JP2008134025A - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP2008134025A
JP2008134025A JP2006321809A JP2006321809A JP2008134025A JP 2008134025 A JP2008134025 A JP 2008134025A JP 2006321809 A JP2006321809 A JP 2006321809A JP 2006321809 A JP2006321809 A JP 2006321809A JP 2008134025 A JP2008134025 A JP 2008134025A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
compressor
expansion valve
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006321809A
Other languages
Japanese (ja)
Inventor
Takashi Magara
隆志 眞柄
Akira Araki
亮 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2006321809A priority Critical patent/JP2008134025A/en
Publication of JP2008134025A publication Critical patent/JP2008134025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation for efficiently removing frost attached to evaporators by using the plurality of evaporators in a heat pump type heating device. <P>SOLUTION: In this heat pump type heating device comprising a compressor 2 for compressing a refrigerant, a radiator 3 allowing the refrigerant compressed by the compressor 2 to exchange heat with a non-heating fluid, an expansion valve 4 for reducing a pressure of the refrigerant discharged from the radiator 3, and the first evaporator 5 and the second evaporator 7 for evaporating the refrigerant after pressure reduction by the expansion valve 4, a flow channel is switched so that the first and second evaporators 5, 7 are connected between the expansion valve 4 and the compressor 2 in seasons except for winter, and the first evaporator 5 is connected between the expansion valve 4 and the compressor 2, and the second evaporator 7 is connected between the compressor 2 and the expansion valve 4 in winter, and further the flow channel is switched so that the first evaporator 5 is connected between the compressor 2 and the expansion valve, and the second evaporator 7 is connected between the expansion valve 4 and the compressor 2 in defrosting the first evaporator 5, thus the heating operation can be efficiently performed without affected by a defrosting operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低温の流体を高温の流体と熱交換により加熱するヒートポンプ式加熱装置に関するものである。 The present invention relates to a heat pump type heating device that heats a low-temperature fluid by heat exchange with a high-temperature fluid.

ところでこの種のヒートポンプ式加熱装置では、冷媒を圧縮する圧縮機と、貯湯や暖房用として用いられる水と冷媒を熱交換させる放熱器と、この放熱器からの冷媒を膨張させる膨張弁と、膨張弁からの冷媒を空気と熱交換する蒸発器と、蒸発器を出た冷媒の温度を検知し除霜運転ON・OFFのタイミングを温度で判断するための温度検出手段と、除霜運転のために冷媒をバイパスさせるためのバイパス経路と、電気的制御によって冷媒のバイパス経路の開閉を行う電磁開閉弁とが備えられ、蒸発器の除霜時には電磁開閉弁を開成して、高温の冷媒の一部をバイパス経路を介して蒸発器に流入させることで、高温の温水を得ながら除霜運転を行うものであった。(特許文献1参照。)
特開2006−97930号公報
By the way, in this kind of heat pump type heating device, a compressor that compresses the refrigerant, a radiator that exchanges heat between water and refrigerant used for hot water storage and heating, an expansion valve that expands the refrigerant from the radiator, and an expansion For the defrosting operation, an evaporator for heat exchange of the refrigerant from the valve with the air, a temperature detecting means for detecting the temperature of the refrigerant that has exited the evaporator and determining the timing of the defrosting operation ON / OFF based on the temperature, and A bypass path for bypassing the refrigerant and an electromagnetic on-off valve that opens and closes the bypass path of the refrigerant by electrical control. When the evaporator is defrosted, the electromagnetic on-off valve is opened to The defrosting operation was performed while obtaining high-temperature hot water by allowing the part to flow into the evaporator via the bypass path. (See Patent Document 1.)
JP 2006-97930 A

しかしこの従来のものでは、除霜するために用いられる冷媒はバイパス経路を通った高温の冷媒と、貯湯や暖房用として用いられる水と熱交換するために放熱器を通り膨張弁を通って減圧された低温の冷媒が混ざったものである。そのため、除霜するための冷媒は圧縮機から出たすぐの高温の冷媒よりもある程度温度が低くなっているために、除霜効率が落ち除霜時間が長くなってしまっている問題点があった。 However, in this conventional type, the refrigerant used for defrosting is decompressed through an expansion valve through a radiator to exchange heat with a high-temperature refrigerant passing through a bypass path and water used for hot water storage or heating. The mixed low-temperature refrigerant is mixed. For this reason, the refrigerant for defrosting is somewhat lower in temperature than the high-temperature refrigerant immediately after coming out of the compressor, so that the defrosting efficiency is lowered and the defrosting time is increased. It was.

この発明はこの点に着目し上記課題を解決するために請求項1では、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を非加熱流体と熱交換させる放熱器と、前記放熱器から吐出した冷媒を減圧する膨張弁と、前記膨張弁で減圧された冷媒を蒸発させる第1蒸発器と第2蒸発器を備えたヒートポンプ式加熱装置に於いて、前記第1、第2蒸発器は、冬期以外は膨張弁と圧縮機との間に接続され、冬期には第1蒸発器が膨張弁と圧縮機との間で、第2蒸発器が圧縮機と膨張弁との間に接続されるように流路切換し、更に第1蒸発器の除霜時には、第1蒸発器を圧縮機と膨張弁との間で、第2蒸発器を膨張弁と圧縮機との間に接続されるように流路切換するものである。 In order to solve the above-mentioned problems, the present invention provides a compressor that compresses a refrigerant, a radiator that exchanges heat between the refrigerant compressed by the compressor and an unheated fluid, and the heat dissipation. In a heat pump type heating apparatus comprising an expansion valve that depressurizes the refrigerant discharged from the evaporator, and a first evaporator and a second evaporator that evaporate the refrigerant depressurized by the expansion valve, the first and second evaporations The evaporator is connected between the expansion valve and the compressor except in winter. In the winter, the first evaporator is between the expansion valve and the compressor, and the second evaporator is between the compressor and the expansion valve. The flow path is switched so as to be connected, and when the first evaporator is defrosted, the first evaporator is connected between the compressor and the expansion valve, and the second evaporator is connected between the expansion valve and the compressor. The flow path is switched as described above.

又請求項2によれば、前記冬期の接続では、放熱器に流入する冷媒量と第2蒸発器に流入する冷媒量を調節する調節手段を備えたものである。 According to a second aspect of the present invention, the winter connection includes adjusting means for adjusting the amount of refrigerant flowing into the radiator and the amount of refrigerant flowing into the second evaporator.

又請求項3によれば、前記第1蒸発器の除霜時では、放熱器に流入する冷媒量と第1蒸発器に流入する冷媒量を調節する調節手段を備えたものである。 According to a third aspect of the present invention, there is provided an adjusting means for adjusting the amount of refrigerant flowing into the radiator and the amount of refrigerant flowing into the first evaporator when the first evaporator is defrosted.

この発明によれば、一方の蒸発器の除霜運転をしていても、もう一方の蒸発器で通常の加熱運転が行えるため、除霜運転が加熱運転に支障をきたさず効率よく加熱運転を行うことが出来る。また、除霜運転をするための冷媒として圧縮機から吐出されたすぐの高温高圧の冷媒を着霜した蒸発器に供給できるため、除霜にかかる時間も短くて済み除霜運転を効率良く行えるものである。   According to the present invention, even if the defrosting operation of one evaporator is performed, the normal heating operation can be performed by the other evaporator. Therefore, the defrosting operation efficiently performs the heating operation without hindering the heating operation. Can be done. Moreover, since the high-temperature and high-pressure refrigerant immediately discharged from the compressor can be supplied to the frosted evaporator as the refrigerant for performing the defrosting operation, the time required for the defrosting can be shortened and the defrosting operation can be performed efficiently. Is.

更に冬期以外では、吸熱用の蒸発器が2つとなり効率の良い吸熱が行われ、システム効率もアップするものであり、又冬期では、第1蒸発器が今まで通りに接続されて吸熱作用するが、第2蒸発器には高温の冷媒が流入するので放熱作用し、冬期で空気温度が低下している状況下で、第1蒸発器の吸熱を補助することが出来るものである。   In addition, during the winter season, two endothermic evaporators are used for efficient heat absorption and the system efficiency is improved. In the winter season, the first evaporator is connected as before to absorb heat. However, since a high-temperature refrigerant flows into the second evaporator, it can dissipate heat and can assist in the heat absorption of the first evaporator under the situation where the air temperature is lowered in winter.

更に請求項2のように、放熱器と第2蒸発器に流入する冷媒量を調節手段で調節可能とすることで、状況に応じた加熱運転を得ることが出来、又請求項3のように、放熱器と第1蒸発器に流入する冷媒量を調節手段で調節可能とすることで、加熱や除霜の状況に合わせた冷媒量とすることが出来、極めて使用勝手が良いものである。   Further, as in claim 2, the amount of refrigerant flowing into the radiator and the second evaporator can be adjusted by the adjusting means, whereby a heating operation according to the situation can be obtained, and as in claim 3. Since the amount of refrigerant flowing into the radiator and the first evaporator can be adjusted by the adjusting means, the amount of refrigerant can be adjusted according to the heating and defrosting conditions, which is very convenient to use.

この発明の一実施形態を図面に基づいて説明する。
1はヒートポンプサイクルを構成する冷媒循環回路で、冷媒を圧縮して高圧にする圧縮機2と、冷媒と水との間で熱交換させる放熱器3、開度調整可能な電子膨張弁よりなり温度低下した冷媒を減圧する膨張弁4、低温低圧の冷媒と空気とを熱交換させて蒸発させるファン付きの第1蒸発器5と、これと並列状に接続された分岐冷媒回路6に備えられた同じくファン付きの第2蒸発器7とによって構成されている。
An embodiment of the present invention will be described with reference to the drawings.
Reference numeral 1 denotes a refrigerant circulation circuit constituting a heat pump cycle, which includes a compressor 2 that compresses the refrigerant to a high pressure, a radiator 3 that exchanges heat between the refrigerant and water, and an electronic expansion valve that can adjust the opening. The expansion valve 4 for depressurizing the lowered refrigerant, the first evaporator 5 with a fan for evaporating the low-temperature and low-pressure refrigerant and air by heat exchange, and the branch refrigerant circuit 6 connected in parallel with the fan are provided. Similarly, it is constituted by a second evaporator 7 with a fan.

8、9は除霜運転ON・OFFのタイミングを温度で判断するために第1蒸発器5及び第2蒸発器7を出た冷媒の温度を検知する第1、第2温度検知手段である。
10は給湯用や床暖房などとして使う水を前記放熱器3で高温の冷媒と熱交換させ沸き上げる温水循環回路、11は前記温水循環回路10内の水を循環させる循環ポンプである。
Reference numerals 8 and 9 denote first and second temperature detecting means for detecting the temperature of the refrigerant that has exited the first evaporator 5 and the second evaporator 7 in order to determine the timing of the defrosting operation ON / OFF based on the temperature.
A hot water circulation circuit 10 heats up water used for hot water supply or floor heating by exchanging heat with a high-temperature refrigerant in the radiator 3, and 11 is a circulation pump for circulating water in the hot water circulation circuit 10.

12は圧縮機2から吐出された高温高圧の冷媒の一部を前記放熱器3に通さず第1蒸発器5に供給し、膨張弁4手前に戻す第1ホットガスバイパス経路、13は前記第1ホットガスバイパス経路12と切換わり圧縮機2から吐出された高温高圧の冷媒の一部を前記放熱器3に通さず第2蒸発器7に供給し、膨張弁4手前に戻す第2ホットガスバイパス経路であり、更に前記第1ホットガスバイパス経路12には、放熱器3と第1蒸発器5に供給される冷媒量を調節する調節手段を構成する第1調節弁14が備えられ、又前記第2ホットガスバイパス経路13には、放熱器3と第2蒸発器7に供給される冷媒量を調節する調節手段を構成する第2調節弁15が備えられている。   A first hot gas bypass path 12 supplies a part of the high-temperature and high-pressure refrigerant discharged from the compressor 2 to the first evaporator 5 without passing through the radiator 3 and returns to the front of the expansion valve 4. A part of the high-temperature and high-pressure refrigerant discharged from the compressor 2 switched to the first hot gas bypass path 12 is supplied to the second evaporator 7 without passing through the radiator 3 and returned to the front side of the expansion valve 4. Further, the first hot gas bypass path 12 is provided with a first control valve 14 that constitutes an adjusting means for adjusting the amount of refrigerant supplied to the radiator 3 and the first evaporator 5, and The second hot gas bypass path 13 is provided with a second adjustment valve 15 that constitutes an adjustment means for adjusting the amount of refrigerant supplied to the radiator 3 and the second evaporator 7.

更に冷媒循環回路1で分岐冷媒回路6の分岐部分より第1蒸発器5側及び、分岐冷媒回路6の第2蒸発器7の手前側、冷媒循環回路1と分岐冷媒回路6が合流部分より第1蒸発器5側及び、第2蒸発器7側にはそれぞれ電磁開閉弁16、17、18、19が備えられている。 Further, in the refrigerant circulation circuit 1, the first evaporator 5 side from the branch portion of the branch refrigerant circuit 6 and the front side of the second evaporator 7 of the branch refrigerant circuit 6, the refrigerant circulation circuit 1 and the branch refrigerant circuit 6 are arranged from the junction portion. Electromagnetic opening / closing valves 16, 17, 18, and 19 are provided on the first evaporator 5 side and the second evaporator 7 side, respectively.

又第1ホットガスバイパス経路12で冷媒循環回路1との合流部分手前及び、第2ホットガスバイパス経路13で冷媒循環回路1との合流部分手前にも電磁開閉弁20、21が備えられている。 Electromagnetic on-off valves 20 and 21 are also provided in the first hot gas bypass path 12 just before the joining part with the refrigerant circulation circuit 1 and in the second hot gas bypass path 13 before the joining part with the refrigerant circulation circuit 1. .

22はヒーポン制御回路で、各機能部品を適宜制御すると共に、カレンダー機能を有し11月にはヒートポンプサイクルを冬期以外のサイクルから冬期仕様のサイクルにするように、各開閉弁を制御するものであり、更に第1、第2温度検知手段8、9の検知温度で除霜制御も行うものである。 22 is a heat pump control circuit that controls each functional part as appropriate and has a calendar function to control each on-off valve so that the heat pump cycle is changed from a cycle other than winter to a cycle of winter specification in November. In addition, defrosting control is also performed at the detected temperatures of the first and second temperature detecting means 8 and 9.

次にこの一実施形態の作動について説明するが、先ず図1の実線で示す冬期以外の作動は、冷媒循環回路1に分岐冷媒回路6が接続した状態で、電磁開閉弁16、17、18、19は開成状態であり、圧縮機2で高温高圧にされた冷媒が、放熱器3で温水循環回路10を循環する水と熱交換して沸き上げ、温度低下した低温低圧の冷媒は膨張弁4で減圧された後、第1、第2蒸発器5、7に分かれて流入し、ここで空気から熱を奪って蒸発して再び圧縮機2で圧縮され、順次この循環を繰り返して高温水を得るものであり、この第1、第2蒸発器5、7の2つの蒸発器で冷媒を蒸発させるので、熱交換面積が広がりその分効率の良い蒸発が行われるものである。 Next, the operation of this embodiment will be described. First, the operation other than the winter indicated by the solid line in FIG. 1 is performed in a state where the branch refrigerant circuit 6 is connected to the refrigerant circulation circuit 1, and the electromagnetic on-off valves 16, 17, 18, 19 is an open state, and the refrigerant that has been made high temperature and high pressure by the compressor 2 is boiled by exchanging heat with the water circulating in the hot water circulation circuit 10 by the radiator 3, and the low temperature and low pressure refrigerant that has fallen in temperature is the expansion valve 4 After the pressure is reduced, the air flows into the first and second evaporators 5 and 7 where the heat is taken from the air to evaporate and is compressed again by the compressor 2. Since the refrigerant is evaporated by the two evaporators of the first and second evaporators 5 and 7, the heat exchange area is widened and the evaporation is efficiently performed correspondingly.

次に冬期に入った場合には、ヒーポン制御回路22のカレンダー機能によって、分岐冷媒回路6の電磁開閉弁17、19が閉弁され、第2ホットガスバイパス経路13の第2調節弁15と電磁開閉弁21が開弁され、圧縮機2で高温高圧にされた冷媒が、放熱器3と第2ホットガスバイパス経路13を通り第2蒸発器7に供給され、放熱器3では熱交換して高温水が得られるものであり、又第2蒸発器7ではファンの送風で温風が得られ、そして放熱器3を出た冷媒と第2蒸発器7からの冷媒は、膨張弁4の手前で合流し該膨張弁4で減圧された後、第1蒸発器5に流入して空気から熱を奪って蒸発されるものであるが、この時前記第2蒸発器7からの温風が供給されることで、冬期で空気温度が低い時でも十分な熱を得ることが出来るものであり、しかも第1蒸発器5の除霜運転を遅らせることが出来るものである。 Next, in the winter season, the electromagnetic on-off valves 17 and 19 of the branch refrigerant circuit 6 are closed by the calendar function of the heat-pump control circuit 22, and the second control valve 15 of the second hot gas bypass path 13 and the electromagnetic The on-off valve 21 is opened, and the high-temperature and high-pressure refrigerant is supplied to the second evaporator 7 through the radiator 3 and the second hot gas bypass path 13. Hot water is obtained, and in the second evaporator 7, warm air is obtained by blowing air from the fan, and the refrigerant exiting the radiator 3 and the refrigerant from the second evaporator 7 are in front of the expansion valve 4. And the pressure is reduced by the expansion valve 4 and then flows into the first evaporator 5 where it takes heat away from the air and evaporates. At this time, hot air from the second evaporator 7 is supplied. That can get enough heat even in winter when the air temperature is low There, moreover in which it is able to slow the defrosting operation of the first evaporator 5.

更に第1蒸発器5の除霜運転は、第1温度検知手段8が所定温度以下を検知しヒーポン制御回路22に信号を送ることで、電磁開閉弁16、18を閉弁すると共に、第1調節弁14と電磁開閉弁20を開弁状態として、第1ホットガスバイパス経路12を介して高温高圧の冷媒を第1蒸発器5に循環させて除霜するものであり、又この時第2蒸発器7では、第2調節弁15と電磁開閉弁21を閉弁して第2ホットガスバイパス経路13を閉塞すると共に、電磁開閉弁17、19を開弁して膨張弁4通過後の冷媒を分岐冷媒回路6の第2蒸発器7に流通させて、今までの第1蒸発器5の替わりに第2蒸発器7を本来の蒸発器として作用させるものである。   Further, in the defrosting operation of the first evaporator 5, the first temperature detecting means 8 detects the temperature below a predetermined temperature and sends a signal to the heat pump control circuit 22, thereby closing the electromagnetic on-off valves 16 and 18, and The control valve 14 and the electromagnetic on-off valve 20 are opened, and high-temperature and high-pressure refrigerant is circulated to the first evaporator 5 via the first hot gas bypass path 12 to defrost, and at this time, the second In the evaporator 7, the second control valve 15 and the electromagnetic on-off valve 21 are closed to close the second hot gas bypass passage 13, and the electromagnetic on-off valves 17 and 19 are opened to pass the refrigerant after passing through the expansion valve 4. Is circulated to the second evaporator 7 of the branch refrigerant circuit 6 so that the second evaporator 7 acts as an original evaporator instead of the first evaporator 5 so far.

次に上記除霜運転中に、第2温度検知手段9が所定温度以下を検知した第2蒸発器7の除霜運転では、ヒーポン制御回路22により電磁開閉弁17、19を閉弁して分岐冷媒回路6を閉塞し、第2調節弁15と電磁開閉弁21を開弁状態として、第2ホットガスバイパス経路13を介して高温高圧の冷媒を第2蒸発器7に循環させて該第2蒸発器7の除霜を行うもので、又この時第1蒸発器5では、第1調節弁14と電磁開閉弁20を閉弁して第1ホットガスバイパス経路12を閉塞すると共に、電磁開閉弁16、18を開弁して膨張弁4通過後の冷媒を第1蒸発器5に流通させて、今までの第2蒸発器7の替わりに第1蒸発器5を本来の蒸発器として作用するように戻すものである。 Next, during the defrosting operation, in the defrosting operation of the second evaporator 7 in which the second temperature detecting means 9 detects a predetermined temperature or less, the heat on / off valves 17 and 19 are closed by the heat pump control circuit 22 and branched. The refrigerant circuit 6 is closed, the second control valve 15 and the electromagnetic on-off valve 21 are opened, and a high-temperature and high-pressure refrigerant is circulated to the second evaporator 7 via the second hot gas bypass path 13 and the second evaporator 7 is opened. The evaporator 7 is defrosted. At this time, in the first evaporator 5, the first control valve 14 and the electromagnetic opening / closing valve 20 are closed to close the first hot gas bypass path 12 and the electromagnetic opening / closing. The valves 16 and 18 are opened to allow the refrigerant after passing through the expansion valve 4 to flow to the first evaporator 5, and the first evaporator 5 acts as the original evaporator instead of the second evaporator 7 so far. To return to

このように除霜運転は、第1、第2蒸発器5、7の2つの蒸発器を、除霜のための放熱器と本来の蒸発器とに、それぞれ経路を切替えて作用させることで、除霜が短時間で効率良く行われると共に、能力は低下するが放熱器3による温水加熱を継続して行うことが出来るものであり、特に冬期で給湯や暖房が一次的にも停止することを回避出来、極めて使用勝手が良いものである。 In this manner, the defrosting operation is performed by switching the two evaporators of the first and second evaporators 5 and 7 to the radiator for defrosting and the original evaporator by switching the path respectively. While defrosting is performed efficiently in a short time and the capacity is reduced, hot water heating by the radiator 3 can be continued, and hot water supply and heating are temporarily stopped especially in winter. It can be avoided and is very convenient to use.

更に冬期の運転時、第2蒸発器7と放熱器3へと分流して流通する高温高圧の冷媒量を、第1温度検知手段8の検知温度により第2調節弁15の開度を調節し、例えば第1蒸発器5の着霜が進んで来た時の温度で、第2調節弁15の第2蒸発器7側の流量を大きくし、除霜まで時間がかかるようにし、それまでは放熱器3側が多くなるように第2調節弁15を絞り込み、加熱量が極力低下しないように制御出来、状況に応じた加熱運転を得ることが出来る。 Further, during the winter operation, the amount of the high-temperature and high-pressure refrigerant that is divided and distributed to the second evaporator 7 and the radiator 3 is adjusted, and the opening degree of the second control valve 15 is adjusted by the detected temperature of the first temperature detecting means 8. For example, at the temperature when the frosting of the first evaporator 5 has progressed, the flow rate on the second evaporator 7 side of the second control valve 15 is increased so that it takes time to defrost, The second control valve 15 can be narrowed down so that the radiator 3 side is increased, and the heating amount can be controlled so as not to decrease as much as possible, and a heating operation corresponding to the situation can be obtained.

又第1蒸発器5の除霜時でも、第1蒸発器5と放熱器3へと分流して流通する高温高圧の冷媒量を、第1温度検知手段8の検知温度により第1調節弁15の開度を調節し、第1蒸発器5の除霜の進行状況に応じて、第1調節弁15の開度を絞り込むようにすれば、除霜の進み具合により放熱器3の加熱力を上昇させて、無駄のない効率的な加熱が行えるものである。 Further, even when the first evaporator 5 is defrosted, the amount of the high-temperature and high-pressure refrigerant that is divided and circulated to the first evaporator 5 and the radiator 3 is changed according to the detected temperature of the first temperature detecting means 8. If the opening degree of the first evaporator 5 is adjusted and the opening degree of the first control valve 15 is narrowed according to the progress of defrosting of the first evaporator 5, the heating power of the radiator 3 is increased depending on the progress of defrosting. It can be raised to perform efficient heating without waste.

尚、この一実施形態では、放熱器3は給湯用の温水を得るように加熱するが、これに限定されることなく、例えば暖房用の熱媒体を加熱して暖房に利用するようにしても良く、又風呂の保温や追い焚き用に利用しても良いことは勿論である。 In this embodiment, the radiator 3 is heated so as to obtain hot water for hot water supply. However, the present invention is not limited to this. For example, a heating heat medium may be heated and used for heating. Of course, it may also be used for keeping the bath warm or reheating.

この発明の一実施形態を示すヒートポンプ式加熱装置の冬期以外の冷媒回路図Refrigerant circuit diagram other than winter of heat pump heating device showing one embodiment of the present invention 同冬期及び第2蒸発器の除霜運転時の冷媒回路図Refrigerant circuit diagram during the same winter and defrosting operation of the second evaporator 同冬期で第1蒸発器の除霜運転時の冷媒回路図Refrigerant circuit diagram during defrosting operation of the first evaporator in the same winter

符号の説明Explanation of symbols

1 冷媒循環回路
2 圧縮機
3 放熱器
4 膨張弁
5 第1蒸発器
7 第2蒸発器
8 第1温度検出手段
9 第2温度検出手段
12 第1ホットガスバイパス経路
13 第2ホットガスバイパス経路
DESCRIPTION OF SYMBOLS 1 Refrigerant | circulatory circuit 2 Compressor 3 Radiator 4 Expansion valve 5 1st evaporator 7 2nd evaporator 8 1st temperature detection means 9 2nd temperature detection means 12 1st hot gas bypass path 13 2nd hot gas bypass path

Claims (3)

冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を非加熱流体と熱交換させる放熱器と、前記放熱器から吐出した冷媒を減圧する膨張弁と、前記膨張弁で減圧された冷媒を蒸発させる第1蒸発器と第2蒸発器を備えたヒートポンプ式加熱装置に於いて、前記第1、第2蒸発器は、冬期以外は膨張弁と圧縮機との間に接続され、冬期には第1蒸発器が膨張弁と圧縮機との間で、第2蒸発器が圧縮機と膨張弁との間に接続されるように流路切換し、更に第1蒸発器の除霜時には、第1蒸発器を圧縮機と膨張弁との間で、第2蒸発器を膨張弁と圧縮機との間に接続されるように流路切換する事を特徴とするヒートポンプ式加熱装置。 A compressor that compresses the refrigerant; a radiator that exchanges heat between the refrigerant compressed by the compressor and an unheated fluid; an expansion valve that depressurizes the refrigerant discharged from the radiator; and the refrigerant that is decompressed by the expansion valve In the heat pump type heating apparatus provided with the first evaporator and the second evaporator for evaporating the first and second evaporators, the first and second evaporators are connected between the expansion valve and the compressor except in winter, and in winter Switch the flow path so that the first evaporator is connected between the expansion valve and the compressor, and the second evaporator is connected between the compressor and the expansion valve, and when the first evaporator is defrosted, A heat pump heating apparatus, wherein the flow path is switched so that the first evaporator is connected between the compressor and the expansion valve, and the second evaporator is connected between the expansion valve and the compressor. 前記冬期の接続では、放熱器に流入する冷媒量と第2蒸発器に流入する冷媒量を調節する調節手段を備えた事を特徴とする請求項1記載のヒートポンプ式加熱装置。 2. The heat pump heating apparatus according to claim 1, further comprising adjusting means for adjusting the amount of refrigerant flowing into the radiator and the amount of refrigerant flowing into the second evaporator in the winter connection. 前記第1蒸発器の除霜時では、放熱器に流入する冷媒量と第1蒸発器に流入する冷媒量を調節する調節手段を備えた事を特徴とする請求項1記載のヒートポンプ式加熱装置。 2. The heat pump heating device according to claim 1, further comprising adjusting means for adjusting the amount of refrigerant flowing into the radiator and the amount of refrigerant flowing into the first evaporator during defrosting of the first evaporator. .
JP2006321809A 2006-11-29 2006-11-29 Heat pump type heating device Pending JP2008134025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321809A JP2008134025A (en) 2006-11-29 2006-11-29 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321809A JP2008134025A (en) 2006-11-29 2006-11-29 Heat pump type heating device

Publications (1)

Publication Number Publication Date
JP2008134025A true JP2008134025A (en) 2008-06-12

Family

ID=39558992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321809A Pending JP2008134025A (en) 2006-11-29 2006-11-29 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP2008134025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device
WO2016113912A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigerating and air conditioning device
JP2016151410A (en) * 2015-02-19 2016-08-22 三菱重工業株式会社 Transport refrigeration unit
JP2019203646A (en) * 2018-05-23 2019-11-28 株式会社デンソー Refrigeration device for transportation
KR20210006680A (en) * 2019-07-09 2021-01-19 경동산업(주) Simultaneous Refrigeration and Defrost Operating System of Low Temperature Refrigeration Warehouse

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device
WO2016113912A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigerating and air conditioning device
JP2016151410A (en) * 2015-02-19 2016-08-22 三菱重工業株式会社 Transport refrigeration unit
JP2019203646A (en) * 2018-05-23 2019-11-28 株式会社デンソー Refrigeration device for transportation
WO2019225237A1 (en) * 2018-05-23 2019-11-28 株式会社デンソー Refrigeration device for transportation
JP7099046B2 (en) 2018-05-23 2022-07-12 株式会社デンソー Refrigeration equipment for transportation
KR20210006680A (en) * 2019-07-09 2021-01-19 경동산업(주) Simultaneous Refrigeration and Defrost Operating System of Low Temperature Refrigeration Warehouse
KR102240394B1 (en) * 2019-07-09 2021-04-14 경동산업(주) Simultaneous Refrigeration and Defrost Operating System of Low Temperature Refrigeration Warehouse

Similar Documents

Publication Publication Date Title
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
JP5868498B2 (en) Heat pump equipment
JP4771721B2 (en) Air conditioner
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
JP3759724B2 (en) refrigerator
US20110113805A1 (en) Air conditioner
JP2008032376A (en) Heat pump liquid heating air conditioner or apparatus
CN107110546A (en) Conditioner
JP2011127792A (en) Air heat source heat pump hot water supply and air conditioning device
JP2004218944A (en) Heat pump air conditioning and water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2008170015A (en) Refrigeration cycle device with warm water container
JP2008134025A (en) Heat pump type heating device
JP6415709B2 (en) Air conditioner and indoor unit
JP2015068564A (en) Heat pump system and heat pump type water heater
JP2018066515A (en) Method of controlling heat pump hot water heating system
JP2007071478A (en) Heat pump device
JP6529579B2 (en) Heat pump system
JP3418891B2 (en) Refrigeration equipment
JP2003269820A (en) Drying method and cold air dryer
JP6886701B2 (en) Dehumidifying blower
JP2011127778A (en) Fluid utilization system and operation control method of the same
WO2007066579A1 (en) Heat pump hot-water supply device
JP2009085476A (en) Heat pump water heater
JP6029569B2 (en) Heat pump system and heat pump type water heater