JP2008132559A - Grinding method for silicon carbide single crystal - Google Patents

Grinding method for silicon carbide single crystal Download PDF

Info

Publication number
JP2008132559A
JP2008132559A JP2006319791A JP2006319791A JP2008132559A JP 2008132559 A JP2008132559 A JP 2008132559A JP 2006319791 A JP2006319791 A JP 2006319791A JP 2006319791 A JP2006319791 A JP 2006319791A JP 2008132559 A JP2008132559 A JP 2008132559A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
grinding
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319791A
Other languages
Japanese (ja)
Inventor
Masao Nakamura
昌生 中村
Erumu Nitta
永留夢 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006319791A priority Critical patent/JP2008132559A/en
Publication of JP2008132559A publication Critical patent/JP2008132559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding method for silicon carbide single crystal for easily and efficiently cutting out silicon carbide single crystal having no breakage such as crack. <P>SOLUTION: This grinding method comprises a process for bringing a grindstone working part 32 of a grinding wheel 30 into contact with a growth face opposing to a seed crystal 11 side of the silicon carbide single crystal 10 formed by the sublimation method, and a process for grinding the silicon carbide single crystal 10 by rotating the grinding wheel 30 and lowering the grinding wheel 30 in the direction of seed crystal 11. Ultrasonic vibration is given to the hollow cylindrical grinding wheel 30 or a fixed device 21 to discharge facet pieces of the silicon carbide single crystal 10 in the process for grinding the silicon carbide single crystal 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化ケイ素単結晶の研削方法に関し、詳しくは加工時に割れや欠けなどの発生することのない炭化ケイ素単結晶の研削方法に関する。   The present invention relates to a method for grinding a silicon carbide single crystal, and more particularly to a method for grinding a silicon carbide single crystal that does not generate cracks or chips during processing.

炭化ケイ素は、ケイ素に比し、バンドギャップが大きく、絶縁破壊特性、耐熱性、耐放射線性等に優れることから、小型で高出力の半導体等の電子デバイス材料として注目されている。また、炭化ケイ素は、光学的特性に優れた他の化合物半導体との接合性に優れることから、光学デバイス材料としても注目されてきている。   Silicon carbide is attracting attention as a small and high-power electronic device material such as a semiconductor because it has a larger band gap and is superior in dielectric breakdown characteristics, heat resistance, radiation resistance, and the like. In addition, silicon carbide has been attracting attention as an optical device material because it has excellent bonding properties with other compound semiconductors having excellent optical characteristics.

炭化ケイ素単結晶ウェハの製造方法の一態様として、坩堝内に昇華用原料粉を封入し、対向する側に配置された種結晶上に昇華ガスを供給しつつ、種結晶上に炭化ケイ素単結晶を再結晶させ(昇華法)、得られた炭化ケイ素単結晶からウェハを切り出す方法がある。かかるウェハの切り出し法としては、円盤状の砥石を回転させて砥石の外周面を研削面として単結晶側面部に押し当てて単結晶を切り出す方法が提案されている(特許文献1参照)。
特開2001−261491号公報
As one aspect of a method for producing a silicon carbide single crystal wafer, a raw material powder for sublimation is enclosed in a crucible, and a sublimation gas is supplied onto a seed crystal disposed on the opposite side, while a silicon carbide single crystal is formed on the seed crystal. Is recrystallized (sublimation method), and a wafer is cut out from the obtained silicon carbide single crystal. As a method for cutting out such a wafer, there has been proposed a method of cutting a single crystal by rotating a disk-shaped grindstone and pressing the outer peripheral surface of the grindstone against a side surface of the single crystal as a grinding surface (see Patent Document 1).
JP 2001-261491 A

しかしながら、単結晶成長表面の周縁部、特に坩堝との接触面外周部分に螺旋転位などの結晶欠陥が発生しやすく、円筒研削を行うとかかる欠陥部分にクラックが発生しやすかった。この結果、単結晶表面までクラックが進行して使い物にならないなど、加工方法に関してはいまだ十分な加工方法が提案されていなかった。   However, crystal defects such as screw dislocations are liable to occur at the peripheral portion of the single crystal growth surface, particularly the outer peripheral portion of the contact surface with the crucible, and cracks are liable to occur when cylindrical grinding is performed. As a result, a sufficient processing method has not been proposed yet regarding the processing method, such as cracks reaching the surface of the single crystal and making it unusable.

炭化ケイ素単結晶を効率よく、かつ割れ等の破損がない状態で容易に切り出すことができる炭化ケイ素単結晶の研削方法が求められていた。   There has been a demand for a grinding method of a silicon carbide single crystal that can efficiently cut out a silicon carbide single crystal without causing breakage such as cracks.

本発明に係る炭化ケイ素単結晶の研削方法は、昇華法により形成された炭化ケイ素単結晶の種結晶側に対向する成長面に対して中空円筒状砥石の開口加工部を接触させる工程と、中空円筒状砥石を回転させると共に中空円筒状砥石を種結晶方向に下降させて炭化ケイ素単結晶を研削する工程とを含み、炭化ケイ素単結晶を研削する工程にて、中空円筒状砥石に超音波振動を与えて炭化ケイ素単結晶の切子を排出させる。   The method for grinding a silicon carbide single crystal according to the present invention includes a step of contacting an opening processing portion of a hollow cylindrical grindstone with a growth surface facing a seed crystal side of a silicon carbide single crystal formed by a sublimation method, A step of grinding the silicon carbide single crystal by rotating the cylindrical grindstone and lowering the hollow cylindrical grindstone in the seed crystal direction, and ultrasonically vibrating the hollow cylindrical grindstone in the step of grinding the silicon carbide single crystal. To discharge the silicon carbide single crystal facets.

本発明に係る他の炭化ケイ素単結晶の研削方法は、昇華法により形成された炭化ケイ素単結晶を固定装置に固定し、当該炭化ケイ素単結晶の種結晶側に対向する成長面に対して中空円筒状砥石の開口加工部を接触させる工程と、中空円筒状砥石を回転させると共に中空円筒状砥石を種結晶方向に下降させて炭化ケイ素単結晶を研削する工程とを含み、炭化ケイ素単結晶を研削する工程にて、炭化ケイ素単結晶の固定装置に超音波振動を与えて炭化ケイ素単結晶の切子を排出させる。   Another method of grinding a silicon carbide single crystal according to the present invention is to fix a silicon carbide single crystal formed by a sublimation method to a fixing device and to be hollow with respect to a growth surface facing the seed crystal side of the silicon carbide single crystal. A step of contacting the opening processing portion of the cylindrical grindstone, and a step of rotating the hollow cylindrical grindstone and lowering the hollow cylindrical grindstone in the seed crystal direction to grind the silicon carbide single crystal. In the grinding step, ultrasonic vibration is applied to the silicon carbide single crystal fixing device to discharge the silicon carbide single crystal facets.

また、この炭化ケイ素単結晶の研削方法は、炭化ケイ素単結晶を研削する工程にて、15kHz〜100kHzの超音波振動を与えることが望ましい。   Moreover, as for this grinding method of a silicon carbide single crystal, it is desirable to give an ultrasonic vibration of 15 kHz-100 kHz in the process of grinding a silicon carbide single crystal.

更に、この炭化ケイ素単結晶の研削方法は、炭化ケイ素単結晶を研削する工程にて、振幅が10μm〜40μmの超音波振動を与えることが望ましい。   Furthermore, in this method for grinding a silicon carbide single crystal, it is desirable to apply ultrasonic vibration having an amplitude of 10 μm to 40 μm in the step of grinding the silicon carbide single crystal.

本発明に係る炭化ケイ素単結晶の研削方法によれば、炭化ケイ素単結晶を研削する工程にて、超音波振動によって炭化ケイ素単結晶の切子を排出させるので、炭化ケイ素単結晶の割れ等の破損がない状態で容易に切り出すことができる。   According to the method for grinding a silicon carbide single crystal according to the present invention, in the step of grinding the silicon carbide single crystal, since the silicon carbide single crystal facets are discharged by ultrasonic vibration, the silicon carbide single crystal is broken or broken. It can be easily cut out in the absence of

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。   Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments.

本発明を適用した炭化ケイ素単結晶の研削方法は、図1(a)、(b)に示すように固定装置21及び坩堝の蓋20上に固定された炭化ケイ素単結晶10を、図2,3,4に示すような研削砥石30を用いて研削する。固定装置21は、炭素からなる板状部材である。以下に説明する炭化ケイ素単結晶10の研削方法は、炭化ケイ素単結晶10の研削工程において、超音波振動によって炭化ケイ素単結晶10の切り子の排出効率を高めることを特徴としている。   The method of grinding a silicon carbide single crystal to which the present invention is applied includes a silicon carbide single crystal 10 fixed on a fixing device 21 and a crucible lid 20 as shown in FIGS. 1 (a) and 1 (b). Grinding is performed using a grinding wheel 30 as shown in FIGS. The fixing device 21 is a plate-like member made of carbon. The silicon carbide single crystal 10 grinding method described below is characterized in that in the grinding process of the silicon carbide single crystal 10, the cutting efficiency of the silicon carbide single crystal 10 is increased by ultrasonic vibration.

(研削砥石)
本発明の実施形態にかかる炭化ケイ素単結晶の研削方法に用いられる研削砥石30を装着する研削装置としては、研削砥石30の回転機能と上下動機能を備えるものであれば特に制限はない。
(Grinding wheel)
The grinding apparatus for mounting the grinding wheel 30 used in the method for grinding a silicon carbide single crystal according to the embodiment of the present invention is not particularly limited as long as it has the rotation function and the vertical movement function of the grinding wheel 30.

具体的には、図2に示すように、研削砥石30は、回転駆動される砥石シャンク31と、炭化ケイ素単結晶10を研削する時に当該炭化ケイ素単結晶10に接触する砥石加工部32とが接続されて構成されている。   Specifically, as shown in FIG. 2, the grinding wheel 30 includes a grindstone shank 31 that is rotationally driven and a grindstone processing unit 32 that contacts the silicon carbide single crystal 10 when the silicon carbide single crystal 10 is ground. Connected and configured.

砥石加工部32は、円状の開口を有し、炭化ケイ素単結晶10を研削加工する開口加工部となっている。この砥石加工部32は、ダイヤモンド砥粒及び、樹脂などの結合剤から形成されている。砥石シャンク31は、研削装置の回転駆動機構に接続されおり、当該回転駆動機構の回転力が与えられる。この砥石シャンク31が回転されると、研削砥石30及び砥石加工部32も回転される。   The grindstone processing portion 32 has a circular opening and is an opening processing portion for grinding the silicon carbide single crystal 10. This grindstone processing part 32 is formed from a binder such as diamond abrasive grains and resin. The grindstone shank 31 is connected to the rotational drive mechanism of the grinding apparatus, and is given the rotational force of the rotational drive mechanism. When the grindstone shank 31 is rotated, the grinding wheel 30 and the grindstone processing unit 32 are also rotated.

このような研削砥石30は、中心軸Zに沿って上下動する(Z軸方向とする)。駆動部の図示は省略してある。中空円筒状の砥石加工部32の断面内法直径は、図4(a)に示すように、単結晶領域12を囲むに十分な内法径を有することが好ましい。研削砥石30は、砥石加工部32の開口部に、切り欠部が一定間隔で設けられていることが好ましい。加工屑が欠き出されやすくなり研削抵抗が低減するからである。また研削砥石30は、図4(a)の一部断面図に示すように、砥石シャンク31の中心軸Z上に水等の潤滑剤を供給する噴出し口(センタースルー)34を備えることが好ましい。加工点の温度上昇を防止すると共に水流35により加工屑を吐き出すことで研削抵抗を低下させることができるからである。   Such a grinding wheel 30 moves up and down along the central axis Z (the Z-axis direction). The illustration of the drive unit is omitted. As shown in FIG. 4A, it is preferable that the hollow cylinder-shaped grindstone processing portion 32 has a sufficient internal diameter to surround the single crystal region 12 as shown in FIG. The grinding wheel 30 is preferably provided with notches at regular intervals in the opening of the grindstone processing section 32. This is because the machining waste is easily cut out and the grinding resistance is reduced. Further, as shown in the partial cross-sectional view of FIG. 4A, the grinding wheel 30 includes an ejection port (center through) 34 for supplying a lubricant such as water onto the central axis Z of the grinding wheel shank 31. preferable. This is because the grinding resistance can be lowered by preventing the temperature rise at the processing point and discharging the processing waste by the water flow 35.

図4に示す研削砥石30又は固定装置21に超音波振動を与えた場合、超音波のキャビテーション現象によって加工屑がスムーズに排出される。超音波の振動方向としては、回転軸方向が一般的ではあるが、この回転軸と直交する何れの軸方向であっても加工屑の排出効果を得ることができる。図中で左右方向に振動させた場合には、図4(b)に示すように静止時の砥石シャンク31の中心軸Zと炭化ケイ素単結晶10の中心位置ZL1とが、距離Lだけずれるようになる。これにより、加工屑が切り欠部から排出される効率を、円形状とした場合よりも高くすると考えることができる。この距離Lは、図4(b)では大きく示しているが、実際には、振幅が10μm〜40μmの超音波振動を与えるために、当該10μm〜40μmである。また、超音波振動の周波数は、15kHz〜100kHzであることが望ましい。なお、図4(b)のA−A線で切った断面図が図5(a)となっている。   When ultrasonic vibration is applied to the grinding wheel 30 or the fixing device 21 shown in FIG. 4, the machining waste is smoothly discharged by the ultrasonic cavitation phenomenon. As the vibration direction of the ultrasonic wave, the rotation axis direction is generally used, but the removal effect of the machining waste can be obtained in any axial direction orthogonal to the rotation axis. When it is vibrated in the left-right direction in the figure, the center axis Z of the grinding wheel shank 31 at rest and the center position ZL1 of the silicon carbide single crystal 10 are shifted by a distance L as shown in FIG. become. Thereby, it can be considered that the efficiency with which the processing waste is discharged from the notch is higher than that in the case of a circular shape. Although this distance L is greatly shown in FIG. 4B, in reality, the distance L is 10 μm to 40 μm in order to apply ultrasonic vibration having an amplitude of 10 μm to 40 μm. The frequency of the ultrasonic vibration is desirably 15 kHz to 100 kHz. A cross-sectional view taken along the line AA in FIG. 4B is FIG. 5A.

研削砥石30を用い炭化ケイ素単結晶10を加工する場合において加工屑によって研削砥石30が目詰まりを起こし、研削砥石30のブレによって発生する炭化ケイ素単結晶10のクラックを超音波振動の付与により抑制できうる。   When the silicon carbide single crystal 10 is processed using the grinding wheel 30, the grinding wheel 30 is clogged by processing scraps, and cracks of the silicon carbide single crystal 10 generated by the shaking of the grinding wheel 30 are suppressed by applying ultrasonic vibration. It can be done.

研削砥石30に超音波振動を与える構成としては、発振子と超音波発生装置を用意し、当該超音波発生装置で発生した超音波信号に従って発振子で超音波振動を発生させて、砥石シャンク31を介して研削砥石30及び砥石加工部32に超音波振動を与えることによって、炭化ケイ素単結晶10の切子及び加工液に超音波振動を与える。同様に、固定装置21に超音波振動を与える構成としては、発振子と超音波発生装置を用意し、当該超音波発生装置で発生した超音波信号に従って発振子で超音波振動を発生させて、超音波振動子を接触させて固定装置21に超音波振動を与えることによって、炭化ケイ素単結晶10の切子及び加工液に超音波振動を与える。   As a configuration for applying ultrasonic vibration to the grinding wheel 30, an oscillator and an ultrasonic generator are prepared, and ultrasonic vibration is generated by the oscillator in accordance with an ultrasonic signal generated by the ultrasonic generator, and the grindstone shank 31 is provided. By applying ultrasonic vibration to the grinding wheel 30 and the grindstone processing part 32 through the ultrasonic wave, ultrasonic vibration is applied to the facets and processing liquid of the silicon carbide single crystal 10. Similarly, as a configuration for applying ultrasonic vibration to the fixing device 21, an oscillator and an ultrasonic generator are prepared, and ultrasonic vibration is generated by the oscillator in accordance with an ultrasonic signal generated by the ultrasonic generator. By applying ultrasonic vibration to the fixing device 21 by bringing the ultrasonic vibrator into contact, ultrasonic vibration is applied to the facets and processing liquid of the silicon carbide single crystal 10.

図1〜図7を参照して炭化ケイ素単結晶の研削方法を説明する。   A method for grinding a silicon carbide single crystal will be described with reference to FIGS.

(イ)まず図1(a)に示す坩堝の蓋20上に成長した炭化ケイ素単結晶10を用意し、蓋20面を固定装置21上に配置し固定する。炭化ケイ素単結晶10は図1(b)の断面図に示すように単結晶領域12が炭化ケイ素単結晶の成長方向に向かって除々に径が拡がっているものが好ましい。 (A) First, the silicon carbide single crystal 10 grown on the crucible lid 20 shown in FIG. 1A is prepared, and the lid 20 surface is arranged on the fixing device 21 and fixed. As shown in the cross-sectional view of FIG. 1B, the silicon carbide single crystal 10 preferably has a single crystal region 12 whose diameter gradually increases in the growth direction of the silicon carbide single crystal.

(ロ)次に図2及び図3に示すような砥石シャンク31及び砥石加工部(刃)32を備える研削砥石30を用意する。 (B) Next, a grinding wheel 30 including a grinding wheel shank 31 and a grinding wheel processing portion (blade) 32 as shown in FIGS. 2 and 3 is prepared.

(ハ)そして図3に示すように、得たい炭化ケイ素単結晶10の位置を、研削砥石30の長手方向の中心軸に合わせる。図3において紙面左右方向をX方向、前後方向をY方向とする。 (C) Then, as shown in FIG. 3, the position of the silicon carbide single crystal 10 to be obtained is aligned with the central axis in the longitudinal direction of the grinding wheel 30. In FIG. 3, the left-right direction of the paper is the X direction, and the front-back direction is the Y direction.

(ニ)次に図4に示すように砥石シャンク31を中心軸Zを中心に回転させて、研削砥石30を回転させながら炭化ケイ素単結晶10の種結晶方向11に向けて所定速度で下降させて炭化ケイ素単結晶10を研削する。このときの研削砥石30の回転数は300〜3000rpm、好ましくは500〜1000rpmである。回転数が300rpm未満では充分な研削効率を得ることができないからである。また回転数が3000rpmを超えると砥石すべりが発生し加工が不安定になるからである。砥石の下方送り速度は0.1〜1.0mm/minが好ましい。下方送り速度が0.1mm/min未満ではコスト高になるばかりでなく砥石すべりが発生するからである。下方送り速度が1.0mm/minを超えると、研削抵抗が上がりすぎ砥石の逃げやぶれが大きくなり、加工精度が悪くなるばかりかクラック誘発に繋がるからである。
図4(a)に示すように、上記回転及び上下動と併せて研削砥石30の噴出し口34から水流35(潤滑剤)を吹きかけながら研削を行うことが好ましい。加工点の温度上昇を防止すると共に研削抵抗を低減できるからである。
(D) Next, as shown in FIG. 4, the grindstone shank 31 is rotated about the central axis Z, and the grindstone 30 is rotated at a predetermined speed toward the seed crystal direction 11 of the silicon carbide single crystal 10 while rotating. The silicon carbide single crystal 10 is ground. The rotation speed of the grinding wheel 30 at this time is 300 to 3000 rpm, preferably 500 to 1000 rpm. This is because sufficient grinding efficiency cannot be obtained when the rotational speed is less than 300 rpm. Further, if the rotational speed exceeds 3000 rpm, grinding wheel slip occurs and machining becomes unstable. The downward feed speed of the grindstone is preferably 0.1 to 1.0 mm / min. This is because when the downward feed speed is less than 0.1 mm / min, not only the cost is increased, but also grinding of the grindstone occurs. This is because when the downward feed speed exceeds 1.0 mm / min, the grinding resistance increases too much, and the grinding stones run away and sway, resulting in poor processing accuracy and lead to cracking.
As shown in FIG. 4A, it is preferable to perform grinding while spraying a water flow 35 (lubricant) from the outlet 34 of the grinding wheel 30 together with the above rotation and vertical movement. This is because it is possible to prevent the temperature rise at the processing point and reduce the grinding resistance.

このとき、研削砥石30又は固定装置21に超音波振動を与えているので、例えば研削砥石30の噴出し口34から水を噴き出した際に、研削砥石30と非加工物との間に隙間を生じさせ、冷却水を加工点に供給しやすくなる。また図5に示すように加工屑10bまで超音波振動が伝達し、加工屑10bが吐き出されやすくなり、加工負荷の増大や研削砥石30のブレを抑制できるという作用効果を奏する。   At this time, since the ultrasonic vibration is applied to the grinding wheel 30 or the fixing device 21, for example, when water is ejected from the ejection port 34 of the grinding wheel 30, a gap is formed between the grinding wheel 30 and the non-workpiece. This makes it easier to supply cooling water to the processing point. Further, as shown in FIG. 5, ultrasonic vibration is transmitted to the machining waste 10b, and the machining waste 10b is easily discharged, so that an increase in machining load and blurring of the grinding wheel 30 can be suppressed.

(ホ)次に図6,7に示す巻き取り部41a、41bと、巻き取り部41a、41bに把持されたワイヤー42とを備えるシングルワイヤ40を用意する。研削にはワイヤー42としてダイヤモンドなどの砥粒がコーティングされたものを用いてもよく、またダイヤモンド砥粒を供給しつつ研削してもよい。そして図6に示すように、円柱状炭化ケイ素単結晶の成長表面近傍、即ち切り込み部の上端とシングルワイヤ40を接触させる。そして、炭化ケイ素単結晶10の単結晶領域12に形成された円柱状炭化ケイ素単結晶の上部(成長表面近傍)を切断除去する。また図7に示すように、種結晶11の上端とシングルワイヤ40を接触させる。そして、炭化ケイ素単結晶10の円柱状炭化ケイ素単結晶の下部(種結晶接着面近傍)を切断する。 (E) Next, a single wire 40 including winding portions 41a and 41b shown in FIGS. 6 and 7 and a wire 42 held by the winding portions 41a and 41b is prepared. For the grinding, a wire 42 coated with abrasive grains such as diamond may be used, or grinding may be performed while supplying diamond abrasive grains. Then, as shown in FIG. 6, the single wire 40 is brought into contact with the vicinity of the growth surface of the columnar silicon carbide single crystal, that is, the upper end of the cut portion. Then, the upper part (near the growth surface) of the cylindrical silicon carbide single crystal formed in the single crystal region 12 of the silicon carbide single crystal 10 is cut and removed. Further, as shown in FIG. 7, the upper end of the seed crystal 11 and the single wire 40 are brought into contact with each other. Then, the lower part (near the seed crystal bonding surface) of the cylindrical silicon carbide single crystal of the silicon carbide single crystal 10 is cut.

以上のようにして炭化ケイ素単結晶10から円柱状の単結晶領域10aを切り出すことができる。尚、マルチワイヤ(図示せず)を用いて所定間隔で単結晶領域10aを切断することで所望のウェハ厚の炭化ケイ素単結晶ウェハが得られる。   The cylindrical single crystal region 10a can be cut out from the silicon carbide single crystal 10 as described above. Note that a silicon carbide single crystal wafer having a desired wafer thickness can be obtained by cutting the single crystal regions 10a at predetermined intervals using a multi-wire (not shown).

この炭化ケイ素単結晶の研削方法の実施例1及び比較例1として、研削対象としての6H型炭化ケイ素単結晶(成長高さ:10mm、最大径:75mm)について以下の条件で研削実験を行い、クラックの発生について目視観察を行った。そして同様の条件で研削を行った際に生じたクラックの回数をクラック発生率(%)として調べた。   As Example 1 and Comparative Example 1 of this silicon carbide single crystal grinding method, a grinding experiment was performed on a 6H type silicon carbide single crystal (growth height: 10 mm, maximum diameter: 75 mm) as a grinding object under the following conditions. Visual observation was performed on the occurrence of cracks. The number of cracks that occurred when grinding under the same conditions was examined as the crack generation rate (%).

(実施例1)
研削装置:グライディングセンター(三井精機製、商品名「VU65」)、
研削砥石:内径51.0mm、刃厚1.0mm、ダイヤモンド砥粒、粒径#140、
研削条件:回転数1000rpm、送り速度0.3mm/min、センタースルー圧力0.17MPa、
結果:クラック発生率は2/20回(10%)であった。
(Example 1)
Grinding equipment: Gliding Center (Mitsui Seiki, trade name “VU65”),
Grinding wheel: inner diameter 51.0 mm, blade thickness 1.0 mm, diamond abrasive, particle size # 140,
Grinding conditions: rotation speed 1000 rpm, feed rate 0.3 mm / min, center through pressure 0.17 MPa,
Result: The crack occurrence rate was 2/20 times (10%).

(比較例1)
比較例として、円筒研削機(岡本工作機械社製、商品名「OGM340UEX」)を用いて、片側切り込み(切り込み量:17.5mm、左右送り:98mm/min)、ワーク回転数100rpm、スパークアウト4往復の条件で研削加工を行ったことを除いて実施例1と同様の実験を行った。その結果、クラック発生率は50/100回(50%)であった。
(Comparative Example 1)
As a comparative example, using a cylindrical grinding machine (trade name “OGM340UEX” manufactured by Okamoto Machine Tool Co., Ltd.), one-side cutting (cutting amount: 17.5 mm, left and right feed: 98 mm / min), workpiece rotation speed 100 rpm, spark out 4 An experiment similar to that in Example 1 was performed, except that grinding was performed under reciprocating conditions. As a result, the crack occurrence rate was 50/100 times (50%).

本発明の実施形態にかかる炭化ケイ素単結晶10の研削方法によれば、高品質な炭化ケイ素単結晶10を効率よく、かつ割れ等の破損がない状態で容易に切り出すことができる。すなわち、炭化ケイ素単結晶10の外周部にクラックの基点となる欠陥が多く、当該外周部を削る必要がある場合であっても、上述の炭化ケイ素単結晶10の研削方法によれば、炭化ケイ素単結晶10の切り子を効率よく排出して研削砥石30を炭化ケイ素単結晶10から抜く時に切り子によって炭化ケイ素単結晶10のクラックに繋がることを回避できる。   According to the method for grinding silicon carbide single crystal 10 according to the embodiment of the present invention, high-quality silicon carbide single crystal 10 can be easily cut out efficiently and without breakage such as cracks. That is, even if the outer periphery of the silicon carbide single crystal 10 has many defects that serve as the base point of cracks, the silicon carbide single crystal 10 is ground by the above-described grinding method. It is possible to efficiently discharge the facets of the single crystal 10 to avoid cracking of the silicon carbide single crystal 10 by the facets when the grinding wheel 30 is pulled out of the silicon carbide single crystal 10.

また、研削砥石30を回転させた状態で研削砥石30又は固定装置21に超音波振動を与え、更に、研削砥石30を揺動させることによって、加工速度を向上させることができる。この揺動は、炭化ケイ素単結晶10と研削砥石30を相対的に動かす。この揺動は、炭化ケイ素単結晶10の成長方向の中心軸と、研削砥石30の中心軸とのずれで定義される揺動幅が0.1〜1.0mmとすることが望ましい。   Further, the processing speed can be improved by applying ultrasonic vibration to the grinding wheel 30 or the fixing device 21 in a state where the grinding wheel 30 is rotated and further swinging the grinding wheel 30. This rocking moves the silicon carbide single crystal 10 and the grinding wheel 30 relatively. As for this rocking | fluctuation, it is desirable for the rocking | fluctuation width | variety defined by the shift | offset | difference of the center axis | shaft of the growth direction of the silicon carbide single crystal 10 and the center axis | shaft of the grinding stone 30 to be 0.1-1.0 mm.

なお、研削対象となる炭化ケイ素単結晶10としては、昇華法により製造されたものであれば特に制限されないが、多結晶や多型の混入やマイクロパイプ等の結晶欠陥がなく、極めて高品質なものが好ましい。半導体ウエハ等の電子デバイス、発光ダイオード等の光学デバイスなどに特に好適に用いることができるからである。具体的には、溶融アルカリによりエッチングして評価した結晶欠陥(パイプ欠陥)が、50個/cm以下のものが好ましく、10個/cm以下のものがより好ましい。炭化ケイ素単結晶10における金属不純物元素の総含有量が10ppm以下のものが好ましい。 The silicon carbide single crystal 10 to be ground is not particularly limited as long as it is manufactured by a sublimation method, but there is no crystal defects such as polycrystals, polymorphs, micropipes, etc., and extremely high quality. Those are preferred. This is because it can be particularly suitably used for electronic devices such as semiconductor wafers, optical devices such as light emitting diodes, and the like. Specifically, the number of crystal defects (pipe defects) evaluated by etching with molten alkali is preferably 50 / cm 2 or less, and more preferably 10 / cm 2 or less. The total content of metal impurity elements in silicon carbide single crystal 10 is preferably 10 ppm or less.

(a)は炭化ケイ素単結晶の側面図を示し、(b)は炭化ケイ素単結晶の断面図を示す。(A) shows the side view of a silicon carbide single crystal, (b) shows sectional drawing of a silicon carbide single crystal. 本発明にかかる炭化ケイ素単結晶の研削方法の工程図(その1)を示す。Process drawing (the 1) of the grinding method of the silicon carbide single crystal concerning this invention is shown. 本発明にかかる炭化ケイ素単結晶の研削方法の工程図(その2)を示す。Process drawing (the 2) of the grinding method of the silicon carbide single crystal concerning this invention is shown. (a)は本発明にかかる炭化ケイ素単結晶の研削方法の工程を示す断面図を示し、(b)は研削砥石の一部断面図を示す。(A) shows sectional drawing which shows the process of the grinding method of the silicon carbide single crystal concerning this invention, (b) shows the partial sectional view of a grinding wheel. 本発明にかかる炭化ケイ素単結晶の研削方法の工程を示す断面拡大図を示す。The cross-sectional enlarged view which shows the process of the grinding method of the silicon carbide single crystal concerning this invention is shown. 本発明にかかる炭化ケイ素単結晶の研削方法の工程図(その3)を示す。Process drawing (the 3) of the grinding method of the silicon carbide single crystal concerning this invention is shown. 本発明にかかる炭化ケイ素単結晶の研削方法の工程図(その4)を示す。Process drawing (the 4) of the grinding method of the silicon carbide single crystal concerning this invention is shown.

符号の説明Explanation of symbols

10…炭化ケイ素単結晶
10a…単結晶領域
10b…加工屑
11…種結晶
12…単結晶領域
20…蓋
21…固定装置
30…研削砥石
31…砥石シャンク
32…砥石加工部
34…噴出し口
35…水流
40…シングルワイヤ
42…ワイヤー
41a、41b…巻き取り部
DESCRIPTION OF SYMBOLS 10 ... Silicon carbide single crystal 10a ... Single-crystal area | region 10b ... Processing waste 11 ... Seed crystal 12 ... Single-crystal area | region 20 ... Lid 21 ... Fixing device 30 ... Grinding wheel 31 ... Grinding wheel shank 32 ... Grinding wheel processing part 34 ... Outlet 35 ... Water stream 40 ... Single wire 42 ... Wire 41a, 41b ... Winding part

Claims (4)

昇華法により形成された炭化ケイ素単結晶の種結晶側に対向する成長面に対して中空円筒状砥石の開口加工部を接触させる工程と、
前記中空円筒状砥石を回転させると共に前記中空円筒状砥石を前記種結晶方向に下降させて前記炭化ケイ素単結晶を研削する工程とを含み、
前記炭化ケイ素単結晶を研削する工程にて、前記中空円筒状砥石に超音波振動を与えて前記炭化ケイ素単結晶の切子を排出させること
を特徴とする炭化ケイ素単結晶の研削方法。
A step of contacting the opening processed portion of the hollow cylindrical grindstone with the growth surface facing the seed crystal side of the silicon carbide single crystal formed by the sublimation method;
Rotating the hollow cylindrical grindstone and lowering the hollow cylindrical grindstone in the seed crystal direction to grind the silicon carbide single crystal,
A method for grinding a silicon carbide single crystal, wherein in the step of grinding the silicon carbide single crystal, ultrasonic vibration is applied to the hollow cylindrical grindstone to discharge the silicon carbide single crystal facets.
昇華法により形成された炭化ケイ素単結晶を固定装置に固定し、当該炭化ケイ素単結晶の種結晶側に対向する成長面に対して中空円筒状砥石の開口加工部を接触させる工程と、
前記中空円筒状砥石を回転させると共に前記中空円筒状砥石を前記種結晶方向に下降させて前記炭化ケイ素単結晶を研削する工程とを含み、
前記炭化ケイ素単結晶を研削する工程にて、前記炭化ケイ素単結晶の固定装置に超音波振動を与えて前記炭化ケイ素単結晶の切子を排出させること
を特徴とする炭化ケイ素単結晶の研削方法。
Fixing the silicon carbide single crystal formed by the sublimation method to a fixing device, and contacting the opening processing portion of the hollow cylindrical grindstone with the growth surface facing the seed crystal side of the silicon carbide single crystal;
Rotating the hollow cylindrical grindstone and lowering the hollow cylindrical grindstone in the seed crystal direction to grind the silicon carbide single crystal,
A method for grinding a silicon carbide single crystal, wherein in the step of grinding the silicon carbide single crystal, ultrasonic vibration is applied to a fixing device for the silicon carbide single crystal to discharge the facets of the silicon carbide single crystal.
前記炭化ケイ素単結晶を研削する工程にて、15kHz〜100kHzの超音波振動を与えることを特徴とする請求項1又は請求項2に記載の炭化ケイ素単結晶の研削方法。   The method for grinding a silicon carbide single crystal according to claim 1 or 2, wherein ultrasonic vibration of 15 kHz to 100 kHz is applied in the step of grinding the silicon carbide single crystal. 前記炭化ケイ素単結晶を研削する工程にて、振幅が10μm〜40μmの超音波振動を与えることを特徴とする請求項1又は請求項2に記載の炭化ケイ素単結晶の研削方法。   3. The method for grinding a silicon carbide single crystal according to claim 1, wherein in the step of grinding the silicon carbide single crystal, ultrasonic vibration having an amplitude of 10 μm to 40 μm is applied.
JP2006319791A 2006-11-28 2006-11-28 Grinding method for silicon carbide single crystal Pending JP2008132559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319791A JP2008132559A (en) 2006-11-28 2006-11-28 Grinding method for silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319791A JP2008132559A (en) 2006-11-28 2006-11-28 Grinding method for silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2008132559A true JP2008132559A (en) 2008-06-12

Family

ID=39557765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319791A Pending JP2008132559A (en) 2006-11-28 2006-11-28 Grinding method for silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2008132559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298659A (en) * 2008-06-13 2009-12-24 Bridgestone Corp Method for grinding silicon carbide single crystal
WO2011018925A1 (en) * 2009-08-11 2011-02-17 徳島県 Machining device, vibration device, and machining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298659A (en) * 2008-06-13 2009-12-24 Bridgestone Corp Method for grinding silicon carbide single crystal
WO2011018925A1 (en) * 2009-08-11 2011-02-17 徳島県 Machining device, vibration device, and machining method
JPWO2011018925A1 (en) * 2009-08-11 2013-01-17 徳島県 Processing device, vibration device and processing method
JP5660632B2 (en) * 2009-08-11 2015-01-28 徳島県 Processing device, vibration device and processing method

Similar Documents

Publication Publication Date Title
KR100350657B1 (en) Method and device for cutting a multiplicity of disks off a hard brittle workpiece
US9701043B2 (en) Dicing blade
US9314942B2 (en) Ingot cutting apparatus and ingot cutting method
WO2006073094A1 (en) Process for producing group iii nitride substrate
WO2015029988A1 (en) Dicing device and dicing method
JP2007030155A (en) Method for processing nitride semiconductor crystal
JP2007208060A (en) Silicon wafer, manufacturing method therefor, and silicon block
JP6218052B2 (en) Dicing apparatus and dicing method
JP2011031386A (en) Electro-deposition fixed abrasive grain wire and crystal slicing method using the same
JP5701211B2 (en) Electroformed thin cutting saw and core drill impregnated with abrasive
JP6352174B2 (en) Side surface processing method of silicon carbide single crystal ingot
JP2010074056A (en) Semiconductor wafer and method of manufacturing same
JP2008132559A (en) Grinding method for silicon carbide single crystal
JP2016196085A (en) Working grindstone
JP5003696B2 (en) Group III nitride substrate and manufacturing method thereof
JP6010827B2 (en) Dicing apparatus and dicing method
JP6804209B2 (en) Chamfering device and chamfering method
JPH11104950A (en) Electrode plate and manufacture thereof
JP2008133152A (en) Grinding method of silicon carbide single crystal
JP2007235092A (en) Method for grinding silicon carbide single crystal
JP7035153B2 (en) Chamfering device and chamfering method
JP2010194633A (en) Grinding method of silicon carbide monocrystal
JP2011124578A (en) Method of producing semiconductor wafer
JP2016087820A (en) Core drill for cutting work of sapphire single crystal boule
JP6453588B2 (en) Core drill and core drill equipment