JP2008138169A - Novel photo-sensitizer and photovoltaic element - Google Patents

Novel photo-sensitizer and photovoltaic element Download PDF

Info

Publication number
JP2008138169A
JP2008138169A JP2007222174A JP2007222174A JP2008138169A JP 2008138169 A JP2008138169 A JP 2008138169A JP 2007222174 A JP2007222174 A JP 2007222174A JP 2007222174 A JP2007222174 A JP 2007222174A JP 2008138169 A JP2008138169 A JP 2008138169A
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
compound
photosensitizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007222174A
Other languages
Japanese (ja)
Inventor
Masaki Minami
昌樹 南
Kiyo Yamanaka
紀代 山中
Yoshinori Nishikitani
禎範 錦谷
Hideki Masuda
秀樹 増田
Yasuhiro Funabashi
靖博 舩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Eneos Corp
Original Assignee
Nagoya Institute of Technology NUC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, Nippon Oil Corp filed Critical Nagoya Institute of Technology NUC
Priority to JP2007222174A priority Critical patent/JP2008138169A/en
Publication of JP2008138169A publication Critical patent/JP2008138169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photosensitizer having a high light absorption coefficient, which absorbs a light over a wide range from visible light to infrared light and exhibits a high light absorption rate, even in the case of an extremely thin film. <P>SOLUTION: The photosensitizer contains a compound having structural units of formula (I) and formula (II). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は新規光増感剤、詳しくは色素増感型太陽電池に用いる新規光増感剤に関する。さらに該光増感剤を吸着した半導体層を有する光起電力素子に関する。   The present invention relates to a novel photosensitizer, and more particularly to a novel photosensitizer used for a dye-sensitized solar cell. Furthermore, the present invention relates to a photovoltaic device having a semiconductor layer adsorbing the photosensitizer.

1991年にグレッツェルらが発表した色素増感型太陽電池素子は、ルテニウム錯体によって分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池であり、シリコン太陽電池並みの性能が得られることが報告されている(非特許文献1参照)。この方法は、チタニア等の安価な酸化物半導体を高純度に精製することなく用いることができるため、安価な色素増感型太陽電池素子を提供でき、しかも色素の吸収がブロードであるため、可視光線のほぼ全波長領域の光を電気に変換できるという利点があり、注目を集めている。しかしながら、公知のルテニウム錯体色素は、可視光は吸収するものの700nmより長波長の赤外光はほとんど吸収しないため赤外域での光電変換能は低い。したがって更に変換効率を上げるためには可視光のみならず赤外域に吸収を有する色素の開発が望まれていた。
一方、ブラックダイに関して、920nmまで光を吸収することができるが、吸光係数が、小さいため、高電流値を得るためには、酸化チタン多孔質薄膜に吸着する量を多くする必要があった。酸化チタン多孔質薄膜への吸着量を増加する方法は、種々の方法があるが、一般的には、薄膜の厚みを増加することで可能である(非特許文献2参照)。薄膜の厚みを増加すると、逆電子移動の増加、薄膜中の電子密度の減少などによって、開放電圧値の減少、FFの低下などが生ずるため、変換効率は大きく増加することはできない。
オレガン(B. O’Regan),グレツェル(M.Gratzel),「ネイチャー(Nature)」,(英国),1991年,353巻,p.737 グレツェル(M.Gratzel),「ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー(journal of American Chemical Society)」,(米国),2001年,123巻,p.1613
The dye-sensitized solar cell element announced by Gretzell et al. In 1991 is a wet solar cell using a titanium oxide porous thin film spectrally sensitized by a ruthenium complex as a working electrode, and can obtain performance equivalent to that of a silicon solar cell. Has been reported (see Non-Patent Document 1). Since this method can use an inexpensive oxide semiconductor such as titania without purifying it with high purity, it can provide an inexpensive dye-sensitized solar cell element, and since the absorption of the dye is broad, it is visible. It has the advantage of being able to convert light in almost all wavelength regions of light into electricity, and has attracted attention. However, a known ruthenium complex dye absorbs visible light but hardly absorbs infrared light having a wavelength longer than 700 nm, and thus has a low photoelectric conversion ability in the infrared region. Therefore, in order to further increase the conversion efficiency, development of a dye having absorption not only in the visible light but also in the infrared region has been desired.
On the other hand, the black die can absorb light up to 920 nm. However, since the extinction coefficient is small, it is necessary to increase the amount adsorbed on the titanium oxide porous thin film in order to obtain a high current value. Although there are various methods for increasing the amount of adsorption to the titanium oxide porous thin film, it is generally possible to increase the thickness of the thin film (see Non-Patent Document 2). When the thickness of the thin film is increased, the conversion efficiency cannot be increased greatly because the open-circuit voltage value is decreased and the FF is decreased due to an increase in reverse electron transfer and a decrease in the electron density in the thin film.
B. O'Regan, M. Gratzel, “Nature” (UK), 1991, 353, p. 737 M. Gratzel, “journal of American Chemical Society” (USA), 2001, Vol. 123, p. 1613

このため、可視光から赤外光までの広い範囲で光を吸収し、極薄い薄膜においても、光吸収率が高くなる吸光係数の大きな色素が望まれていた。
本発明者らは、前記課題について鋭意研究した結果、可視光のみならず赤外域にも吸収を有し、吸光係数の大きな金属錯体色素を見出し、本発明に到達したものである。
For this reason, there has been a demand for a dye having a large extinction coefficient that absorbs light in a wide range from visible light to infrared light and increases the light absorption rate even in an extremely thin thin film.
As a result of intensive research on the above problems, the present inventors have found a metal complex dye having absorption in the infrared region as well as in the infrared region and having a large extinction coefficient, and has reached the present invention.

すなわち、本発明は、式(I)および式(II)の構造単位を有する化合物を含む光増感剤に関する。

Figure 2008138169
That is, this invention relates to the photosensitizer containing the compound which has a structural unit of Formula (I) and Formula (II).
Figure 2008138169

(式(I)中、Mは、Ru、Os、Fe、ReおよびRhから選ばれる遷移金属を表し、式(II)中、M’は、Ni、Co、Cu、Zn、Mn、PtおよびPdから選ばれる遷移金属を表す。式(I)および式(II)中、R〜R16は、水素原子、カルボニル基を含有する基、−PO(OH)2−n(OR)で表される基(nは0〜2の整数、Rは炭素数1〜20のアルキル基又はアリール基を表す。)、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基、またはカルボニル基を含有する基を有するアルキル基、アルケニル基、アリール基若しくはアラルキル基を表す。また、RとRn+1(nは1〜15の整数、ただし、8、10、12を除く。)で結合した芳香環を形成しても良い。ただし、式(I)または式(II)中に、少なくとも一つのCOOH基を有する。式(I)中、個々のXは、独立に、−NCS、ハロゲン、−CN、−NCO、−OHおよび−NCNより選ばれる単座配位子を表す。Xは、X同士が結合していてもよく、一般式(IIIa)または(IIIb)で表される二座配位子でもよい。式(IIIa)中、R31〜R33は、それぞれ独立に、水素原子、炭素数1〜30のアルキル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、または炭素数7〜30のアラルキル基を表す。式(IIIb)中、R34およびR35は、それぞれ個別に、水素原子、シアノ基、炭素数1〜20のアルキル基、炭素数1〜20のパーフルオロアルキル基、または炭素数6〜15のアリール基を表し、またR34およびR35が結合して環を形成していても良い。)

Figure 2008138169
(In the formula (I), M represents a transition metal selected from Ru, Os, Fe, Re and Rh. In the formula (II), M ′ represents Ni, Co, Cu, Zn, Mn, Pt and Pd. In formulas (I) and (II), R 1 to R 16 represent a hydrogen atom, a group containing a carbonyl group, or —PO (OH) 2 -n (OR) n . Group (n is an integer of 0 to 2, R represents an alkyl group or aryl group having 1 to 20 carbon atoms), an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or a carbon number An alkoxyalkyl group having 2 to 30 carbon atoms, an aminoalkyl group having 1 to 30 carbon atoms, a perfluoroalkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a carbonyl group An alkyl group, alkenyl group, Represents Le group or an aralkyl group. Further, R n and R n + 1 (n is 1 to 15 integer, except for 8,10,12.) May form an aromatic ring bonded in. However, the formula (I) or in formula (II), in. the formula (I) having at least one COOH group, the individual X, independently, -NCS, halogen, -CN, -NCO, -OH and -NCN 2 X represents a monodentate ligand selected from X. X may be bonded to each other, and may be a bidentate ligand represented by the general formula (IIIa) or (IIIb). R 31 to R 33 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkoxyalkyl group having 2 to 30 carbon atoms, an aminoalkyl group having 1 to 30 carbon atoms, or a par group having 1 to 30 carbon atoms. Fluoroalkyl group, aryl group having 6 to 30 carbon atoms, or carbon Represents an aralkyl group having a number of 7 to 30. In the formula (IIIb), R 34 and R 35 are each independently a hydrogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, or a perfluoro having 1 to 20 carbon atoms. Represents an alkyl group or an aryl group having 6 to 15 carbon atoms, and R 34 and R 35 may combine to form a ring.)
Figure 2008138169

また本発明は、式(I)および式(II)の構造単位を有する化合物が、式(IV)の化合物であることを特徴とする前記記載の光増感剤に関する。

Figure 2008138169
(式(IV)中、R17はR〜R16と同様な基を表す。) The present invention also relates to the above-described photosensitizer, wherein the compound having the structural unit of formula (I) or formula (II) is a compound of formula (IV).
Figure 2008138169
(In formula (IV), R 17 represents the same group as R 1 to R 16. )

また本発明は、式(I)および式(II)の構造単位を有する化合物が、式(V)の化合物であることを特徴とする前記記載の光増感剤に関する。

Figure 2008138169
(式(V)中、R17はR〜R16と同様な基を表し、R18は炭素数1〜20のアルキル基を表す。) The present invention also relates to the above-described photosensitizer, wherein the compound having the structural unit of formula (I) or formula (II) is a compound of formula (V).
Figure 2008138169
(In the formula (V), R 17 represents the same group as R 1 to R 16, and R 18 represents an alkyl group having 1 to 20 carbon atoms.)

また本発明は、式(I)および式(II)の構造単位を有する化合物が、式(VI)の化合物であることを特徴とする前記記載の光増感剤に関する。

Figure 2008138169
The present invention also relates to the above-described photosensitizer, wherein the compound having the structural units of formula (I) and formula (II) is a compound of formula (VI).
Figure 2008138169

さらに本発明は、前記記載の光増感剤を吸着した半導体層を有する光起電力素子に関する。   The present invention further relates to a photovoltaic device having a semiconductor layer adsorbing the photosensitizer described above.

本発明の新規増感剤は、可視領域のみならず、赤外領域も吸収するため、光起電力素子の変換効率を上げることができる。   Since the novel sensitizer of the present invention absorbs not only the visible region but also the infrared region, the conversion efficiency of the photovoltaic device can be increased.

以下、本発明について詳細に説明する。
本発明の新規光増感剤は、1分子中に一般式(I)および(II)で表される構造単位を
有する化合物からなる。
Hereinafter, the present invention will be described in detail.
The novel photosensitizer of the present invention comprises a compound having structural units represented by general formulas (I) and (II) in one molecule.

Figure 2008138169
Figure 2008138169

一般式(I)において、Mは、Ru、Os、Fe、ReおよびRhから選ばれる遷移金属であり、なかでもRuが好ましい。
一般式(II)において、M’は、Ni、Co、Cu、Zn、Mn、PtおよびPdから選ばれる遷移金属を表し、なかでもNi、Co、Znが好ましい。
一般式(I)および一般式(II)において、R〜R16は、水素原子、カルボニル基を含有する基、−PO(OH)2−n(OR)で表される基(nは0〜2の整数、Rは炭素数1〜30のアルキル基又はアリール基を表す。)、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基、あるいはまたカルボニル基を含有する基を有するアルキル基、アルケニル基、アリール基若しくはアラルキル基を表す。
In the general formula (I), M is a transition metal selected from Ru, Os, Fe, Re and Rh, and Ru is particularly preferable.
In the general formula (II), M ′ represents a transition metal selected from Ni, Co, Cu, Zn, Mn, Pt, and Pd, and Ni, Co, and Zn are particularly preferable.
In General Formula (I) and General Formula (II), R 1 to R 16 are a hydrogen atom, a group containing a carbonyl group, or a group represented by —PO (OH) 2 -n (OR) n (where n is An integer of 0 to 2, R represents an alkyl or aryl group having 1 to 30 carbon atoms), an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or an alkoxyalkyl having 2 to 30 carbon atoms. A group containing a group, an aminoalkyl group having 1 to 30 carbon atoms, a perfluoroalkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a carbonyl group. Represents an alkyl group, an alkenyl group, an aryl group or an aralkyl group.

カルボニル基を含有する基としては、−(CH−COOH、−(CH−CHO、−(CH−CO−Rが挙げられ(式中、p、q、rはそれぞれ個別に0〜2の整数を示し、Rは炭素数1〜30のアルキル基又はアリール基を表す。)、具体的には、−COOH、−CHO、−CHCOCH、−CHCOC、−COCH、−COCなどを例示することができる。
−PO(OH)2−n(OR)で表される基(式中、nは0〜2の整数を示し、Rは炭素数1〜30のアルキル基又はアリール基を表す。)とは、具体的には、−PO(OH)、−PO(OR)(OH)、−PO(OR)などを例示することができる。
Examples of the group containing a carbonyl group include — (CH 2 ) p —COOH, — (CH 2 ) q —CHO, and — (CH 2 ) r —CO—R (wherein p, q and r are Each independently represents an integer of 0 to 2, and R represents an alkyl group or an aryl group having 1 to 30 carbon atoms.), Specifically, —COOH, —CHO, —CH 2 COCH 3 , —CH 2 COC 2 H 5, -COCH 3, and the like can be exemplified -COC 2 H 5.
-PO (OH) 2-n (OR) The group represented by n (wherein n represents an integer of 0 to 2 and R represents an alkyl group or an aryl group having 1 to 30 carbon atoms). Specifically, —PO (OH) 2 , —PO (OR) (OH), —PO (OR) 2 and the like can be exemplified.

炭素数1〜30のアルキル基としては、直鎖状でも分岐状でもよく、具体的には、メチル基、エチル基、i−プロピル基、n−プロピル基、ブチル基、s−ブチル基、t−ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基、イコシル基、ドコシル基などが挙げられる。炭素数2〜30のアルケルニ基としては、具体的には、ビニル基、アリル基などが挙げられる。炭素数2〜30のアルコキシアルキル基としては、具体的には、メトキシメチル基、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシブチル基、エトキシヘキシル基、エトキシノニル基、プロポキシメチル基、ブトキシメチル基、ヘキシロキシメチル基、ノニロキシメチル基、ドデシロキシエチル基などが挙げられる。炭素数1〜30のアミノアルキル基としては、具体的には、アミノメチル基、ジメチルアミノメチル基、アミノエチル基、ジメチルアミノメチル基、ジプロピルアミノメチル基、ジブチルアミノメチル基、ジオクチルアミノメチル基、ジメチルアミノエチル基、ジプロピルアミノエチル基、ジブチルアミノエチル基、ジオクチルアミノエチル基などが挙げられる。炭素数1〜30のパーフルオロアルキル基としては、具体的には、−CF、−C、i−Cなどが挙げられる。炭素数6〜30のアリール基としては、具体的には、フェニル基、ナフチル基などが挙げられ、炭素数7〜30のアラルキル基としては、具体的には、ベンジル基、フェネチル基、フェニルブチル基、フェニルノニル基、ナフチルノニル基などが挙げられる。さらにカルボニル基を含有する基を有するアルキル基、アルケニル基、アリール基、アラルキル基としては、具体的には、カルボキシメチル基、カルボキシエチル基、カルボキシブチル基、カルボキシビニル基、4−カルボキシフェニル基、3−カルボキシフェニル基などが挙げられる。 The alkyl group having 1 to 30 carbon atoms may be linear or branched. Specifically, methyl group, ethyl group, i-propyl group, n-propyl group, butyl group, s-butyl group, t -A butyl group, a hexyl group, an octyl group, a nonyl group, a dodecyl group, an icosyl group, a docosyl group, etc. are mentioned. Specific examples of the Alkerni group having 2 to 30 carbon atoms include a vinyl group and an allyl group. Specific examples of the alkoxyalkyl group having 2 to 30 carbon atoms include methoxymethyl group, methoxyethyl group, methoxypropyl group, ethoxymethyl group, ethoxybutyl group, ethoxyhexyl group, ethoxynonyl group, propoxymethyl group, butoxy group. Examples thereof include a methyl group, a hexyloxymethyl group, a nonyloxymethyl group, and a dodecyloxyethyl group. Specific examples of the aminoalkyl group having 1 to 30 carbon atoms include an aminomethyl group, a dimethylaminomethyl group, an aminoethyl group, a dimethylaminomethyl group, a dipropylaminomethyl group, a dibutylaminomethyl group, and a dioctylaminomethyl group. Dimethylaminoethyl group, dipropylaminoethyl group, dibutylaminoethyl group, dioctylaminoethyl group and the like. Specific examples of the C 1-30 perfluoroalkyl group include -CF 3 , -C 2 F 5 , i-C 3 F 7 and the like. Specific examples of the aryl group having 6 to 30 carbon atoms include a phenyl group and a naphthyl group. Specific examples of the aralkyl group having 7 to 30 carbon atoms include a benzyl group, a phenethyl group, and phenylbutyl. Group, phenylnonyl group, naphthylnonyl group and the like. Furthermore, as an alkyl group, alkenyl group, aryl group, aralkyl group having a group containing a carbonyl group, specifically, a carboxymethyl group, a carboxyethyl group, a carboxybutyl group, a carboxyvinyl group, a 4-carboxyphenyl group, 3-carboxyphenyl group etc. are mentioned.

また、RとRn+1(nは1〜15の整数、ただし、8、10、12を除く。)で結合した芳香環を形成していても良い。具体的には、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R11とR12、R13とR14、R14とR15、R15とR16のいずれかが結合して芳香環を形成しても良い。R〜R12が環を形成する場合の例としては、例えば、下記一般式(VIIa)〜(VIIh)で表される構造が挙げられる。またR13〜R16が環を形成する場合の例としては、例えば、下記一般式(VIIIa)〜(VIIIc)で表される構造が挙げられる。
それぞれの環は、カルボニル基を含有する基、−PO(OH)2−n(OR)で表される基(nは0〜2の整数、Rは炭素数1〜30のアルキル基又はアリール基を表す。)、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基、あるいはまたカルボニル基を含有する基を有するアルキル基、アルケニル基、アリール基若しくはアラルキル基で表される官能基を有していても良い。
Further, R n and R n + 1 (n is 1 to 15 integer, except for 8,10,12.) May form an aromatic ring bonded with. Specifically, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 and Any of R 10 , R 11 and R 12 , R 13 and R 14 , R 14 and R 15 , and R 15 and R 16 may be bonded to form an aromatic ring. As an example of the case where the R 1 to R 12 form a ring, for example, include the structures represented by the following general formula (VIIa) ~ (VIIh). As an example of the case where R 13 to R 16 form a ring, for example, include the structures represented by the following general formula (VIIIa) ~ (VIIIc).
Each ring is a group containing a carbonyl group, a group represented by -PO (OH) 2-n (OR) n (n is an integer of 0 to 2, R is an alkyl group or aryl having 1 to 30 carbon atoms) Represents an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxyalkyl group having 2 to 30 carbon atoms, an aminoalkyl group having 1 to 30 carbon atoms, and an alkyl group having 1 to 30 carbon atoms. A functional group represented by a perfluoroalkyl group, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an alkyl group, alkenyl group, aryl group or aralkyl group having a group containing a carbonyl group. You may have.

Figure 2008138169
Figure 2008138169

Figure 2008138169
Figure 2008138169

式(I)中の個々のXは、独立に、−NCS、ハロゲン、−CN、−NCO、−OHおよび−NCNより選ばれる単座配位子である。
またはXは、X同士が結合していてもよく、一般式(IIIa)で表されるジケトン誘導体、あるいは一般式(IIIb)で表される1,2−ジチオレン誘導体で表される二座配位子でもよい。
Each X in formula (I) is independently a monodentate ligand selected from —NCS, halogen, —CN, —NCO, —OH and —NCN 2 .
Or X may be bonded to each other, and bidentate coordination represented by a diketone derivative represented by the general formula (IIIa) or a 1,2-dithiolene derivative represented by the general formula (IIIb) It may be a child.

Figure 2008138169
Figure 2008138169

一般式(IIIa)の場合、R31〜R33は、それぞれ独立に、水素原子、炭素数1〜30のアルキル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基を表す。
炭素数1〜30のアルキル基としては、直鎖状でも分岐状でもよく、具体的には、メチル基、エチル基、i−プロピル基、n−プロピル基、ブチル基、s−ブチル基、t−ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基、イコシル基、ドコシル基などが挙げられる。炭素数2〜30のアルコキシアルキル基としては、具体的には、メトキシメチル基、メトキシエチル基、メトキシプロピル基、エトキシメチル基、エトキシブチル基、エトキシヘキシル基、エトキシノニル基、プロポキシメチル基、ブトキシメチル基、ヘキシロキシメチル基、ノニロキシメチル基、ドデシロキシエチル基などが挙げられる。炭素数1〜30のパーフルオロアルキル基としては、具体的には、−CF、−C、i−Cなどが挙げられる。炭素数6〜30のアリール基としては、具体的には、フェニル基、ナフチル基が挙げられる。炭素数7〜30のアラルキル基としては、具体的にはベンジル基、フェネチル基、フェニルブチル基、フェニルノニル基、ナフチルノニル基などが挙げられる。さらに具体的には、以下に示す官能基が挙げられる。
In the case of general formula (IIIa), R 31 to R 33 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkoxyalkyl group having 2 to 30 carbon atoms, or a perfluoroalkyl having 1 to 30 carbon atoms. Group, an aryl group having 6 to 30 carbon atoms, and an aralkyl group having 7 to 30 carbon atoms.
The alkyl group having 1 to 30 carbon atoms may be linear or branched. Specifically, methyl group, ethyl group, i-propyl group, n-propyl group, butyl group, s-butyl group, t -A butyl group, a hexyl group, an octyl group, a nonyl group, a dodecyl group, an icosyl group, a docosyl group, etc. are mentioned. Specific examples of the alkoxyalkyl group having 2 to 30 carbon atoms include methoxymethyl group, methoxyethyl group, methoxypropyl group, ethoxymethyl group, ethoxybutyl group, ethoxyhexyl group, ethoxynonyl group, propoxymethyl group, butoxy group. Examples thereof include a methyl group, a hexyloxymethyl group, a nonyloxymethyl group, and a dodecyloxyethyl group. Specific examples of the C 1-30 perfluoroalkyl group include -CF 3 , -C 2 F 5 , i-C 3 F 7 and the like. Specific examples of the aryl group having 6 to 30 carbon atoms include a phenyl group and a naphthyl group. Specific examples of the aralkyl group having 7 to 30 carbon atoms include benzyl group, phenethyl group, phenylbutyl group, phenylnonyl group, and naphthylnonyl group. More specifically, the following functional groups are mentioned.

Figure 2008138169
Figure 2008138169

一般式(IIIb)の場合、R34およびR35は、同一であることが好ましく、また異なっていても良く、それぞれ個別に、水素原子、シアノ基、炭素数1〜20のアルキル基、炭素数1〜20のパーフルオロアルキル基、または炭素数6〜15のアリール基を表し、またR34およびR35が結合して環を形成していても良い。
炭素数1〜30のアルキル基としては、直鎖状でも分岐状でもよく、具体的には、メチル基、エチル基、i−プロピル基、n−プロピル基、ブチル基、s−ブチル基、t−ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基などが挙げられる。炭素数1〜20のパーフルオロアルキル基としては、具体的には、−CF、−C、i−Cなどが挙げられる。炭素数6〜15のアリール基としては、具体的には、フェニル基、ナフチル基などが挙げられる。さらに具体的には、以下に示す官能基が挙げられる。
In the case of the general formula (IIIb), R 34 and R 35 are preferably the same and may be different, and are each independently a hydrogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, or a carbon number. It represents a 1-20 perfluoroalkyl group or an aryl group having 6-15 carbon atoms, and R 34 and R 35 may be bonded to form a ring.
The alkyl group having 1 to 30 carbon atoms may be linear or branched. Specifically, methyl group, ethyl group, i-propyl group, n-propyl group, butyl group, s-butyl group, t -A butyl group, a hexyl group, an octyl group, a nonyl group, a dodecyl group, etc. are mentioned. Specific examples of the C 1-20 perfluoroalkyl group include -CF 3 , -C 2 F 5 , i-C 3 F 7 and the like. Specific examples of the aryl group having 6 to 15 carbon atoms include a phenyl group and a naphthyl group. More specifically, the following functional groups are mentioned.

Figure 2008138169
Figure 2008138169

34およびR35が結合して環を形成する場合、具体的には以下に示す官能基が挙げられる。

Figure 2008138169
When R 34 and R 35 are bonded to form a ring, specific examples include the functional groups shown below.
Figure 2008138169

式(I)および式(II)の構造単位を有する化合物中に、金属酸化物半導体層に吸着するために、少なくとも一つのCOOH基を有していることが必要である。従って、R〜R16のうちの少なくとも一つはCOOH基である。 The compound having the structural units of the formula (I) and the formula (II) needs to have at least one COOH group in order to be adsorbed on the metal oxide semiconductor layer. Accordingly, at least one of R 1 to R 16 is a COOH group.

以下に一般式(I)で示される構造単位および一般式(II)で示される構造単位の具体例を示すが、本発明はこれらに限定されるものではない。   Specific examples of the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II) are shown below, but the present invention is not limited thereto.

一般式(I)で示される構造単位としては以下のものが挙げられる。

Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Examples of the structural unit represented by the general formula (I) include the following.
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169

一般式(II)で示される構造単位としては以下のものが挙げられる。

Figure 2008138169
Examples of the structural unit represented by the general formula (II) include the following.
Figure 2008138169

また式(I)と式(II)で示される構造単位を有する化合物は、通常、式(I)と式(II)が直接、または芳香環若しくは芳香族複素環を介して結合されたものである。かかる結合基の具体例としては以下のものを例示することができる。

Figure 2008138169
In addition, the compound having the structural unit represented by the formula (I) and the formula (II) is usually a compound in which the formula (I) and the formula (II) are bonded directly or via an aromatic ring or an aromatic heterocycle. is there. Specific examples of such a linking group include the following.
Figure 2008138169

本発明の式(I)と式(II)で示される構造単位を有する化合物としては、下記一般式(IV)で示される化合物が好ましい。

Figure 2008138169
式(IV)中、R17はR〜R16と同様な基を表す。 As the compound having a structural unit represented by formula (I) or formula (II) of the present invention, a compound represented by the following general formula (IV) is preferable.
Figure 2008138169
In the formula (IV), R 17 represents the same group as R 1 to R 16 .

以下に一般式(IV)の具体例を示すが、本発明はこれらに限定されるものではない。

Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Specific examples of the general formula (IV) are shown below, but the present invention is not limited to these.
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169

本発明の式(I)と式(II)で示される構造単位を有する化合物としては、下記一般式(V)で示される化合物が好ましい。

Figure 2008138169
式(V)中、R17はR〜R16と同様な基を表し、R18は炭素数1〜20のアルキル基を表す。炭素数1〜20のアルキル基としては、直鎖状でも分岐状でもよく、具体的には、メチル基、エチル基、i−プロピル基、n−プロピル基、ブチル基、s−ブチル基、t−ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基、イコシル基、ドコシル基などが挙げられる。 As the compound having the structural unit represented by the formula (I) and the formula (II) of the present invention, a compound represented by the following general formula (V) is preferable.
Figure 2008138169
In the formula (V), R 17 represents the same group as R 1 to R 16, and R 18 represents an alkyl group having 1 to 20 carbon atoms. The alkyl group having 1 to 20 carbon atoms may be linear or branched. Specifically, methyl group, ethyl group, i-propyl group, n-propyl group, butyl group, s-butyl group, t -A butyl group, a hexyl group, an octyl group, a nonyl group, a dodecyl group, an icosyl group, a docosyl group, etc. are mentioned.

以下に一般式(V)の具体例を示すが、本発明はこれらに限定されるものではない。

Figure 2008138169
Figure 2008138169
Figure 2008138169
Specific examples of the general formula (V) are shown below, but the present invention is not limited thereto.
Figure 2008138169
Figure 2008138169
Figure 2008138169

本発明の式(I)と式(II)で示される構造単位を有する化合物としては、下記一般式(VI)で示される化合物が好ましい。

Figure 2008138169
As the compound having the structural unit represented by the formula (I) and the formula (II) of the present invention, a compound represented by the following general formula (VI) is preferable.
Figure 2008138169

以下に一般式(VI)の具体例を示すが、本発明はこれらに限定されるものではない。

Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Specific examples of the general formula (VI) are shown below, but the present invention is not limited thereto.
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169
Figure 2008138169

次に、本発明の光起電力素子について説明する。
本発明の光起電力素子は、前記した本発明の光増感剤を吸着した半導体層を有することを特徴とする。
本発明の光起電力素子の例としては、例えば、図1に示す断面を有する素子を挙げることができる。この素子は、透明導電性基板1上に光吸収剤として働く本発明の光増感剤を吸着させた半導体層3が配置され、半導体層3と対向電極基板2の間に電解質層4が配置され、周辺がシール材5で密封されている。なお、リード線は透明導電性基板1と対向電極基板2の導電部分に接続され、電力を取り出すことができる。
Next, the photovoltaic element of the present invention will be described.
The photovoltaic device of the present invention is characterized by having a semiconductor layer adsorbing the above-described photosensitizer of the present invention.
As an example of the photovoltaic element of the present invention, for example, an element having a cross section shown in FIG. In this element, a semiconductor layer 3 on which a photosensitizer of the present invention acting as a light absorber is adsorbed is disposed on a transparent conductive substrate 1, and an electrolyte layer 4 is disposed between the semiconductor layer 3 and the counter electrode substrate 2. The periphery is sealed with a sealing material 5. Note that the lead wire is connected to the conductive portions of the transparent conductive substrate 1 and the counter electrode substrate 2 so that power can be taken out.

透明導電性基板は、通常、透明基板上に透明導電膜を積層させて製造される。透明基板としては、特に限定されず、材質、厚さ、寸法、形状等は目的に応じて適宜選択することができ、例えば無色あるいは有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色あるいは有色の透明性を有する樹脂でも良い。かかる樹脂としては、具体的には、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリ酢酸セルロース、ポリメチルペンテンなどが挙げられる。なお、本発明における透明とは、10〜100%の透過率を有することであり、また、本発明における基板とは、常温において平滑な面を有するものであり、その面は平面あるいは曲面であってもよく、また応力によって変形するものであってもよい。   A transparent conductive substrate is usually produced by laminating a transparent conductive film on a transparent substrate. The transparent substrate is not particularly limited, and the material, thickness, dimensions, shape, and the like can be appropriately selected according to the purpose. For example, colorless or colored glass, meshed glass, glass block, etc. are used, and colorless. Alternatively, a colored transparent resin may be used. Specific examples of the resin include polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, and polymethylpentene. Etc. In the present invention, the term “transparent” means to have a transmittance of 10 to 100%, and the term “substrate” in the present invention has a smooth surface at room temperature, and the surface is flat or curved. It may be deformed by stress.

また、電極の導電層を形成する透明導電膜としては、本発明の目的を果たすものである限り特に限定されなく、例えば、金、銀、クロム、銅、タングステンなどの金属薄膜、金属酸化物からなる導電膜などが挙げられる。金属酸化物としては、例えば、酸化錫や酸化亜鉛に、他の金属元素を微量ドープしたIndium Tin Oxide(ITO(In:Sn))、Fluorine doped Tin Oxide(FTO(SnO:F))、Aluminum doped Zinc Oxide(AZO(ZnO:Al))などが好適なものとして用いられる。
膜厚は通常、10nm〜10μm、好ましくは100nm〜2μmである。また、表面抵抗(抵抗率)は、本発明の基板の用途により適宜選択されるところであるが、通常、0.5〜500Ω/sq、好ましくは2〜50Ω/sqである。
Further, the transparent conductive film for forming the conductive layer of the electrode is not particularly limited as long as it fulfills the object of the present invention. For example, it is made of a metal thin film such as gold, silver, chromium, copper, tungsten, or a metal oxide. And a conductive film. Examples of the metal oxide include Indium Tin Oxide (ITO (In 2 O 3 : Sn)) obtained by doping a small amount of other metal elements with tin oxide or zinc oxide, or Fluorine doped Tin Oxide (FTO (SnO 2 : F)). ), Aluminum doped Zinc Oxide (AZO (ZnO: Al)) and the like are preferably used.
The film thickness is usually 10 nm to 10 μm, preferably 100 nm to 2 μm. The surface resistance (resistivity) is appropriately selected depending on the use of the substrate of the present invention, but is usually 0.5 to 500 Ω / sq, preferably 2 to 50 Ω / sq.

対向電極は通常、白金、カーボン電極などを用いることができる。基板の材質は、特に限定されず、材質、厚さ、寸法、形状等は目的に応じて適宜選択することができ、例えば無色あるいは有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色あるいは有色の透明性を有する樹脂でも良い。具体的には、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリ酢酸セルロース、ポリメチルペンテンなどが挙げられる。また、金属プレートなどを基板として用いることもできる。   As the counter electrode, platinum, a carbon electrode, or the like can be usually used. The material of the substrate is not particularly limited, and the material, thickness, dimensions, shape, and the like can be appropriately selected according to the purpose. For example, colorless or colored glass, meshed glass, glass block, etc. are used, and colorless. Alternatively, a colored transparent resin may be used. Specifically, polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, polymethylpentene and the like can be mentioned. A metal plate or the like can also be used as the substrate.

本発明の光起電力素子において用いられる半導体層としては、特に限定されないが、例えば、TiO、ZnO、SnO、Nbからなる層等が挙げられ、なかでもTiO、ZnOからなる層が好ましい。
本発明に用いられる半導体は単結晶でも多結晶でも良い。結晶系としては、アナタ〜ゼ型、ルチル型、ブルッカイト型などが主に用いられるが、好ましくはアナターゼ型である。
半導体層の形成には公知の方法を用いることができる。半導体層の形成方法としては、上記半導体のナノ粒子分散液、ゾル溶液等を、公知の方法により基板上に塗布することで得ることが出来る。この場合の塗布方法としては特に限定されずキャスト法による薄膜状態で得る方法、スピンコート法、ディップコート法、バーコート法のほか、スクリーン印刷法を初めとした各種の印刷方法を挙げることができる。
半導体層の厚みは任意であるが0.5μm以上、50μm以下、好ましくは1μm以上20μm以下である。
The semiconductor layer used in the photovoltaic device of the present invention is not particularly limited, for example, TiO 2, ZnO, such as a layer made of SnO 2, Nb 2 O 5 and the like, made of inter alia TiO 2, ZnO A layer is preferred.
The semiconductor used in the present invention may be single crystal or polycrystalline. As the crystal system, anatase type, rutile type, brookite type and the like are mainly used, and anatase type is preferable.
A known method can be used for forming the semiconductor layer. As a method for forming the semiconductor layer, the semiconductor nanoparticle dispersion, the sol solution, or the like can be obtained by coating on a substrate by a known method. The coating method in this case is not particularly limited, and examples include a method of obtaining a thin film by a casting method, a spin coating method, a dip coating method, a bar coating method, and various printing methods including a screen printing method. .
Although the thickness of a semiconductor layer is arbitrary, it is 0.5 micrometer or more and 50 micrometers or less, Preferably they are 1 micrometer or more and 20 micrometers or less.

本発明の光増感剤(色素)を半導体層に吸着させる方法としては、例えば、溶媒に光増感剤を溶解させた溶液を、半導体層上にスプレーコートやスピンコートなどにより塗布した後、乾燥する方法により形成することができる。この場合、適当な温度に基板を加熱しても良い。または半導体層を溶液に浸漬して吸着させる方法を用いることもできる。浸漬する時間は光増感剤が十分に吸着すれば特に制限されることはないが、好ましくは10分〜30時間、より好ましくは1〜20時間である。また、必要に応じて浸漬する際に溶媒や基板を加熱しても良い。溶液にする場合の光増感剤の濃度としては、0.01〜100mmol/L、好ましくは0.1〜50mmol/L程度である。   As a method of adsorbing the photosensitizer (dye) of the present invention to the semiconductor layer, for example, after applying a solution in which the photosensitizer is dissolved in a solvent by spray coating or spin coating on the semiconductor layer, It can be formed by a drying method. In this case, the substrate may be heated to an appropriate temperature. Alternatively, a method in which a semiconductor layer is immersed in a solution and adsorbed can be used. The immersion time is not particularly limited as long as the photosensitizer is sufficiently adsorbed, but is preferably 10 minutes to 30 hours, more preferably 1 to 20 hours. Moreover, you may heat a solvent and a board | substrate when immersing as needed. The concentration of the photosensitizer in the case of a solution is about 0.01 to 100 mmol / L, preferably about 0.1 to 50 mmol / L.

溶媒としては、アルコール類、エーテル類、ニトリル類、エステル類、炭化水素など用いることができる。   As the solvent, alcohols, ethers, nitriles, esters, hydrocarbons and the like can be used.

光増感剤間の凝集等の相互作用を低減するために、界面活性剤としての性質を持つ無色の化合物を光増感剤吸着液に添加し、半導体層に共吸着させてもよい。このような無色の化合物の例としては、カルボキシル基やスルホ基を有するコール酸、デオキシコール酸、ケノデオキシコール酸、タウロデオキシコール酸等のステロイド化合物やスルホン酸塩類等が挙げられる。
未吸着の光増感剤は、吸着工程後、速やかに洗浄により除去するのが好ましい。洗浄は湿式洗浄槽中でアセトニトリル、アルコール系溶媒等を用いて行うのが好ましい。
In order to reduce the interaction such as aggregation between the photosensitizers, a colorless compound having properties as a surfactant may be added to the photosensitizer adsorbing solution and co-adsorbed on the semiconductor layer. Examples of such colorless compounds include steroid compounds such as cholic acid having a carboxyl group or sulfo group, deoxycholic acid, chenodeoxycholic acid, taurodeoxycholic acid, sulfonates, and the like.
The unadsorbed photosensitizer is preferably removed by washing immediately after the adsorption step. Washing is preferably performed using acetonitrile, an alcohol solvent or the like in a wet washing tank.

光増感剤を吸着させた後、アミン類、4級アンモニウム塩、少なくとも1つのウレイド基を有するウレイド化合物、少なくとも1つのシリル基を有するシリル化合物、アルカリ金属塩、アルカリ土類金属塩等を用いて、半導体層の表面を処理してもよい。好ましいアミン類の例としては、ピリジン、4―t―ブチルピリジン、ポリビニルピリジン等が挙げられる。好ましい4級アンモニウム塩の例としては、テトラブチルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド等が挙げられる。これらは有機溶媒に溶解して用いてもよく、液体の場合はそのまま用いてもよい。   After adsorbing the photosensitizer, amines, quaternary ammonium salts, ureido compounds having at least one ureido group, silyl compounds having at least one silyl group, alkali metal salts, alkaline earth metal salts, etc. are used. Then, the surface of the semiconductor layer may be treated. Examples of preferred amines include pyridine, 4-t-butylpyridine, polyvinylpyridine and the like. Examples of preferred quaternary ammonium salts include tetrabutylammonium iodide, tetrahexylammonium iodide, and the like. These may be used by dissolving in an organic solvent, or may be used as they are in the case of a liquid.

本発明において用いられる電解質としては、特に限定されず、液体系でも固体系のいずれでもよく、可逆な電気化学的酸化還元特性を示すものが望ましい。ここで、可逆な電気化学的酸化還元特性を示すということは、光電変換素子の作用する電位領域において、可逆的に電気化学的酸化還元反応を起こし得ることをいう。典型的には、通常、水素基準電極(NHE)に対して〜1〜+2V vs NHEの電位領域で可逆的であることが望ましい。
電解質のイオン伝導度は、通常室温で1×10―7S/cm以上、好ましくは1×10―6S/cm以上、さらに好ましくは1×10―5S/cm以上であることが望ましい。
電解質層の厚さは、特に制限されないが、1μm以上であることが好ましく、より好ましくは10μm以上であり、また、3mm以下が好ましく、より好ましくは1mm以下である。
かかる電解質としては、上記の条件を満足すれば特に制限されるものでなく、液体系および固体系とも、本技術分野で公知のものを使用することができる。
The electrolyte used in the present invention is not particularly limited, and may be either a liquid system or a solid system, and desirably exhibits reversible electrochemical redox characteristics. Here, showing reversible electrochemical redox characteristics means that an electrochemical redox reaction can occur reversibly in the potential region where the photoelectric conversion element acts. Typically, it is usually desirable to be reversible in the potential range of ˜1 to +2 V vs NHE with respect to the hydrogen reference electrode (NHE).
The ionic conductivity of the electrolyte is usually 1 × 10 −7 S / cm or more at room temperature, preferably 1 × 10 −6 S / cm or more, more preferably 1 × 10 −5 S / cm or more.
The thickness of the electrolyte layer is not particularly limited, but is preferably 1 μm or more, more preferably 10 μm or more, and preferably 3 mm or less, more preferably 1 mm or less.
The electrolyte is not particularly limited as long as the above-described conditions are satisfied, and those known in this technical field can be used for both liquid and solid systems.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[光増感剤1の合成]
文献1(Eur. J. Inorg. Chem. 2003, 1900−1910)記載の方法を参考に光増感剤1の合成を行った。すなわち、ジクロロ(p−シメン)ルテニウム二量体(1.63g;12.7mmol)と2,2’−ビピリジン−4,4’−ジカルボン酸(1.36g;5.6mmol)をエタノール(100ml)に溶解した後、4時間加熱還流を行った。反応終了後、ろ過し、続いて、トルエン(100ml)に分散し、ろ過することで化合物Aを2.93g(5.3mmol)得た。
[Synthesis of Photosensitizer 1]
Photosensitizer 1 was synthesized with reference to the method described in Reference 1 (Eur. J. Inorg. Chem. 2003, 1900-1910). That is, dichloro (p-cymene) ruthenium dimer (1.63 g; 12.7 mmol) and 2,2′-bipyridine-4,4′-dicarboxylic acid (1.36 g; 5.6 mmol) were added to ethanol (100 ml). After dissolution, the mixture was heated to reflux for 4 hours. After completion of the reaction, the mixture was filtered, then dispersed in toluene (100 ml) and filtered to obtain 2.93 g (5.3 mmol) of Compound A.

Figure 2008138169
Figure 2008138169

次に、1,10−フェナントロリン−5,6−ジオン(0.27g;1.3mmol)と1,2−ジアミノ−4,5−ジニトロベンゼン(0.27g;1.3mmol)をメタノールに溶解し、10時間加熱還流した。反応後ろ過にてジニトロ体を0.33g(0.9mmol)得た。
得られたジニトロ体(0.33g;0.9mmol)を常法にて、接触水素還元を行い、目的のジアミノ体(化合物B)0.28g(0.9mmol)を得た。
Next, 1,10-phenanthroline-5,6-dione (0.27 g; 1.3 mmol) and 1,2-diamino-4,5-dinitrobenzene (0.27 g; 1.3 mmol) were dissolved in methanol. Heated to reflux for 10 hours. After the reaction, 0.33 g (0.9 mmol) of dinitro compound was obtained by filtration.
The obtained dinitro compound (0.33 g; 0.9 mmol) was subjected to catalytic hydrogen reduction by a conventional method to obtain 0.28 g (0.9 mmol) of the target diamino compound (Compound B).

Figure 2008138169
Figure 2008138169

化合物B(0.28g;6.9mmol)と3−ホルミル−4−ヒドロキシ安息香酸(0.3g;1.8mmol)をエタノール中混合し、オルトギ酸エステルを添加した後、2時間過熱還流した。酢酸亜鉛(0.17g;0.9mmol)を添加し、さらに10時間過熱還流を行った。反応終了後、ろ過にて化合物Cを得た。
化合物C(0.32g;0.5mmol)と化合物A(0.28g,0.5mmol)をDMF20mlに溶解し、4時間加熱攪拌した。アンモニウムチオシアネート(1.2g)を添加し、さらに4時間加熱攪拌した。反応終了後、減圧濃縮し、水(200ml)に分散し、ろ過にて、目的物(化合物1;光増感剤1)を得た。得られた化合物1をカラムクロマトグラフィー(充填剤:Sephadex LH−20、溶離液DMF)にて精製し、320mg(0.28mmol)を得た。
計算値 C:50.87、 H:2.31、 N:12.36
実験値 C:50.72、 H:2.47、 N:11.991
MS(ESI/MS) m/z:1131(M−H))
Compound B (0.28 g; 6.9 mmol) and 3-formyl-4-hydroxybenzoic acid (0.3 g; 1.8 mmol) were mixed in ethanol, and the orthoformate ester was added, followed by heating to reflux for 2 hours. Zinc acetate (0.17 g; 0.9 mmol) was added, and the mixture was further heated to reflux for 10 hours. After completion of the reaction, Compound C was obtained by filtration.
Compound C (0.32 g; 0.5 mmol) and compound A (0.28 g, 0.5 mmol) were dissolved in 20 ml of DMF, and the mixture was heated and stirred for 4 hours. Ammonium thiocyanate (1.2 g) was added, and the mixture was further stirred with heating for 4 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, dispersed in water (200 ml), and filtered to obtain the desired product (Compound 1; Photosensitizer 1). The obtained compound 1 was purified by column chromatography (filler: Sephadex LH-20, eluent DMF) to obtain 320 mg (0.28 mmol).
Calculated value C: 50.87, H: 2.31, N: 12.36
Experimental value C: 50.72, H: 2.47, N: 11.991
MS (ESI / MS) m / z: 1131 (M−H))

Figure 2008138169
Figure 2008138169

[光増感剤2の合成]
文献2(Bull. Chem. Soc. Jpn., 76, 977-984 (2003))記載の方法を参考にして光増感剤2の合成を行った。フェナントロリンジアミンを文献3記載(Tetrahedron letters 38,8159(1997))の方法にて合成した。
フェナントロリンジアミン(0.21g;1.0mmol)と3−ホルミル−4−ヒドロキシ安息香酸(0.34g;2.0mmol)をエタノールに溶解し、オルトギ酸エステル(0.1ml)を添加し、3時間加熱還流を行った。続いて、酢酸亜鉛(0.2g;1.1mmol)を添加し、10時間加熱還流を行った。
反応終了後、ろ過にて、化合物Dを0.39g(0.7mmol)得た。
[Synthesis of Photosensitizer 2]
Photosensitizer 2 was synthesized with reference to the method described in Reference 2 (Bull. Chem. Soc. Jpn., 76, 977-984 (2003)). Phenanthroline diamine was synthesized by the method described in Reference 3 (Tetrahedron letters 38, 8159 (1997)).
Phenanthrolinediamine (0.21 g; 1.0 mmol) and 3-formyl-4-hydroxybenzoic acid (0.34 g; 2.0 mmol) are dissolved in ethanol, and orthoformate (0.1 ml) is added for 3 hours. Heating to reflux was performed. Subsequently, zinc acetate (0.2 g; 1.1 mmol) was added and heated to reflux for 10 hours.
After completion of the reaction, 0.39 g (0.7 mmol) of Compound D was obtained by filtration.

Figure 2008138169
Figure 2008138169

化合物A(0.28g;0.5mmol)と化合物D(0.28g;0.5mmol)をDMF20ml中に添加し、4時間過熱攪拌を行った。続いて、アンモニウムチオシアネート(1.2g)を添加し、4時間加熱還流を行った。
反応終了後、減圧濃縮し、水に分散し、ろ過した、得られた固形物をカラムクロマトグラフィー(充填剤:Sephadex LH−20、溶離液DMF)にて精製し、目的物(化合物2;光増感剤2)を0.3g(0.3mmol)得た。
計算値 C:48.91、 H:2.35、 N:10.87
実験値 C:48.65、 H:2.25、 N:10.71
MS(ESI/MS) m/z:1030
Compound A (0.28 g; 0.5 mmol) and compound D (0.28 g; 0.5 mmol) were added to 20 ml of DMF, and the mixture was stirred for 4 hours with heating. Subsequently, ammonium thiocyanate (1.2 g) was added and heated to reflux for 4 hours.
After completion of the reaction, the reaction mixture was concentrated under reduced pressure, dispersed in water and filtered, and the resulting solid was purified by column chromatography (filler: Sephadex LH-20, eluent DMF) to obtain the desired product (compound 2; light 0.3 g (0.3 mmol) of sensitizer 2) was obtained.
Calculated value C: 48.91, H: 2.35, N: 10.87
Experimental value C: 48.65, H: 2.25, N: 10.71
MS (ESI / MS) m / z: 1030

Figure 2008138169
Figure 2008138169

[光増感剤3,4の合成]
下記の光増感剤3および光増感剤4を、光増感剤2の合成法に準じて合成した。

Figure 2008138169
[Synthesis of photosensitizers 3 and 4]
The following photosensitizer 3 and photosensitizer 4 were synthesized according to the method of synthesizing photosensitizer 2.
Figure 2008138169

[光増感剤5,6の合成]
下記の光増感剤5および光増感剤6を、光増感剤2の合成法に準じて合成した。

Figure 2008138169
[Synthesis of photosensitizers 5 and 6]
The following photosensitizer 5 and photosensitizer 6 were synthesized according to the synthesis method of photosensitizer 2.
Figure 2008138169

[光増感剤7,8の合成]
下記の光増感剤7および光増感剤8を、光増感剤1の合成法に準じて合成した。

Figure 2008138169
[Synthesis of photosensitizers 7 and 8]
The following photosensitizer 7 and photosensitizer 8 were synthesized according to the synthesis method of photosensitizer 1.
Figure 2008138169

[光起電力素子の作製および変換効率の測定]
導電性基板上に支持された二酸化チタン膜の増感に基づく光起電力素子を以下のように作製した。
導電性ガラス(フッ素ドープSnO,10Ω)上にコロイド状TiO粒子(粒径:20〜30nm)を塗布し、450℃、30分間焼成(膜厚:10μm)し、その上に光を散乱させるためTiO粒子(粒径:300〜400nm)を塗布し、520℃、1時間焼成(膜厚:6〜8μm)した。これら2層の膜を、30分間TiCl溶液に浸漬した後、450℃、30分間加熱した。
得られた膜を、上記光増感剤/エタノール溶液(3.0×10―4mol/L)に15時間浸し、色素層(光増感剤層)を形成した。得られた基板とPt薄膜のついたガラスのPt面を合わせ、0.3mol/Lのヨウ化リチウムと0.03mol/Lのヨウ素を含むアセトニトリル溶液を毛細管現象によって染み込ませ、周辺をエポキシ接着剤で封止した。なお、透明導電基板の導電層部分と対向電極にはリード線を接続した。
なお、比較のために、色素として一般的に光起電力素子に用いられるルテニウム色素(Rutenium535−bisTBA:SOLARONIX社製:ブラックダイ)を用いた光起電力素子を作製した。810 nmの波長において、IPCEは0%である。
このようにして得た素子に疑似太陽光810nmの単色光を照射し、入射フォトン〜電流変換効率(IPCE)を測定した結果を表1に示した。
表1より、従来のルテニウム色素を用いた場合は、赤外領域である810nmにおいて、吸収を示さなかったが、本発明の光増感剤1〜8を用いた場合(実施例1〜8)、同領域において明らかな吸収を示した。また、吸光係数(λmax)も、表1に示すように、本発明の光増感剤は、ブラックダイに比較して大きかった。
[Production of photovoltaic elements and measurement of conversion efficiency]
A photovoltaic device based on sensitization of a titanium dioxide film supported on a conductive substrate was produced as follows.
Colloidal TiO 2 particles (particle size: 20-30 nm) are coated on conductive glass (fluorine-doped SnO 2 , 10Ω), baked at 450 ° C. for 30 minutes (film thickness: 10 μm), and light is scattered thereon. For this purpose, TiO 2 particles (particle size: 300 to 400 nm) were applied and baked at 520 ° C. for 1 hour (film thickness: 6 to 8 μm). These two layers were immersed in a TiCl 4 solution for 30 minutes and then heated at 450 ° C. for 30 minutes.
The obtained film was immersed in the photosensitizer / ethanol solution (3.0 × 10 −4 mol / L) for 15 hours to form a dye layer (photosensitizer layer). The obtained substrate and the Pt surface of the glass with the Pt thin film are combined, and an acetonitrile solution containing 0.3 mol / L lithium iodide and 0.03 mol / L iodine is infiltrated by capillary action, and the periphery is an epoxy adhesive. Sealed with. A lead wire was connected to the conductive layer portion of the transparent conductive substrate and the counter electrode.
For comparison, a photovoltaic element using a ruthenium dye (Rutenium 535-bisTBA: manufactured by SOLARONIX, Inc .: black die) that is generally used as a dye was prepared. At a wavelength of 810 nm, the IPCE is 0%.
Table 1 shows the results of measuring the incident photons to the current conversion efficiency (IPCE) by irradiating the thus obtained device with monochromatic light of 810 nm pseudo sunlight.
From Table 1, when the conventional ruthenium dye was used, no absorption was shown at 810 nm which is an infrared region, but when the photosensitizers 1 to 8 of the present invention were used (Examples 1 to 8). It showed clear absorption in the same region. Further, as shown in Table 1, the photosensitizer of the present invention was also larger than the black die, as shown in Table 1.

Figure 2008138169
Figure 2008138169

光起電力素子の断面の例である。It is an example of the cross section of a photovoltaic device.

符号の説明Explanation of symbols

1 透明導電基板
2 対向電極基板
3 半導体層
4 電解質層
5 シール材
DESCRIPTION OF SYMBOLS 1 Transparent conductive substrate 2 Counter electrode substrate 3 Semiconductor layer 4 Electrolyte layer 5 Sealing material

Claims (5)

式(I)および式(II)の構造単位を有する化合物を含む光増感剤。
Figure 2008138169
(式(I)中、Mは、Ru、Os、Fe、ReおよびRhから選ばれる遷移金属を表し、式(II)中、M’は、Ni、Co、Cu、Zn、Mn、PtおよびPdから選ばれる遷移金属を表す。式(I)および式(II)中、R〜R16は、水素原子、カルボニル基を含有する基、−PO(OH)2−n(OR)で表される基(nは0〜2の整数、Rは炭素数1〜30のアルキル基又はアリール基を表す。)、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基、またはカルボニル基を含有する基を有するアルキル基、アルケニル基、アリール基若しくはアラルキル基を表す。また、RとRn+1(nは1〜15の整数、ただし、8、10、12を除く。)で結合した芳香環を形成しても良い。ただし、式(I)または式(II)中に、少なくとも一つのCOOH基を有する。式(I)中、個々のXは、独立に、−NCS、ハロゲン、−CN、−NCO、−OHおよび−NCNより選ばれる単座配位子を表す。Xは、X同士が結合していてもよく、一般式(IIIa)または(IIIb)で表される二座配位子でもよい。式(IIIa)中、R31〜R33は、それぞれ独立に、水素原子、炭素数1〜30のアルキル基、炭素数2〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパーフルオロアルキル基、炭素数6〜30のアリール基、または炭素数7〜30のアラルキル基を表す。式(IIIb)中、R34およびR35は、それぞれ個別に、水素原子、シアノ基、炭素数1〜20のアルキル基、炭素数1〜20のパーフルオロアルキル基、または炭素数6〜15のアリール基を表し、またR34およびR35が結合して環を形成していても良い。)
Figure 2008138169
A photosensitizer comprising a compound having structural units of formula (I) and formula (II).
Figure 2008138169
(In the formula (I), M represents a transition metal selected from Ru, Os, Fe, Re and Rh. In the formula (II), M ′ represents Ni, Co, Cu, Zn, Mn, Pt and Pd. In formulas (I) and (II), R 1 to R 16 represent a hydrogen atom, a group containing a carbonyl group, or —PO (OH) 2 -n (OR) n . Group (n is an integer of 0 to 2, R represents an alkyl group or aryl group having 1 to 30 carbon atoms), an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or a carbon number. An alkoxyalkyl group having 2 to 30 carbon atoms, an aminoalkyl group having 1 to 30 carbon atoms, a perfluoroalkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a carbonyl group An alkyl group, alkenyl group, Represents Le group or an aralkyl group. Further, R n and R n + 1 (n is 1 to 15 integer, except for 8,10,12.) May form an aromatic ring bonded in. However, the formula (I) or in formula (II), in. the formula (I) having at least one COOH group, the individual X, independently, -NCS, halogen, -CN, -NCO, -OH and -NCN 2 X represents a monodentate ligand selected from X. X may be bonded to each other, and may be a bidentate ligand represented by the general formula (IIIa) or (IIIb). R 31 to R 33 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkoxyalkyl group having 2 to 30 carbon atoms, an aminoalkyl group having 1 to 30 carbon atoms, or a par group having 1 to 30 carbon atoms. Fluoroalkyl group, aryl group having 6 to 30 carbon atoms, or carbon Represents an aralkyl group having a number of 7 to 30. In the formula (IIIb), R 34 and R 35 are each independently a hydrogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, or a perfluoro having 1 to 20 carbon atoms. Represents an alkyl group or an aryl group having 6 to 15 carbon atoms, and R 34 and R 35 may combine to form a ring.)
Figure 2008138169
式(I)および式(II)の構造単位を有する化合物が、式(IV)の化合物であることを特徴とする請求項1に記載の光増感剤。
Figure 2008138169
(式(IV)中、R17はR〜R16と同様な基を表す。)
The photosensitizer according to claim 1, wherein the compound having the structural unit of the formula (I) and the formula (II) is a compound of the formula (IV).
Figure 2008138169
(In formula (IV), R 17 represents the same group as R 1 to R 16. )
式(I)および式(II)の構造単位を有する化合物が、式(V)の化合物であることを特徴とする請求項1に記載の光増感剤。
Figure 2008138169
(式(V)中、R17はR〜R16と同様な基を表し、R18は炭素数1〜20のアルキル基を表す。)
The photosensitizer according to claim 1, wherein the compound having the structural unit of the formula (I) and the formula (II) is a compound of the formula (V).
Figure 2008138169
(In the formula (V), R 17 represents the same group as R 1 to R 16, and R 18 represents an alkyl group having 1 to 20 carbon atoms.)
式(I)および式(II)の構造単位を有する化合物が、式(VI)の化合物であることを特徴とする請求項1に記載の光増感剤。
Figure 2008138169
The photosensitizer according to claim 1, wherein the compound having the structural unit of the formula (I) and the formula (II) is a compound of the formula (VI).
Figure 2008138169
請求項1〜4のいずれかに記載の光増感剤を吸着した半導体層を有する光起電力素子。   A photovoltaic device having a semiconductor layer adsorbing the photosensitizer according to claim 1.
JP2007222174A 2006-11-02 2007-08-29 Novel photo-sensitizer and photovoltaic element Pending JP2008138169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222174A JP2008138169A (en) 2006-11-02 2007-08-29 Novel photo-sensitizer and photovoltaic element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006299231 2006-11-02
JP2007222174A JP2008138169A (en) 2006-11-02 2007-08-29 Novel photo-sensitizer and photovoltaic element

Publications (1)

Publication Number Publication Date
JP2008138169A true JP2008138169A (en) 2008-06-19

Family

ID=39344356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222174A Pending JP2008138169A (en) 2006-11-02 2007-08-29 Novel photo-sensitizer and photovoltaic element

Country Status (2)

Country Link
JP (1) JP2008138169A (en)
WO (1) WO2008054024A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107652437A (en) * 2016-07-23 2018-02-02 金华职业技术学院 A kind of 4 one-dimensional banding coordination polymers of chlorobenzoic acid double-core manganese (II) and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377332B2 (en) 2008-06-10 2013-02-19 Basf Se Transition metal complexes and use thereof in organic light emitting diodes—III
DE102009058053A1 (en) * 2009-12-14 2011-06-16 Bayer Materialscience Ag Bimetallic complexes and their use in diaryl carbonate production
EP2720238A1 (en) * 2012-10-10 2014-04-16 Solvay SA Dye-sensitized solar cells, metal complex dyes therefor, and methods for making such dyes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127755B2 (en) * 2001-06-20 2008-07-30 株式会社豊田中央研究所 Metal complex dye, photoelectrode and dye-sensitized solar cell
JP2004359677A (en) * 2003-05-13 2004-12-24 Asahi Kasei Corp Dinuclear complex
US20070209695A1 (en) * 2004-04-16 2007-09-13 Jsr Corporation Dye and Dye-Sensitized Solar Cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107652437A (en) * 2016-07-23 2018-02-02 金华职业技术学院 A kind of 4 one-dimensional banding coordination polymers of chlorobenzoic acid double-core manganese (II) and preparation method thereof

Also Published As

Publication number Publication date
WO2008054024A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
Sharmoukh et al. TiO2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor
KR20100132508A (en) High molecular extinction coefficient metal dyes
JP4644818B2 (en) Dye for dye-sensitized solar cell, photoelectric conversion element using the dye, and dye-sensitized solar cell
JP4338981B2 (en) Dye-sensitized photoelectric conversion element
Sewvandi et al. Interplay between dye coverage and photovoltaic performances of dye-sensitized solar cells based on organic dyes
Singh et al. 2, 6-Bis (1-methylbenzimidazol-2-yl) pyridine: A new ancillary ligand for efficient thiocyanate-free ruthenium sensitizer in dye-sensitized solar cell applications
JP5519681B2 (en) Dyes containing chromophores with attached acyloin groups
KR20080077765A (en) A noble ru-type sensitizers and method for preparing of it
JP2003059547A (en) Dye sensitizing photoelectric transfer element
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP2008138169A (en) Novel photo-sensitizer and photovoltaic element
JP5809954B2 (en) Photoelectric conversion element and dye-sensitized solar cell
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP2009064680A (en) New photosensitizer and photovoltaic element
JP5283073B2 (en) Novel photosensitizer and photovoltaic device
JP5424246B2 (en) Novel photosensitizer and photovoltaic device
JP5487465B2 (en) Novel photosensitizer and photovoltaic device
JP5298654B2 (en) Photoelectrode, method for producing dye-sensitized solar cell including the same, and dye-sensitized solar cell
JP6616907B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
JP2014181305A (en) Photosensitizer and photovoltaic device using the same
WO2008099986A1 (en) Noble ruthenium-type sensitizers and method of preparing the same
JP2010209131A (en) New photosensitizer and photoelectromotive element
JP2014096301A (en) Photosensitizer, and photovoltaic device using the same
JP5556096B2 (en) Photoelectric conversion element having a binuclear ruthenium complex dye having a linking molecule having an electron withdrawing group as a substituent, and a photochemical battery
JP2009129652A (en) Photoelectric conversion element and photochemical battery