JP2008132702A - Screw for resin extruder, resin extruder and pelletizing method - Google Patents

Screw for resin extruder, resin extruder and pelletizing method Download PDF

Info

Publication number
JP2008132702A
JP2008132702A JP2006321506A JP2006321506A JP2008132702A JP 2008132702 A JP2008132702 A JP 2008132702A JP 2006321506 A JP2006321506 A JP 2006321506A JP 2006321506 A JP2006321506 A JP 2006321506A JP 2008132702 A JP2008132702 A JP 2008132702A
Authority
JP
Japan
Prior art keywords
resin
screw
filler
kneading
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321506A
Other languages
Japanese (ja)
Other versions
JP4968828B2 (en
Inventor
Chuichi Hoshi
忠一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshi Plastic KK
Original Assignee
Hoshi Plastic KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshi Plastic KK filed Critical Hoshi Plastic KK
Priority to JP2006321506A priority Critical patent/JP4968828B2/en
Publication of JP2008132702A publication Critical patent/JP2008132702A/en
Application granted granted Critical
Publication of JP4968828B2 publication Critical patent/JP4968828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw for a resin extruder which can prevent a resin material from heat deleterioration and enables uniform kneading of a filler by dispersing it inside the resin without damaging the filler and sufficient kneading of different resin materials, the resin extruder, and a pelletizing method thereof. <P>SOLUTION: The screw 10 for the resin extruder has a bite part 11a which performs simultaneous uptaking and feeding of the resin material, a high compression pressure dissolution starting part 11b which initiates simultaneous pressurizing and dissolution of the heated resin material and a high compression pressure secondary dissolution part 11c which performs further pressurizing and complete dissolution of the resin material. In addition, high compression pressure ultrakneading parts 11a-1 and 2 having a plurality of juxtaposed rows of gear-like uneven sections are arranged halfway of the screw 10 for the resin extruder in place of the helical impeller blade 12 by dividing a helical impeller blade 12 of a screw body 10a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、加熱手段を備えたシリンダー内に回転駆動可能に収容され、ホッパーからシリンダー内に投入された原料樹脂を回転送りしながら溶融ないし混練し、シリンダー外に押出し成形するための樹脂押出機用スクリューと、これを含む樹脂押出機、および樹脂押出機を用いたペレット製造方法に関する。   The present invention is a resin extruder that is housed in a cylinder equipped with a heating means so as to be rotationally driven, and melts or kneads while rotating and feeding a raw material resin introduced into the cylinder from a hopper, and extrudes out of the cylinder. The present invention relates to a screw, a resin extruder including the screw, and a pellet manufacturing method using the resin extruder.

図15は、従来より周知のペレット製造装置の全体概略図を示すものであり、このペレット製造装置は、原材料の供給口01、ガス抜き口02、ヒータ03等を有する押出機の加熱筒であるシリンダー(バレル)04内に、モータ05により回転駆動される樹脂押出機用スクリュー06が嵌挿されて構成されている。   FIG. 15 shows an overall schematic diagram of a conventionally known pellet manufacturing apparatus, which is a heating cylinder of an extruder having a raw material supply port 01, a gas vent port 02, a heater 03 and the like. A resin extruder screw 06 that is rotationally driven by a motor 05 is fitted and inserted into a cylinder (barrel) 04.

シリンダー04内に投入された原料樹脂は、樹脂押出機用スクリュー06の回転送り中にヒータ03の熱により溶融されると共に、樹脂押出機用スクリュー06の回転により混練されて、押出機先端のダイスヘッド07より溶解したストランドAが押し出される。このストランドAは、水槽内08に引き込まれて水冷されてから、水槽08より引き出されてエア吸引式の図示しない水切り装置により水切りされた後、ストランド切断機により切断されてペレット化されるようになっている。   The raw material resin charged in the cylinder 04 is melted by the heat of the heater 03 during the rotational feed of the resin extruder screw 06 and is kneaded by the rotation of the resin extruder screw 06 to form a die at the tip of the extruder. The dissolved strand A is extruded from the head 07. The strand A is drawn into the water tank 08 and cooled with water, and then pulled out from the water tank 08 and drained by an air suction type drainer (not shown), and then cut by a strand cutter to be pelletized. It has become.

樹脂押出機用スクリュー06は用途に応じて様々な種類が存在するが、例えば、フライト部の有効長さと直径の比率を7〜14とし、リード角を7〜21度で形成することで、スクリューの有効長さの短縮が可能となり、従来と同様の回転数でも樹脂の送り速度が減速されて、シリンダー内壁に樹脂が押付けられる時間が長くなり、投入された樹脂がスクリューのピッチ間に十分に充填されるため、熱効率が向上して混練性も良くなり、スリップが低減されて樹脂の送り効率を向上するものが知られている(特許文献1参照。)。   There are various types of resin extruder screw 06 depending on the application, for example, the ratio of the effective length and the diameter of the flight part is 7 to 14, and the lead angle is 7 to 21 degrees. The effective length of the resin can be shortened, the resin feed speed is reduced even at the same rotational speed as before, and the time for which the resin is pressed against the inner wall of the cylinder becomes longer. Since it is filled, thermal efficiency is improved, kneadability is improved, slip is reduced, and resin feeding efficiency is improved (see Patent Document 1).

特開2001−58347号公報JP 2001-58347 A

しかしながら、前述したような特許文献1に記載の樹脂押出機用スクリューを用いた従来技術では、原料樹脂が溶解するタイミングでシリンダー内を無酸素状態とすることは困難であり、原料樹脂と酸素とが混在する所に熱を加えて混練するため、原料樹脂の種類によっては熱劣化を招きやすく、既にリサイクルまたは着色ないしコンパウンドされた原料樹脂には適用することができないという問題があった。   However, in the conventional technique using the resin extruder screw described in Patent Document 1 as described above, it is difficult to make the inside of the cylinder oxygen-free at the timing when the raw resin is dissolved. However, depending on the type of raw material resin, heat deterioration is likely to occur, and there is a problem that it cannot be applied to a raw material resin that has already been recycled, colored, or compounded.

また、原料樹脂のフィラーとして、例えばカーボン繊維等の繊維状物質を混入するに当たっては、繊維の分散を平均化させるような十分な混練は困難であり、その結果、繊維状物質はペレット表面に付着した程度の成形品が多く、ペレットの内部に入り込まないおそれがあり、ほとんど使用されていないのが実情であった。   In addition, when mixing a fibrous material such as carbon fiber, for example, as a raw material resin filler, it is difficult to perform sufficient kneading to average the fiber dispersion, and as a result, the fibrous material adheres to the pellet surface. There were many molded products of the same extent, and there was a possibility that they would not enter the inside of the pellets, and the fact was that they were hardly used.

なお、原料樹脂に繊維状物質を混入する場合、樹脂押出機用スクリューを2本平行に密に配置して成る2軸混練押出機を用いることも知られているが、この押出機であるとスクリューとスクリューの間に隙間がなく、混入した繊維が粉状になる位まで破損してしまう。そのため、強度的にも導電性の面でも不十分な成形品となり、目的とする成形品を得ることができないという問題があった。   In addition, when mixing a fibrous substance with raw material resin, although it is also known to use the twin-screw kneading extruder which arrange | positions two screws for resin extruders densely in parallel, There is no gap between the screws, and the mixed fibers are damaged to a powdery state. Therefore, there is a problem that the molded product is insufficient in terms of strength and conductivity, and the intended molded product cannot be obtained.

さらに、軟化点や溶融温度が大きく異なる複数種類の原料樹脂を混合するような場合には、ミクロン単位で十分に分散混合することは不可能であり、異樹脂の混入により成形品が層状に破損しやすいものとなって廃棄処分を余儀なくされたり、各樹脂の長所を組合わせた複合材料の成形はできないという問題があった。   In addition, when mixing multiple types of raw material resins with greatly different softening points and melting temperatures, it is impossible to sufficiently disperse and mix in micron units, and the molded product is broken into layers due to the mixing of different resins. However, it is difficult to dispose of the composite material, and it is impossible to mold a composite material combining the advantages of each resin.

本発明は、以上のような従来の技術が有する問題点に着目してなされたもので、原料樹脂の溶解時における無酸素状態での混練を可能とし、原料樹脂の熱劣化を防ぐことができ、また、フィラーを破損させることなく樹脂内部に分散させて平均化させる混練を可能とし、成形品の品質向上を図ることができ、さらに、異なる原料樹脂の十分な混練を可能とし、今までは分子レベルでメーカーの重合過程でのみ生産できた物を、ミクロン単位ではあるが分散混合により成形できる樹脂押出機用スクリュー、樹脂押出機、およびペレット製造方法を提供することを目的とする。   The present invention has been made paying attention to the problems of the conventional techniques as described above, and enables kneading in an oxygen-free state when the raw material resin is dissolved, thereby preventing thermal deterioration of the raw material resin. In addition, it is possible to knead by dispersing and averaging inside the resin without damaging the filler, improving the quality of the molded product, and further enabling sufficient kneading of different raw resin, An object of the present invention is to provide a screw for a resin extruder, a resin extruder, and a method for producing pellets, which can be produced only by a polymerization process of a manufacturer at a molecular level, but in a micron unit by dispersion mixing.

前述した目的を達成するための本発明の要旨とするところは、以下の各項の発明に存する。
[1]加熱手段を備えたシリンダー(50)内に回転駆動可能に収容され、ホッパー(60)からシリンダー(50)内に投入された原料樹脂を回転送りしながら溶融ないし混練し、シリンダー(50)外に押出し成形するための樹脂押出機用スクリュー(10)において、
スクリュー本体(10a)で螺旋羽根(12)が周回する有効長さ部位(11)は、前記ホッパー(60)を配置する基端側より回転送り方向に向かって順に、
前記ホッパー(60)から投入された原料樹脂を取り込みつつ送り出す喰い込み部(11a)と、
前記喰い込み部(11a)より漸次径が拡大し、加熱された原料樹脂を加圧しながら溶解を開始させる高圧縮加圧溶解開始部(11b)と、
前記高圧縮加圧溶解開始部(11b)の最大径と同径以上で、原料樹脂をさらに加圧しながら全て溶解させる高圧縮加圧2次溶解部(11c)と、
前記高圧縮加圧2次溶解部(11c)より径が小さく、原料樹脂を減圧して内部のガスを脱気するガス抜き用減圧部(11d)と、
前記ガス抜き用減圧部(11d)の最大径と同径以下で、原料樹脂にフィラーを投入するフィラー投入用減圧部(11e)と、
前記フィラー投入用減圧部(11e)より漸次径が拡大し、フィラーを混入した原料樹脂を加圧しながら再び混練する高圧縮加圧再混練開始部(11g)と、
前記高圧縮加圧再混練開始部(11g)の最大径と同径以上で、フィラーを混入した原料樹脂をさらに加圧しながら混練する高圧縮加圧最終混練部(11h)と、
前記高圧縮加圧最終混練部(11h)より径が小さく、フィラーを混入した原料樹脂をシリンダー(50)外に押出し成形する減圧押出部(11i)と、に少なくとも区画され、
前記高圧縮加圧2次溶解部(11c)と前記ガス抜き用減圧部(11d)との間、および/または前記高圧縮加圧最終混練部(11h)の代わりに、下流側の部位の最大径と同径以上で、かつスクリュー本体(10a)の螺旋羽根(12)を分断して、該螺旋羽根(12)の代わりに歯車状に並列の複数の凹凸を有して成る高圧縮加圧超混練部(11s−1,2)を設けたことを特徴とする樹脂押出機用スクリュー(10)。
The gist of the present invention for achieving the object described above resides in the inventions of the following items.
[1] A cylinder (50) provided with a heating means is rotatably accommodated, and the raw material resin put into the cylinder (50) from the hopper (60) is melted or kneaded while being rotated, and the cylinder (50 ) In a screw (10) for a resin extruder for extruding outside,
The effective length part (11) around which the spiral blade (12) circulates in the screw body (10a) is sequentially from the base end side where the hopper (60) is arranged toward the rotational feed direction.
A biting part (11a) for feeding out the raw material resin introduced from the hopper (60);
A high-compression pressure dissolution start part (11b) that gradually expands from the biting part (11a) and starts melting while pressurizing the heated raw resin;
A high-compression pressurization secondary dissolution part (11c) that is not less than the same diameter as the maximum diameter of the high-compression pressurization and dissolution start part (11b) and dissolves all of the raw resin while further pressurizing;
A degassing decompression section (11d) having a smaller diameter than the high-compression pressurization secondary dissolution section (11c) and depressurizing the raw resin to degas the internal gas;
A filler charging decompression section (11e) that is equal to or less than the maximum diameter of the degassing decompression section (11d) and that feeds filler into the raw material resin;
A high-compression pressurization re-kneading start part (11g) in which the diameter gradually increases from the filler charging pressure-reducing part (11e) and the raw material resin mixed with the filler is kneaded again while being pressurized;
A high-compression pressurization final kneading part (11h) that is equal to or larger than the maximum diameter of the high-compression pressurization re-kneading start part (11g) and knead while further pressurizing the raw material resin mixed with the filler;
The pressure reduction extrusion part (11i) which is smaller in diameter than the high compression pressure final kneading part (11h) and extrudes and molds the raw material resin mixed with the filler outside the cylinder (50),
Between the high-compression pressurization secondary dissolution part (11c) and the degassing decompression part (11d) and / or in place of the high-compression pressurization final kneading part (11h), High compression and compression with a diameter equal to or greater than the diameter, and by dividing the spiral blade (12) of the screw body (10a), and having a plurality of concavities and convexities parallel to each other in the form of a gear instead of the spiral blade (12) The screw (10) for resin extruders provided with the super kneading part (11s-1, 2).

[2]前記高圧縮加圧超混練部(11s−1,2)は、前記複数の凹凸をスクリュー本体(10a)の軸方向に対しそれぞれ傾斜ないし平行に延ばし、各凹凸を軸方向に少なくとも2以上列設して成ることを特徴とする[1]に記載の樹脂押出機用スクリュー(10)。   [2] The high compression pressure super-kneading section (11s-1, 2) extends the plurality of irregularities so as to be inclined or parallel to the axial direction of the screw body (10a), and each irregularity is at least 2 in the axial direction. The screw (10) for resin extruders according to [1], wherein the screws are arranged as described above.

[3]前記[1]または[2]に記載の樹脂押出機用スクリュー(10)を、シリンダー(50)内に回転可能に収容して成る樹脂押出機(1)であって、
前記樹脂押出機用スクリュー(10)のスクリュー本体(10a)における螺旋羽根(12)の外周径、および前記高圧縮加圧超混練部(11s−1,2)の外周径は、それぞれ略同一に形成され、
前記シリンダー(50)の内径は、前記スクリュー本体(10a)における螺旋羽根(12)の外周端、および前記高圧縮加圧超混練部(11s−1,2)の外周端に対して、所定の隙間が生じる大きさに一律に形成されたことを特徴とする樹脂押出機(1)。
[3] A resin extruder (1) comprising the resin extruder screw (10) according to [1] or [2], which is rotatably accommodated in a cylinder (50),
The outer peripheral diameter of the spiral blade (12) in the screw body (10a) of the screw (10) for the resin extruder and the outer peripheral diameter of the high compression pressure super kneading part (11s-1, 2) are substantially the same. Formed,
The inner diameter of the cylinder (50) is predetermined with respect to the outer peripheral end of the spiral blade (12) in the screw main body (10a) and the outer peripheral end of the high-compression pressure super-kneading part (11s-1, 2). A resin extruder (1) characterized in that it is uniformly formed in a size that creates a gap.

[4]前記シリンダー(50)の内壁と前記スクリュー本体(10a)の外周との隙間のうち、前記高圧縮加圧2次溶解部(11c)の隙間を前記喰い込み部(11a)の隙間に対して約1/3に設定したことを特徴とする[3]に記載の樹脂押出機(1)。   [4] Of the gap between the inner wall of the cylinder (50) and the outer periphery of the screw body (10a), the gap of the high compression pressure secondary dissolution part (11c) is the gap of the biting part (11a). On the other hand, the resin extruder (1) according to [3], which is set to about 3.

[5]前記スクリュー本体(10a)のうち前記ガス抜き用減圧部(11d)に対応する前記シリンダー(50)途中に、外部にガスを排出するためのガス抜き口(52)を設け、
前記スクリュー本体(10a)のうち前記フィラー投入用減圧部(11e)に対応する前記シリンダー(50)途中に、繊維状物質を混入するためのフィラー投入口(53)を設けたことを特徴とする[4]に記載の樹脂押出機(1)。
[5] A gas vent (52) for discharging gas to the outside is provided in the middle of the cylinder (50) corresponding to the degassing decompression section (11d) in the screw body (10a).
A filler charging port (53) for mixing a fibrous substance is provided in the middle of the cylinder (50) corresponding to the filler charging pressure reducing portion (11e) in the screw body (10a). The resin extruder (1) according to [4].

[6]前記スクリュー本体(10a)のうち前記フィラー投入用減圧部(11e)に対応する前記シリンダー(50)途中に、前記フィラー投入口(53)の下流側で油を混入するための油投入口(54)を設けたことを特徴とする[5]に記載の樹脂押出機(1)。   [6] Oil supply for mixing oil on the downstream side of the filler input port (53) in the middle of the cylinder (50) corresponding to the filler input pressure reducing part (11e) in the screw body (10a) The resin extruder (1) according to [5], wherein a mouth (54) is provided.

[7]前記[3],[4],[5]または[6]に記載の樹脂押出機(1)を用いて、熱可塑性ペレットを製造するペレット製造方法。   [7] A pellet production method for producing thermoplastic pellets using the resin extruder (1) according to [3], [4], [5] or [6].

[8]前記[5]または[6]に記載の樹脂押出機(1)を用いて、フィラーとしてカーボン繊維を混入した導電性を有する熱可塑性ペレットを製造するペレット製造方法。   [8] A pellet manufacturing method for manufacturing a conductive thermoplastic pellet mixed with carbon fiber as a filler, using the resin extruder (1) according to the above [5] or [6].

次に前述した解決手段に基づく作用を説明する。
前記[1]に記載の樹脂押出機用スクリュー(10)によれば、シリンダー(50)内のスクリュー本体(10a)を回転駆動させて、ホッパー(60)から原料樹脂を投入すると、原料樹脂はスクリュー本体(10a)の先ず喰い込み部(11a)により取り込まれつつ送り出されて、該喰い込み部(11a)より漸次径が拡大する高圧縮加圧溶解開始部(11b)へ送られる。高圧縮加圧溶解開始部(11b)では、加熱された原料樹脂が加圧されながら溶解を開始する。
Next, the operation based on the above solution will be described.
According to the screw (10) for a resin extruder described in [1], when the screw body (10a) in the cylinder (50) is driven to rotate and the raw resin is charged from the hopper (60), the raw resin is The screw body (10a) is first fed while being taken in by the biting part (11a), and sent to the high compression pressure dissolution starting part (11b) whose diameter gradually increases from the biting part (11a). In the high compression pressure dissolution start portion (11b), the heated raw material resin starts to be melted while being pressurized.

続いて、原料樹脂は高圧縮加圧2次溶解部(11c)へ送られて、さらに加圧されながら全て溶解することになる。高圧縮加圧2次溶解部(11c)は、前記高圧縮加圧溶解開始部(11b)の最大径と同径以上であり、螺旋羽根(12)のリード間で原料樹脂は全て溶けた状態で均一にムラなく混練される。かかる高圧縮加圧2次溶解部(11c)では、空気が混じることなく無酸素状態となり、原料樹脂のスリップも低減されて混練が連続することにより、高圧縮加圧2次溶解部(11c)以降の領域でも焼けや焦げが発生することはない。   Subsequently, the raw material resin is sent to the high compression / pressure secondary dissolution part (11c), and all the resin is dissolved while being further pressurized. The high compression pressure secondary dissolution part (11c) has a diameter equal to or larger than the maximum diameter of the high compression pressure dissolution start part (11b), and the raw material resin is completely melted between the leads of the spiral blade (12). And uniformly kneaded. In such a high compression / pressurization secondary dissolution part (11c), air is not mixed and is in an oxygen-free state, the slip of the raw resin is reduced, and kneading is continued, whereby the high compression / pressure secondary dissolution part (11c). There will be no burning or scorching in the subsequent areas.

高圧縮加圧2次溶解部(11c)で混練された原料樹脂は、高圧縮加圧2次溶解部(11c)より径が小さいガス抜き用減圧部(11d)に送られて、減圧により内部のガスが脱気された後、ガス抜き用減圧部(11d)の最大径と同径以下のフィラー投入用減圧部(11e)へ送られ、例えばフィラーとして、粉、繊維、油等が原料樹脂に混入される。フィラーの具体的な種類は、目的とする成形品の性質に応じて適宜選択されるものである。   The raw material resin kneaded in the high compression pressure secondary dissolution part (11c) is sent to the degassing pressure reduction part (11d) having a smaller diameter than the high compression pressure secondary dissolution part (11c), After the gas is degassed, it is sent to a filler charging decompression section (11e) having a diameter equal to or smaller than the maximum diameter of the degassing decompression section (11d). It is mixed in. The specific type of filler is appropriately selected according to the properties of the target molded product.

フィラーが混入された原料樹脂は、続いて、前記フィラー投入用減圧部(11e)より漸次径が拡大する高圧縮加圧再混練開始部(11g)へ送られて、再び加圧されながら混練される。そして、高圧縮加圧再混練開始部(11g)の最大径と同径以上の高圧縮加圧最終混練部(11h)へ送られて、さらに加圧されながら混練される。その後、高圧縮加圧最終混練部(11h)より径が小さい減圧押出部(11i)を経て、フィラーが混入された原料樹脂はシリンダー(50)外に押出し成形されることになる。   The raw material resin mixed with the filler is subsequently sent from the filler charging decompression section (11e) to the high compression pressure re-kneading start section (11g) whose diameter gradually increases and is kneaded while being pressurized again. The And it sends to the high compression press final kneading part (11h) more than the same diameter as the maximum diameter of the high compression press re-kneading start part (11g), and it kneads | mixes it while being further pressurized. Thereafter, the raw material resin mixed with the filler is extruded out of the cylinder (50) through the reduced pressure extruding section (11i) having a smaller diameter than the high compression press final kneading section (11h).

特に、本樹脂押出機用スクリュー(10)によれば、前記高圧縮加圧2次溶解部(11c)と前記ガス抜き用減圧部(11d)との間、および/または前記高圧縮加圧最終混練部(11h)の代わりに、これらの下流側の部位の最大径と同径以上で、かつスクリュー本体(10a)の螺旋羽根(12)を分断して、該螺旋羽根(12)の代わりに歯車状に並列の複数の凹凸を有して成る高圧縮加圧超混練部(11s−1,2)が設けられている。   In particular, according to the screw (10) for the resin extruder, between the high-compression pressurization secondary dissolution part (11c) and the degassing decompression part (11d) and / or the high-compression pressurization final. Instead of the kneading part (11h), the spiral blades (12) of the screw main body (10a) having a diameter equal to or larger than the maximum diameter of the downstream portion are divided and replaced with the spiral blades (12). A high compression pressure super kneading section (11s-1, 2) having a plurality of projections and depressions arranged in parallel in a gear shape is provided.

この高圧縮加圧超混練部(11s−1)が、前記高圧縮加圧2次溶解部(11c)と前記ガス抜き用減圧部(11d)との間にある場合には、前記高圧縮加圧2次溶解部(11c)による混練に直ぐに続けて、高圧縮加圧超混練部(11s−1)により原料樹脂はいっそう強固かつ十分に混練されることになる。従って、軟化点や溶融温度が大きく異なる複数種類の原料樹脂の十分な混練を可能とし、今までは分子レベルでメーカーの重合過程でのみ生産できた物を、ミクロン単位ではあるが分散混合により成形でき、目的に合わせた樹脂配合を可能として各樹脂の長所を組合わせた成形品を製造することができる。   When the high compression / pressure super-kneading part (11s-1) is located between the high compression / pressure secondary dissolution part (11c) and the degassing decompression part (11d), Immediately after the kneading by the pressure secondary dissolution part (11c), the raw material resin is kneaded more firmly and sufficiently by the high compression pressure super kneading part (11s-1). Therefore, it is possible to sufficiently knead multiple types of raw material resins with greatly different softening points and melting temperatures, and until now, products that could only be produced by the manufacturer's polymerization process at the molecular level are molded by dispersive mixing in micron units. In addition, it is possible to produce a molded product that combines the advantages of each resin by enabling the resin blending according to the purpose.

さらにまた、高圧縮加圧超混練部(11s−2)が、前記高圧縮加圧最終混練部(11h)の代わりにある場合には、該高圧縮加圧最終混練部(11h)よりも、フィラーが混入された原料樹脂はいっそう強固かつ十分に混練されることになる。従って、原料樹脂に混入されたフィラーを破損させることなく、樹脂内部に満遍なく分散させて平均化させることが可能となり、フィラー混入による成形品の品質を向上させることができる。   Furthermore, when the high compression pressure super kneading part (11s-2) is present instead of the high compression pressure final kneading part (11h), the high compression pressure final kneading part (11h) The raw material resin mixed with the filler is kneaded more firmly and sufficiently. Therefore, the filler mixed in the raw material resin can be uniformly dispersed inside the resin without being damaged, and the quality of a molded product by mixing the filler can be improved.

前記高圧縮加圧超混練部(11s−1,2)は、具体的には例えば、前記[2]に記載したように、複数の凹凸をスクリュー本体(10a)の軸方向に対しそれぞれ傾斜ないし平行に延ばし、各凹凸を軸方向に少なくとも2以上列設して成るように構成すると良い。これにより、螺旋羽根(12)とは異なる強力な混練性能を得ることができる。   Specifically, as described in [2] above, for example, the high compression / pressure super kneading section (11s-1, 2) may be configured such that a plurality of irregularities are inclined with respect to the axial direction of the screw body (10a). It is good to comprise so that it may extend in parallel and at least 2 or more may be arranged in the axial direction. Thereby, the powerful kneading | mixing performance different from a spiral blade (12) can be obtained.

また、前記[3]に記載したように、前記樹脂押出機用スクリュー(10)を、シリンダー(50)内に回転可能に収容して成る樹脂押出機(1)であって、前記樹脂押出機用スクリュー(10)のスクリュー本体(10a)における螺旋羽根(12)の外周径、および前記高圧縮加圧超混練部(11s−1,2)の外周径を、それぞれ略同一に形成し、前記シリンダー(50)の内径を、前記スクリュー本体(10a)における螺旋羽根(12)の外周端、および前記高圧縮加圧超混練部(11s−1,2)の外周端に対して、所定の隙間が生じる大きさに一律に形成すれば良い。これにより、容易な構成となり製造コストを低減することが可能となる。   In addition, as described in [3] above, the resin extruder (1) is configured such that the resin extruder screw (10) is rotatably accommodated in a cylinder (50), the resin extruder The outer peripheral diameter of the spiral blade (12) in the screw main body (10a) of the screw (10) and the outer peripheral diameter of the high compression pressure super kneading part (11s-1, 2) are formed substantially the same, The inner diameter of the cylinder (50) is set at a predetermined gap with respect to the outer peripheral end of the spiral blade (12) in the screw body (10a) and the outer peripheral end of the high compression / pressure super-kneading part (11s-1, 2). What is necessary is just to form uniformly in the magnitude | size which produces. Thereby, it becomes an easy structure and it becomes possible to reduce manufacturing cost.

また、前記[4]に記載したように、前記シリンダー(50)の内壁と前記スクリュー本体(10a)の外周との隙間のうち、前記高圧縮加圧2次溶解部(11c)の隙間を前記喰い込み部(11a)の隙間に対して約1/3に設定すると良い。これにより、原料樹脂が前記高圧縮加圧2次溶解部(11c)に至るまでの間に空気が混入することを確実に防ぐことができ、原料樹脂の溶解時における無酸素状態を実現することができる。   In addition, as described in [4] above, among the gaps between the inner wall of the cylinder (50) and the outer periphery of the screw body (10a), the gap of the high compression pressure secondary dissolution part (11c) is It is good to set to about 1/3 with respect to the clearance gap between the biting parts (11a). As a result, it is possible to reliably prevent air from being mixed in until the raw material resin reaches the high-compression-pressurized secondary melting portion (11c), and realize an oxygen-free state when the raw material resin is dissolved. Can do.

また、前記[5]に記載したように、前記スクリュー本体(10a)のうちガス抜き用減圧部(11d)に対応するシリンダー(50)の途中に、外部にガスを排出するためのガス抜き口(52)を設け、前記スクリュー本体(10a)のうちフィラー投入用減圧部(11e)に対応するシリンダー(50)途中に、繊維状物質を混入するためのフィラー投入口(53)を設けると良い。これにより、原料樹脂と比重が大きく異なるカーボン繊維、ガラス繊維、ステンレス繊維等のフィラーを前記フィラー投入口(53)から適宜投入することにより、原料樹脂とフィラーとが所望の比率で均等に混ぜ合わさった成形品を容易に製造することができる。   Further, as described in [5] above, a gas vent for exhausting gas to the outside in the middle of the cylinder (50) corresponding to the degassing decompression section (11d) of the screw body (10a). (52) is provided, and a filler inlet (53) for mixing a fibrous substance is preferably provided in the middle of the cylinder (50) corresponding to the filler charging decompression section (11e) in the screw body (10a). . As a result, fillers such as carbon fiber, glass fiber, and stainless fiber having a specific gravity greatly different from that of the raw material resin are appropriately introduced from the filler inlet (53) so that the raw material resin and the filler are mixed evenly at a desired ratio. The molded product can be easily manufactured.

また、前記[6]に記載したように、前記スクリュー本体(10a)のうちフィラー投入用減圧部(11e)に対応するシリンダー(50)途中に、前記フィラー投入口(53)の下流側で油を混入するための油投入口(54)を設けると良い。これにより、フィラーが混入された後の原料樹脂全体の硬度を下げることができ、より十分な混練性を得ることができ、また、成形品の滑り性能を高めることもできる。   Further, as described in [6] above, oil is provided downstream of the filler charging port (53) in the middle of the cylinder (50) corresponding to the filler charging pressure-reducing portion (11e) of the screw body (10a). It is advisable to provide an oil inlet (54) for mixing the oil. Thereby, the hardness of the whole raw material resin after a filler is mixed can be lowered | hung, more sufficient kneadability can be acquired, and the sliding performance of a molded article can also be improved.

また、前記[7]に記載したペレット製造方法によれば、前記樹脂押出機(1)を用いて、熱可塑性ペレットを効率良く容易に製造することができる。
ここで、前記[8]に記載したように、フィラーとしてカーボン繊維を混入した導電性を有する熱可塑性ペレットを製造する場合、かかるカーボン繊維を破損させることなく樹脂内部に分散させて平均化させる混練が可能となる。従って、成形品の優れた強度および導電性を実現することができる。
Moreover, according to the pellet manufacturing method described in said [7], a thermoplastic pellet can be manufactured efficiently and easily using the said resin extruder (1).
Here, as described in [8] above, when producing conductive thermoplastic pellets mixed with carbon fibers as fillers, kneading is performed by dispersing and averaging the carbon fibers inside the resin without damaging them. Is possible. Therefore, it is possible to achieve excellent strength and conductivity of the molded product.

本発明に係る樹脂押出機用スクリュー、樹脂押出機、およびペレット製造方法によれば、原料樹脂の溶解時における無酸素状態での混練を可能とし、原料樹脂の熱劣化を防ぐことができ、また、フィラーを破損させることなく樹脂内部に分散させて平均化させる混練を可能とし、成形品の品質向上を図ることができ、さらに、異なる原料樹脂の十分な混練を可能とし、今までは分子レベルでメーカーの重合過程でのみ生産できた物を、ミクロン単位ではあるが分散混合により成形することができる。   According to the resin extruder screw, the resin extruder, and the pellet manufacturing method according to the present invention, it is possible to knead in an oxygen-free state at the time of dissolution of the raw resin, and to prevent thermal deterioration of the raw resin. , It enables kneading by dispersing and averaging inside the resin without damaging the filler, improving the quality of the molded product, and also allowing sufficient kneading of different raw resin, until now at the molecular level However, products that can only be produced in the polymerization process of the manufacturer can be formed by dispersion mixing in micron units.

以下、図面に基づき本発明を代表する各種の実施の形態を説明する。
図1〜図11は、本発明の第1実施の形態を示している。
本実施の形態に係る樹脂押出機用スクリュー10は、加熱手段を備えたシリンダー50内に回転駆動可能に収容され、ホッパー60からシリンダー50内に投入された原料樹脂を回転送りしながら溶融ないし混練し、シリンダー50外に押出し成形するためのものである。
Hereinafter, various embodiments representing the present invention will be described with reference to the drawings.
1 to 11 show a first embodiment of the present invention.
The screw 10 for a resin extruder according to the present embodiment is accommodated in a cylinder 50 provided with a heating means so as to be rotationally driven, and is melted or kneaded while rotationally feeding a raw resin charged into the cylinder 50 from a hopper 60. For extruding out of the cylinder 50.

図1(a)は、樹脂押出機用スクリュー10を、シリンダー50内に回転可能に収容して成る樹脂押出機1のうちシリンダー50を縦方向に半割表示し、図1(b)は、樹脂押出機用スクリュー10の側面を表示したものである。図1に示すように、樹脂押出機用スクリュー10のスクリュー本体10aは、有効長さL分だけ延びるフライト部(有効長さ部位)11と、このフライト部11の基端側よりさらに軸方向に延出して動力源側に連結されるシャンク部13とから成る。スクリュー本体10aのうちフライト部11に亘って、螺旋羽根(スクリュー)12が所定ピッチで周回するように設けられている。   FIG. 1 (a) shows a half of the cylinder 50 in the longitudinal direction of the resin extruder 1 in which the resin extruder screw 10 is rotatably accommodated in the cylinder 50, and FIG. The side surface of the screw 10 for a resin extruder is displayed. As shown in FIG. 1, the screw body 10 a of the resin extruder screw 10 includes a flight part (effective length part) 11 extending by an effective length L, and a further axial direction than the base end side of the flight part 11. It consists of a shank portion 13 that extends and is connected to the power source side. Spiral blades (screws) 12 are provided so as to circulate at a predetermined pitch over the flight part 11 of the screw body 10a.

フライト部11は、ホッパー60が位置する基端側より回転送り方向に向かって順に、喰い込み部11aと、高圧縮加圧溶解開始部11bと、高圧縮加圧2次溶解部11cと、ガス抜き用減圧部11dと、フィラー投入用減圧部11eと、油投入用減圧部11fと、高圧縮加圧再混練開始部11gと、減圧押出部11iとに区画されている。なお、スクリュー本体10aを収納しているシリンダー50の内径は、その全長に亘り一定の大きさに設定されている。   The flight part 11 is a biting part 11a, a high-compression pressurization dissolution start part 11b, a high-compression pressurization secondary dissolution part 11c, and a gas in order from the base end side where the hopper 60 is located in the rotational feed direction. The pressure reduction part 11d for extraction, the pressure reduction part 11e for filler injection, the pressure reduction part 11f for oil injection, the high compression pressurization re-kneading start part 11g, and the pressure reduction extrusion part 11i are divided. In addition, the internal diameter of the cylinder 50 which accommodates the screw main body 10a is set to the fixed magnitude | size over the full length.

さらに、本実施の形態では、高圧縮加圧2次溶解部11cとガス抜き用減圧部11dとの間に、高圧縮加圧超混練部11s−1が設けられている。また、高圧縮加圧再混練開始部11gと減圧押出部11iとの間に、高圧縮加圧最終混練部11h(図14参照)はなく、その代わりに高圧縮加圧超混練部11s−2が設けられている。   Further, in the present embodiment, a high compression / pressure super kneading section 11s-1 is provided between the high compression / pressure secondary melting section 11c and the degassing decompression section 11d. Further, there is no high compression / pressure final kneading part 11h (see FIG. 14) between the high compression / pressure re-kneading start part 11g and the reduced pressure extruding part 11i. Instead, the high compression / pressure super kneading part 11s-2 is provided. Is provided.

喰い込み部11aは、前記ホッパー60から投入された原料樹脂を取り込みつつ送り出す部位である。
高圧縮加圧溶解開始部11bは、前記喰い込み部11aより漸次径が拡大し、加熱された原料樹脂を加圧しながら溶解を開始させる部位である。
The biting portion 11a is a portion that feeds out the raw material resin introduced from the hopper 60.
The high-compression pressure dissolution start part 11b is a part whose diameter gradually increases from the biting part 11a and starts melting while pressurizing the heated raw material resin.

高圧縮加圧2次溶解部11cは、前記高圧縮加圧溶解開始部11bの最大径と同径以上で、原料樹脂をさらに加圧しながら全て溶解させる部位である。本実施の形態の高圧縮加圧2次溶解部11cは、前記高圧縮加圧溶解開始部11bの最大径と同径で一律に延びるように設けられている。また、シリンダー50の内壁とスクリュー本体10aの外周との隙間のうち、高圧縮加圧2次溶解部11cの隙間は、前記喰い込み部11aの隙間に対して約1/3に設定されている。   The high compression / pressurization secondary dissolution part 11c is a part having the same diameter or larger than the maximum diameter of the high compression / pressurization dissolution start part 11b and dissolving all of the raw resin while further pressurizing. The high compression pressure secondary dissolution part 11c of the present embodiment is provided so as to extend uniformly with the same diameter as the maximum diameter of the high compression pressure dissolution start part 11b. Of the gap between the inner wall of the cylinder 50 and the outer periphery of the screw body 10a, the gap of the high compression pressure secondary melting part 11c is set to about 1/3 of the gap of the biting part 11a. .

ガス抜き用減圧部11dは、前記高圧縮加圧2次溶解部11cより径が小さく、原料樹脂を減圧して内部のガスを脱気するための部位である。詳しく言えば、ガス抜き用減圧部11dは、その径が前記高圧縮加圧2次溶解部11cと同径に連なる後述する高圧縮加圧超混練部11s−1の径より急に漸次縮径した後に、前記高圧縮加圧2次溶解部11c(高圧縮加圧超混練部11s−1)より小さい径で一律に延びるように設けられている。   The degassing decompression section 11d has a smaller diameter than the high compression / pressurization secondary dissolution section 11c, and is a part for depressurizing the raw resin to degas the internal gas. More specifically, the degassing decompression section 11d has a diameter that is gradually reduced from the diameter of the high compression / pressure super kneading section 11s-1 described later, the diameter of which is the same as that of the high compression / pressurization secondary dissolution section 11c. Then, it is provided so as to extend uniformly with a smaller diameter than the high compression / pressurization secondary dissolution part 11c (high compression / pressurization super kneading part 11s-1).

フィラー投入用減圧部11eは、前記ガス抜き用減圧部11dの最大径と同径以下で、原料樹脂にフィラーを投入するための部位である。本実施の形態のフィラー投入用減圧部11eは、前記ガス抜き用減圧部11dの最大径と同径で一律に延びるように設けられている。   The filler charging decompression part 11e is a part having a diameter equal to or smaller than the maximum diameter of the degassing decompression part 11d, and is used for feeding a filler into the raw material resin. The filler charging decompression section 11e of the present embodiment is provided so as to extend uniformly with the same diameter as the maximum diameter of the degassing decompression section 11d.

油投入用減圧部11fは、前記フィラー投入用減圧部11eに続いて、原料樹脂にフィラーを投入するための部位である。本実施の形態の油投入用減圧部11fは、前記フィラー投入用減圧部11eと同径で一律に延びるように設けられている。なお、本実施の形態では、油投入用減圧部11fを前記フィラー投入用減圧部11eと区別しているが、油投入用減圧部11fは、前記フィラー投入用減圧部11eと一緒にまとめても良い。   The oil charging decompression unit 11f is a part for feeding a filler into the raw material resin following the filler charging decompression unit 11e. The oil charging decompression section 11f of the present embodiment is provided to have the same diameter as the filler charging decompression section 11e and extend uniformly. In the present embodiment, the oil charging decompression unit 11f is distinguished from the filler charging decompression unit 11e. However, the oil charging decompression unit 11f may be combined with the filler charging decompression unit 11e. .

高圧縮加圧再混練開始部11gは、前記フィラー投入用減圧部11e(油投入用減圧部11f)より漸次径が拡大し、フィラーおよび油を混入した原料樹脂を加圧しながら再び混練するための部位である。
減圧押出部11iは、前記高圧縮加圧再混練開始部11gの最大径と同径で延びる後述の高圧縮加圧超混練部11s−2より径が急に漸次縮径した後に延出して、フィラーや油を混入した混練後の原料樹脂をシリンダー50外に押出し成形するための部位である。
The high compression pressure re-kneading start part 11g has a diameter gradually larger than that of the filler charging pressure reducing part 11e (oil charging pressure reducing part 11f), and is used for kneading again while pressurizing the raw material resin mixed with the filler and oil. It is a part.
The reduced pressure extruding part 11i extends after the diameter is suddenly gradually reduced from the later described high compression pressure super kneading part 11s-2 extending the same diameter as the maximum diameter of the high compression pressure re-kneading start part 11g, This is a part for extruding and molding the raw material resin mixed with filler and oil out of the cylinder 50.

高圧縮加圧超混練部11s−1は、その上流側に位置する前記高圧縮加圧2次溶解部11cの最大径と同径で、かつスクリュー本体10aの螺旋羽根12を分断して、該螺旋羽根12の代わりに歯車状に並列の複数の凹凸を有して成り、原料樹脂のよりいっそう強固かつ十分な混練を実現するための部位である。かかる高圧縮加圧超混練部11s−1は、前記複数の凹凸をスクリュー本体10aの軸方向に対しそれぞれ傾斜ないし平行に延ばし、各凹凸を軸方向に少なくとも2以上列設して成る。   The high compression / pressure super-kneading part 11s-1 has the same diameter as the maximum diameter of the high compression / pressure secondary dissolution part 11c located on the upstream side, and divides the spiral blade 12 of the screw body 10a, Instead of the spiral blade 12, it has a plurality of parallel projections and depressions in a gear shape and is a part for realizing stronger and sufficient kneading of the raw material resin. The high compression pressure super-kneading part 11s-1 is formed by extending the plurality of irregularities in an inclined or parallel manner with respect to the axial direction of the screw body 10a and arranging at least two or more irregularities in the axial direction.

図2〜図4は、高圧縮加圧超混練部11s−1を詳細に示すものであり、図2は、図1中のA−A線断面図であり、図3は、図1中のB−B線断面図であり、図4は、図1中のE部分拡大図である。ここで図2、図3中のシリンダー50に関しては、縦方向の半割表示となっている。高圧縮加圧超混練部11s−1は、歯車状に並列の複数の凹凸が軸方向に対しそれぞれ傾斜して延びるように並ぶ1列目110、同じく複数の凹凸が軸方向に対しそれぞれ傾斜して延びるように並ぶ2列目120、そして複数の凹凸が軸方向に対しそれぞれ平行に延びるように並ぶ3列目130とが列設されて成る。   2 to 4 show details of the high-compression and pressure super-kneading part 11s-1, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. FIG. 4 is a cross-sectional view taken along line BB, and FIG. 4 is an enlarged view of a portion E in FIG. Here, the cylinder 50 in FIGS. 2 and 3 is displayed in half in the vertical direction. The high compression pressure super-kneading part 11s-1 is arranged in a first row 110 in which a plurality of parallel projections and recesses in a gear shape extend so as to incline with respect to the axial direction. A second row 120 arranged so as to extend in parallel, and a third row 130 arranged so that a plurality of irregularities extend in parallel with each other in the axial direction.

図4において、1列目110の複数の凹凸は、それぞれ軸方向に対して傾斜した進入溝111と、排出溝112と、これらの間の部位である山部113とが、交互に並んで形成されている。進入溝111は、その基端である上流端が開放され、先端である下流端が閉じられており、排出溝112は、その基端である上流端が閉じられ、先端である下流端が排出用に開放されている。ここで原料樹脂は、進入溝111より入り山部113を越えて排出溝112に進むが、山部113を通過する時に超高分散混合が行われるように設定されている。   In FIG. 4, the plurality of projections and depressions in the first row 110 are formed by alternately arranging an entrance groove 111 inclined to the axial direction, a discharge groove 112, and a peak portion 113 that is a part between them. Has been. The entrance groove 111 is open at its upstream end, which is the base end, and is closed at the downstream end, which is the tip. The discharge groove 112 is closed at the upstream end, which is the base end, and the downstream end, which is the tip. Open for use. Here, the raw material resin enters the entrance groove 111, passes the mountain portion 113 and proceeds to the discharge groove 112, and is set so that ultra-high dispersion mixing is performed when passing through the mountain portion 113.

各進入溝111の下流端が接する部位には、円周方向に細幅のフランジに突出する環状壁114が設けられている。環状壁114は、各排出溝が112が横切る部分では切り欠かれている。この環状壁114は、原料樹脂が進入溝111から排出溝112を通過しないで 直接2列目120に入らないようにするための壁の役割を果たすものである。また、1列目110と2列目120との間に、遊び部として円周方向に凹む環状溝115を設けることにより、混練効果を増大させることができるようになっている。なお、2列目120の構造も、1列目110と同様である。   An annular wall 114 protruding from a narrow flange in the circumferential direction is provided at a portion where the downstream end of each entry groove 111 contacts. The annular wall 114 is notched in the part where each discharge groove 112 crosses. The annular wall 114 serves as a wall for preventing the raw material resin from directly entering the second row 120 without passing through the discharge groove 112 from the entry groove 111. Further, by providing an annular groove 115 recessed in the circumferential direction as a play portion between the first row 110 and the second row 120, the kneading effect can be increased. The structure of the second column 120 is the same as that of the first column 110.

このように複数の凹凸を成す進入溝111、排出溝112、山部113は、前述したように原料樹脂の流れをできる限り阻害しない形が良いが 混練効果をより増大したい時は、3列目130のように、軸方向に対しそれぞれ平行に延びる、すなわち樹脂の流れに対し略直角となる進入溝111、排出溝112、山部113としても有効である。なお、1列目110、2列目120、および3列目130の具体的な数や形状は、図示したものに限定されるわけではない。また、シリンダー50の内径と、高圧縮加圧超混練部11s−1の外周端(山部113)との隙間は、例えば0.8〜1.0mmと狭小に設定されている。   As described above, the entrance grooves 111, the discharge grooves 112, and the crests 113 that form a plurality of irregularities are preferably not obstructed as much as possible to the flow of the raw material resin as described above. It is also effective as an entrance groove 111, a discharge groove 112, and a crest 113 that extend parallel to the axial direction as in 130, that is, substantially perpendicular to the resin flow. The specific numbers and shapes of the first row 110, the second row 120, and the third row 130 are not limited to those shown in the drawing. Moreover, the clearance gap between the internal diameter of the cylinder 50 and the outer peripheral end (peak part 113) of the high compression pressurization super kneading part 11s-1 is set as narrow, for example, 0.8-1.0 mm.

高圧縮加圧超混練部11s−2は、その上流側に位置する前記高圧縮加圧再混練開始部11gの最大径と同径で、かつスクリュー本体10aの螺旋羽根12を分断して、該螺旋羽根12の代わりに歯車状に並列の複数の凹凸を有して成り、フィラーや油を混入した原料樹脂のよりいっそう強固かつ十分な混練を実現するための部位である。かかる高圧縮加圧超混練部11s−2は、基本的には前述した高圧縮加圧超混練部11s−1と同様に構成されている。   The high-compression pressurization super-kneading part 11s-2 has the same diameter as the maximum diameter of the high-compression pressurization re-kneading start part 11g located on the upstream side, and divides the spiral blade 12 of the screw body 10a, Instead of the spiral blade 12, it has a plurality of parallel projections and depressions in the form of a gear, and is a part for realizing stronger and sufficient kneading of the raw material resin mixed with filler and oil. The high compression / pressure super kneading section 11s-2 is basically configured in the same manner as the high compression / pressure super kneading section 11s-1.

図5〜図7は、高圧縮加圧超混練部11s−2を詳細に示すものであり、図5は、図1中のC−C線断面図であり、図6は、図1中のD−D線断面図であり、図7は、図1中のF部分拡大図である。高圧縮加圧超混練部11s−2も、歯車状に並列の複数の凹凸が軸方向に対しそれぞれ傾斜して延びるように並ぶ1列目110、同じく複数の凹凸が軸方向に対しそれぞれ傾斜して延びるように並ぶ2列目120、そして複数の凹凸が軸方向に対しそれぞれ平行に延びるように並ぶ3列目130とが列設されて成る。   5 to 7 show the high-compression and pressure super-kneading part 11s-2 in detail, FIG. 5 is a cross-sectional view taken along the line CC in FIG. 1, and FIG. FIG. 7 is a sectional view taken along line DD, and FIG. 7 is an enlarged view of a portion F in FIG. The high compression pressure super-kneading part 11s-2 is also arranged in a first row 110 in which a plurality of parallel projections and recesses in a gear shape are inclined with respect to the axial direction, and the plurality of projections and recesses are also inclined with respect to the axial direction. A second row 120 arranged so as to extend in parallel, and a third row 130 arranged so that a plurality of irregularities extend in parallel with each other in the axial direction.

これら1列目110、2列目120、3列目130の構成は、前述した高圧縮加圧超混練部11s−1のものと同様であり、同一符号を付して重複した説明を省略するが、高圧縮加圧超混練部11s−2は、次の2点で高圧縮加圧超混練部11s−1とは異なっている。すなわち、高圧縮加圧超混練部11s−2は、多少の混練効果と主にフィラーとしての繊維状混入物の分散効果を狙いとするため、先ずシリンダー50の内壁との隙間を広めに取って、分散効果は十分だが繊維は破損しないように設定されている。   The configurations of the first row 110, the second row 120, and the third row 130 are the same as those of the above-described high-compression and pressure super-kneading unit 11s-1, and the same reference numerals are given and redundant descriptions are omitted. However, the high compression / pressure super-kneading part 11s-2 is different from the high compression / pressure super-kneading part 11s-1 in the following two points. That is, the high compression pressure super-kneading part 11s-2 aims at a slight kneading effect and mainly a dispersion effect of fibrous contaminants as a filler, so that a gap between the inner wall of the cylinder 50 is first widened. The dispersion effect is sufficient, but the fiber is set so as not to break.

具体的には、シリンダー50の内径と、高圧縮加圧超混練部11s−2の外周端(山部113)との隙間は、例えば1.5〜2.5mmに設定されている。次に、1列目110と2列目120の間、また2列目120と3列目130の間には、環状溝115は設けられているが、環状壁114は設けられていない。これも、フィラーとしての繊維状混入物の破損を防ぐための理由によるものである。   Specifically, the gap between the inner diameter of the cylinder 50 and the outer peripheral end (mountain portion 113) of the high compression pressure super-kneading part 11s-2 is set to 1.5 to 2.5 mm, for example. Next, an annular groove 115 is provided between the first row 110 and the second row 120, and between the second row 120 and the third row 130, but the annular wall 114 is not provided. This is also due to the reason for preventing breakage of the fibrous contaminants as the filler.

シリンダー50は、その内径が、前記スクリュー本体10aにおける螺旋羽根12の外周端、および前記高圧縮加圧超混練部11s−1,2の外周端に対して、所定の隙間が生じる大きさに一律に形成されている。これにより、容易な構成となり製造コストを低減することが可能となる。シリンダー50の内壁と螺旋羽根12の外周端との隙間は同一寸法であるが、かかる寸法と、シリンダー50の内壁と高圧縮加圧超混練部11s−1,2の外周端との隙間までもが、必ずしも同一である必要はない。すなわち、各高圧縮加圧超混練部11s−1,2の山部113の高さに応じて、シリンダー50の内壁と高圧縮加圧超混練部11s−1,2の外周端との隙間は適宜設定すれば良い。   The inner diameter of the cylinder 50 is uniform so that a predetermined gap is generated with respect to the outer peripheral end of the spiral blade 12 in the screw body 10a and the outer peripheral end of the high compression pressure super kneading portions 11s-1 and 11s-1. Is formed. Thereby, it becomes an easy structure and it becomes possible to reduce manufacturing cost. The gap between the inner wall of the cylinder 50 and the outer peripheral end of the spiral blade 12 has the same dimension, but the gap between the inner wall of the cylinder 50 and the outer peripheral end of the high compression pressure super kneading part 11s-1 and 2 is also included. However, they are not necessarily the same. That is, the gap between the inner wall of the cylinder 50 and the outer peripheral end of the high compression / pressure super-kneading portions 11s-1 and 11s2 depends on the height of the crest 113 of each high compression / pressure super-kneading portion 11s-1 and 11s-1. What is necessary is just to set suitably.

図1に示すように、シリンダー50の基端側には、ホッパー60を装着する所定幅Hの原料投入口51が内部に連通するように設けられている。また、前記樹脂押出機用スクリュー10の喰い込み部11aに相当するシリンダー50の途中部位には、ホッパー60より導入される原料樹脂の喰い込みを良くするための内壁サイド面の削り部55(図12(a)参照)が設けられている。前記ガス抜き用減圧部11dに対応するシリンダー50の途中部位には、外部にガスを排出するためのガス抜き口52が内部に連通するように設けられている。   As shown in FIG. 1, a raw material inlet 51 having a predetermined width H on which a hopper 60 is mounted is provided on the base end side of the cylinder 50 so as to communicate with the inside. Further, an inner wall side surface shaving portion 55 (see FIG. 5) for improving the biting of the raw material resin introduced from the hopper 60 is provided in the middle portion of the cylinder 50 corresponding to the biting portion 11a of the resin extruder screw 10. 12 (a)). A gas vent 52 for discharging gas to the outside is provided in the middle of the cylinder 50 corresponding to the degassing decompression section 11d so as to communicate with the inside.

また、前記フィラー投入用減圧部11eに対応するシリンダー50の途中部位には、主として繊維状物質を混入するためのフィラー投入口53が内部に連通するように設けられている。また、前記フィラー投入用減圧部11eに対応するシリンダー50の途中部位には、フィラー投入口53の下流側で油を混入するための油投入口54が内部に連通するように設けられている。なお、シリンダー50の外周側には、図示省略したが加熱手段であるヒーターが設けられている。   Further, a filler charging port 53 for mainly mixing a fibrous substance is provided in the middle of the cylinder 50 corresponding to the filler charging pressure reducing portion 11e so as to communicate with the inside. In addition, an oil inlet 54 for mixing oil is provided downstream of the filler inlet 53 so as to communicate with the inside of the cylinder 50 corresponding to the filler inlet pressure reducing portion 11e. Although not shown, a heater that is a heating unit is provided on the outer peripheral side of the cylinder 50.

さらに、シリンダー50の先端には、溶解した樹脂をストランドとして押し出すダイスヘッド70が設けられている。図1では図示省略したダイスヘッド70は、具体的には図8、図9に示すものを用いると良い。図8は、ダイスヘッド70を縦に2分割したものを示す斜視図であり、図9は、ダイスヘッド70を縦に2分割した断面図である。ダイスヘッド70は、ダイスの内側に原料樹脂を集束するスリ鉢状の凹部71の最深部に、複数の押出口72を貫通するように形成して成る。複数の押出口72は、ダイスの中心を通る水平線上に略等間隔で並ぶように形成されている。   Furthermore, a die head 70 is provided at the tip of the cylinder 50 to push out the melted resin as a strand. Specifically, the dice head 70 not shown in FIG. 1 may be the one shown in FIGS. FIG. 8 is a perspective view showing the dice head 70 divided into two vertically, and FIG. 9 is a cross-sectional view of the dice head 70 divided into two vertically. The die head 70 is formed by penetrating a plurality of extrusion ports 72 at the deepest portion of a bowl-shaped recess 71 for concentrating the raw material resin inside the die. The plurality of extrusion ports 72 are formed so as to be arranged at substantially equal intervals on a horizontal line passing through the center of the die.

各押出口72は、入口側大径部72aと出口側小径部72bとを有する円錐形に設けられており、さらに出口側小径部72bに連通するノズル73が設けられている。各押出口72の入口側大径部72a同士の間の距離はなく、各入口側大径部72aは互いに接している。これは入口側大径部72a同士の間に余分な距離があると、当該部分に流動性のない樹脂や樹脂中の長繊維が溜まり、全体の流動性が不安定(複数本数の時に同じ出方をしない)になるし、穴詰まりを起こすからである。   Each extrusion port 72 is provided in a conical shape having an inlet-side large-diameter portion 72a and an outlet-side small-diameter portion 72b, and is further provided with a nozzle 73 communicating with the outlet-side small-diameter portion 72b. There is no distance between the inlet-side large diameter portions 72a of the extrusion ports 72, and the inlet-side large diameter portions 72a are in contact with each other. This is because if there is an extra distance between the inlet-side large diameter portions 72a, non-flowable resin and long fibers in the resin accumulate in that portion, and the overall flowability is unstable (the same output when there are multiple tubes). This is because it does not work, and causes clogging.

ノズル73は、その入口から出口に向けて繊維を棒状に絞り込む距離がとれる長さに設定され、棒状にまとめた繊維がそのまま進む距離を取って安定させた状態で出口より出る構造となっている。また、ノズル73は、繊維による磨耗により内部の穴が大きくなりすぎた時に随時交換が簡単にできるように、ネジ式として先端出口はダイス表面より前方に突出する構造となっている。なお、押出口72の個数は特に限定されないが、本実施の形態では5個である。   The nozzle 73 is set to a length that allows a distance for narrowing the fibers into a rod shape from the inlet to the outlet, and has a structure in which the fibers gathered in a rod shape are taken out from the outlet in a stable state taking a distance to travel as they are. . Further, the nozzle 73 is a screw type so that the tip outlet protrudes forward from the die surface so that the nozzle 73 can be easily replaced as needed when the internal hole becomes too large due to abrasion by the fibers. The number of extrusion ports 72 is not particularly limited, but is 5 in the present embodiment.

また、別のダイスヘッド80として、図10、図11に示すものも考えられる。図10は、ダイスヘッド80を外側から見た斜視図であり、図11は、ダイスヘッド80を縦に2分割した断面図である。ダイスヘッド80は、ダイスの内側に原料樹脂を集束するスリ鉢状の凹部81の最深部に、その中心を通る水平線上に延びる細幅押出口82を貫通するように形成して成る。   Another die head 80 shown in FIGS. 10 and 11 is also conceivable. FIG. 10 is a perspective view of the dice head 80 viewed from the outside, and FIG. 11 is a cross-sectional view of the dice head 80 divided into two vertically. The die head 80 is formed at the deepest portion of a bowl-shaped recess 81 for concentrating the raw material resin inside the die so as to penetrate a narrow extrusion port 82 extending on a horizontal line passing through the center thereof.

細幅押出口82は、その入口から出口に亘り一定の細幅状の断面形状になるように設けられている。このような細幅押出口82とするのは、フィラーとして大量の木粉が混入された原料樹脂の場合、流動性が悪く圧縮により発熱硬化もあり、通常の穴状出口であると詰まりやすいので、一連に延びる細幅の穴とすることにより、押出し成形時における圧縮の分散と流動性の平均化を図るためである。   The narrow extrusion port 82 is provided so as to have a constant narrow cross-sectional shape from the inlet to the outlet. In the case of a raw material resin in which a large amount of wood flour is mixed as a filler, such a narrow extrusion port 82 has a poor fluidity and heat generation due to compression, and a normal hole-shaped outlet tends to clog. This is because, by forming a narrow hole extending in a series, the dispersion of compression and the flowability are averaged during extrusion molding.

細幅押出口82の出口側には、細幅押出口82の出口より帯状で平らに出たストランドを直角方向に細かく切断するための複数の鋼線83が張設されている。このように複数の鋼線83によりストランドを細かく切断することにより、四角形断面の細いペレットを得ることができる。なお、鋼線83の本数は特に限定されないが、多くするほど、いっそう細いペレットを得ることができるようになる。   On the outlet side of the narrow extrusion port 82, a plurality of steel wires 83 are stretched for finely cutting in a perpendicular direction a strand that is flat and protrudes from the outlet of the narrow extrusion port 82. Thus, by finely cutting the strands with a plurality of steel wires 83, a pellet having a thin quadrangular cross section can be obtained. Note that the number of the steel wires 83 is not particularly limited, but as the number increases, thinner pellets can be obtained.

次に、第1実施の形態の作用を説明する。
図1に示す樹脂押出機1によれば、原料樹脂の硬度(すなわち落下速度)に応じた所定速度で樹脂押出機用スクリュー10を回転駆動させた状態で、ホッパー60から原料樹脂を投入する。ここで原料樹脂には、産業廃棄物である使用済みの合成樹脂材であるスプルランナーが該当する。シリンダー50内に投入された原料樹脂は、スクリュー本体10aの先ず喰い込み部11aにより取り込まれつつ送り出されて、該喰い込み部11aより漸次径が拡大する高圧縮加圧溶解開始部11bへ送られる。高圧縮加圧溶解開始部11bでは、加熱された原料樹脂が加圧されながら溶解を開始する。
Next, the operation of the first embodiment will be described.
According to the resin extruder 1 shown in FIG. 1, the raw material resin is charged from the hopper 60 in a state where the screw 10 for the resin extruder is rotationally driven at a predetermined speed corresponding to the hardness (that is, the dropping speed) of the raw material resin. Here, the raw material resin corresponds to a sprue runner that is a used synthetic resin material that is an industrial waste. The raw material resin introduced into the cylinder 50 is first fed out by the bite portion 11a of the screw body 10a and sent out, and then sent to the high compression pressure dissolution start portion 11b whose diameter gradually increases from the bite portion 11a. . In the high compression pressure dissolution start part 11b, the heated raw material resin starts to be melted while being pressurized.

続いて、原料樹脂は高圧縮加圧2次溶解部11cへ送られて、さらに加圧されながら全て溶解することになる。高圧縮加圧2次溶解部11cは、前記高圧縮加圧溶解開始部11bの最大径と同径に延びており、螺旋羽根12のリード間で原料樹脂は全て溶けた状態で均一にムラなく混練される。かかる高圧縮加圧2次溶解部11cでは、空気が混じることなく無酸素状態となり、原料樹脂のスリップも低減されて混練が連続することにより、高圧縮加圧2次溶解部11c以降の領域でも焼けや焦げが発生することはない。   Subsequently, the raw material resin is sent to the high compression / pressurization secondary dissolution part 11c, and is further dissolved while being further pressurized. The high compression pressure secondary dissolution part 11c extends to the same diameter as the maximum diameter of the high compression pressure dissolution start part 11b, and the raw material resin is completely melted between the leads of the spiral blade 12 without any unevenness. Kneaded. In such a high compression / pressurization secondary dissolution part 11c, air is not mixed and becomes an oxygen-free state, and the slip of the raw material resin is reduced and kneading is continued. There is no burning or scorching.

特に、シリンダー50の内壁とスクリュー本体10aの外周との隙間のうち、前記高圧縮加圧2次溶解部11cの隙間を前記喰い込み部11aの隙間に対して約1/3に設定している。これにより、原料樹脂が前記高圧縮加圧2次溶解部11cに至るまでの間に空気が混入することを確実に防ぐことができ、原料樹脂の溶解時における無酸素状態を実現することができる。   In particular, among the gaps between the inner wall of the cylinder 50 and the outer periphery of the screw body 10a, the gap of the high compression pressure secondary melting part 11c is set to about 1/3 with respect to the gap of the biting part 11a. . Thereby, it is possible to reliably prevent air from being mixed in until the raw material resin reaches the high compression / pressurization secondary melting part 11c, and an oxygen-free state at the time of melting the raw material resin can be realized. .

このような無酸素状態での溶解により、既にリサイクルされている原料樹脂や、着色あるいはコンパウンドされた原料樹脂等のように、熱劣化しやすい原料も利用することができ、透明性を要求される材料のように、今までは1回しかリサイクルできず殆どが廃棄されていた原料も、2〜3回は繰り返して利用することが可能となる。さらに、腐食したり有毒ガスの発生しやすい原料樹脂(例えば、塩化ビニール(塩素ガス)、フッ素樹脂(フッ素ガス)等)も利用可能であり、低温押出しによりガス発生を低減することで、シリンダー50や樹脂押出機用スクリュー10の腐食磨耗を防止することができる。   Due to such anaerobic dissolution, raw materials that are easily recycled, such as raw material resins that have already been recycled or raw materials that have been colored or compounded, can be used, and transparency is required. Like raw materials, raw materials that can be recycled only once and are mostly discarded can be used repeatedly two or three times. Furthermore, it is possible to use a raw material resin (for example, vinyl chloride (chlorine gas), fluorine resin (fluorine gas), etc.) that easily corrodes or generates toxic gas, and the cylinder 50 is reduced by reducing gas generation by low-temperature extrusion. And corrosion wear of the screw 10 for resin extruders can be prevented.

前記高圧縮加圧2次溶解部11cで混練された原料樹脂は、本実施の形態ではガス抜き用減圧部11dに送られて脱気される前に、直ぐ続けて、高圧縮加圧超混練部11s−1によりいっそう強固かつ十分に混練されることになる。従って、軟化点や溶融温度が大きく異なる複数種類の樹脂材料の十分な混練を可能とし、今までは分子レベルでメーカーの重合過程でのみ生産できた物を、ミクロン単位ではあるが分散混合により成形でき、目的に合わせた樹脂配合を可能として各樹脂の長所を組合わせた成形品を製造することができる。   In the present embodiment, the raw material resin kneaded in the high compression / pressure secondary dissolution part 11c is immediately sent to the degassing decompression part 11d and degassed, and immediately followed by the high compression / pressure super kneading. The portion 11s-1 is kneaded more firmly and sufficiently. Therefore, it is possible to sufficiently knead multiple types of resin materials with greatly different softening points and melting temperatures, and until now, products that could only be produced by the manufacturer's polymerization process at the molecular level are molded by dispersive mixing although in micron units. In addition, it is possible to produce a molded product that combines the advantages of each resin by enabling the resin blending according to the purpose.

図4に示すように、高圧縮加圧超混練部11s−1において、原料樹脂は、先ず1列目110の進入溝111より入り山部113を越えて排出溝112に進むが、山部113を通過する時に超高分散混合が行われる。環状壁114は、原料樹脂が進入溝111から排出溝112を通過しないで 直接2列目120に入らないようにするための壁の役割を果たすものである。   As shown in FIG. 4, in the high-compression and pressure super-kneading part 11 s-1, the raw material resin first enters the entrance groove 111 in the first row 110, passes the peak part 113, and proceeds to the discharge groove 112. Ultra high dispersion mixing takes place when passing through. The annular wall 114 serves as a wall for preventing the raw material resin from directly entering the second row 120 without passing through the discharge groove 112 from the entry groove 111.

また、1列目110と2列目120との間に、遊び部として円周方向に凹む環状溝115があるため、混練効果を増大させることができる。なお、1列目110から2列目120以降も同じ進み方をする。また、3列目130のように、樹脂の流れに対し略直角となる進入溝111、排出溝112、山部113により、混練効果をより増大させることができる。   In addition, since there is an annular groove 115 recessed in the circumferential direction as a play portion between the first row 110 and the second row 120, the kneading effect can be increased. The same procedure is followed from the first column 110 to the second column 120 and thereafter. Further, as in the third row 130, the kneading effect can be further increased by the entrance groove 111, the discharge groove 112, and the peak portion 113 which are substantially perpendicular to the resin flow.

このような高圧縮加圧超混練部11s−1を設けたことにより、異なる樹脂や成型温度の最大差が大きな樹脂同士の分散混合が可能になる。具体的には、今まで混練は不可能とされていたPBT+ポリエチレン50%(混合破砕物最大6.4μ)の混合が可能になった。また、溶解温度 90℃と230℃の温度差が140℃もある樹脂の均一な分散ペレットも可能となった。   By providing such a high compression pressure super-kneading part 11s-1, it is possible to disperse and mix different resins or resins having a large maximum difference in molding temperature. Specifically, mixing of PBT + polyethylene 50% (maximum crushed 6.4μ), which had previously been impossible to knead, became possible. In addition, evenly dispersed pellets of resin having a difference in temperature between 90 ° C and 230 ° C of 140 ° C became possible.

以下、原料樹脂として実際使用することができたものをメーカーの推奨成型温度(通常温度)の順で列記する。1)ABS 190〜260℃(230℃)、2)PE 180〜220℃(200℃)、3)アクリル 210〜260℃(240℃)、4)耐熱スチロール 250〜280℃(260℃)、5)PP 190〜220℃(200℃)、6)PET 250〜270℃(260℃)、7)ポリカーボネイト 270〜300℃(290℃)、8)スチレン系エラストマ 190〜230℃(210℃)、9)ポリエステル系エラストマ 190〜230℃(210℃)、10)ナイロン 280〜300℃(290℃)、11)EVA
150〜210℃(180℃)
In the following, those that could actually be used as the raw material resin are listed in the order of the manufacturer's recommended molding temperature (normal temperature). 1) ABS 190-260 ° C (230 ° C), 2) PE 180-220 ° C (200 ° C), 3) Acrylic 210-260 ° C (240 ° C), 4) Heat-resistant styrene 250-280 ° C (260 ° C), 5 ) PP 190-220 ° C (200 ° C), 6) PET 250-270 ° C (260 ° C), 7) Polycarbonate 270-300 ° C (290 ° C), 8) Styrenic elastomer 190-230 ° C (210 ° C), 9 ) Polyester elastomer 190-230 ° C (210 ° C), 10) Nylon 280-300 ° C (290 ° C), 11) EVA
150-210 ° C (180 ° C)

このように異なる樹脂や、成型温度の最大差が90℃もある樹脂の分散混合が可能になることにより、今までは分子レベルでメーカーの重合過程でのみ生産できた物が、ミクロン単位(最小0.2ミクロン位)ではあるが少量混合が可能となり、各樹脂の良い所のみを組合わせることが簡単にできることになり、目的に合わせた樹脂配合を行うことができる。   The ability to disperse and mix different resins and resins with a maximum molding temperature difference of as much as 90 ° C enables products that can only be produced at the molecular level through the manufacturer's polymerization process to the micron level (minimum). Although it is possible to mix only a small portion of each resin, it is possible to easily combine only the good parts of each resin, and it is possible to mix the resin according to the purpose.

前記高圧縮加圧超混練部11s−1により強固かつ十分に混練された原料樹脂は、高圧縮加圧超混練部11s−1より径が小さいガス抜き用減圧部11dに送られて、減圧により内部のガスが脱気される。ここで生じたガスは、シリンダー50の途中部位にあるガス抜き口52から外部に排出される。脱気された原料樹脂は、その後、ガス抜き用減圧部11dの最大径と同径で延びるフィラー投入用減圧部11eへ送られ、例えばフィラーとして、粉、繊維、油等が原料樹脂に混入される。フィラーの具体的な種類は、目的とする成形品の性質に応じて適宜選択されるものである。   The raw material resin kneaded firmly and sufficiently by the high compression / pressure super-kneading part 11s-1 is sent to the degassing decompression part 11d having a diameter smaller than that of the high compression / pressure super-kneading part 11s-1, and is reduced in pressure. The internal gas is degassed. The generated gas is discharged to the outside from a gas vent 52 in the middle of the cylinder 50. The degassed raw material resin is then sent to a filler charging pressure reducing portion 11e extending in the same diameter as the maximum diameter of the degassing pressure reducing portion 11d. For example, powder, fiber, oil or the like is mixed in the raw material resin as a filler. The The specific type of filler is appropriately selected according to the properties of the target molded product.

本実施の形態では、フィラー投入用減圧部11eに対応するシリンダー50の途中部位には、繊維状物質を混入するためのフィラー投入口53が設けられており、ここから原料樹脂と比重が大きく異なるカーボン繊維、ガラス繊維、ステンレス繊維等のフィラーを適宜投入することにより、原料樹脂とフィラーとが所望の比率で均等に混ぜ合わさった成形品を容易に製造することができる。   In the present embodiment, a filler charging port 53 for mixing a fibrous substance is provided in the middle of the cylinder 50 corresponding to the filler charging pressure reducing portion 11e, and the specific gravity is greatly different from that of the raw material resin. By appropriately adding fillers such as carbon fibers, glass fibers, and stainless fibers, a molded product in which the raw material resin and the filler are evenly mixed at a desired ratio can be easily manufactured.

また、前記フィラー投入用減圧部11eに続いて、油投入用減圧部11fが同径で一律に延びている。この油投入用減圧部11fに対応するシリンダー50の途中部位には、前記フィラー投入口53の下流側で油を混入するための油投入口54が設けられており、ここから油を所定割合で投入する。これにより、フィラーが混入された後の原料樹脂全体の硬度を下げる(柔らかくする)ことができ、より十分な混練性を得ることができる。その結果、今まで大気中では混合不可能とされていた原料樹脂の混合も可能となる。さらにまた、油混合による効果として、成形品の滑り性能を高めることもできる。   Further, following the filler charging decompression section 11e, an oil charging decompression section 11f is uniformly extended with the same diameter. An oil charging port 54 for mixing oil is provided downstream of the filler charging port 53 at an intermediate portion of the cylinder 50 corresponding to the oil charging pressure-reducing portion 11f. throw into. Thereby, the hardness of the whole raw material resin after a filler is mixed can be lowered | hung (softened), and more sufficient kneadability can be obtained. As a result, it is possible to mix raw material resins that have been impossible to mix in the atmosphere. Furthermore, the sliding performance of the molded product can be enhanced as an effect of oil mixing.

フィラー(油も含む。)が混入された原料樹脂は、続いて前記フィラー投入用減圧部11eより漸次径が拡大する高圧縮加圧再混練開始部11gへ送られて、再び加圧されながら混練される。そして、高圧縮加圧再混練開始部11gの最大径と同径の高圧縮加圧超混練部11s−2へ送られて、再び強固かつ十分に混練される。これにより、樹脂材料に混入されたフィラーを破損させることなく、樹脂内部に満遍なく分散させて平均化させることが可能となり、フィラー混入による成形品の品質を向上させることができる。   The raw material resin mixed with the filler (including oil) is then sent from the filler charging pressure reducing portion 11e to the high compression pressure re-kneading start portion 11g where the diameter gradually increases and kneaded while being pressurized again. Is done. And it is sent to the high compression / pressure super-kneading part 11s-2 having the same diameter as the maximum diameter of the high compression / pressure re-kneading start part 11g, and is kneaded firmly and sufficiently again. Thereby, without damaging the filler mixed in the resin material, it is possible to uniformly disperse the filler inside the resin and to average it, and it is possible to improve the quality of a molded product by mixing the filler.

高圧縮加圧超混練部11s−2の具体的な構成は、前述した高圧縮加圧超混練部11s−1と基本的には同様であるが、高圧縮加圧超混練部11s−2は、多少の混練効果と主にフィラーとしての繊維状混入物の分散効果を狙いとするため、シリンダー50の内壁との隙間を広めに取って、分散効果は十分だが繊維は破損しないように設定されている。これにより、フィラーとしての繊維状混入物の破損を防ぐことができる。   The specific configuration of the high compression / pressure super-kneading part 11s-2 is basically the same as that of the high compression / pressure super-kneading part 11s-1 described above, In order to aim at a slight kneading effect and mainly a dispersion effect of fibrous contaminants as a filler, a wide clearance with the inner wall of the cylinder 50 is set so that the dispersion effect is sufficient but the fiber is not damaged. ing. Thereby, damage of the fibrous contaminant as a filler can be prevented.

ここでフィラーとしてカーボン繊維を混入した導電性を有する熱可塑性ペレットを製造する場合、かかるカーボン繊維を破損させることなく樹脂内部に分散させて平均化させる混練が可能となる。従って、成形品の優れた強度および導電性を実現することができる。また、繊維量を変えることにより電気的抵抗値も変えることが可能となる。   Here, in the case of producing a conductive thermoplastic pellet mixed with carbon fiber as a filler, kneading can be performed by dispersing and averaging the carbon fiber inside the resin without damaging the carbon fiber. Therefore, it is possible to achieve excellent strength and conductivity of the molded product. In addition, it is possible to change the electrical resistance value by changing the fiber amount.

高圧縮加圧超混練部11s−2により、フィラーが十分に分散混入された原料樹脂は、その後、高圧縮加圧超混練部11s−2より径が小さい減圧押出部11iを経て、シリンダー50の先端に取り付けられたダイスヘッド70より順に押し出される。このダイスヘッド70より溶融状態で細径の線状に成形されつつ連続的に流出されるストランドは、水槽08(図15参照)内に引き込んで水冷した後この水槽より引き出され、エア吸引式の図示しない水切り装置により水切りされ、ストランド切断機により切断してペレット化される。   The raw material resin in which the filler is sufficiently dispersed and mixed by the high compression / pressure super-kneading part 11s-2 is then passed through the decompression extruding part 11i having a diameter smaller than that of the high compression / pressure super-kneading part 11s-2. The die heads 70 are sequentially pushed out from the die head 70 attached to the tip. The strands that are continuously melted from the die head 70 while being formed into a thin line are drawn into the water tank 08 (see FIG. 15), cooled with water, and then drawn out from the water tank. It is drained by a draining device (not shown), and cut by a strand cutting machine to be pelletized.

ダイスヘッド70によれば、各押出口72の入口側大径部72a同士の間に余分な距離がないため、当該部分に流動性のない樹脂や樹脂中の長繊維が溜まり、全体の流動性が不安定(複数本数の時に同じ出方をしない)になったりすることがなく、穴詰まりを防止することができる。また、ノズル73は、繊維を棒状に絞り込む距離がとれる長さに設定されており、棒状にまとめた繊維を含む樹脂を安定させた状態で押し出すことができる。なお、ノズル73は着脱自在なネジ式となっており、繊維による磨耗により内部の穴が大きくなりすぎた時に随時簡単に交換することができる。   According to the die head 70, since there is no extra distance between the inlet-side large-diameter portions 72a of the extrusion ports 72, non-flowable resin and long fibers in the resin accumulate in the portion, and the entire flowability is increased. Does not become unstable (doesn't go out the same way when there are multiple bottles), and can prevent clogging. Further, the nozzle 73 is set to a length that allows a distance to narrow the fibers into a rod shape, and can extrude the resin containing the fibers gathered into a rod shape in a stable state. The nozzle 73 is a detachable screw type, and can be easily replaced at any time when the internal hole becomes too large due to abrasion by the fibers.

また、前記ダイスヘッド70の代わりに別のダイスヘッド80を用いれば、フィラーとして大量の木粉が混入された流動性の悪い原料樹脂であっても、細幅押出口82より帯状で平らなストランドをスムーズに押し出しつつ、複数の鋼線83により細かく切断することにより、四角形断面の細いペレットを得ることができる。なお、鋼線83の本数は特に限定されないが、多くするほどいっそう細いペレットを得ることができるようになる。   If another die head 80 is used in place of the die head 70, even a raw material resin having poor fluidity mixed with a large amount of wood flour as a filler will be a strip-like flat strand from the narrow width extrusion port 82. Can be obtained by smoothly cutting with a plurality of steel wires 83 while extruding smoothly. Note that the number of the steel wires 83 is not particularly limited, but as the number of the steel wires 83 increases, thinner pellets can be obtained.

以上のように、樹脂押出機1を用いて熱可塑性ペレットを効率良く容易に製造することができる。例えば、熱可塑性樹脂として、塩化ビニール、フッソ樹脂、ポリアセタール等、腐食ガスの発生しやすい樹脂も含めて、全品種の温度差のある樹脂の成形に使用できる混合ペレットを製造することができる。これらの熱可塑性樹脂は、従来は燃料としての利用、あるいは廃棄のみが唯一の処理方法であった。   As described above, thermoplastic pellets can be efficiently and easily produced using the resin extruder 1. For example, as the thermoplastic resin, mixed pellets that can be used for molding all types of resins having a temperature difference, including resins that easily generate corrosive gas, such as vinyl chloride, fluorine resin, and polyacetal can be produced. Conventionally, these thermoplastic resins are used only as a fuel or disposed of only as a disposal method.

また、今まで混合できないとされていた各々の樹脂の良い所のみを混合することにより、全く新しい機能を備えた樹脂の製造も可能となった。本ペレット製造方法により製造されたペレットと、比較的組成(分子構造)の近い樹脂アロイは近年メーカーで出し始めているが、分子構造のまるで違う組成の混合(アロイ)は未だ知られていなかった。   In addition, by mixing only the good parts of each resin, which has been considered impossible to mix, it has become possible to produce a resin having a completely new function. Recently, resin alloys having a composition (molecular structure) that is relatively similar to the pellets produced by this method for producing pellets have begun to be produced by manufacturers, but mixing (alloy) having a completely different molecular structure has not yet been known.

さらに、フィラーとして繊維状物質(例えば、カーボン繊維、ガラス繊維、ステンレス繊維等)の無折損状態での混入が可能となった。特に、カーボン繊維は、樹脂材料に重量比で10%混合するだけで、厚み0.1mm、幅130mmでも導通する。これはペレット中に混入された繊維が折れずに、重なり合っていることを示している。   Furthermore, it has become possible to mix a fibrous substance (for example, carbon fiber, glass fiber, stainless steel fiber, etc.) as a filler in an unbroken state. In particular, the carbon fiber is conducted even with a thickness of 0.1 mm and a width of 130 mm only by mixing 10% by weight with the resin material. This indicates that the fibers mixed in the pellet are not broken but are overlapped.

具体的には例えば、単一樹脂としての原料樹脂中にカーボンファイバー(9μ位の繊維を5000〜8000本を束ね固着剤を使用して2〜3mmの太さにまとめてある)を一括投入して、高分散混合を行うと良い。この場合、前記高圧縮加圧超混練部11s−1,2の外周端とシリンダー50の内径との隙間は、例えば1.5〜2.0mm程度に設定すると良い。   Specifically, for example, carbon fibers (between 5000 and 8000 fibers of about 9 μ are bundled into a thickness of 2 to 3 mm using a sticking agent) are collectively fed into a raw material resin as a single resin. Therefore, high dispersion mixing is preferable. In this case, the clearance between the outer peripheral ends of the high compression pressure super kneading parts 11s-1 and 11s and the inner diameter of the cylinder 50 may be set to about 1.5 to 2.0 mm, for example.

あるいは、異なる樹脂を混ぜた原料樹脂中にカーボンファイバー(9μ位の繊維を5000〜8000本を束ね固着剤を使用して2〜3mmの太さにまとめてある)を一括投入して、高分散混合を行っても良い。この場合、前記高圧縮加圧超混練部11s−1の外周端とシリンダー50の内径との隙間は、例えば0.8〜1.0mm程度とし、前記高圧縮加圧超混練部11s−2の外周端とシリンダー50の内径との隙間は、例えば1.5〜2.0mm程度に設定すると良い。   Alternatively, carbon fibers (between 5000 and 8000 fibers of 9μ are bundled together in a thickness of 2 to 3 mm using a sticking agent) are mixed into a raw material resin mixed with different resins, and high dispersion is achieved. Mixing may be performed. In this case, the clearance between the outer peripheral end of the high compression / pressure super-kneading part 11s-1 and the inner diameter of the cylinder 50 is, for example, about 0.8 to 1.0 mm, and the high compression / pressure super-kneading part 11s-2 The gap between the outer peripheral end and the inner diameter of the cylinder 50 is preferably set to about 1.5 to 2.0 mm, for example.

図12は、本発明の第2実施の形態を示している。
本実施の形態に係る樹脂押出機用スクリュー10Aは、高圧縮加圧2次溶解部11cとガス抜き用減圧部11dとの間に高圧縮加圧超混練部11s−1はなく、高圧縮加圧2次溶解部11cとガス抜き用減圧部11dとが連続している。すなわち、ガス抜き用減圧部11dは、高圧縮加圧2次溶解部11cの径より急に漸次縮径した後に、高圧縮加圧2次溶解部11cより小さい径で一律に延びるように設けられている。
FIG. 12 shows a second embodiment of the present invention.
The screw 10A for a resin extruder according to the present embodiment does not include the high compression / pressure super kneading portion 11s-1 between the high compression / pressurization secondary melting portion 11c and the degassing decompression portion 11d. The secondary pressure dissolving section 11c and the degassing decompression section 11d are continuous. That is, the degassing decompression section 11d is provided so as to extend uniformly with a diameter smaller than that of the high-compression pressurization secondary dissolution section 11c after being gradually reduced in diameter from the diameter of the high-compression pressurization secondary dissolution section 11c. ing.

また、後述する高圧縮加圧最終混練部11hの代わりにある高圧縮加圧超混練部11s−2は、前述した第1実施の形態の高圧縮加圧超混練部11s−2とは多少構成が異なり、1列目110と2列目120だけから構成されており、3列目130はない。また、フライト部11の有効長さLと直径Dの比率(L/D)は18に設定されている。   Further, the high compression / pressure super kneading section 11s-2 instead of the high compression / pressure final kneading section 11h described later is somewhat configured from the high compression / pressure super kneading section 11s-2 of the first embodiment described above. However, the first column 110 and the second column 120 are only included, and the third column 130 is not provided. Further, the ratio (L / D) between the effective length L and the diameter D of the flight part 11 is set to 18.

このような樹脂押出機用スクリュー10Aによれば、単一樹脂としての原料樹脂中にフィラーとして主に油を混入して、高分散混合を行うのに適している。なお、第1実施の形態と同種の部位には同一符号を付して重複した説明を省略する。   According to such a screw 10A for a resin extruder, oil is mainly mixed as a filler in a raw material resin as a single resin, which is suitable for high dispersion mixing. In addition, the same code | symbol is attached | subjected to the site | part of the same kind as 1st Embodiment, and the overlapping description is abbreviate | omitted.

図13は、本発明の第3実施の形態を示している。
本実施の形態に係る樹脂押出機用スクリュー10Bは、基本的には第1実施の形態に係る樹脂押出機用スクリュー10と同一であるが、高圧縮加圧超混練部11s−2の形状が、前述した第1実施の形態の高圧縮加圧超混練部11s−2とは多少異なり、1列目110と2列目120だけから構成されており、3列目130はない。また、フライト部11の有効長さLと直径Dの比率(L/D)は18に設定されている。
FIG. 13 shows a third embodiment of the present invention.
The screw 10B for a resin extruder according to the present embodiment is basically the same as the screw 10 for a resin extruder according to the first embodiment, but the shape of the high compression pressure super kneading part 11s-2 is the same. This is slightly different from the high compression pressure super kneading section 11s-2 of the first embodiment described above, and is composed of only the first row 110 and the second row 120, and there is no third row 130. Further, the ratio (L / D) between the effective length L and the diameter D of the flight part 11 is set to 18.

このような樹脂押出機用スクリュー10Bによれば、異なる樹脂を混ぜた原料樹脂中にフィラーとして主に油を混入して、高分散混合を行うのに適している。なお、第1実施の形態と同種の部位には同一符号を付して重複した説明を省略する。   According to such a screw 10B for a resin extruder, it is suitable for performing high dispersion mixing by mainly mixing oil as a filler in a raw material resin in which different resins are mixed. In addition, the same code | symbol is attached | subjected to the site | part of the same kind as 1st Embodiment, and the overlapping description is abbreviate | omitted.

図14は、本発明の第4実施の形態を示している。
本実施の形態に係る樹脂押出機用スクリュー10Cは、高圧縮加圧再混練開始部11gに続く高圧縮加圧超混練部11s−2がなく、その代わりに高圧縮加圧最終混練部11hを備えている。高圧縮加圧最終混練部11hは、高圧縮加圧再混練開始部11gの最大径と同径以上で、フィラーを混入した原料樹脂をさらに加圧しながら混練するための部位である。
FIG. 14 shows a fourth embodiment of the present invention.
The resin extruder screw 10C according to the present embodiment does not have the high compression / pressure super kneading portion 11s-2 following the high compression / pressure re-kneading start portion 11g, but instead has the high compression / pressure final kneading portion 11h. I have. The high-compression pressure final kneading part 11h is a part for kneading while further pressurizing the raw material resin mixed with the filler that is equal to or larger than the maximum diameter of the high-compression pressure re-kneading start part 11g.

高圧縮加圧最終混練部11hは、本実施の形態では高圧縮加圧再混練開始部11gの最大径と同径で一律に延びるように設けられている。なお、減圧押出部11iは、前記高圧縮加圧最終混練部11hより径が急に漸次縮径した後に延出して、フィラーを混入した混練後の原料樹脂をシリンダー50外に押出し成形するための部位である。   In the present embodiment, the high compression pressure final kneading section 11h is provided so as to extend uniformly with the same diameter as the maximum diameter of the high compression pressure re-kneading start section 11g. The reduced pressure extruding unit 11i is used to extrude the kneaded raw material resin mixed with the filler out of the cylinder 50 after the diameter is gradually reduced from the high compression pressure final kneading unit 11h. It is a part.

また、高圧縮加圧超混練部11s−1の構成は、前述した第3実施の形態のものと同様である。さらに、本実施の形態では、油投入用減圧部11fに相当する部位がフィラー投入用減圧部11eと一緒にまとめて形成されている。すなわち、本実施の形態では図示省略したシリンダー50において、フィラー投入用減圧部11eに対応するシリンダー50の途中部位に油投入口54は設けられていない。   Further, the configuration of the high compression pressure super kneading part 11s-1 is the same as that of the third embodiment described above. Furthermore, in the present embodiment, the portion corresponding to the oil charging pressure reducing portion 11f is formed together with the filler charging pressure reducing portion 11e. That is, in the cylinder 50 that is not shown in the present embodiment, the oil charging port 54 is not provided in the middle of the cylinder 50 corresponding to the filler charging pressure reducing portion 11e.

このような樹脂押出機用スクリュー10Cによれば、異なる樹脂を混ぜた原料樹脂中に、フィラーとしてカーボンファイバーを混入して、高分散混合を行うのに適している。なお、第1実施の形態と同種の部位には同一符号を付して重複した説明を省略する。   According to such a screw 10C for a resin extruder, carbon fiber is mixed as a filler in a raw material resin in which different resins are mixed, which is suitable for high dispersion mixing. In addition, the same code | symbol is attached | subjected to the site | part of the same kind as 1st Embodiment, and the overlapping description is abbreviate | omitted.

以上、本発明の実施の形態を図面によって説明してきたが、具体的な構成は前述した実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   The embodiments of the present invention have been described above with reference to the drawings. However, the specific configuration is not limited to the above-described embodiments, and the present invention can be changed or added without departing from the scope of the present invention. Included in the invention.

本発明の第1実施の形態に係る樹脂押出機の全体を示す縦断面図(断面部分のハッチングは省略)、および樹脂押出機用スクリューの全体を示す側面図である。It is the longitudinal cross-sectional view (The hatching of a cross-section part is omitted) which shows the whole resin extruder which concerns on 1st Embodiment of this invention, and the side view which shows the whole screw for resin extruders. 図1中のA−A線断面図(縦方向の半割表示で断面部分のハッチングは省略)である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 (hatching of a cross-sectional portion is omitted in a vertical display in half). 図1中のB−B線断面図(縦方向の半割表示で断面部分のハッチングは省略)である。FIG. 2 is a cross-sectional view taken along line B-B in FIG. 1 (hatching of a cross-sectional portion is omitted in a vertical display in half). 図1中のE部分の拡大図である。It is an enlarged view of E part in FIG. 図1中のC−C線断面図(縦方向の半割表示で断面部分のハッチングは省略)である。1. It is CC sectional view taken on the line in FIG. 1 (the hatching of a cross-sectional part is abbreviate | omitted by the half display of the vertical direction). 図1中のD−D線断面図(縦方向の半割表示で断面部分のハッチングは省略)である。1. It is the DD sectional view taken on the line in FIG. 1 (the hatching of a cross-sectional part is abbreviate | omitted by the half direction display of the vertical direction). 図1中のF部分の拡大図である。It is an enlarged view of F part in FIG. 本発明の第1実施の形態に係る樹脂押出機のダイスヘッドを縦に2分割したものを示す斜視図である。It is a perspective view which shows what vertically divided the die head of the resin extruder which concerns on 1st Embodiment of this invention into 2 parts. 本発明の第1実施の形態に係る樹脂押出機のダイスヘッドを縦に2分割したものを示す側面図である。It is a side view showing what divided the die head of the resin extrusion machine concerning a 1st embodiment of the present invention into 2 lengthwise. 本発明の第1実施の形態に係る樹脂押出機の別のダイスヘッドを示す斜視図である。It is a perspective view which shows another dice head of the resin extruder which concerns on 1st Embodiment of this invention. 本発明の第1実施の形態に係る樹脂押出機の別のダイスヘッドを示す側面図である。It is a side view which shows another dice head of the resin extruder which concerns on 1st Embodiment of this invention. 本発明の第2実施の形態に係る樹脂押出機の全体を示す縦断面図(断面部分のハッチングは省略)、および樹脂押出機用スクリューの全体を示す側面図である。It is the longitudinal cross-sectional view (The hatching of a cross-section part is omitted) which shows the whole resin extruder which concerns on 2nd Embodiment of this invention, and the side view which shows the whole screw for resin extruders. 本発明の第3実施の形態に係る樹脂押出機用スクリューの全体を示す側面図である。It is a side view which shows the whole screw for resin extruders concerning 3rd Embodiment of this invention. 本発明の第4実施の形態に係る樹脂押出機用スクリューの全体を示す側面図である。It is a side view which shows the whole screw for resin extruders concerning 4th Embodiment of this invention. 従来のペレット製造装置の全体を示す概略図である。It is the schematic which shows the whole conventional pellet manufacturing apparatus.

符号の説明Explanation of symbols

1…樹脂押出機
10…樹脂押出機用スクリュー
10a…スクリュー本体
10A…樹脂押出機用スクリュー
10B…樹脂押出機用スクリュー
10C…樹脂押出機用スクリュー
11…フライト部
11a…喰い込み部
11b…高圧縮加圧溶解開始部
11c…高圧縮加圧2次溶解部
11d…ガス抜き用減圧部
11e…フィラー投入用減圧部
11f…油投入用減圧部
11g…高圧縮加圧再混練開始部
11h…高圧縮加圧最終混練部
11i…減圧押出部
11s−1,2…高圧縮加圧超混練部
12…螺旋羽根
13…シャンク部
50…シリンダー
51…原料投入口
52…ガス抜き口
53…フィラー投入口
54…油投入口
60…ホッパー
70…ダイスヘッド
71…凹部
72…押出口
72a…入口側大径部
72b…出口側小径部
73…ノズル
80…ダイスヘッド
81…凹部
82…細幅押出口
83…鋼線
110…1列目
111…進入溝
112…排出溝
113…山部
114…環状壁
115…環状溝
120…2列目
130…3列目
DESCRIPTION OF SYMBOLS 1 ... Resin extruder 10 ... Resin extruder screw 10a ... Screw main body 10A ... Resin extruder screw 10B ... Resin extruder screw 10C ... Resin extruder screw 11 ... Flight part 11a ... Biting part 11b ... High compression Pressurization dissolution start part 11c ... High compression pressure secondary dissolution part 11d ... Degassing decompression part 11e ... Filler charging decompression part 11f ... Oil charging decompression part 11g ... High compression pressurization re-kneading start part 11h ... High compression Pressurized final kneading section 11i ... Decompression extruding section 11s-1, 2 ... High compression pressure super kneading section 12 ... Spiral blade 13 ... Shank section 50 ... Cylinder 51 ... Raw material inlet 52 ... Gas vent 53 ... Filler inlet 54 ... Oil inlet 60 ... Hopper 70 ... Die head 71 ... Recess 72 ... Extrusion port 72a ... Inlet side large diameter part 72b ... Outlet side small diameter part 73 ... Nozzle 80 ... Die head 81 ... Concave 82 ... Narrow extrusion port 83 ... Steel wire 110 ... First row 111 ... Entrance groove 112 ... Discharge groove 113 ... Mountain portion 114 ... Annular wall 115 ... Annular groove 120 ... Second row 130 ... 3 Row

Claims (8)

加熱手段を備えたシリンダー内に回転駆動可能に収容され、ホッパーからシリンダー内に投入された原料樹脂を回転送りしながら溶融ないし混練し、シリンダー外に押出し成形するための樹脂押出機用スクリューにおいて、
スクリュー本体で螺旋羽根が周回する有効長さ部位は、前記ホッパーを配置する基端側より回転送り方向に向かって順に、
前記ホッパーから投入された原料樹脂を取り込みつつ送り出す喰い込み部と、
前記喰い込み部より漸次径が拡大し、加熱された原料樹脂を加圧しながら溶解を開始させる高圧縮加圧溶解開始部と、
前記高圧縮加圧溶解開始部の最大径と同径以上で、原料樹脂をさらに加圧しながら全て溶解させる高圧縮加圧2次溶解部と、
前記高圧縮加圧2次溶解部より径が小さく、原料樹脂を減圧して内部のガスを脱気するガス抜き用減圧部と、
前記ガス抜き用減圧部の最大径と同径以下で、原料樹脂にフィラーを投入するフィラー投入用減圧部と、
前記フィラー投入用減圧部より漸次径が拡大し、フィラーを混入した原料樹脂を加圧しながら再び混練する高圧縮加圧再混練開始部と、
前記高圧縮加圧再混練開始部の最大径と同径以上で、フィラーを混入した原料樹脂をさらに加圧しながら混練する高圧縮加圧最終混練部と、
前記高圧縮加圧最終混練部より径が小さく、フィラーを混入した原料樹脂をシリンダー外に押出し成形する減圧押出部と、に少なくとも区画され、
前記高圧縮加圧2次溶解部と前記ガス抜き用減圧部との間、および/または前記高圧縮加圧最終混練部の代わりに、下流側の部位の最大径と同径以上で、かつスクリュー本体の螺旋羽根を分断して、該螺旋羽根の代わりに歯車状に並列の複数の凹凸を有して成る高圧縮加圧超混練部を設けたことを特徴とする樹脂押出機用スクリュー。
In a screw for a resin extruder that is housed in a cylinder equipped with a heating means so as to be rotationally driven, melted or kneaded while rotating the raw resin charged into the cylinder from a hopper, and extruded out of the cylinder,
The effective length part where the spiral blade circulates in the screw body is in order from the base end side where the hopper is arranged toward the rotational feed direction.
The biting part that feeds out the raw material resin introduced from the hopper,
A high-compression pressure dissolution start part that gradually increases the diameter from the biting part and starts melting while pressurizing the heated raw resin,
A high-compression pressurization secondary dissolution part that is not less than the maximum diameter of the high-compression pressurization dissolution start part and dissolves all of the raw resin while further pressurizing;
A degassing decompression section having a diameter smaller than that of the high-compression pressurization secondary dissolution section, depressurizing the raw resin, and degassing the internal gas;
A filler charging decompression unit that is equal to or less than the maximum diameter of the degassing decompression unit and that feeds a filler into the raw material resin;
A high-compression pressure re-kneading start unit that gradually expands from the filler charging decompression unit and kneads again while pressurizing the raw material resin mixed with the filler,
A high-compression pressurization final kneading part for kneading while further pressurizing the raw material resin mixed with the filler at a diameter equal to or larger than the maximum diameter of the high-compression pressurization re-kneading part,
The pressure reduction extrusion part which is smaller in diameter than the high compression pressure final kneading part and extrudes and molds the raw material resin mixed with the filler outside the cylinder,
A screw having a diameter equal to or larger than the maximum diameter of the downstream portion between the high-compression pressurization secondary dissolution part and the degassing decompression part and / or in place of the high-compression pressurization final kneading part. A screw for a resin extruder, characterized in that a spiral blade of a main body is divided and a high-compression and pressure super-kneading part having a plurality of parallel projections and recesses in a gear shape is provided instead of the spiral blade.
前記高圧縮加圧超混練部は、前記複数の凹凸をスクリュー本体の軸方向に対しそれぞれ傾斜ないし平行に延ばし、各凹凸を軸方向に少なくとも2以上列設して成ることを特徴とする請求項1に記載の樹脂押出機用スクリュー。   The high-compression and pressure super-kneading part is formed by extending the plurality of irregularities in an inclined or parallel manner with respect to the axial direction of the screw body, and arranging at least two or more irregularities in the axial direction. The screw for resin extruders according to 1. 請求項1または2に記載の樹脂押出機用スクリューを、シリンダー内に回転可能に収容して成る樹脂押出機であって、
前記樹脂押出機用スクリューのスクリュー本体における螺旋羽根の外周径、および前記高圧縮加圧超混練部の外周径は、それぞれ略同一に形成され、
前記シリンダーの内径は、前記スクリュー本体における螺旋羽根の外周端、および前記高圧縮加圧超混練部の外周端に対して、所定の隙間が生じる大きさに一律に形成されたことを特徴とする樹脂押出機。
A resin extruder comprising the screw for a resin extruder according to claim 1 or 2, wherein the screw is rotatably accommodated in a cylinder,
The outer peripheral diameter of the spiral blade in the screw main body of the screw for the resin extruder, and the outer peripheral diameter of the high compression pressure super kneading part are formed substantially the same, respectively.
The inner diameter of the cylinder is uniformly formed to have a predetermined gap with respect to the outer peripheral end of the spiral blade in the screw body and the outer peripheral end of the high compression pressure super kneading part. Resin extruder.
前記シリンダーの内壁と前記スクリュー本体の外周との隙間のうち、前記高圧縮加圧2次溶解部の隙間を前記喰い込み部の隙間に対して約1/3に設定したことを特徴とする請求項3に記載の樹脂押出機。   The gap between the inner wall of the cylinder and the outer periphery of the screw main body is set such that the gap of the high-compression pressurization secondary melting part is set to about 1/3 of the gap of the biting part. Item 4. The resin extruder according to Item 3. 前記スクリュー本体のうち前記ガス抜き用減圧部に対応する前記シリンダー途中に、外部にガスを排出するためのガス抜き口を設け、
前記スクリュー本体のうち前記フィラー投入用減圧部に対応する前記シリンダー途中に、繊維状物質を混入するためのフィラー投入口を設けたことを特徴とする請求項4に記載の樹脂押出機。
In the middle of the cylinder corresponding to the degassing decompression section of the screw body, a gas vent for discharging gas to the outside is provided,
5. The resin extruder according to claim 4, wherein a filler inlet for mixing a fibrous substance is provided in the middle of the cylinder corresponding to the filler charging pressure reducing portion in the screw body.
前記スクリュー本体のうち前記フィラー投入用減圧部に対応する前記シリンダー途中に、前記フィラー投入口の下流側で油を混入するための油投入口を設けたことを特徴とする請求項5に記載の樹脂押出機。   The oil input port for mixing oil in the downstream of the filler input port is provided in the middle of the cylinder corresponding to the decompression unit for charging the filler in the screw main body. Resin extruder. 請求項3,4,5または6に記載の樹脂押出機を用いて、熱可塑性ペレットを製造するペレット製造方法。   The pellet manufacturing method which manufactures a thermoplastic pellet using the resin extruder of Claim 3, 4, 5 or 6. 請求項5または6に記載の樹脂押出機を用いて、フィラーとしてカーボン繊維を混入した導電性を有する熱可塑性ペレットを製造するペレット製造方法。   The pellet manufacturing method which manufactures the thermoplastic pellet which has the electroconductivity which mixed the carbon fiber as a filler using the resin extruder of Claim 5 or 6.
JP2006321506A 2006-11-29 2006-11-29 Screw for resin extruder, resin extruder, and pellet manufacturing method Active JP4968828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321506A JP4968828B2 (en) 2006-11-29 2006-11-29 Screw for resin extruder, resin extruder, and pellet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321506A JP4968828B2 (en) 2006-11-29 2006-11-29 Screw for resin extruder, resin extruder, and pellet manufacturing method

Publications (2)

Publication Number Publication Date
JP2008132702A true JP2008132702A (en) 2008-06-12
JP4968828B2 JP4968828B2 (en) 2012-07-04

Family

ID=39557894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321506A Active JP4968828B2 (en) 2006-11-29 2006-11-29 Screw for resin extruder, resin extruder, and pellet manufacturing method

Country Status (1)

Country Link
JP (1) JP4968828B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000757A (en) * 2012-06-20 2014-01-09 Sekisui Chem Co Ltd Screw for extruder
KR101619123B1 (en) * 2015-10-30 2016-05-10 (주)한양스크류 Molding machine with gas venting function
WO2019065786A1 (en) * 2017-09-26 2019-04-04 株式会社日本製鋼所 Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
JP2019059081A (en) * 2017-09-26 2019-04-18 株式会社日本製鋼所 Extruder for fiber reinforced thermoplastic resin
JP2019069527A (en) * 2017-10-06 2019-05-09 株式会社日本製鋼所 Kneading method and plasticizing apparatus for fiber reinforced thermoplastic resin
CN112203818A (en) * 2018-04-09 2021-01-08 芝浦机械株式会社 Kneading method and kneaded product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531843B (en) * 2020-05-07 2021-05-28 新沂天晟新材料有限公司 Modified plastic granulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386757A (en) * 1977-01-11 1978-07-31 Mitsubishi Heavy Ind Ltd Extruder
JPS6097805A (en) * 1983-11-02 1985-05-31 Kobe Steel Ltd Single shaft mixtruder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386757A (en) * 1977-01-11 1978-07-31 Mitsubishi Heavy Ind Ltd Extruder
JPS6097805A (en) * 1983-11-02 1985-05-31 Kobe Steel Ltd Single shaft mixtruder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000757A (en) * 2012-06-20 2014-01-09 Sekisui Chem Co Ltd Screw for extruder
KR101619123B1 (en) * 2015-10-30 2016-05-10 (주)한양스크류 Molding machine with gas venting function
WO2019065786A1 (en) * 2017-09-26 2019-04-04 株式会社日本製鋼所 Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
JP2019059081A (en) * 2017-09-26 2019-04-18 株式会社日本製鋼所 Extruder for fiber reinforced thermoplastic resin
CN111132805A (en) * 2017-09-26 2020-05-08 株式会社日本制钢所 Method for kneading fiber-reinforced thermoplastic resin, plasticizing device, and extruder
US11992973B2 (en) 2017-09-26 2024-05-28 The Japan Steel Works, Ltd. Kneading method for fiber-reinforced thermoplastic resin, plasticizing device, and extruding machine
JP2019069527A (en) * 2017-10-06 2019-05-09 株式会社日本製鋼所 Kneading method and plasticizing apparatus for fiber reinforced thermoplastic resin
CN112203818A (en) * 2018-04-09 2021-01-08 芝浦机械株式会社 Kneading method and kneaded product

Also Published As

Publication number Publication date
JP4968828B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4968828B2 (en) Screw for resin extruder, resin extruder, and pellet manufacturing method
JP5659288B1 (en) Method for producing transparent resin composition containing polycarbonate resin and acrylic resin
TWI818021B (en) Kneading method for conductive composite material
CN101875233A (en) Straight conical three-screw extruder
CN101875232A (en) Conical three-screw rod extruder arranged like triangle
CN102225317A (en) Double-conical-rotor continuous mixing unit
JP5536705B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
CN214726303U (en) PLA straw extruder
WO2007033328A2 (en) Method and apparatus for forming a synthetic extrudate
KR20050044528A (en) Mixing element/section of a screw in a plastification apparatus
CN109049602A (en) It is a kind of for producing the single screw extrusion machine of starch plastics
CN206106319U (en) Powder coating nation decides extruder
JP3212379B2 (en) In-line two-stage extruder
JP2007007864A (en) Plasticator of on-line blending injection molding machine
TWI496675B (en) Glass fiber reinforced thermoplastic synthetic resin composites for the production of compressed products
CN201633185U (en) Linear cone-shaped three-screw extruder
JP2816356B2 (en) Extrusion molding equipment
JP2008132703A (en) Screw for resin extruder, resin extruder and pelletizing method
JP2005169764A (en) Kneader for plastic material
JPH05228920A (en) Screw type kneader
JP3350211B2 (en) Uniaxial plasticizing screw and plasticizing method using this screw
JP4295419B2 (en) Screw for resin extruder and resin extruder
JPH1128755A (en) Production of tubular object
JPH09141726A (en) Method and apparatus for extrusion molding of vinyl chloride molded product
JP2019059081A (en) Extruder for fiber reinforced thermoplastic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4968828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250