JP2008135400A - Alkaline dry cell - Google Patents

Alkaline dry cell Download PDF

Info

Publication number
JP2008135400A
JP2008135400A JP2008002225A JP2008002225A JP2008135400A JP 2008135400 A JP2008135400 A JP 2008135400A JP 2008002225 A JP2008002225 A JP 2008002225A JP 2008002225 A JP2008002225 A JP 2008002225A JP 2008135400 A JP2008135400 A JP 2008135400A
Authority
JP
Japan
Prior art keywords
positive electrode
load discharge
alkaline
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008002225A
Other languages
Japanese (ja)
Other versions
JP4767978B2 (en
Inventor
Koji Adachi
光司 足立
Takayuki Umebayashi
享行 梅林
Yasuhiko Shoji
安彦 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2008002225A priority Critical patent/JP4767978B2/en
Publication of JP2008135400A publication Critical patent/JP2008135400A/en
Application granted granted Critical
Publication of JP4767978B2 publication Critical patent/JP4767978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline dry battery excellent in heavy load discharge characteristics and intermediate load discharge characteristics, and with deterioration of light load discharge characteristic restrained. <P>SOLUTION: In the alkaline dry battery provided with an anode, an alkaline electrolyte and a cathode comprising manganese dioxide and graphite powder, the cathode has 0.01 to 5 pts.wt. of Ti(OH)<SB>4</SB>added per 100 pts.wt. of manganese dioxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強負荷および中負荷放電における正極利用率に優れ、かつ軽負荷放電における電気容量の低下が抑制されたアルカリ乾電池に関する。   The present invention relates to an alkaline dry battery that is excellent in positive electrode utilization rate in heavy load and medium load discharge and in which a decrease in electric capacity in light load discharge is suppressed.

昨今の携帯電話などの携帯情報機器の進歩および発展にともない、強負荷放電が可能なアルカリ乾電池が望まれている。
これに対し、従来のアルカリ乾電池においては、強負荷放電特性を向上させるために、正極添加剤としてアナターゼ型の酸化チタン(例えば特許文献1)、チタン含有複合酸化物(例えば特許文献2)、硫酸バリウムなどのバリウム化合物(例えば特許文献3)を用いることが行われている。
特表平8−510355号公報 特開平9−139201号公報 国際公開第00/30198号パンフレット
With recent progress and development of portable information devices such as mobile phones, alkaline dry batteries capable of heavy load discharge are desired.
On the other hand, in conventional alkaline batteries, anatase-type titanium oxide (for example, Patent Document 1), titanium-containing composite oxide (for example, Patent Document 2), sulfuric acid are used as positive electrode additives in order to improve heavy load discharge characteristics. A barium compound such as barium (for example, Patent Document 3) is used.
Japanese translation of PCT publication No. 8-510355 JP-A-9-139201 International Publication No. 00/30198 Pamphlet

しかし、正極に酸化チタン、チタン含有複合酸化物またはバリウム化合物を添加すると、強負荷放電特性はある程度まで向上するものの、活物質利用率は充分でない。また、上記従来の添加剤の効果を充分なものとするためには、多量の添加剤を用いる必要がある。そのため、活物質である二酸化マンガンの正極における充填量が低下し、電池の電気容量が低下して、軽負荷放電特性が低減してしまうという問題がある。このことは、時計などの軽負荷放電を必要とする機器における使用に対しても、アルカリ乾電池の需要が依然として少なくはないことから、非常に不都合である。
本発明の目的は、強負荷放電特性および中負荷放電特性に優れ、かつ軽負荷放電特性の低下が抑制されたアルカリ乾電池を提供することにある。
However, when titanium oxide, a titanium-containing composite oxide or a barium compound is added to the positive electrode, the heavy load discharge characteristics are improved to some extent, but the active material utilization rate is not sufficient. Moreover, in order to make the effect of the conventional additive sufficient, it is necessary to use a large amount of additive. Therefore, the filling amount in the positive electrode of the manganese dioxide which is an active material falls, there exists a problem that the electrical capacity of a battery falls and a light load discharge characteristic will reduce. This is very inconvenient for use in devices that require light load discharge, such as watches, because the demand for alkaline batteries is still not small.
An object of the present invention is to provide an alkaline dry battery which is excellent in heavy load discharge characteristics and medium load discharge characteristics and in which a decrease in light load discharge characteristics is suppressed.

上記課題を解決するために、本発明は、負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池において、前記正極が添加剤としてTi(OH)4を二酸化マンガン100重量部あたり0.01〜5重量部含むことを特徴とするアルカリ乾電池を提供する。 In order to solve the above problems, the present invention provides an alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder, wherein the positive electrode contains Ti (OH) 4 as an additive. An alkaline dry battery comprising 0.01 to 5 parts by weight per 100 parts by weight is provided.

本発明によれば、強負荷放電特性および中負荷放電特性に優れ、かつ軽負荷放電特性の低下が抑制されたアルカリ乾電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the alkaline dry battery which was excellent in the heavy load discharge characteristic and the medium load discharge characteristic, and the fall of the light load discharge characteristic was suppressed can be provided.

本発明は、正極に、Ti(OH)4およびTiO(OH)2からなる群より選ばれた少なくとも一種を含ませることにより、強負荷または中負荷放電における正極活物質の利用率を高める。
一方、上記添加剤を正極に添加すると、正極合剤中の正極活物質の割合は低下するが、これらの添加剤は、結着剤としての作用を有しており、添加により正極合剤の充填性が向上し、同一の成形条件では、正極の充填量が増加する。よって、上記添加剤を添加しても、本発明における添加量の範囲では、正極活物質の充填量は減少せず、軽負荷放電特性の低下は抑制される。
The present invention increases the utilization rate of the positive electrode active material in heavy load or medium load discharge by including at least one selected from the group consisting of Ti (OH) 4 and TiO (OH) 2 in the positive electrode.
On the other hand, when the above additives are added to the positive electrode, the proportion of the positive electrode active material in the positive electrode mixture decreases, but these additives have a function as a binder, and the addition of the positive electrode mixture The filling property is improved, and the filling amount of the positive electrode is increased under the same molding conditions. Therefore, even if the above additives are added, the filling amount of the positive electrode active material does not decrease within the range of the addition amount in the present invention, and the decrease in light load discharge characteristics is suppressed.

すなわち、本発明における正極は、正極活物質である二酸化マンガン、導電剤である黒鉛粉末、および添加剤であるTi(OH)4およびTiO(OH)2からなる群より選ばれた少なくとも一種を含む点に特徴を有する。
これらの添加剤が、正極に含まれると正極活物質における電解液の保持性が向上するため、放電末期に正極活物質内部への電解液の供給が充分でなくなることにより生じる内部抵抗の上昇が抑えられ、放電末期の急激な電圧低下が抑制されると考えられる。
That is, the positive electrode in the present invention includes at least one selected from the group consisting of manganese dioxide as a positive electrode active material, graphite powder as a conductive agent, and Ti (OH) 4 and TiO (OH) 2 as additives. Characterized by points.
When these additives are contained in the positive electrode, the retention of the electrolytic solution in the positive electrode active material is improved, so that an increase in internal resistance caused by insufficient supply of the electrolytic solution into the positive electrode active material at the end of discharge occurs. It is considered that a rapid voltage drop at the end of discharge is suppressed.

本発明におけるTiO(OH)2は、10-9〜10-8mの平均粒径を有する微粉状であり、正極の添加剤として従来から用いられているアナターゼ酸化チタンの粒径(10-7〜10-5m)に比べてはるかに小さく、正極内に一定量のTiO(OH)2を添加した場合、正極活物質との接触面積がより大きい。したがって、少量のTiO(OH)2の添加により、従来以上の効果を得ることができ、添加剤として好ましい。 TiO (OH) 2 in the present invention is in the form of fine powder having an average particle size of 10 −9 to 10 −8 m, and the particle size (10 −7 ) of anatase titanium oxide conventionally used as an additive for the positive electrode. 10-5 m), and when a certain amount of TiO (OH) 2 is added in the positive electrode, the contact area with the positive electrode active material is larger. Therefore, by adding a small amount of TiO (OH) 2 , an effect more than conventional can be obtained, which is preferable as an additive.

10-8mを超えると、粒子の表面積が小さくなり、その効果が低減する。
また、これらの添加剤は、二酸化マンガンおよび黒鉛からなる合剤に添加されると、結着剤としても作用し、正極の成形性を向上させ、充填量を増大させる効果がある。
If it exceeds 10 −8 m, the surface area of the particles becomes small, and the effect is reduced.
Further, when these additives are added to a mixture composed of manganese dioxide and graphite, they also act as a binder, and have the effect of improving the formability of the positive electrode and increasing the filling amount.

前記正極は、二酸化マンガン100重量部あたりTi(OH)4およびTiO(OH)2からなる群より選ばれた少なくとも一種を0.01〜5重量部含むことが好ましい。0.01重量部未満では、強負荷および軽負荷放電特性の向上が不充分となり、5重量部を超えると、軽負荷放電特性が低下するためである。さらには、二酸化マンガン100重量部あたり0.5〜3重量部含むことが特に好ましい。 The positive electrode preferably contains 0.01 to 5 parts by weight of at least one selected from the group consisting of Ti (OH) 4 and TiO (OH) 2 per 100 parts by weight of manganese dioxide. If the amount is less than 0.01 parts by weight, the improvement of the heavy load and light load discharge characteristics is insufficient, and if the amount exceeds 5 parts by weight, the light load discharge characteristics deteriorate. Furthermore, it is particularly preferable to contain 0.5 to 3 parts by weight per 100 parts by weight of manganese dioxide.

前記二酸化マンガンおよび黒鉛粉末については、従来より用いられているものを用いればよい。また、負極およびアルカリ電解液についても従来からのものを用いることができる。   Conventionally used manganese dioxide and graphite powder may be used. Further, conventional negative electrodes and alkaline electrolytes can also be used.

以下に、実施例を用いて本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
《実施例1〜3および参考例1〜2》
本発明の実施例において作製したアルカリ乾電池の一部を断面にした正面図を図1に示す。
図1において、電池ケース1の内部には、短筒状のペレットに成形された正極合剤2、ゲル状負極3およびセパレータ4が収容されている。電池ケース1としては、内面にニッケルメッキが施された鋼のケースなどを用いることができる。電池ケース1の内面には、複数個の正極合剤2が密着した状態で収容されている。正極合剤2のさらに内側にはセパレータ4が配され、さらに、その内側にゲル状負極3が充填されている。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
<< Examples 1-3 and Reference Examples 1-2 >>
FIG. 1 is a front view showing a cross section of a part of an alkaline battery produced in an example of the present invention.
In FIG. 1, a positive electrode mixture 2, a gelled negative electrode 3, and a separator 4 formed in a short cylindrical pellet are housed inside a battery case 1. As the battery case 1, a steel case having an inner surface plated with nickel can be used. On the inner surface of the battery case 1, a plurality of positive electrode mixtures 2 are accommodated in close contact. A separator 4 is disposed further inside the positive electrode mixture 2, and a gelled negative electrode 3 is filled therein.

正極合剤2は次のようにして作製した。
まず、二酸化マンガンと黒鉛とを、90:10の重量比で混合し、さらに、Ti(OH)4を二酸化マンガン100重量部あたり表1に示す所定量(x重量部)になるように添加し、混合した。なお、本実施例において用いたTi(OH)4の平均粒径は10-6mであった。得られた混合物100重量部あたり3重量部のアルカリ電解液を添加し、充分に攪拌した後、フレーク状に圧縮成形した。ついでフレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成形してペレット状の正極合剤2を得た。この正極合剤2個を電池ケース1内に挿入し、加圧治具により正極合剤2を再成形して電池ケース1の内壁に密着させた。
The positive electrode mixture 2 was produced as follows.
First, manganese dioxide and graphite are mixed at a weight ratio of 90:10, and further, Ti (OH) 4 is added so as to have a predetermined amount (x parts by weight) shown in Table 1 per 100 parts by weight of manganese dioxide. , Mixed. The average particle size of Ti (OH) 4 used in this example was 10 −6 m. After adding 3 parts by weight of alkaline electrolyte per 100 parts by weight of the obtained mixture and stirring sufficiently, it was compression molded into flakes. Subsequently, the flaky positive electrode mixture was pulverized into granules, which were classified by a sieve, and those having a 10 to 100 mesh shape were pressure-formed into a hollow cylinder to obtain a pellet-like positive electrode mixture 2. Two of these positive electrode mixtures were inserted into the battery case 1, and the positive electrode mixture 2 was reshaped with a pressurizing jig and was brought into close contact with the inner wall of the battery case 1.

上記のようにして電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ所定量のアルカリ電解液を注入した。所定時間経過した後、アルカリ電解液とゲル化剤と亜鉛粉末とからなるゲル状負極3をセパレータ4内へ充填した。   A bottomed cylindrical separator 4 was placed in the center of the positive electrode mixture 2 placed in the battery case 1 as described above, and a predetermined amount of alkaline electrolyte was injected into the separator 4. After a predetermined time, a gelled negative electrode 3 composed of an alkaline electrolyte, a gelling agent and zinc powder was filled into the separator 4.

ゲル状負極3としては、ゲル化剤であるポリアクリル酸ナトリウム1重量部、アルカリ電解液である40重量%の水酸化ナトリウム33重量部および亜鉛粉末66重量部からなるゲルを用いた。
また、セパレータ4は、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
As the gelled negative electrode 3, a gel comprising 1 part by weight of sodium polyacrylate as a gelling agent, 33 parts by weight of 40% by weight sodium hydroxide as an alkaline electrolyte and 66 parts by weight of zinc powder was used.
Moreover, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.

続いて、負極集電子6をゲル状負極3の中央に差し込んだ。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を一体化させた。
そして、電池ケース1内の開口端部を、ガスケット5の端部を介して、底板7周縁部にかしめつけ、電池ケース1の開口部を封口した。最後に、外装ラベル8で電池ケース1の外表面を被覆して、アルカリ乾電池を得た。
得られたアルカリ乾電池は以下のようにして評価した。
Subsequently, the negative electrode current collector 6 was inserted into the center of the gelled negative electrode 3. The negative electrode current collector 6 was integrated with a gasket 5 and a bottom plate 7 that also served as a negative electrode terminal.
And the opening edge part in the battery case 1 was crimped to the peripheral part of the baseplate 7 via the edge part of the gasket 5, and the opening part of the battery case 1 was sealed. Finally, the outer surface of the battery case 1 was covered with the exterior label 8 to obtain an alkaline dry battery.
The obtained alkaline dry battery was evaluated as follows.

[評価]
強負荷放電特性を評価するために、初度(製造直後)のアルカリ乾電池を、2.2Ωの負荷、終止電圧0.9Vまで連続放電させ、そのときの放電時間を測定した。無添加のアルカリ乾電池(比較例1)の結果を基準値である100とし、強負荷放電特性を指数として表した。この評価結果を表1に示した。
また、中負荷放電特性は、10Ωの負荷で連続放電させた以外は、上記強負荷放電特性の場合と同様にして評価した。また、軽負荷放電特性は、39Ωの負荷で連続放電させた以外は、上記強負荷放電特性の場合と同様にして評価した。これらの評価結果も表1に示した。
[Evaluation]
In order to evaluate the heavy load discharge characteristics, the initial (immediately after production) alkaline dry battery was continuously discharged to a load of 2.2Ω and a final voltage of 0.9 V, and the discharge time at that time was measured. The result of the additive-free alkaline dry battery (Comparative Example 1) was taken as a reference value of 100, and the heavy load discharge characteristics were expressed as an index. The evaluation results are shown in Table 1.
Further, the medium load discharge characteristics were evaluated in the same manner as in the case of the above heavy load discharge characteristics except that continuous discharge was performed with a load of 10Ω. The light load discharge characteristics were evaluated in the same manner as in the case of the heavy load discharge characteristics except that the discharge was continuously performed with a load of 39Ω. These evaluation results are also shown in Table 1.

《参考例3〜7》
正極添加剤Ti(OH)4の代わりにTiO(OH)2を二酸化マンガン100重量部あたり表1に示す所定量(x重量部)になるように添加する以外は実施例1と同様の方法で正極合剤2を作製し、アルカリ乾電池を得た。アルカリ乾電池の電池特性については、実施例1と同様の方法で評価した。なお、本参考例において用いたTiO(OH)2の平均粒径は10-9mであった。
<< Reference Examples 3-7 >>
In the same manner as in Example 1, except that TiO (OH) 2 was added in place of the positive electrode additive Ti (OH) 4 so as to have a predetermined amount (x parts by weight) shown in Table 1 per 100 parts by weight of manganese dioxide. A positive electrode mixture 2 was produced to obtain an alkaline battery. The battery characteristics of the alkaline battery were evaluated by the same method as in Example 1. The average particle diameter of TiO (OH) 2 used in this reference example was 10 −9 m.

《比較例1〜4》
正極添加剤Ti(OH)4の代わりにTiO2を二酸化マンガン100重量部あたり表1に示す所定量(x重量部)になるように添加する以外は実施例1と同様の方法で正極合剤2を作製し、アルカリ乾電池を得た。なお、TiO2の平均粒径は10-6mとした。アルカリ乾電池の電池特性については、実施例1と同様の方法で評価した。
<< Comparative Examples 1-4 >>
The positive electrode mixture was prepared in the same manner as in Example 1 except that TiO 2 was added in a predetermined amount (x parts by weight) shown in Table 1 per 100 parts by weight of manganese dioxide instead of the positive electrode additive Ti (OH) 4. 2 was prepared to obtain an alkaline battery. The average particle size of TiO 2 was 10 −6 m. The battery characteristics of the alkaline battery were evaluated by the same method as in Example 1.

Figure 2008135400
Figure 2008135400

表1より、Ti(OH)4およびTiO(OH)2のどちらを用いた場合でも、二酸化マンガン100重量部あたり0.01〜5重量部の場合に、アルカリ乾電池の強負荷放電特性が優れており、しかも軽負荷放電特性も劣化がみられないことがわかる。参考例1および参考例3のように添加量が少ないと、正極活物質利用率を向上させる効果があまり得られないことから、強負荷放電特性はほとんど向上しない。参考例2および参考例7のように添加量が多すぎると、軽負荷放電特性の劣化がみられる。 From Table 1, it can be seen that, when using either Ti (OH) 4 or TiO (OH) 2 , the heavy load discharge characteristics of the alkaline battery are excellent when the amount is 0.01 to 5 parts by weight per 100 parts by weight of manganese dioxide. In addition, it can be seen that the light load discharge characteristics are not deteriorated. If the addition amount is small as in Reference Example 1 and Reference Example 3, the effect of improving the utilization ratio of the positive electrode active material cannot be obtained so much that the heavy load discharge characteristics are hardly improved. When the addition amount is too large as in Reference Example 2 and Reference Example 7, light load discharge characteristics are deteriorated.

最適と思われる添加量1重量部について、実施例2より参考例5のほうが特性が向上している。これは、TiO(OH)2の粒径が10-9mと小さく、同量の添加であっても、正極活物質との接触面積が大きく、特性を向上させる効果が大きかったためであると考えられる。
また、これ以外にもTi(OH)4およびTiO(OH)2の両者を混合して正極に添加した場合でも同様の効果がみられる。
The characteristic of Reference Example 5 is improved over that of Example 2 with respect to 1 part by weight of the optimum addition amount. This is thought to be because the particle size of TiO (OH) 2 was as small as 10 −9 m, and even when the same amount was added, the contact area with the positive electrode active material was large and the effect of improving the characteristics was great. It is done.
In addition, the same effect can be seen when both Ti (OH) 4 and TiO (OH) 2 are mixed and added to the positive electrode.

本発明のアルカリ乾電池は、携帯機器などの電子機器の電源として好適に用いられる。   The alkaline dry battery of the present invention is suitably used as a power source for electronic devices such as portable devices.

本発明のアルカリ乾電池の一例の一部を断面にした正面図である。It is the front view which made a part of an example of the alkaline dry battery of the present invention a section.

符号の説明Explanation of symbols

1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collector 7 Bottom plate 8 Exterior label

Claims (1)

負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池において、前記正極が添加剤としてTi(OH)4を二酸化マンガン100重量部あたり0.01〜5重量部含むことを特徴とするアルカリ乾電池。 In an alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder, the positive electrode contains 0.01 to 5 parts by weight of Ti (OH) 4 as an additive per 100 parts by weight of manganese dioxide. An alkaline battery characterized by that.
JP2008002225A 2001-11-01 2008-01-09 Alkaline battery Expired - Lifetime JP4767978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002225A JP4767978B2 (en) 2001-11-01 2008-01-09 Alkaline battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001336580 2001-11-01
JP2001336580 2001-11-01
JP2008002225A JP4767978B2 (en) 2001-11-01 2008-01-09 Alkaline battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002297356A Division JP4233299B2 (en) 2001-11-01 2002-10-10 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2008135400A true JP2008135400A (en) 2008-06-12
JP4767978B2 JP4767978B2 (en) 2011-09-07

Family

ID=39560075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002225A Expired - Lifetime JP4767978B2 (en) 2001-11-01 2008-01-09 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4767978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064889A1 (en) * 2012-10-24 2014-05-01 パナソニック株式会社 Alkaline dry cell
WO2014097511A1 (en) * 2012-12-20 2014-06-26 パナソニック株式会社 Alkaline cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286059A (en) * 1988-09-22 1990-03-27 Toshiba Battery Co Ltd Manufacture of positive mix for manganese battery
WO2000024071A1 (en) * 1998-10-21 2000-04-27 Duracell Inc. Titanium additives for manganese dioxide cathode electrochemical cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286059A (en) * 1988-09-22 1990-03-27 Toshiba Battery Co Ltd Manufacture of positive mix for manganese battery
WO2000024071A1 (en) * 1998-10-21 2000-04-27 Duracell Inc. Titanium additives for manganese dioxide cathode electrochemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064889A1 (en) * 2012-10-24 2014-05-01 パナソニック株式会社 Alkaline dry cell
JPWO2014064889A1 (en) * 2012-10-24 2016-09-08 パナソニックIpマネジメント株式会社 Alkaline battery
WO2014097511A1 (en) * 2012-12-20 2014-06-26 パナソニック株式会社 Alkaline cell
JP5568185B1 (en) * 2012-12-20 2014-08-06 パナソニック株式会社 Alkaline battery

Also Published As

Publication number Publication date
JP4767978B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
KR20070008400A (en) Alkaline battery
JP2009517805A (en) Rechargeable alkaline manganese batteries with reduced capacity degradation and improved cycle life
JP4222488B2 (en) Alkaline battery
JP4767978B2 (en) Alkaline battery
EP2472652B1 (en) Additive for nickel-zinc battery
JP3866903B2 (en) Alkaline battery
EP1408567A1 (en) Alkaline dry battery
JP5409975B1 (en) Alkaline battery
JP4233299B2 (en) Alkaline battery
CN1176508C (en) Akaline accumulator and positive pole for akaline accumulator
JP2003151539A (en) Alkaline dry cell
JP2005276698A (en) Alkaline battery
JP3866902B2 (en) Alkaline battery
JP4137417B2 (en) Alkaline battery
US7405023B2 (en) Alkaline dry battery
JP4056322B2 (en) Alkaline battery
EP1798789A1 (en) Alkaline cell
JP2000306575A (en) Alkaline dry battery and manufacture of positive electrode mixture thereof
JP2007220373A (en) Sealed alkaline zinc primary cell
JP2006164862A (en) Alkaline battery
JP2005353447A (en) Alkaline dry battery
JP2005166419A (en) Alkaline dry battery
JP2002367614A (en) Alkali dry cell
JPS60240056A (en) Alkaline-manganese cell
JP2007220374A (en) Alkaline zinc primary cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4767978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

EXPY Cancellation because of completion of term