をOFFにする(図4中の動作a)。
Next, the operation of the circuit of FIG. 2 will be described with reference to the time chart of FIG.
The rst signal from the control circuit 4 is set to high, the NMOSs Q41 and 42 are turned on to reset the charges of both capacitors CH and CL, and after the charge reset, the rst signal is set to low and the NMOSs Q41 and 42 are turned off (in FIG. 4). Operation a).

電荷リセット後、変調光の明暗に同期させて、変調光が明(ハイ)の期間でn−sw1信号をローにし、スイッチ回路1のPMOSQ14をONにする。これにより、この時にフォトダイオードPDに流れる光電流Iinがカレントミラー回路及びPMOSQ14を介してコンデンサCHに流れ、変調光が明るい時の光電流に対応する電荷量がコンデンサCHに蓄えられる。一方、変調光が暗(ロー)の期間でn−sw2信号をローにし、スイッチ回路1のPMOSQ15をONにする。これにより、この時にフォトダイオードPDに流れる光電流Iinがカレントミラー回路及びPMOSQ15を介してコンデンサCLに流れ、変調光が暗い時の光電流に対応する電荷量がコンデンサCLに蓄えられる。この動作を、複数回(図4では2回)繰返し、変調光が明るい時と暗い時の各電荷量を両コンデンサCH,CLに振り分けて蓄積する。これにより、コンデンサCHの両端電圧はVCHとなり、コンデンサCLの両端電圧はVCLとなる(図4中の動作b)。   After the charge reset, in synchronization with the brightness of the modulated light, the n-sw1 signal is set low during the period when the modulated light is bright (high), and the PMOS Q14 of the switch circuit 1 is turned ON. As a result, the photocurrent Iin flowing through the photodiode PD at this time flows to the capacitor CH via the current mirror circuit and the PMOS Q14, and the amount of charge corresponding to the photocurrent when the modulated light is bright is stored in the capacitor CH. On the other hand, the n-sw2 signal is set to low while the modulated light is dark (low), and the PMOS Q15 of the switch circuit 1 is turned ON. As a result, the photocurrent Iin flowing through the photodiode PD at this time flows to the capacitor CL via the current mirror circuit and the PMOS Q15, and the charge amount corresponding to the photocurrent when the modulated light is dark is stored in the capacitor CL. This operation is repeated a plurality of times (twice in FIG. 4), and the respective charge amounts when the modulated light is bright and dark are distributed and accumulated in both capacitors CH and CL. As a result, the voltage across the capacitor CH becomes VCH, and the voltage across the capacitor CL becomes VCL (operation b in FIG. 4).

次に、予め定めたタイミング(本実施形態の場合は電荷蓄積動作が2回繰返された後)で、制御回路4から互いに相補の関係にあるVsel信号とn−Vsel信号に加えてflag信号を差分蓄積回路2に出力して、両コンデンサCH,CLの電荷量の差分の蓄積動作を実行する。具体的には、ハイのVsel信号とローのn−Vsel信号を発生し、PMOSQ21とNMOSQ22をONしてゲート回路を開き、NMOSQ27をOFFにして、flag信号が差分蓄積回路2のカレントミラー回路に入力できる状態にする。その後、flag信号をハイにして前記カレントミラー回路を動作させる。これにより、コンデンサCLの電圧VCLに対応した電流Iがカレントミラー回路の右側に流れ、同じ電流Iがカレントミラー回路の左側に流れ、コンデンサCLから放電される電荷量と同じ電荷量がコンデンサCHから放電される。従って、コンデンサCHには、図4中の動作bでコンデンサCHとCLにそれぞれ蓄積された各電荷量の差分(VCH−VCL)が残存する(図4中の動作c)。 Next, at a predetermined timing (in the case of this embodiment, after the charge accumulation operation is repeated twice), a flag signal is added in addition to the Vsel signal and the n-Vsel signal that are complementary to each other from the control circuit 4. Output to the difference accumulation circuit 2 to execute the accumulation operation of the difference between the charge amounts of the capacitors CH and CL. Specifically, a high Vsel signal and a low n-Vsel signal are generated, the PMOS Q21 and the NMOS Q22 are turned on to open the gate circuit, the NMOS Q27 is turned off, and the flag signal is supplied to the current mirror circuit of the differential accumulation circuit 2. Make it ready for input. Thereafter, the flag signal is set to high to operate the current mirror circuit. Accordingly, current I L corresponding to the voltage VCL of the capacitor CL flows to the right side of the current mirror circuit, the same current I L flows through the left side of the current mirror circuit, a capacitor is the same amount of charge as the amount of charge discharged from the capacitor CL It is discharged from CH. Therefore, the difference (VCH−VCL) between the respective charge amounts accumulated in the capacitors CH and CL in the operation b in FIG. 4 remains in the capacitor CH (operation c in FIG. 4).

そして、所定の時間間隔で、差分電荷量の読出し信号としてローのn−Vsel信号をPMOSQ44,Q46に印加してONし、コンデンサCHに蓄積された電荷量を信号線Φ1,Φ2から読み出す。   Then, at a predetermined time interval, a low n-Vsel signal as a differential charge amount read signal is applied to the PMOSs Q44 and Q46 to turn them on, and the charge amount accumulated in the capacitor CH is read from the signal lines Φ1 and Φ2.

かかる構成の電荷検出装置によれば、コンデンサCHに蓄えた変調光の明るい時の電荷量からコンデンサCHに蓄えた変調光の暗い時の電荷量と同じ量を放電させて差分をコンデンサCHに残存させるので、フォトダイオードPDの光電流Iinが大きい場合でも、コンデンサCH,CLが飽和する虞れはなく、コンデンサCH,CLの容量を大きくしなくて済む。また、コンデンサCHに残存させる差分を蓄積して前記差分を増大するようにしたので、変調光の明るい時と暗い時の電荷量の差が僅かでも、検出可能な十分な差分電荷量を得ることができ、ダイナミックレンジを拡大できる。   According to the charge detection device having such a configuration, the same amount as the dark charge amount of the modulated light stored in the capacitor CH is discharged from the bright charge amount of the modulated light stored in the capacitor CH, and the difference remains in the capacitor CH. Therefore, even when the photocurrent Iin of the photodiode PD is large, there is no possibility that the capacitors CH and CL are saturated, and it is not necessary to increase the capacitance of the capacitors CH and CL. Further, since the difference remaining in the capacitor CH is accumulated to increase the difference, a sufficient difference charge amount that can be detected can be obtained even if the difference in the charge amount between the bright and dark modulated light is small. Can expand the dynamic range.

また、本実施形態では、電流源3のNMOSQ31に外部バイアス電圧biasを印加してON状態とし、オフセット電流IoffをフォトダイオードPDの光電流Iinに付加することができる。オフセット電流Ioffを付加することにより、スイッチ回路1のカレントミラー回路を構成するPMOSQ11,Q12を飽和領域で動作させることができ、カレントミラー回路の動作を安定させ、応答速度を高めることができる。そして、光電流Iinが多い場合はバイアス電圧biasを低くしてオフセット電流Ioffを小さくし、光電流Iinが少ない場合はバイアス電圧biasを高くしてオフセット電流Ioffを多くするよう、バイアス電圧biasによりオフセット電流Ioffを調整することで、カレントミラー回路の応答速度をコントロールすることができる。光電流Iinが十分多い場合、オフセット電流Ioffは付加する必要はなくIoff=0とする。   In the present embodiment, the external bias voltage bias can be applied to the NMOS Q31 of the current source 3 to turn it on, and the offset current Ioff can be added to the photocurrent Iin of the photodiode PD. By adding the offset current Ioff, the PMOSs Q11 and Q12 constituting the current mirror circuit of the switch circuit 1 can be operated in the saturation region, and the operation of the current mirror circuit can be stabilized and the response speed can be increased. When the photocurrent Iin is large, the bias voltage bias is lowered to decrease the offset current Ioff, and when the photocurrent Iin is small, the bias voltage bias is increased to increase the offset current Ioff. The response speed of the current mirror circuit can be controlled by adjusting the current Ioff. When the photocurrent Iin is sufficiently large, it is not necessary to add the offset current Ioff, and Ioff = 0.

尚、本実施形態では、変調光が明るい時の電荷量と暗い時の電荷量の蓄積を複数回繰返した後に差分蓄積回路2を駆動する構成としたが、1回の蓄積動作毎に差分蓄積回路2を駆動させて電荷量を減算するようにしてもよい。   In this embodiment, the difference accumulation circuit 2 is driven after the accumulation of the charge amount when the modulated light is bright and the charge amount when the modulation light is dark a plurality of times, but the difference accumulation is performed for each accumulation operation. The circuit 2 may be driven to subtract the charge amount.

次に、本発明の電荷検出装置の第2実施形態を図5を参照して説明する。
図5は、本発明に係る電荷検出装置の第2実施形態の構成を示す概略図である。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
図5において、本実施形態の電荷検出装置では、図1の第1実施形態の構成に加えて、コンデンサCHの電荷量VCHを予め設定した閾値Vthと比較する比較回路5を設ける構成とした。比較回路5は、コンデンサCHに蓄えられる電荷量に相当する電圧VCHと前記閾値Vthを比較し、VCH≧Vthになった時にflag信号をハイとする。これにより、差分蓄積回路2が動作し、コンデンサCHにはコンデンサCLとの差分の電荷量が残存する。
Next, a second embodiment of the charge detection device of the present invention will be described with reference to FIG.
FIG. 5 is a schematic view showing the configuration of the second embodiment of the charge detection device according to the present invention. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
In FIG. 5, the charge detection device of the present embodiment is configured to include a comparison circuit 5 that compares the charge amount VCH of the capacitor CH with a preset threshold value Vth in addition to the configuration of the first embodiment of FIG. The comparison circuit 5 compares the voltage VCH corresponding to the amount of charge stored in the capacitor CH with the threshold value Vth, and sets the flag signal to high when VCH ≧ Vth. As a result, the differential accumulation circuit 2 operates, and the capacitor CH retains a difference charge amount from the capacitor CL.

かかる第2実施形態によれば、コンデンサCHの電荷量が閾値Vth以上になれば、差分蓄積回路2により電荷量の減算動作が実行されるので、蓄えられる電荷量が多いコンデンサCHが飽和する以前にコンデンサCHが放電され、フォトダイオードPDに生じる光電流Iinが多い場合でも、コンデンサCHが飽和することを確実に防止できる。   According to the second embodiment, when the charge amount of the capacitor CH becomes equal to or higher than the threshold value Vth, the subtraction operation of the charge amount is executed by the differential accumulation circuit 2, so that the capacitor CH having a large amount of stored charge is saturated. Even when the capacitor CH is discharged and the photocurrent Iin generated in the photodiode PD is large, the capacitor CH can be reliably prevented from being saturated.

尚、比較回路5は各フォトダイオードPDに対応させて設ける必要はなく、複数のフォトダイオードPDを1グループとして各グループ毎に1つの比較回路5を設けるよう構成すれば、多数のフォトダイオードからなるイメージセンサ等の回路面積をコンパクトにできる利点がある。   The comparison circuit 5 does not need to be provided corresponding to each photodiode PD. If a plurality of photodiodes PD are provided as one group and one comparison circuit 5 is provided for each group, the comparison circuit 5 includes a large number of photodiodes. There is an advantage that the circuit area of an image sensor or the like can be made compact.

次に、本発明の電荷検出装置の第3実施形態について説明する。
第3実施形態は、図1に示す第1実施形態とスイッチ回路1の構成が異なるだけである。
図6に、第3実施形態におけるスイッチ回路1の回路図を示す。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
図6において、第3実施形態のスイッチ回路1は、フォトダイオードPDに生じる光電流Iinを第1のコンデンサCHと第2のコンデンサCLに振り分けるときのみ、カレントミラー回路を電源VDDに接続する構成である。
Next, a third embodiment of the charge detection device of the present invention will be described.
The third embodiment differs from the first embodiment shown in FIG. 1 only in the configuration of the switch circuit 1.
FIG. 6 shows a circuit diagram of the switch circuit 1 in the third embodiment. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
In FIG. 6, the switch circuit 1 of the third embodiment has a configuration in which the current mirror circuit is connected to the power supply VDD only when the photocurrent Iin generated in the photodiode PD is distributed to the first capacitor CH and the second capacitor CL. is there.

第1実施形態において、前記カレントミラー回路は、電源とフォトダイオードPDの間に直列に接続しゲート端子がフォトダイオードPDに接続しフォトダイオードPDで生じる光電流Iinが流れる第1MOSトランジスタであるPMOSQ11と、電源と第1のコンデンサCHの間に直列に介装しゲート端子がPMOSQ11のゲート端子に接続しスイッチ部のスイッチング動作に同期して変調光が明るい時の光電流Iinに対応する出力電流が流れる第2MOSトランジスタであるPMOSQ12と、電源と第2のコンデンサCLの間に直列に介装しゲート端子がPMOSQ11のゲート端子に接続しスイッチ部スイッチング動作に同期して変調光が暗い時の光電流Iinに対応する出力電流が流れる第3MOSトランジスタであるPMOSQ13とを備えて構成されている。第1実施形態のスイッチ回路1では、PMOSQ12とコンデンサCHとの間にスイッチ部のPMOSQ14を介装し、PMOSQ13とコンデンサCLとの間にスイッチ部のPMOSQ15を介装し、これらを変調光の明暗に同期してスイッチングする構成とした。   In the first embodiment, the current mirror circuit includes a PMOS Q11 that is a first MOS transistor that is connected in series between a power source and a photodiode PD, a gate terminal is connected to the photodiode PD, and a photocurrent Iin generated in the photodiode PD flows. The output current corresponding to the photocurrent Iin when the modulated light is bright in synchronization with the switching operation of the switch unit with the gate terminal connected in series between the power source and the first capacitor CH and the gate terminal connected to the gate terminal of the PMOS Q11. A photocurrent when the modulated light is dark in synchronization with the switching operation of the switch unit with the gate terminal connected to the gate terminal of the PMOS Q11 in series between the PMOS Q12 which is the second MOS transistor that flows and the power supply and the second capacitor CL. P, which is a third MOS transistor through which an output current corresponding to Iin flows. It is constituted by a OSQ13. In the switch circuit 1 of the first embodiment, the PMOS Q14 of the switch unit is interposed between the PMOS Q12 and the capacitor CH, and the PMOS Q15 of the switch unit is interposed between the PMOS Q13 and the capacitor CL. Switching is performed in synchronization with

第3実施形態では、PMOSQ14,Q15の代わりに、カレントミラー回路の各PMOSQ12,Q13のソース端子と定電源ラインVDDとの間に、第1及び第2切換スイッチ21,22を設ける構成である。第1切換スイッチ21は、駆動信号とであるn−sw1信号の入力でPMOSQ12のソース端子を電源VDDに接続し、n−sw1信号の停止でPMOSQ12のソース端子をGNDに切換接続する構成である。第2切換スイッチ22は、駆動信号であるn−sw2信号の入力でPMOSQ13のソース端子を電源VDDに接続し、n−sw2信号の停止でPMOSQ13のソース端子をGNDに切換接続する構成である。   In the third embodiment, instead of the PMOSs Q14 and Q15, the first and second changeover switches 21 and 22 are provided between the source terminals of the PMOSs Q12 and Q13 of the current mirror circuit and the constant power supply line VDD. The first changeover switch 21 is configured to connect the source terminal of the PMOS Q12 to the power supply VDD when an n-sw1 signal as a drive signal is input, and to switch and connect the source terminal of the PMOS Q12 to GND when the n-sw1 signal is stopped. . The second changeover switch 22 has a configuration in which the source terminal of the PMOS Q13 is connected to the power supply VDD when an n-sw2 signal as a drive signal is input, and the source terminal of the PMOS Q13 is switched and connected to GND when the n-sw2 signal is stopped.

第3実施形態のスイッチ回路1の動作を説明する。尚、その他の動作は第1実施形態と同様であるので、ここではスイッチ回路1による電荷振り分け動作についてのみ説明しその他の動作の説明は省略する。
変調光が明(ハイ)の期間でn−sw1信号を発生して切換スイッチ21を電源VDD側に切換えてPMOSQ12を電源VDDに接続する。このとき、n−sw2信号は発生しておらず切換スイッチ22はPMOSQ13をGNDに接続してPMOSQ13への電流の流れを停止する。これにより、PMOSQ11とQ12がカレントミラーとして動作して、変調光が明るい時の光電流に対応する電荷量が第1のコンデンサCHに蓄えられる。変調光が暗(ロー)の期間でn−sw2信号を発生して切換スイッチ22を電源VDD側に切換えてPMOSQ13を電源VDDに接続する。このとき、n−sw1信号は発生しておらず切換スイッチ21はPMOSQ12をGNDに接続してPMOSQ12への電流の流れを停止する。これにより、PMOSQ11とQ13がカレントミラーとして動作して、変調光が暗い時の光電流に対応する電荷量が第2のコンデンサCLに蓄えられる。
The operation of the switch circuit 1 of the third embodiment will be described. Since other operations are the same as those in the first embodiment, only the charge distribution operation by the switch circuit 1 will be described here, and description of other operations will be omitted.
The n-sw1 signal is generated during the period when the modulated light is bright (high), and the changeover switch 21 is switched to the power supply VDD side to connect the PMOS Q12 to the power supply VDD. At this time, the n-sw2 signal is not generated, and the changeover switch 22 connects the PMOS Q13 to the GND to stop the current flow to the PMOS Q13. Thereby, the PMOSs Q11 and Q12 operate as a current mirror, and a charge amount corresponding to the photocurrent when the modulated light is bright is stored in the first capacitor CH. The n-sw2 signal is generated during the period when the modulated light is dark (low), and the changeover switch 22 is switched to the power supply VDD side to connect the PMOS Q13 to the power supply VDD. At this time, the n-sw1 signal is not generated, and the changeover switch 21 connects the PMOS Q12 to GND and stops the current flow to the PMOS Q12. Thereby, the PMOSs Q11 and Q13 operate as a current mirror, and a charge amount corresponding to the photocurrent when the modulated light is dark is stored in the second capacitor CL.

かかるスイッチ回路1の構成によれば、例えばPMOSQ13のゲート端子とフォトダイオードPDを結ぶラインに浮遊容量CFが存在する場合、浮遊容量CFにはフォトダイオードPDの電圧に応じた電荷が蓄積されるが、浮遊容量CFから第1及び第2のコンデンサCH,CLへの充電経路がなく、浮遊容量CFに蓄えられる電荷が第1及び第2のコンデンサCH,CLに充電されることがない。従って、浮遊容量CFの影響を受けることがなく、変調光の明暗に応じてフォトダイオードPDに流れる光電流に対応する電荷量を精度良く蓄積できる。   According to the configuration of the switch circuit 1, for example, when the stray capacitance CF exists on the line connecting the gate terminal of the PMOS Q13 and the photodiode PD, charges corresponding to the voltage of the photodiode PD are accumulated in the stray capacitance CF. There is no charging path from the stray capacitance CF to the first and second capacitors CH and CL, and the charge stored in the stray capacitance CF is not charged to the first and second capacitors CH and CL. Therefore, the amount of charge corresponding to the photocurrent flowing through the photodiode PD can be accumulated with high accuracy without being affected by the stray capacitance CF and depending on the brightness of the modulated light.

次に、本発明の電荷検出装置の第4実施形態について説明する。
第4実施形態は、図6のように切換スイッチ21,22を設けた場合のスイッチ回路1の別の構成例である。
図7に、第4実施形態のスイッチ回路1の回路図を示す。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
図7において、本実施形態のスイッチ回路1は、図6の回路に、3つのPMOSQ51,Q52,Q53で構成したカレントミラー回路を新たに追加し、このカレントミラーを、PMOSQ11,Q12,Q13で構成したカレントミラー回路に従続接続する構成とした。
Next, a fourth embodiment of the charge detection device of the present invention will be described.
4th Embodiment is another structural example of the switch circuit 1 at the time of providing the changeover switches 21 and 22 like FIG.
FIG. 7 shows a circuit diagram of the switch circuit 1 of the fourth embodiment. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
In FIG. 7, the switch circuit 1 of the present embodiment adds a current mirror circuit composed of three PMOSs Q51, Q52, and Q53 to the circuit of FIG. 6, and this current mirror is composed of PMOSs Q11, Q12, and Q13. The current mirror circuit is configured to be connected continuously.

図6のスイッチ回路1の場合、切換スイッチ21,22でPMOSQ12,13のソース端子を電源VDDとGNDに切換接続して電圧を変化させるので、電源接続時にソース−ゲート端子間の静電容量の影響を受けてゲート端子の電圧が不安定となり、安定するまでに時間を要し、その間待つ必要がある。第4実施形態のように、カレントミラー回路を従続接続する構成とすれば、PMOSQ51,Q52,Q53で構成したカレントミラー回路については、切換スイッチ21,22による電圧変化の影響を受けず、電源接続後、直ちに安定して動作するようになる。また、PMOSQ12,13のチャネル長変調効果の影響を抑制する効果もある。
尚、その他の動作は第1実施形態と同様であり説明は省略する。
In the case of the switch circuit 1 in FIG. 6, the source terminals of the PMOSs Q12 and 13 are switched and connected to the power sources VDD and GND by the changeover switches 21 and 22, and the voltage is changed. Due to the influence, the voltage at the gate terminal becomes unstable, and it takes time to stabilize, and it is necessary to wait during that time. If the current mirror circuit is configured to be continuously connected as in the fourth embodiment, the current mirror circuit constituted by the PMOSs Q51, Q52, and Q53 is not affected by the voltage change caused by the changeover switches 21 and 22, and the power supply Immediately after connection, it will operate stably. In addition, there is an effect of suppressing the influence of the channel length modulation effect of the PMOSs Q12 and 13.
Other operations are the same as those in the first embodiment, and a description thereof will be omitted.

次に、本発明の電荷検出装置の第5実施形態について説明する。
第5実施形態も、図6のように切換スイッチ21,22を設けた場合のスイッチ回路1の別の構成例である。
図8に、第5実施形態のスイッチ回路1の回路図を示す。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
図8において、本実施形態のスイッチ回路1は、カレントミラー回路を構成するPMOSQ11のバルク端子を電源に接続して基板バイアスとして電源VDDを印加し、PMOSQ12のバルク端子を電圧可変の可変電圧源に接続し基板バイアスとして可変電圧Vcntを印加する構成とする。また、PMOSQ11がサブスレショールド領域で動作する時の応答性改善のためのオペアンプ23を設ける。
Next, a fifth embodiment of the charge detection device of the present invention will be described.
The fifth embodiment is another example of the configuration of the switch circuit 1 when the changeover switches 21 and 22 are provided as shown in FIG.
FIG. 8 shows a circuit diagram of the switch circuit 1 of the fifth embodiment. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
In FIG. 8, the switch circuit 1 of the present embodiment connects the bulk terminal of the PMOS Q11 constituting the current mirror circuit to the power supply, applies the power supply VDD as a substrate bias, and uses the bulk terminal of the PMOS Q12 as a variable voltage source with variable voltage. The variable voltage Vcnt is applied as a substrate bias. In addition, an operational amplifier 23 is provided for improving the response when the PMOS Q11 operates in the subthreshold region.

前記オペアンプ23は、フォトダイオードPDの電圧Vpを予め定めた設定値である外部バイアス電圧Vinnに保持するようフォトダイオードPDの電圧変化に応じてPMOSQ11のゲート端子電圧を可変制御するものである。即ち、フォトダイオードPDに流れる光電流Iinが変化するとフォトダイオードPDの電圧Vpが変化する。オペアンプ23は、この変化を検出して電圧Vpを外部バイアス電圧Vinnに保持するようにPMOSQ11のゲート端子電圧VG(オペアンプの出力)を制御する。これにより、フォトダイオードPDの電圧Vpは外部バイアス電圧Vinnに一定に維持され、オペアンプ23の出力VGはフォトダイオードPDに流れる光電流の変化に応じて変化し、前記光電流に応じた電圧値となる。   The operational amplifier 23 variably controls the gate terminal voltage of the PMOS Q11 in accordance with a change in the voltage of the photodiode PD so that the voltage Vp of the photodiode PD is held at an external bias voltage Vinn which is a predetermined set value. That is, when the photocurrent Iin flowing through the photodiode PD changes, the voltage Vp of the photodiode PD changes. The operational amplifier 23 detects this change and controls the gate terminal voltage VG (output of the operational amplifier) of the PMOS Q11 so that the voltage Vp is held at the external bias voltage Vinn. As a result, the voltage Vp of the photodiode PD is kept constant at the external bias voltage Vinn, and the output VG of the operational amplifier 23 changes according to the change of the photocurrent flowing through the photodiode PD, and the voltage value corresponding to the photocurrent is Become.

次に、図8のスイッチ回路1の動作を説明する。尚、その他の動作は第1実施形態と同様であり、ここではスイッチ回路の動作のみを説明し、その他の動作については説明を省略する。
変調光が明(ハイ)の期間でn−sw1信号を発生して切換スイッチ21を電源VDD側に切換えてPMOSQ12を電源VDDに接続し、切換スイッチ22はPMOSQ13をGNDに接続する。これにより、PMOSQ11とQ12がカレントミラーとして動作し、変調光が明るい時の光電流に対応するオペアンプ23の出力電圧VGと電源VDDとの電位差に応じた電流がPMOSQ12に流れ、変調光が明るい時の光電流に対応する電荷量が第1のコンデンサCHに蓄えられる。変調光が暗(ロー)の期間ではn−sw2信号を発生して切換スイッチ22を電源VDD側に切換えてPMOSQ13を電源VDDに接続し、切換スイッチ21はPMOSQ12をGNDに接続する。これにより、PMOSQ11とQ13がカレントミラーとして動作し、変調光が暗い時の光電流に対応するオペアンプ23の出力電圧VGと電源VDDとの電位差に応じた電流がPMOSQ13に流れ、変調光が暗い時の光電流に対応する電荷量が第2のコンデンサCLに蓄えられる。
Next, the operation of the switch circuit 1 in FIG. 8 will be described. The other operations are the same as those in the first embodiment, and only the operation of the switch circuit will be described here, and the description of the other operations will be omitted.
The n-sw1 signal is generated during the period when the modulated light is bright (high), the changeover switch 21 is switched to the power supply VDD side to connect the PMOSQ12 to the power supply VDD, and the changeover switch 22 connects the PMOSQ13 to GND. Thereby, the PMOSs Q11 and Q12 operate as a current mirror, and a current corresponding to the potential difference between the output voltage VG of the operational amplifier 23 and the power supply VDD corresponding to the photocurrent when the modulated light is bright flows to the PMOS Q12, and the modulated light is bright The charge amount corresponding to the photocurrent is stored in the first capacitor CH. During the period when the modulated light is dark (low), an n-sw2 signal is generated to switch the changeover switch 22 to the power supply VDD side to connect the PMOSQ13 to the power supply VDD, and the changeover switch 21 connects the PMOSQ12 to GND. Thereby, the PMOSs Q11 and Q13 operate as a current mirror, and a current corresponding to the potential difference between the output voltage VG of the operational amplifier 23 and the power supply VDD corresponding to the photocurrent when the modulated light is dark flows to the PMOS Q13, and the modulated light is dark The charge amount corresponding to the photocurrent is stored in the second capacitor CL.

尚、コンデンサCHの蓄積電荷量に対応する電圧VCHやコンデンサCLの蓄積電荷量に対応する電圧VCLが、電圧VGより高電位になると、PMOSQ12やPMOSQ13のソース端子をGNDに接続したときに、コンデンサCH,CL側からPMOSQ12やPMOSQ13を介して電荷が放電する。この放電を防止するため、PMOSQ12とコンデンサCHとの間及びPMOSQ13とコンデンサCLとの間に、逆流防止用ダイオード24,25をそれぞれ設けてある。   When the voltage VCH corresponding to the amount of charge stored in the capacitor CH or the voltage VCL corresponding to the amount of charge stored in the capacitor CL becomes higher than the voltage VG, the capacitor Q2 and the PMOS Q13 are connected to GND when the source terminals of the PMOS Q12 and PMOS Q13 are connected. Electric charges are discharged from the CH and CL sides via the PMOS Q12 and the PMOS Q13. In order to prevent this discharge, backflow prevention diodes 24 and 25 are provided between the PMOS Q12 and the capacitor CH and between the PMOS Q13 and the capacitor CL, respectively.

かかる構成では、PMOSQ12,13をサブスレショールド領域で動作するよう構成すると、電流利得を可変の基板バイアス電圧Vcntに応じて変化させることができる。従って、フォトダイオードPDの検出する光量に応じて基板バイアス電圧Vcntを調整して電流利得を調整することで、微弱光から強い光まで広範囲の光量検出が可能である。   In such a configuration, when the PMOSs Q12 and 13 are configured to operate in the subthreshold region, the current gain can be changed according to the variable substrate bias voltage Vcnt. Therefore, by adjusting the substrate gain voltage Vcnt in accordance with the light amount detected by the photodiode PD and adjusting the current gain, it is possible to detect the light amount in a wide range from weak light to strong light.

次に、本発明の電荷検出装置を適用した物体検出装置について説明する。
図9は、物体検出装置の概略構成図を示す。
図9において、物体検出装置は、多数のフォトダイオードPDを備え、各フォトダイオードPD毎に上述した本発明の電荷検出装置を組込んだイメージセンサ11と、変調光源12と、イメージセンサ11からの画像データに基づいて予め取得した背景画像データと現在の画像データとの差分から背景差分法を用いて物体の有無を判定する画像データ処理部13と、これらイメージセンサ11、変調光源12及び画像データ処理部13を統括的に制御する制御部14とを備えて構成される。尚、図中の背景光は、太陽光や照明光等を意味する。
Next, an object detection apparatus to which the charge detection apparatus of the present invention is applied will be described.
FIG. 9 shows a schematic configuration diagram of the object detection apparatus.
In FIG. 9, the object detection device includes a large number of photodiodes PD, and each of the photodiodes PD incorporates the above-described charge detection device of the present invention, the modulation light source 12, and the image sensor 11. An image data processing unit 13 for determining the presence or absence of an object using a background difference method from a difference between background image data acquired in advance based on image data and current image data, and these image sensor 11, modulated light source 12, and image data And a control unit 14 that comprehensively controls the processing unit 13. In addition, the background light in a figure means sunlight, illumination light, etc.

制御部14は、変調光源12に例えばパルス状の変調信号を出力して変調光源12から変調光を発生させる。また、前述のようにして前記変調信号に同期させて電荷検出装置を駆動し、変調信号が明るい時と暗い時の電荷量の差分を各フォトダイオードPDに対応するコンデンサCHに蓄積させて画像データを取得する。更に、所定の時間間隔でイメージセンサ11から画像データを画像データ処理部13に出力させる。
画像データ処理部13は、物体15の存在しない予め取得した背景画像データと現状の画像データを比較して変化の有無により物体15の存在の有無を判定する。
The control unit 14 generates a modulated light from the modulated light source 12 by outputting, for example, a pulsed modulated signal to the modulated light source 12. Further, as described above, the charge detection device is driven in synchronization with the modulation signal, and the difference in the amount of charge when the modulation signal is bright and dark is accumulated in the capacitor CH corresponding to each photodiode PD to obtain image data. To get. Further, the image data is output from the image sensor 11 to the image data processing unit 13 at a predetermined time interval.
The image data processing unit 13 compares the background image data acquired in advance without the object 15 with the current image data, and determines the presence or absence of the object 15 based on the presence or absence of the change.

本実施形態の物体検出装置の動作を図10に基づいて詳述する。
図10において、kフレームを基準フレームとし、(k+m)フレームでは背景光がB1からB2に変化し、(k+n)フレームでは物体15の存在により反射率がR1からR2に変化したとする。検出対象領域に変調光源12から、図10に示すような例えばパルス状のM1、M2の2値の変調光を照射する。尚、変調光を点滅させてM2が0となる場合も含む。この場合、イメージセンサ11の各フォトダイオードPDに入力する反射光は変調光に同期して変化する。ここで、図に示すように、kフレームの反射光をR1(M1+B1)とR1(M2+B1)とし、(k+m)フレームの反射光をR1(M1+B2)とR1(M2+B2)とし、(k+n)フレームの反射光をR2(M1+B2)とR2(M2+B2)とする。
The operation of the object detection apparatus of this embodiment will be described in detail with reference to FIG.
In FIG. 10, it is assumed that the k frame is a reference frame, the background light changes from B1 to B2 in the (k + m) frame, and the reflectance changes from R1 to R2 due to the presence of the object 15 in the (k + n) frame. For example, pulsed M1 and M2 binary modulated light as shown in FIG. 10 is irradiated from the modulated light source 12 to the detection target region. In addition, the case where M2 becomes 0 by blinking the modulated light is included. In this case, the reflected light input to each photodiode PD of the image sensor 11 changes in synchronization with the modulated light. Here, as shown in the figure, the reflected light of the k frame is R1 (M1 + B1) and R1 (M2 + B1), the reflected light of the (k + m) frame is R1 (M1 + B2) and R1 (M2 + B2), and the (k + n) frame is reflected. The reflected light is R2 (M1 + B2) and R2 (M2 + B2).

そして、変調光の明暗に同期させて、上述した本発明の電荷検出装置により、変調光の明るい時(M1)にフォトダイオードPDで生じる光電流IinをコンデンサCHに、暗い時(M2)の光電流IinをコンデンサCLに供給し、図10に示すように、各コンデンサCH,CLそれぞれに電荷を蓄える。ここで、各フレームにおけるそれぞれのコンデンサCH,CLの電圧(蓄積電荷量に相当する)を、kフレームはAR1(M1+B1)、AR1(M2+B1)とし、(k+m)フレームはAR1(M1+B2)、AR1(M2+B2)とし、(k+n)フレームはAR2(M1+B2)、AR2(M2+B2)とする。尚、AはフォトダイオードPDの光電変換効率等により決定される定数である。   Then, in synchronization with the brightness of the modulated light, the above-described charge detection device of the present invention causes the photocurrent Iin generated in the photodiode PD when the modulated light is bright (M1) to the capacitor CH, and the light when dark (M2). The current Iin is supplied to the capacitor CL, and charges are stored in the capacitors CH and CL as shown in FIG. Here, the voltages of the capacitors CH and CL (corresponding to the accumulated charge amount) in each frame are AR1 (M1 + B1) and AR1 (M2 + B1) in the k frame, and AR1 (M1 + B2) and AR1 (in the (k + m) frame). M2 + B2), and (k + n) frames are AR2 (M1 + B2) and AR2 (M2 + B2). A is a constant determined by the photoelectric conversion efficiency of the photodiode PD.

その後、コンデンサCHに蓄えた電荷量からコンデンサCLに蓄えた電荷量を減算して両者の差分をとる。この場合、kフレームと(k+m)フレームの差分値は、AR1(M1−M2)となり、(k+n)フレームの差分値は、AR2(M1−M2)となり、背景光B1,B2の影響を排除できることがわかる。また、(k+m)フレームでは背景光が変化しているが反射率が変化しないため、変調光の明暗によるkフレームと(k+m)フレームの差分値は等しい。一方、(k+n)フレームでは物体15の存在により反射率が変化するため、変調光の明暗による差分値は、kフレームや(k+m)フレームの差分値と比べて変化することがわかる。   Thereafter, the charge amount stored in the capacitor CL is subtracted from the charge amount stored in the capacitor CH to obtain a difference between the two. In this case, the difference value between the k frame and the (k + m) frame is AR1 (M1-M2), and the difference value between the (k + n) frames is AR2 (M1-M2), so that the influence of the background lights B1 and B2 can be eliminated. I understand. In addition, since the background light changes in the (k + m) frame, but the reflectance does not change, the difference value between the k frame and the (k + m) frame due to the brightness of the modulated light is equal. On the other hand, in the (k + n) frame, since the reflectance changes due to the presence of the object 15, it can be seen that the difference value due to the brightness of the modulated light changes compared to the difference value of the k frame or (k + m) frame.

従って、予め基準フレームの差分値を取得し、この基準フレームの差分値と逐次取得した差分値とを比較し、その差が予め定めた閾値以上であれば物体15が存在すると判定できる。これにより、背景光の変化の影響を排除して物体の検出ができる。そして、本発明の電荷検出装置を用いて前記差分値を蓄積することで、増大した差分値で比較することができる。従って、変調光によりフォトダイオードPDの光電流Iinが小さくても精度良く物体を検出することが可能となる。   Accordingly, the difference value of the reference frame is acquired in advance, the difference value of the reference frame is compared with the sequentially acquired difference value, and it can be determined that the object 15 exists if the difference is equal to or greater than a predetermined threshold value. As a result, the object can be detected while eliminating the influence of changes in the background light. Then, by storing the difference value using the charge detection device of the present invention, it is possible to compare with the increased difference value. Therefore, even if the photocurrent Iin of the photodiode PD is small due to the modulated light, the object can be detected with high accuracy.

図10では、フレーム毎に電荷の差分蓄積動作を行う例を示したが、図11に示すように、各フレームの途中で差分蓄積動作を行うようにしてもよい。図11は、フレーム途中で電荷検出装置を動作させた場合の光量に応じた蓄積過程の様子を示し、上から光量が大、中、小の場合のコンデンサCH、コンデンサCLの電荷蓄積の様子を示す。所定のリセットタイミング時にコンデンサCHの電荷量と閾値Vthとの比較を行い、コンデンサCHの電荷量が閾値Vth以上の場合は減算動作を実行し、コンデンサCLの電荷量と同量の電荷量を両コンデンサCH,CLから減算する。コンデンサCHの電荷量が閾値Vth未満であればそのまま蓄積動作を継続する。   Although FIG. 10 shows an example in which the charge difference accumulation operation is performed for each frame, the difference accumulation operation may be performed in the middle of each frame as shown in FIG. FIG. 11 shows the state of the accumulation process according to the amount of light when the charge detection device is operated in the middle of the frame. The state of charge accumulation in the capacitors CH and CL when the amount of light is large, medium, and small from above is shown. Show. The charge amount of the capacitor CH is compared with the threshold value Vth at a predetermined reset timing. If the charge amount of the capacitor CH is equal to or greater than the threshold value Vth, a subtraction operation is executed, and the same charge amount as that of the capacitor CL is obtained. Subtract from capacitors CH and CL. If the charge amount of the capacitor CH is less than the threshold value Vth, the accumulation operation is continued as it is.

尚、変調光の明暗を高速で切替えることにより背景光の緩やかな変化を無視することができ、物体検出の精度をより一層向上させることができる。
また、上記の各実施形態では、フォトダイオードPDがGNDに接続している場合の構成例を示したが、フォトダイオードPDが電源VDDに接続している場合でも、NMOSトランジスタとPOMSトランジスタを逆にした相補な回路構成で、同様の効果が実現可能である。
It should be noted that a gradual change in background light can be ignored by switching the brightness of the modulated light at high speed, and the accuracy of object detection can be further improved.
In each of the above embodiments, the configuration example in which the photodiode PD is connected to the GND is shown. However, even when the photodiode PD is connected to the power supply VDD, the NMOS transistor and the POMS transistor are reversed. The same effect can be realized with the complementary circuit configuration.

本発明に係る電荷検出装置の第1実施形態を示す概略構成図1 is a schematic configuration diagram showing a first embodiment of a charge detection device according to the present invention. 同上実施形態の具体的回路図Specific circuit diagram of the embodiment 図2の回路を2次元アレイに組込んだ例を示す回路図Circuit diagram showing an example of incorporating the circuit of FIG. 2 into a two-dimensional array 図2の回路図の動作タイムチャートOperation time chart of the circuit diagram of FIG. 本発明に係る電荷検出装置の第2実施形態を示す概略構成図Schematic configuration diagram showing a second embodiment of a charge detection device according to the present invention. 本発明に係る電荷検出装置の第3実施形態の要部を示すスイッチ回路図Switch circuit diagram showing the main part of a third embodiment of the charge detection device according to the present invention 本発明に係る電荷検出装置の第4実施形態の要部を示すスイッチ回路図Switch circuit diagram showing the main part of a fourth embodiment of the charge detection device according to the present invention 本発明に係る電荷検出装置の第5実施形態の要部を示すスイッチ回路図Switch circuit diagram showing the main part of a fifth embodiment of the charge detection device according to the present invention 電荷検出装置を適用した物体検出装置の概略図Schematic diagram of an object detection device to which a charge detection device is applied 図9の物体検出装置の動作説明図Operation explanatory diagram of the object detection apparatus of FIG. フレーム途中で差分蓄積動作する場合のコンデンサの電荷蓄積過程の様子を示す図The figure which shows the mode of the electric charge accumulation process of the capacitor when differential accumulation operation is performed in the middle of the frame 従来例を示す回路図Circuit diagram showing a conventional example

符号の説明Explanation of symbols

1 スイッチ回路
2 差分蓄積回路
3 電流源
4 制御回路
5 比較回路
11 イメージセンサ
12 変調光源
13 画像データ処理部
14 制御部
15 物体
21,22 切換スイッチ
23 オペアンプ
CH 第1のコンデンサ
CL 第2のコンデンサ
PD フォトダイオード
DESCRIPTION OF SYMBOLS 1 Switch circuit 2 Difference accumulation circuit 3 Current source 4 Control circuit 5 Comparison circuit 11 Image sensor 12 Modulation light source 13 Image data processing part 14 Control part 15 Object 21, 22 Changeover switch 23 Operational amplifier CH 1st capacitor CL 2nd capacitor PD Photodiode

Claims (11)

変調した光の明暗に同期してイメージセンサ内の受光素子で生じる光電流をそれぞれ第1及び第2のコンデンサに振り分けて供給し、前記光電流に基づいて前記第1のコンデンサに蓄えられる電荷量と前記第2のコンデンサに蓄えられる電荷量の差分を蓄積する構成としたことを特徴とする電荷検出装置。   The photocurrent generated in the light receiving element in the image sensor in synchronization with the brightness of the modulated light is distributed and supplied to the first and second capacitors, respectively, and the amount of charge stored in the first capacitor based on the photocurrent And a charge detection device, wherein the difference between the charge amounts stored in the second capacitor is stored. 前記光電流の振り分けを複数回繰返し、前記第1及び第2のコンデンサに前記光電流に基づく電荷をそれぞれ蓄積した後に、これら蓄積電荷量の差分を蓄積する構成とした請求項1に記載の電荷検出装置。   2. The charge according to claim 1, wherein the photocurrent distribution is repeated a plurality of times, and the charge based on the photocurrent is accumulated in the first and second capacitors, respectively, and then the difference between the accumulated charge amounts is accumulated. Detection device. 前記変調光の明暗に同期してスイッチングし、前記受光素子で生じる光電流を前記第1のコンデンサと第2のコンデンサに振り分けて供給するスイッチ手段と、
前記第1のコンデンサに蓄えられる電荷量から前記第2のコンデンサに蓄えられる電荷量を減算してその差分を蓄積させる差分蓄積手段と、を備え、
前記変調光の明暗に同期させて前記スイッチ手段を駆動制御し、所定タイミングで前記差分蓄積手段を駆動させる構成とした請求項1又は2に記載の電荷検出装置。
Switching means that switches in synchronization with the brightness of the modulated light, and distributes and supplies the photocurrent generated in the light receiving element to the first capacitor and the second capacitor;
Difference accumulation means for subtracting the amount of charge stored in the second capacitor from the amount of charge stored in the first capacitor and storing the difference;
3. The charge detection device according to claim 1, wherein the switch unit is driven and controlled in synchronization with light and darkness of the modulated light, and the difference accumulation unit is driven at a predetermined timing.
蓄えられる電荷量の多い前記第1のコンデンサの電荷量を検出し、検出電荷量を予め定めた閾値と比較して検出電荷量が閾値以上になった時に、前記差分蓄積手段を駆動させる駆動指令を発生する比較手段を備える構成とした請求項3に記載の電荷検出装置。   A drive command for detecting the charge amount of the first capacitor having a large amount of stored charge and driving the difference accumulation means when the detected charge amount is equal to or greater than a threshold value by comparing the detected charge amount with a predetermined threshold value. The charge detection device according to claim 3, wherein the charge detection device is configured to include a comparison unit that generates a voltage. 前記差分蓄積手段は、蓄えられる電荷量の少ない前記第2のコンデンサを基準とし、前記駆動指令に基づいてカレントミラー回路を駆動し、前記第1及び第2のコンデンサから同量の電荷量を放電させて前記第1のコンデンサに前記差分を残存させる構成であり、前記差分蓄積手段を繰返し動作させて前記第1のコンデンサに前記差分を蓄積する構成とした請求項3又は4に記載の電荷検出装置。   The differential accumulation means drives the current mirror circuit based on the drive command based on the second capacitor with a small amount of stored charge, and discharges the same amount of charge from the first and second capacitors. 5. The charge detection according to claim 3, wherein the difference is caused to remain in the first capacitor, and the difference accumulation unit is repeatedly operated to accumulate the difference in the first capacitor. 6. apparatus. 前記スイッチ手段は、前記受光素子で生じる光電流を前記第1及び第2のコンデンサにそれぞれ振り分けるためのカレントミラー回路と、該カレントミラー回路で振り分けた光電流を前記変調光の明暗に同期してスイッチングし第1及び第2コンデンサにそれぞれ供給するためのスイッチ部とを備える構成とした請求項3〜5のいずれか1つに記載の電荷検出装置。   The switch means includes a current mirror circuit for distributing the photocurrent generated in the light receiving element to the first and second capacitors, and the photocurrent distributed by the current mirror circuit in synchronization with the brightness of the modulated light. 6. The charge detection device according to claim 3, further comprising: a switch unit that performs switching and supplies the first and second capacitors to each of them. 前記カレントミラー回路は、電源と前記受光素子の間に直列に接続しゲート端子が前記受光素子に接続し前記受光素子で生じる前記光電流が流れる第1MOSトランジスタと、電源と前記第1のコンデンサの間に直列に介装しゲート端子が前記第1MOSトランジスタのゲート端子に接続し前記スイッチ部のスイッチング動作に同期して変調光が明るい時の前記光電流に対応する出力電流が流れる第2MOSトランジスタと、電源と前記第2のコンデンサの間に直列に介装しゲート端子が前記第1MOSトランジスタのゲート端子に接続し前記スイッチ部のスイッチング動作に同期して変調光が暗い時の前記光電流に対応する出力電流が流れる第3MOSトランジスタと、を備える構成である請求項6に記載の電荷検出装置。   The current mirror circuit includes a first MOS transistor connected in series between a power source and the light receiving element, a gate terminal connected to the light receiving element, and the photocurrent generated in the light receiving element flowing therethrough; a power source and a first capacitor; A second MOS transistor having a gate terminal connected in series between the gate terminal of the first MOS transistor and an output current corresponding to the photocurrent when the modulated light is bright in synchronization with the switching operation of the switch unit; The gate terminal is connected in series between the power source and the second capacitor, and the gate terminal is connected to the gate terminal of the first MOS transistor, so that the photocurrent when the modulated light is dark is synchronized with the switching operation of the switch unit. The charge detection device according to claim 6, further comprising: a third MOS transistor through which an output current flows. 前記スイッチ部は、前記電源と前記第2MOSトランジスタの間に介装され変調光が明るい期間に駆動信号の入力で前記第2MOSトランジスタを電源に接続し駆動信号の停止で前記第2MOSトランジスタをGNDに切換接続する第1切換スイッチと、前記電源と前記第3MOSトランジスタの間に介装され変調光が暗い期間に駆動信号の入力で前記第3MOSトランジスタを電源に接続し駆動信号の停止で前記第3MOSトランジスタをGNDに切換接続する第2切換スイッチと、を備えて構成した請求項7に記載の電荷検出装置。   The switch unit is interposed between the power source and the second MOS transistor, connects the second MOS transistor to the power source when a drive signal is input during a period when the modulated light is bright, and turns the second MOS transistor to GND when the drive signal is stopped. A first changeover switch connected between the power supply and the third MOS transistor, and the third MOS transistor is connected to the power supply by input of a drive signal during a period when the modulated light is dark, and the third MOS is turned off by stopping the drive signal. The charge detection device according to claim 7, further comprising: a second changeover switch for switchingly connecting the transistor to GND. 前記カレントミラー回路を、前記第1MOSトランジスタのバルク端子を電源に接続し、前記第2及び第3MOSトランジスタのバルク端子を、それぞれ電圧が可変できる可変電圧源に接続する構成とすると共に、前記受光素子の電圧を予め定めた設定値に保持するよう前記受光素子の電圧変化に応じて第1MOSトランジスタのゲート端子電圧を可変制御するオペアンプを、前記スイッチ手段に設ける構成とした請求項7又は8に記載の電荷検出装置。   The current mirror circuit has a configuration in which a bulk terminal of the first MOS transistor is connected to a power source, and a bulk terminal of each of the second and third MOS transistors is connected to a variable voltage source capable of varying a voltage. 9. The operational amplifier for variably controlling the gate terminal voltage of the first MOS transistor in accordance with a change in voltage of the light receiving element so as to hold the voltage at a predetermined setting value is provided in the switch means. Charge detection device. 前記受光素子で生じる前記光電流にオフセット電流を付加する構成とした請求項1〜9のいずれか1つに記載の電荷検出装置。   The charge detection device according to claim 1, wherein an offset current is added to the photocurrent generated in the light receiving element. 多数の受光素子からなるイメージセンサからの画像データに基づいて、予め取得した背景画像データと現在の画像データとの差分から物体を検出する背景差分法を利用する物体検出装置に適用したことを特徴とする請求項1〜10のいずれか1つに記載の電荷検出装置。   The present invention is applied to an object detection apparatus that uses a background difference method for detecting an object from a difference between background image data acquired in advance and current image data based on image data from an image sensor including a large number of light receiving elements. The charge detection device according to any one of claims 1 to 10.
JP2007278392A 2006-11-07 2007-10-26 Charge detector Pending JP2008141737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278392A JP2008141737A (en) 2006-11-07 2007-10-26 Charge detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006301583 2006-11-07
JP2007278392A JP2008141737A (en) 2006-11-07 2007-10-26 Charge detector

Publications (1)

Publication Number Publication Date
JP2008141737A true JP2008141737A (en) 2008-06-19

Family

ID=39602683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278392A Pending JP2008141737A (en) 2006-11-07 2007-10-26 Charge detector

Country Status (1)

Country Link
JP (1) JP2008141737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028343A1 (en) * 2007-08-31 2009-03-05 Rohm Co., Ltd. Photoelectric conversion circuit and solid-state imaging device provided with the same
JP2013113689A (en) * 2011-11-28 2013-06-10 Osaka Univ Stimulated raman scattering microscope
WO2015133053A1 (en) * 2014-03-06 2015-09-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Measurement system, measurement method, and vision chip
WO2019135304A1 (en) * 2018-01-05 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774336A (en) * 1993-09-03 1995-03-17 Hitachi Ltd Solid-state image sensing device
JPH07203319A (en) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd Solid state image pickup element
JPH11312799A (en) * 1998-04-30 1999-11-09 Minolta Co Ltd Solid-state image-pickup device
JP2004056048A (en) * 2002-07-24 2004-02-19 Microsignal Kk Solid imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774336A (en) * 1993-09-03 1995-03-17 Hitachi Ltd Solid-state image sensing device
JPH07203319A (en) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd Solid state image pickup element
JPH11312799A (en) * 1998-04-30 1999-11-09 Minolta Co Ltd Solid-state image-pickup device
JP2004056048A (en) * 2002-07-24 2004-02-19 Microsignal Kk Solid imaging device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028343A1 (en) * 2007-08-31 2009-03-05 Rohm Co., Ltd. Photoelectric conversion circuit and solid-state imaging device provided with the same
US8537259B2 (en) 2007-08-31 2013-09-17 Rohm Co., Ltd. Photoelectric conversion circuit and solid state imaging device including same
JP2013113689A (en) * 2011-11-28 2013-06-10 Osaka Univ Stimulated raman scattering microscope
WO2015133053A1 (en) * 2014-03-06 2015-09-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Measurement system, measurement method, and vision chip
JP2015180857A (en) * 2014-03-06 2015-10-15 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Measurement system, measurement method and vision chip
KR20160130938A (en) * 2014-03-06 2016-11-15 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 Measurement system, measurement method and vision chip
US10240915B2 (en) 2014-03-06 2019-03-26 Panasonic Intellectual Property Corporation Of America Measurement system, measurement method, and vision chip
KR102217934B1 (en) * 2014-03-06 2021-02-19 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 Measurement system, measurement method and vision chip
WO2019135304A1 (en) * 2018-01-05 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
KR20200106155A (en) * 2018-01-05 2020-09-11 소니 세미컨덕터 솔루션즈 가부시키가이샤 Solid-state imaging device, imaging device, and control method of solid-state imaging device
EP3737086A4 (en) * 2018-01-05 2021-04-14 Sony Semiconductor Solutions Corporation Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
KR102544592B1 (en) * 2018-01-05 2023-06-15 소니 세미컨덕터 솔루션즈 가부시키가이샤 Solid-state imaging device, imaging device, and control method of solid-state imaging device

Similar Documents

Publication Publication Date Title
US10142573B2 (en) Photoelectric conversion apparatus and photoelectric conversion system
US6642501B2 (en) Photo-detecting apparatus
US8139134B2 (en) Complementary metal-oxide semiconductor (CMOS) image sensor
US20110273601A1 (en) Solid-state imaging device
US11240461B2 (en) Operating method of pixel circuit and image system
JP2008017288A (en) Photoelectric conversion circuit, and solid-state imaging apparatus using this
JP4654046B2 (en) Clamp circuit for CMOS image sensor
JP2008141737A (en) Charge detector
US6111245A (en) Low voltage reverse bias arrangement for an active pixel sensor
US10811448B2 (en) Solid-state imaging device
US10165214B2 (en) Imaging device and imaging system
JP3542154B2 (en) Solid-state imaging device
US9774808B2 (en) Driving method for photoelectric conversion apparatus, photoelectric conversion apparatus, and imaging system
KR101688600B1 (en) Sampling circuit and image signal amplifying circuit including feedback clamp block and image sensor including the image signal amplifying circuit
US9412784B1 (en) Pre-flash time adjusting circuit and image sensor using the same
KR101721271B1 (en) Amplifier circuit, integrating circuit, and light-detection device
US7298406B2 (en) Ground referenced pixel reset
WO2007066893A1 (en) Method and apparatus for controlling dark-sun appearance of cmos image sensor
US20240098379A1 (en) Image sensor with stacked pixels including charge sharing gates
KR101725063B1 (en) Readout circuit of x-ray detector
JP2011040809A (en) Charge detection device
US10026497B2 (en) Charge injection noise reduction in sample-and-hold circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724