JP2008130890A - Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor - Google Patents

Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor Download PDF

Info

Publication number
JP2008130890A
JP2008130890A JP2006315485A JP2006315485A JP2008130890A JP 2008130890 A JP2008130890 A JP 2008130890A JP 2006315485 A JP2006315485 A JP 2006315485A JP 2006315485 A JP2006315485 A JP 2006315485A JP 2008130890 A JP2008130890 A JP 2008130890A
Authority
JP
Japan
Prior art keywords
carbon
hybrid capacitor
electrode
less
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006315485A
Other languages
Japanese (ja)
Inventor
Michiko Natori
美智子 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006315485A priority Critical patent/JP2008130890A/en
Publication of JP2008130890A publication Critical patent/JP2008130890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon material for a hybrid capacitor capable of improving a high-speed charging/discharging characteristic, to provide an electrode for the hybrid capacitor using the carbon material, and to provide the hybrid capacitor for improving the high-speed charging/discharging characteristic. <P>SOLUTION: The carbon material for the hybrid capacitor is provided with a carbon particle in which the inter-layer spacing of a carbon 002 plane found out by XRD measurement is 3.40 to 3.70 Å and a carbon layer formed on the surface of the carbon particle; wherein the ratio (weight ratio) of the carbon layer to the carbon particle is 0.001 to 0.05 and a specific surface area found out by carbon dioxide adsorption in 273K is 0.1-5 m<SP>2</SP>/g or more and 5 m<SP>2</SP>/g or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハイブリッドキャパシタ用炭素材料、該炭素材料を用いたハイブリッドキャパシタ用電極及びハイブリッドキャパシタに関する。   The present invention relates to a carbon material for a hybrid capacitor, an electrode for a hybrid capacitor using the carbon material, and a hybrid capacitor.

エネルギー貯蔵デバイスは、大別してリチウムイオン二次電池のような二次電池と電気二重層キャパシタの二つに分けられる。特に、電気二重層キャパシタは大電流で充放電が可能であるため電気自動車の動力電源やブレーキ回生、また負荷平準や無停電電源装置等の用途に有望である。   Energy storage devices are roughly classified into two types: secondary batteries such as lithium ion secondary batteries and electric double layer capacitors. In particular, since the electric double layer capacitor can be charged / discharged with a large current, it is promising for uses such as a power source and brake regeneration of an electric vehicle, load leveling and uninterruptible power supply.

この電気二重層キャパシタは、非ファラデー反応で充放電するため、ファラデー反応で充放電する二次電池と比べて急速充放電が可能であり、サイクル寿命が長く電圧印加時の耐久性が高いという長所がある。
一方、電気二重層キャパシタの電極は正負両極ともに活性炭から成るため、二次電池に比べてエネルギー密度が低く、電気二重層キャパシタの高容量化が求められている。
Since this electric double layer capacitor is charged and discharged by a non-Faraday reaction, it can be rapidly charged and discharged compared to a secondary battery that is charged and discharged by a Faraday reaction, and has a long cycle life and high durability during voltage application. There is.
On the other hand, since the electrode of the electric double layer capacitor is made of activated carbon for both positive and negative electrodes, the energy density is lower than that of the secondary battery, and the electric double layer capacitor is required to have a higher capacity.

そこで、正極に活性炭、負極に予めリチウムイオンを吸蔵させた炭素材を用いることで、両極が活性炭である電気二重層キャパシタの数倍のエネルギーを発現させる提案がなされている(例えば、特許文献1〜3参照)。   Therefore, a proposal has been made to express energy several times that of an electric double layer capacitor in which activated carbon is used for the positive electrode and carbon material in which lithium ions are previously stored in the negative electrode is activated carbon (for example, Patent Document 1). To 3).

特開昭64−014882号公報Japanese Patent Application Laid-Open No. 64-014882 特開平08−107048号公報Japanese Patent Laid-Open No. 08-1007048 特許第3807854号公報Japanese Patent No. 3807854

このデバイスは、正極においては非ファラデー反応、負極ではファラデー反応で充放電するため、電気二重層キャパシタやリチウムイオン二次電池とは充放電メカニズムが異なる。   Since this device is charged and discharged by a non-Faraday reaction at the positive electrode and by a Faraday reaction at the negative electrode, the charge / discharge mechanism is different from that of an electric double layer capacitor or a lithium ion secondary battery.

本発明は、高速充放電特性を向上させることが可能なハイブリッドキャパシタ用炭素材料、該炭素材料を用いたハイブリッドキャパシタ用電極及び高速充放電特性を向上させるハイブリッドキャパシタを提供することを目的とするものである。   An object of the present invention is to provide a carbon material for a hybrid capacitor capable of improving high-speed charge / discharge characteristics, a hybrid capacitor electrode using the carbon material, and a hybrid capacitor improving high-speed charge / discharge characteristics. It is.

本発明者らは、特定の物性値を満足する炭素材を用いることで、従来よりも高速充放電特性の良好なハイブリッドキャパシタを提供できることを見いだし本発明を完成するに至った。   The present inventors have found that by using a carbon material that satisfies a specific physical property value, it is possible to provide a hybrid capacitor with better high-speed charge / discharge characteristics than before, and have completed the present invention.

本発明は、XRD測定より求められる炭素002面の層間隔が3.40〜3.70Åである炭素粒子と、その炭素粒子の表面上に形成された炭素層を備え、前記炭素粒子に対する炭素層の比率(重量比)が0.001〜0.05であり、273Kにおける二酸化炭素吸着より求めた比表面積が0.1m/g以上、5m/g以下であるハイブリッドキャパシタ用炭素材料に関する。 The present invention comprises a carbon particle having a carbon 002 plane spacing of 3.40-3.70 mm determined by XRD measurement, and a carbon layer formed on the surface of the carbon particle, the carbon layer corresponding to the carbon particle The ratio (weight ratio) is 0.001 to 0.05, and the specific surface area determined by carbon dioxide adsorption at 273K is from 0.1 m 2 / g to 5 m 2 / g.

また、本発明は、励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm−1付近に現れるピークの強度をId、1580cm−1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が0.5以上、1.5以下である前記のハイブリッドキャパシタ用炭素材料に関する。 Further, the present invention is excited in a profile obtained by laser Raman spectroscopy of wavelength 532 nm, the intensity of the peak appearing in the vicinity of 1360 cm -1 Id, the intensity of the peak appearing in the vicinity of 1580 cm -1 and Ig, the both peaks When the strength ratio Id / Ig is an R value, the R value is 0.5 or more and 1.5 or less.

また、本発明は、平均粒子径(50%D)が5μm以上、30μm以下、真比重が1.50g/cm以上、2.20g/cm以下、77Kでの窒素吸着測定より求めた比表面積が0.1m/g以上、20m/g以下である前記のハイブリッドキャパシタ用炭素材料に関する。
また、本発明は、前記の炭素材を用いたハイブリッドキャパシタ用電極に関する。
Further, the present invention provides a ratio determined by nitrogen adsorption measurement at an average particle diameter (50% D) of 5 μm or more and 30 μm or less, a true specific gravity of 1.50 g / cm 3 or more, 2.20 g / cm 3 or less, and 77K. surface area of 0.1 m 2 / g or more, relating to the carbon material for the hybrid capacitor is less than 20 m 2 / g.
The present invention also relates to an electrode for a hybrid capacitor using the carbon material.

また、本発明は、電極が、予めリチウムを挿入した電極である前記のハイブリッドキャパシタ用電極に関する。
また、本発明は、リチウムの挿入量が、リチウムを挿入可能な全体量の50%以上、100%未満である前記のハイブリッドキャパシタ用電極に関する。
さらに、本発明は、活性炭を活物質とする正極、前記の電極に予めリチウムを挿入した負極、リチウムを含有した有機溶液及びセパレータからなるハイブリッドキャパシタに関する。
The present invention also relates to the above electrode for a hybrid capacitor, wherein the electrode is an electrode into which lithium has been previously inserted.
The present invention also relates to the above electrode for a hybrid capacitor, wherein the amount of lithium inserted is 50% or more and less than 100% of the total amount of lithium that can be inserted.
Furthermore, the present invention relates to a hybrid capacitor comprising a positive electrode using activated carbon as an active material, a negative electrode in which lithium is previously inserted into the electrode, an organic solution containing lithium, and a separator.

本発明によれば、従来のハイブリッドキャパシタと比較して、高速充放電特性及び寿命特性に優れたハイブリッドキャパシタ並びにそれを得るためのハイブリッドキャパシタ用炭素材料、該炭素材料を用いたハイブリッドキャパシタ用電極を提供することが可能となる。   According to the present invention, compared with a conventional hybrid capacitor, a hybrid capacitor excellent in high-speed charge / discharge characteristics and life characteristics, a carbon material for a hybrid capacitor for obtaining the same, and an electrode for a hybrid capacitor using the carbon material are provided. It becomes possible to provide.

本発明のハイブリッドキャパシタ用炭素材料(負極材)は、XRD測定より求められる炭素002面の層間隔が3.40〜3.70Åである炭素粒子と、その炭素粒子の表面上に形成された炭素層を備え、前記炭素粒子に対する炭素層の比率(重量比)が0.001〜0.05であり、273Kにおける二酸化炭素吸着より求めた比表面積が0.1m/g以上、5m/g以下であることを特徴とする。 The carbon material (negative electrode material) for a hybrid capacitor of the present invention includes carbon particles having a carbon 002 plane spacing of 3.40 to 3.70 mm determined by XRD measurement, and carbon formed on the surface of the carbon particles. The ratio (weight ratio) of the carbon layer to the carbon particles is 0.001 to 0.05, and the specific surface area determined by carbon dioxide adsorption at 273K is 0.1 m 2 / g or more and 5 m 2 / g. It is characterized by the following.

前記炭素粒子に対する表層炭素の比率(重量比)は、0.001〜0.05、好ましくは0.002〜0.05、より好ましくは0.005〜0.03、に好ましくは0.008〜0.02とされ、表層炭素の比率が0.05を超えると初回充放電効率が低下する。表層炭素率は、後に述べる炭素前駆体の炭化率と炭素粒子に被覆した炭素前駆体の量より算出することができる。   The ratio (weight ratio) of the surface layer carbon to the carbon particles is 0.001 to 0.05, preferably 0.002 to 0.05, more preferably 0.005 to 0.03, and preferably 0.008 to 0.05. If the ratio of the surface carbon exceeds 0.05, the initial charge / discharge efficiency decreases. The surface carbon ratio can be calculated from the carbonization ratio of the carbon precursor described later and the amount of the carbon precursor coated on the carbon particles.

核となる炭素粒子表面に表面炭素を被覆する方法としては特に制限はないが、例えば、熱処理により炭素質を残す有機化合物を、核となる炭素粒子の表面に付着させた後、800〜1300℃の不活性雰囲気下で焼成する方法が好ましい。   There is no particular limitation on the method of coating the surface carbon particles on the surface of the carbon particles that serve as nuclei. A method of firing in an inert atmosphere is preferable.

本発明のハイブリッドキャパシタ用炭素材料(負極材)は、表面炭素の結晶性が、核となる炭素粒子よりも低いことが好ましい。表層炭素の結晶性を核となる炭素粒子よりも低くすることで、ハイブリッドキャパシタ用負極材と電解液との馴染みが向上し、その結果サイクル特性が向上する。   The carbon material for a hybrid capacitor (negative electrode material) of the present invention preferably has lower surface carbon crystallinity than carbon particles serving as a nucleus. By making the crystallinity of the surface layer carbon lower than that of the core carbon particles, the familiarity between the negative electrode material for a hybrid capacitor and the electrolytic solution is improved, and as a result, the cycle characteristics are improved.

核となる炭素粒子の表面に有機化合物を付着させる方法に特に制限はないが、例えば、有機化合物を用材に溶解又は分散させた液体に炭素粉末を浸漬した後、溶媒を除去する湿式方式、炭素粒子と有機化合物を固体同士で混合し、その混合物に力学エネルギーを印加し付着させる乾式方式、CVD法などの気相法などがある。被覆方式としては、上記乾式方式が、炭素粒子表面に均一に被覆できるといった点で好ましい。   There is no particular limitation on the method for attaching the organic compound to the surface of the carbon particles that serve as the nucleus. For example, a wet method in which the carbon powder is immersed in a liquid in which the organic compound is dissolved or dispersed in the material and then the solvent is removed, carbon There are a dry method in which particles and an organic compound are mixed with each other, and mechanical energy is applied to the mixture to adhere, and a vapor phase method such as a CVD method. As the coating method, the dry method is preferable in that the carbon particle surface can be uniformly coated.

核となる炭素粒子としては、特に制限はないが、易黒鉛化性を示す材料が好ましく、例えば、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロレン、コールタール、タールピッチ、コークス等を800〜1900℃でか焼した炭素材料を平均粒径5〜30μmに粉砕したものを用いることが好ましい。なかでも石炭系コークスや石油系コークスが好ましい。このような炭素粒子の核としての使用は、不可逆容量、寿命特性、充放電容量を高めるという点で好ましい。   The core carbon particles are not particularly limited, but materials showing graphitizability are preferable. For example, thermoplastic resins, naphthalene, anthracene, phenanthrolene, coal tar, tar pitch, coke, etc. are 800 to 1900. It is preferable to use a material obtained by pulverizing a carbon material calcined at 0 ° C. to an average particle size of 5 to 30 μm. Of these, coal-based coke and petroleum-based coke are preferable. Use of such carbon particles as nuclei is preferable in terms of enhancing irreversible capacity, life characteristics, and charge / discharge capacity.

上記のような核となる炭素粒子は、例えば、以下のような方法で作製することができる。
石炭系コールタールをオートクレーブなどの機器で熱処理して生コークスを得る。この生コークスを粉砕した後、800℃以上の不活性雰囲気中で焼成し、粉砕して炭素粒子とする。
上記の核粉砕方法については特に制限はないが、ジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法で行える。
The carbon particles serving as the nucleus as described above can be produced, for example, by the following method.
Coal coal tar is heat-treated with equipment such as an autoclave to obtain raw coke. After pulverizing this raw coke, it is fired in an inert atmosphere at 800 ° C. or higher and pulverized to obtain carbon particles.
Although there is no restriction | limiting in particular about said nuclear crushing method, It can carry out by known methods, such as a jet mill, a vibration mill, a pin mill, a hammer mill.

この核となる炭素粒子は、XRD測定より求められる炭素002面の層間隔は、3.40〜3.70Å、好ましくは3.40〜3.60Åとされ、3.40Å未満では寿命特性や入出力特性が劣り、3.70Åを超えると初回充放電効率が減少する。   The core carbon particles have a carbon 002 plane spacing of 3.40-3.70 mm, preferably 3.40-3.60 mm, determined by XRD measurement. If the output characteristics are inferior, and the value exceeds 3.70%, the initial charge / discharge efficiency decreases.

層間距離は、CuKα線を光源としたX線を粉末試料に照射し、回折線をゴニオメータにより測定し得た回折プロファイルにより、回折角2θ=24〜26°付近に現れる炭素002面に対応した回折ピークよりブラッグの式を用い算出することができる。   The distance between layers is a diffraction corresponding to a carbon 002 plane appearing at a diffraction angle of 2θ = 24 to 26 ° by a diffraction profile obtained by irradiating a powder sample with X-rays using CuKα rays as a light source and measuring diffraction lines with a goniometer. It can be calculated from the peak using the Bragg equation.

本発明になるハイブリッドキャパシタ用炭素材料(負極材)は、273Kでの二酸化炭素吸着より求めた比表面積が0.1m/g以上、5m/g以下、好ましくは0.3m/g以上、5m/g以下、より好ましくは0.5m/g以上、3m/g以下とされ、比表面積が0.1m/g未満であると高速充放電特性、電極密着性及び初回充放電効率が低下する。一方、比表面積が5m/gを超えることは被覆炭素が何らかの原因で多孔質化した場合にみられ、初回充放電効率が低下する傾向があり好ましくない。
二酸化炭素吸着による比表面積は273Kでの窒素吸着測定により得た吸着等温線からBET法で求めることができる。
The carbon material (negative electrode material) for hybrid capacitors according to the present invention has a specific surface area determined by carbon dioxide adsorption at 273 K of 0.1 m 2 / g or more, 5 m 2 / g or less, preferably 0.3 m 2 / g or more. 5 m 2 / g or less, more preferably 0.5 m 2 / g or more and 3 m 2 / g or less, and a specific surface area of less than 0.1 m 2 / g, high-speed charge / discharge characteristics, electrode adhesion and initial charge Discharge efficiency decreases. On the other hand, when the specific surface area exceeds 5 m 2 / g, it is seen when the coated carbon is made porous for some reason, and the initial charge / discharge efficiency tends to decrease, which is not preferable.
The specific surface area by carbon dioxide adsorption can be determined by the BET method from the adsorption isotherm obtained by nitrogen adsorption measurement at 273K.

本発明になるハイブリッドキャパシタ用炭素材料(負極材)は、励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm−1付近に現れるピークの強度をId、1580cm−1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が0.5以上、1.5以下であることが好ましく、0.7以上、1.3以下であることがより好ましい。R値が0.5未満であると寿命特性や入出力特性が劣る傾向があり、1.5以下を超えると不可逆容量が増大する傾向がある。 Carbon material for a hybrid capacitor according to the present invention (negative electrode material) is in the profile obtained by laser Raman spectroscopy of the excitation wavelength 532 nm, peaks appearing the intensity of the peak appearing in the vicinity of 1360 cm -1 Id, around 1580 cm -1 When the intensity ratio is Ig and the intensity ratio Id / Ig between the two peaks is the R value, the R value is preferably 0.5 or more and 1.5 or less, and 0.7 or more and 1.3 or less. It is more preferable that When the R value is less than 0.5, the life characteristics and input / output characteristics tend to be inferior, and when it exceeds 1.5 or less, the irreversible capacity tends to increase.

レーザーラマン測定は日本分光(株)製、NSR−1000を用い、励起波長532nm、レーザー出力3.9mW、入射スリット150μmの設定で測定することができる。得られたデータはインデン(和光純薬製)のスペクトルより求めた検量線を用いて補正を行った。   Laser Raman measurement can be carried out using NSR-1000 manufactured by JASCO Corporation with an excitation wavelength of 532 nm, a laser output of 3.9 mW, and an incident slit of 150 μm. The obtained data was corrected using a calibration curve obtained from the spectrum of indene (manufactured by Wako Pure Chemical Industries).

本発明になるハイブリッドキャパシタ用炭素材料(負極材)は、平均粒子径が5〜50μmであることが好ましく、5〜25μmであることがより好ましい。5μm未満の場合、炭素の比表面積が大きくなり初回充放電効率が低下すると共に、粒子同士の接触が悪くなり入出力特性が低下する傾向がある。   The hybrid capacitor carbon material (negative electrode material) according to the present invention preferably has an average particle diameter of 5 to 50 μm, and more preferably 5 to 25 μm. When the thickness is less than 5 μm, the specific surface area of carbon increases and the initial charge / discharge efficiency decreases, and the contact between particles tends to deteriorate and the input / output characteristics tend to decrease.

粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置((株)島津製作所製、SALD−3000J)で測定することができ、平均粒径は50%Dとして算出される。   The particle size distribution can be measured with a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation) by dispersing the sample in purified water containing a surfactant, and the average particle size is 50% D Is calculated as

また、本発明になるハイブリッドキャパシタ用炭素材料(負極材)は、真比重が1.5g/cm以上、2.20g/cm以下であることが好ましく、1.8g/cm以上、2.20g/cm以下であることがより好ましい。1.5g/cm未満であると体積あたりの充放電容量が低下し、初回充放電効率が減少する傾向がある。また2.20g/cmを超えると寿命特性が低下する傾向がある。
真比重はブタノールを用いたピクノメーター法により求めることができる。
The hybrid capacitor carbon material according to the present invention (negative electrode material) is, true specific gravity of 1.5 g / cm 3 or more, preferably 2.20 g / cm 3 or less, 1.8 g / cm 3 or more, 2 More preferably, it is 20 g / cm 3 or less. When the amount is less than 1.5 g / cm 3 , the charge / discharge capacity per volume decreases, and the initial charge / discharge efficiency tends to decrease. Also there is a tendency that the life characteristics deteriorate exceeds 2.20 g / cm 3.
The true specific gravity can be determined by a pycnometer method using butanol.

本発明になるハイブリッドキャパシタ用炭素材料(負極材)は、77Kでの窒素吸着測定より求めた比表面積が0.1m/g以上、20m/g以下であることが好ましく、1.0m/g以上、15m/g以下であることがより好ましい。比表面積が0.1m未満であると高速充放電特性、電極密着性及び初回充放電効率が低下する傾向がある。一方、比表面積が20m/gを超えることは被覆炭素が何らかの原因で多孔質化した場合にみられ、初回充放電効率が低下する傾向があり好ましくない。
窒素吸着による比表面積は77Kでの窒素吸着測定により得た吸着等温線からBET法で求めることができる。
The carbon material (negative electrode material) for hybrid capacitors according to the present invention preferably has a specific surface area of 0.1 m 2 / g or more and 20 m 2 / g or less determined by nitrogen adsorption measurement at 77 K, and 1.0 m 2. / G or more and 15 m 2 / g or less is more preferable. When the specific surface area is less than 0.1 m 2 , high-speed charge / discharge characteristics, electrode adhesion, and initial charge / discharge efficiency tend to be reduced. On the other hand, when the specific surface area exceeds 20 m 2 / g, it is observed when the coated carbon is made porous for some reason, and the initial charge / discharge efficiency tends to decrease, which is not preferable.
The specific surface area by nitrogen adsorption can be determined by the BET method from the adsorption isotherm obtained by nitrogen adsorption measurement at 77K.

以上のようにして作製された炭素被覆炭素粒子を、必要に応じて、解砕処理、分級処理、篩い分け処理を施すことで本発明になるハイブリッドキャパシタ用炭素材料(負極材)を得ることができる。   The carbon-coated carbon particles produced as described above are subjected to pulverization treatment, classification treatment, and sieving treatment as necessary to obtain a carbon material for hybrid capacitor (negative electrode material) according to the present invention. it can.

次に、ハイブリッドキャパシタについて説明する。前記炭素材料(負極材)は、一般に、有機系結着材及び溶媒と混錬して、シート状、ペレット状等の形状に形成される。有機系結着材としては、例えばスチレンーブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、さらにアクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸やイオン導電性の大きな高分子化合物が使用できる。   Next, the hybrid capacitor will be described. The carbon material (negative electrode material) is generally kneaded with an organic binder and a solvent and formed into a sheet shape, a pellet shape, or the like. Examples of organic binders include ethylenic polymers such as styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate. Saturated carboxylic acid esters, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid, and polymer compounds having high ionic conductivity can be used.

また、負極スラリーの増粘材として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等を、前述した有機系結着材と共に使用する場合がある。   In addition, as a thickener for the negative electrode slurry, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein, etc. are used together with the organic binder described above. There is a case.

前記イオン導電率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。有機系結着材の含有量は、負極材と有機系結着剤との混合物100質量部に対して1〜20質量部含有することが好ましい。
負極材は、有機系結着材及び溶媒と混錬し、粘度を調整した後、これを例えば、集電体に塗布し、該集電体と一体化してハイブリッドキャパシタ用負極となる。
As the polymer compound having a high ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used. The content of the organic binder is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the mixture of the negative electrode material and the organic binder.
The negative electrode material is kneaded with an organic binder and a solvent, adjusted in viscosity, and then applied to, for example, a current collector and integrated with the current collector to form a negative electrode for a hybrid capacitor.

集電体としては、例えばニッケル、銅等の箔、メッシュ等が使用できるが、リチウムをあらかじめ吸蔵する効率を上げるためにはメッシュが好ましい。負極合材と集電体との一体化は、例えば、ロールプレスなどの成形法で行うことができる。   As the current collector, for example, a foil such as nickel or copper, a mesh, or the like can be used, but a mesh is preferable in order to increase the efficiency of occlusion of lithium in advance. The integration of the negative electrode mixture and the current collector can be performed, for example, by a molding method such as a roll press.

このようにして得られた負極にリチウムイオンを挿入し、さらに、例えば、セパレータを介して正極を対向して配置し、電解液を注入することにより、ハイブリッドキャパシタにすることができる。   By inserting lithium ions into the negative electrode thus obtained, and further disposing the positive electrode through a separator and injecting an electrolytic solution, for example, a hybrid capacitor can be obtained.

本発明になるハイブリッドキャパシタ用電極(負極)へのリチウムイオンの挿入方法は、公知のいかなる方法も利用することができ、例えば、負極とリチウム金属を直接対向させて電解液に浸漬する方法や、電流・電圧制御装置を用いて電気化学的に挿入する方法がある。これらのなかでも、負極へのリチウム挿入量が明確になるという点では電流・電圧制御装置を用いた方法が好ましいし、工程の簡便さという点では、直接対向させる方法が好ましい。   As a method for inserting lithium ions into the hybrid capacitor electrode (negative electrode) according to the present invention, any known method can be used, for example, a method in which a negative electrode and a lithium metal are directly opposed to each other and immersed in an electrolyte solution, There is an electrochemical insertion method using a current / voltage control device. Among these, a method using a current / voltage control device is preferable from the viewpoint that the amount of lithium inserted into the negative electrode becomes clear, and a direct facing method is preferable from the viewpoint of simplicity of the process.

本発明になるハイブリッドキャパシタ用電極(負極)へのリチウムイオンの挿入量は、負極活物質のLi吸蔵可能量の50%以上、100%以下が好ましく、90〜100%がより好ましい。50%未満であるとハイブリッドキャパシタのサイクル寿命が悪化し、100%を超えるとリチウムが負極材に析出しセルの安全度が低下する傾向がある。   The amount of lithium ions inserted into the hybrid capacitor electrode (negative electrode) according to the present invention is preferably 50% or more and 100% or less, more preferably 90 to 100% of the Li storage capacity of the negative electrode active material. If it is less than 50%, the cycle life of the hybrid capacitor is deteriorated. If it exceeds 100%, lithium is deposited on the negative electrode material and the cell safety tends to be lowered.

本発明において、ハイブリッドキャパシタの正極用活物質は、公知の活性炭のいかなるものも使用することができ、例えば粉末形成体、繊維状、シート状等の集合体を挙げることができる。また集合体は実質的に活性炭を含有していればよく、他にそれ以外の正極構成材料を含有していてもよい。
正極用集電体の材質は、アルミニウム、チタン、タンタル等の金属又はその合金が用いられるが、特にアルミニウム又はその合金が、軽量であるためエネルギー密度の点で好ましい。
In the present invention, any known activated carbon can be used as the positive electrode active material of the hybrid capacitor, and examples thereof include aggregates such as powder-formed bodies, fibrous forms, and sheet forms. Moreover, the aggregate should just contain activated carbon substantially, and may contain the other positive electrode constituent material other than that.
The material for the positive electrode current collector is a metal such as aluminum, titanium, or tantalum, or an alloy thereof. In particular, aluminum or an alloy thereof is preferable in terms of energy density because it is lightweight.

本発明において、ハイブリッドキャパシタのセパレータの材質や形状は特に制限はないが、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、そのような材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布等が挙げられる。   In the present invention, the material and shape of the separator of the hybrid capacitor is not particularly limited, but is preferably selected from materials that are stable with respect to the electrolyte and have excellent liquid retention properties. , Porous sheets made of polyolefin such as polyethylene and polypropylene, and nonwoven fabrics.

電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体、2成分及び3成分混合物等の非水系溶剤に溶解した、所謂有機電解液を使用することができる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane. 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl Carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, acetic acid A so-called organic electrolyte solution dissolved in a simple substance such as ethyl, a non-aqueous solvent such as a two-component or three-component mixture can be used.

以下、実施例により、本発明をさらに詳細に説明する。
実施例1、2
石炭系コールタールを、オートクレーブを用いて熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でか焼を行い、コークス塊を得た。次いでコークス塊を分級機付の衝撃粉砕機を用いて粉砕後、300M篩にて粗粉を除去して炭素粒子を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1 and 2
Coal coal tar was heat-treated using an autoclave to obtain raw coke. The raw coke was pulverized and then calcined in an inert atmosphere at 1200 ° C. to obtain a coke mass. Next, the coke mass was pulverized using an impact pulverizer equipped with a classifier, and then coarse powder was removed with a 300M sieve to obtain carbon particles.

界面活性剤としてドデシルベンゼンスルホン酸ナトリウム1gを溶解したイオン交換水に、ポリビニルアルコール(重合度1700、完全けん化型)を15g(実施例1)、154g(実施例2)をそれぞれ溶解し、3種の濃度の混合溶液を調製した。得られた混合水溶液と上記の要領で作製した炭素粒子を、加熱機構を有する双腕型混錬機に投入し、室温で1時間以上混合し、次いで120℃に温度を上げ、水を蒸発、除去してポリビニルアルコール被覆炭素粒子を得た。   15 g (Example 1) and 154 g (Example 2) of polyvinyl alcohol (polymerization degree 1700, fully saponified type) were dissolved in ion exchange water in which 1 g of sodium dodecylbenzenesulfonate was dissolved as a surfactant. A mixed solution having a concentration of 5 was prepared. The obtained mixed aqueous solution and the carbon particles produced as described above are put into a double-arm kneader having a heating mechanism, mixed at room temperature for 1 hour or more, and then heated to 120 ° C. to evaporate water. This was removed to obtain polyvinyl alcohol-coated carbon particles.

得られたポリビニルアルコール被覆炭素粒子を空気中、200℃で5時間加熱処理を行い、ポリビニルアルコールを不融化し、次いで窒素流通下、20℃/hの昇温速度で900℃まで昇温し、1時間保持して炭素被覆炭素粒子とした。得られた炭素被覆炭素粒子をカッターミルで解砕、300Mの標準篩を通し、負極材試料とした。   The obtained polyvinyl alcohol-coated carbon particles are heated in air at 200 ° C. for 5 hours to infusible polyvinyl alcohol, and then heated to 900 ° C. at a rate of temperature increase of 20 ° C./h under a nitrogen flow. Hold for 1 hour to obtain carbon-coated carbon particles. The obtained carbon-coated carbon particles were crushed with a cutter mill and passed through a 300M standard sieve to obtain a negative electrode material sample.

ポリビニルアルコール単独で200℃、5時間加熱処理し、上記と同じ条件(200℃、5時間)で加熱処理した場合でのポリビニルアルコールの900℃での炭化率は13%であった。これより、実施例1、2の負極材試料の表層炭素率は、それぞれ0.001及び0.01である。得られた炭素被覆炭素粒子の物性値・電気的特性を下記の要領で測定した。   When the polyvinyl alcohol was heat-treated at 200 ° C. for 5 hours and was heat-treated under the same conditions (200 ° C., 5 hours) as described above, the carbonization rate at 900 ° C. of polyvinyl alcohol was 13%. Thus, the surface layer carbon ratios of the negative electrode material samples of Examples 1 and 2 are 0.001 and 0.01, respectively. The physical properties and electrical characteristics of the obtained carbon-coated carbon particles were measured as follows.

面間隔(d002):
RIGAKU製広角X線回折装置を用い、Cu−Kαをモノクロメーターで単色化し、高純度シリコンを標準物質として測定した。
ラマンスペクトルピーク強度比(R値):
日本分光製NRS−2100を用い、レーザー出力10mW、分光器Fシングル、入射スリット幅800μm、積算回数2回、露光時間120秒で測定を行った。
Surface spacing (d002):
Using a RIGAKU wide-angle X-ray diffractometer, Cu-Kα was monochromatic with a monochromator, and high-purity silicon was measured as a standard substance.
Raman spectrum peak intensity ratio (R value):
Measurement was performed using NRS-2100 manufactured by JASCO Corporation with a laser output of 10 mW, a spectrometer F single, an incident slit width of 800 μm, an integration count of 2 times, and an exposure time of 120 seconds.

平均粒子径:
(株)島津製作所製、レーザー回折粒度分布測定装置SALD−3000を用い、50%Dでの粒子径を平均粒子径とした。
比表面積:
Quantachrome社製AUTOSORB−を用い、液体窒素温度での窒素吸着又は273Kで二酸化炭素吸着を多点法で測定し、BET法に従って算出した。
Average particle size:
Using a laser diffraction particle size distribution analyzer SALD-3000 manufactured by Shimadzu Corporation, the particle size at 50% D was defined as the average particle size.
Specific surface area:
Using AUTOSORB- manufactured by Quantachrome, nitrogen adsorption at liquid nitrogen temperature or carbon dioxide adsorption at 273 K was measured by a multipoint method, and calculated according to the BET method.

真密度:
ブタノール置換法によって測定した。
負極の作製:
得られた負極炭素材料90重量%、カーボンブラック5重量%及びポリフッ化ビニリデン(PVDF)5重量%をN−メチル−2−ピロリドン中で混錬・分散し、圧延銅箔(厚さ18μm)上に塗布した後80℃で1時間乾燥した。これをプレスで直径15mm(φ)に打ち抜き、120℃で3時間真空乾燥したものを負極とした。
True density:
Measured by butanol substitution method.
Production of negative electrode:
90% by weight of the obtained negative electrode carbon material, 5% by weight of carbon black, and 5% by weight of polyvinylidene fluoride (PVDF) were kneaded and dispersed in N-methyl-2-pyrrolidone on a rolled copper foil (thickness 18 μm). And then dried at 80 ° C. for 1 hour. This was punched into a diameter of 15 mm (φ) with a press and vacuum-dried at 120 ° C. for 3 hours to form a negative electrode.

負極へのLi挿入(予備充電):
負極とリチウム金属を、セパレータをはさんで対向させ、電解液(LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(EMC)の混合溶媒(ECとEMCの体積比は1:3)に1.5モル/リットルの濃度になるように溶解したもの)に浸漬させてセルを作製した。
Li insertion into the negative electrode (preliminary charge):
The negative electrode and lithium metal are opposed to each other with a separator interposed therebetween, and an electrolyte (LiPF 6 is mixed in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (EMC) (volume ratio of EC and EMC is 1: 3) is 1. A cell was prepared by immersing in a cell dissolved in a concentration of 5 mol / liter.

このセルを充放電試験機につないで、定電流(0.28mA/cm)で負極にLiを挿入し、負極の電位が0V(vs Li/Li)になった時点で、定電圧でLiを挿入した。終了は、電流値が0.02mAとなった時点とした。以下、この操作を「予備充電」と記述する。 When this cell was connected to a charge / discharge tester, Li was inserted into the negative electrode at a constant current (0.28 mA / cm 2 ), and when the potential of the negative electrode became 0 V (vs Li / Li + ), a constant voltage was applied. Li was inserted. The end was made when the current value reached 0.02 mA. Hereinafter, this operation is described as “preliminary charging”.

正極の作製:
活性炭粉末80重量%、カーボンブラック10重量%及びPVDF10重量%をN−メチル−2−ピロリドン中で混錬・分散し、エッチドアルミ箔(厚さ20μm)上に塗布し、100℃で1時間乾燥した。これをプレスして直径15mm(φ)にち抜き、120℃で3時間真空乾燥したものを正極とした。
Production of positive electrode:
80% by weight of activated carbon powder, 10% by weight of carbon black and 10% by weight of PVDF were kneaded and dispersed in N-methyl-2-pyrrolidone, and coated on etched aluminum foil (thickness 20 μm), and at 100 ° C. for 1 hour. Dried. This was pressed, extracted to a diameter of 15 mm (φ), and vacuum-dried at 120 ° C. for 3 hours was used as the positive electrode.

ハイブリッドキャパシタセルの作製:
上記の正極と予備充電した負極を、セパレータをはさんで対向させ、電解液(LiPFをエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒(ECとEMCの体積比は1:3)に1.5モル/リットルの濃度になるように溶解したもの)に浸漬させてハイブリッドキャパシタセルを作製した。
Fabrication of hybrid capacitor cell:
The positive electrode and the precharged negative electrode are opposed to each other with a separator interposed therebetween, and an electrolytic solution (LiPF 6 is a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (the volume ratio of EC and EMC is 1: 3). ) Was soaked in a solution of 1.5 mol / liter to obtain a hybrid capacitor cell.

放電容量及び低温容量維持率
上記で作製したセルを25℃の恒温槽内に置き、充放電試験装置を用いて、1Cレートに相当する電流値で正極と負極の電位差が4Vになるまで定電流充電し、その後電位差を4Vに保持しながら4時間定電圧で充電した。その後50Cレートの電流値で電位差が2Vになるまで放電し放電容量(活性炭1gあたりに換算)とした。
次に、−20℃の恒温槽内で同様の操作を行った。このときの放電量/25℃での放電容量の比を低温容量維持率とした。
Discharge capacity and low temperature capacity retention rate The cell produced above was placed in a constant temperature bath at 25 ° C., and a constant current was used until the potential difference between the positive electrode and the negative electrode reached 4 V at a current value corresponding to a 1 C rate using a charge / discharge test apparatus. The battery was charged and then charged at a constant voltage for 4 hours while maintaining the potential difference at 4V. Thereafter, the battery was discharged until the potential difference reached 2 V at a current value of 50 C rate to obtain a discharge capacity (converted per 1 g of activated carbon).
Next, the same operation was performed in a -20 ° C constant temperature bath. The ratio of discharge amount / discharge capacity at 25 ° C. at this time was defined as a low-temperature capacity retention rate.

サイクル容量維持率:
上記のセルについて、4Cレートに相当する電流値で、正極と負極の電位差が4Vになるまで充電し、同じ電流値で電位差が2Vになるまで放電した。この操作を10000回繰り返して放電容量を測定して、10000サイクル後の放電容量/4サイクル後の放電容量の比をサイクル容量維持率とした。
Cycle capacity maintenance rate:
The cell was charged at a current value corresponding to a 4C rate until the potential difference between the positive electrode and the negative electrode reached 4V, and discharged at the same current value until the potential difference reached 2V. This operation was repeated 10,000 times to measure the discharge capacity, and the ratio of the discharge capacity after 10,000 cycles / the discharge capacity after four cycles was defined as the cycle capacity retention rate.

比較例1
実施例と同様の方法で炭素粒子を作製した。被覆を行っていないこの材料を用いて、実施例と同様の方法でハイブリッドキャパシタを作製し、同様の測定を行った。
Comparative Example 1
Carbon particles were produced in the same manner as in the examples. Using this uncoated material, a hybrid capacitor was produced in the same manner as in the example, and the same measurement was performed.

比較例2、3
実施例と同様の方法で炭素粒子を作製した。この粒子に対して、実施例のポリビニルアルコールの溶解量を7.5g、1540gに変更し、その他は同様の方法で試料を作製した。比較例2、3の負極材試料の表面炭素率は、それぞれ0.005及び0.11である。この負極材を用いて、実施例と同様の方法でハイブリッドキャパシタを作製し、同様の測定を行った。
Comparative Examples 2 and 3
Carbon particles were produced in the same manner as in the examples. For these particles, the amount of polyvinyl alcohol dissolved in Examples was changed to 7.5 g and 1540 g, and the other samples were prepared in the same manner. The surface carbon ratios of the negative electrode material samples of Comparative Examples 2 and 3 are 0.005 and 0.11, respectively. Using this negative electrode material, a hybrid capacitor was produced in the same manner as in the example, and the same measurement was performed.

比較例4
ストレートノボラック樹脂に、硬化剤としてヘキサメチレンテトラミンを加え、180℃に加熱したホットプレート上で混合を行いながら硬化処理を行った。この硬化樹脂を200℃のオーブン中で5時間加熱処理した。続いて、この樹脂をハンマーで粗粉砕した後、分級機付きの衝撃粉砕機で粉砕した。
Comparative Example 4
Hexamethylenetetramine was added as a curing agent to the straight novolac resin, and curing was performed while mixing on a hot plate heated to 180 ° C. This cured resin was heat-treated in an oven at 200 ° C. for 5 hours. Subsequently, this resin was roughly pulverized with a hammer and then pulverized with an impact pulverizer equipped with a classifier.

この粉砕樹脂を、窒素雰囲気下、昇温速度20℃/時で1000℃まで昇温し、続いて1000℃で1時間保持して炭素粉末を得た。
この炭素粉末に対して、実施例と同様の方法で被覆処理を行い、炭素被服炭素粒子を得た。得られた炭素被服炭素粒子を300Mの篩で粗粉を除去して負極材を得た。次いでこの材料を用いて、実施例と同様の方法でハイブリッドキャパシタを作製し、同様の測定を行った。
The pulverized resin was heated to 1000 ° C. at a temperature rising rate of 20 ° C./hour in a nitrogen atmosphere, and then kept at 1000 ° C. for 1 hour to obtain a carbon powder.
The carbon powder was coated by the same method as in Example to obtain carbon-coated carbon particles. Coarse powder was removed from the obtained carbon-coated carbon particles with a 300M sieve to obtain a negative electrode material. Next, using this material, a hybrid capacitor was produced in the same manner as in the example, and the same measurement was performed.

比較例5
石炭系コールタールを、オートクレーブを用いて熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でか焼を行い、コークス塊を得た。次いでコークス塊を分級機付きの衝撃粉砕機を用いて粉砕したものを黒鉛ケースに入れ、窒素雰囲気中、100℃/分で3000℃まで昇温した後、30分保持して黒鉛粒子を得た。
Comparative Example 5
Coal coal tar was heat-treated using an autoclave to obtain raw coke. The raw coke was pulverized and then calcined in an inert atmosphere at 1200 ° C. to obtain a coke mass. Next, the coke mass which was pulverized using an impact pulverizer equipped with a classifier was placed in a graphite case, heated to 3000 ° C. at 100 ° C./min in a nitrogen atmosphere, and held for 30 minutes to obtain graphite particles. .

得られた黒鉛粒子を300Mの標準篩で篩い分けし粗粉を除去した。残った黒鉛粒子に対して、実施例と同様の方法で被覆処理を行い、炭素被覆黒鉛粒子を得た。この負極材を用いて、実施例と同様の方法でハイブリッドキャパシタを作製し、同様の測定を行った。   The obtained graphite particles were sieved with a 300M standard sieve to remove coarse powder. The remaining graphite particles were coated by the same method as in the example to obtain carbon-coated graphite particles. Using this negative electrode material, a hybrid capacitor was produced in the same manner as in the example, and the same measurement was performed.

比較例6
予備充電量率を負極材容量全体の30%にした以外は実施例と同様の方法でハイブリッドキャパシタを作製し、同様の測定を行った。
実施例1、2及び比較例1〜6における粉体特性を表1に、ハイブリッドキャパシタ特性を表2に示す。
Comparative Example 6
A hybrid capacitor was produced in the same manner as in the example except that the precharge amount rate was 30% of the total capacity of the negative electrode material, and the same measurement was performed.
The powder characteristics in Examples 1 and 2 and Comparative Examples 1 to 6 are shown in Table 1, and the hybrid capacitor characteristics are shown in Table 2.

Figure 2008130890
Figure 2008130890

Figure 2008130890
Figure 2008130890

表2に示されるように、実施例1、2で得られたハイブリッドキャパシタは、比較例1〜6で得られたハイブリッドキャパシタに比較して、充放電効率が高く寿命特性が良好であることが明らかである。   As shown in Table 2, the hybrid capacitors obtained in Examples 1 and 2 have higher charge / discharge efficiency and better life characteristics than the hybrid capacitors obtained in Comparative Examples 1-6. it is obvious.

Claims (7)

XRD測定より求められる炭素002面の層間隔が3.40〜3.70Åである炭素粒子と、その炭素粒子の表面上に形成された炭素層を備え、前記炭素粒子に対する炭素層の比率(重量比)が0.001〜0.05であり、273Kにおける二酸化炭素吸着より求めた比表面積が0.1m/g以上、5m/g以下であるハイブリッドキャパシタ用炭素材料。 A carbon particle having a carbon 002 plane interval of 3.40 to 3.70 mm determined by XRD measurement, and a carbon layer formed on the surface of the carbon particle, the ratio of the carbon layer to the carbon particle (weight) Ratio) is 0.001 to 0.05, and the specific surface area obtained by carbon dioxide adsorption at 273K is 0.1 m 2 / g or more and 5 m 2 / g or less. 励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm−1付近に現れるピークの強度をId、1580cm−1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が0.5以上、1.5以下である請求項1記載のハイブリッドキャパシタ用炭素材料。 In the profile determined by laser Raman spectroscopy of the excitation wavelength 532 nm, 1360 cm -1 to the intensity of the peak appearing in the vicinity of Id, and Ig the intensity of a peak appearing near 1580 cm -1, at both peak intensity ratio Id / Ig of 2. The carbon material for a hybrid capacitor according to claim 1, wherein the R value is 0.5 or more and 1.5 or less when R is an R value. 平均粒子径(50%D)が5μm以上、30μm以下、真比重が1.50g/cm以上、2.20g/cm以下、77Kでの窒素吸着測定より求めた比表面積が0.1m/g以上、20m/g以下である請求項1又は2記載のハイブリッドキャパシタ用炭素材料。 The average particle diameter (50% D) is 5 μm or more and 30 μm or less, the true specific gravity is 1.50 g / cm 3 or more, 2.20 g / cm 3 or less, and the specific surface area determined by nitrogen adsorption measurement at 77 K is 0.1 m 2. The carbon material for a hybrid capacitor according to claim 1, wherein the carbon material is / g or more and 20 m 2 / g or less. 請求項1〜3記載の炭素材を用いたハイブリッドキャパシタ用電極。   The electrode for hybrid capacitors using the carbon material of Claims 1-3. 電極が、予めリチウムを挿入した電極である請求項4記載のハイブリッドキャパシタ用電極。   5. The electrode for a hybrid capacitor according to claim 4, wherein the electrode is an electrode into which lithium has been previously inserted. リチウムの挿入量が、リチウムを挿入可能な全体量の50%以上、100%未満である請求項5記載のハイブリッドキャパシタ用電極。   The hybrid capacitor electrode according to claim 5, wherein the amount of lithium inserted is 50% or more and less than 100% of the total amount of lithium that can be inserted. 活性炭を活物質とする正極、請求項4、5又は6記載の電極に予めリチウムを挿入した負極、リチウムを含有した有機溶液及びセパレータからなるハイブリッドキャパシタ。   A hybrid capacitor comprising a positive electrode using activated carbon as an active material, a negative electrode in which lithium is inserted in advance into the electrode according to claim 4, 5 or 6, an organic solution containing lithium, and a separator.
JP2006315485A 2006-11-22 2006-11-22 Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor Pending JP2008130890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315485A JP2008130890A (en) 2006-11-22 2006-11-22 Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315485A JP2008130890A (en) 2006-11-22 2006-11-22 Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor

Publications (1)

Publication Number Publication Date
JP2008130890A true JP2008130890A (en) 2008-06-05

Family

ID=39556409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315485A Pending JP2008130890A (en) 2006-11-22 2006-11-22 Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor

Country Status (1)

Country Link
JP (1) JP2008130890A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2012028729A (en) * 2010-07-26 2012-02-09 Samsung Electro-Mechanics Co Ltd Free-doping system of electrode and free-doping method of electrode using the same
JP2012134236A (en) * 2010-12-20 2012-07-12 Jsr Corp Lithium ion capacitor
KR101194999B1 (en) 2011-06-29 2012-10-29 한국세라믹기술원 Hybrid supercapacitor and manufacturing method of the same
KR101226620B1 (en) 2011-06-29 2013-01-28 한국세라믹기술원 Manufacturing method of hybrid supercapacitor having a high specific capacitance
JP2015216001A (en) * 2014-05-09 2015-12-03 国立大学法人岩手大学 Electricity storage element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2012028729A (en) * 2010-07-26 2012-02-09 Samsung Electro-Mechanics Co Ltd Free-doping system of electrode and free-doping method of electrode using the same
JP2012134236A (en) * 2010-12-20 2012-07-12 Jsr Corp Lithium ion capacitor
KR101194999B1 (en) 2011-06-29 2012-10-29 한국세라믹기술원 Hybrid supercapacitor and manufacturing method of the same
KR101226620B1 (en) 2011-06-29 2013-01-28 한국세라믹기술원 Manufacturing method of hybrid supercapacitor having a high specific capacitance
JP2015216001A (en) * 2014-05-09 2015-12-03 国立大学法人岩手大学 Electricity storage element

Similar Documents

Publication Publication Date Title
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP6380106B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101921768B1 (en) Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JP6256346B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5811999B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2007141677A (en) Compound graphite and lithium secondary cell using same
JP2008130890A (en) Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
WO2017191820A1 (en) Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JP5707707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP5636689B2 (en) Graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI752112B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023139662A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7047892B2 (en) Carbonaceous particles, negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries
WO2023181659A1 (en) Particles, method for manufacturing particles, method for manufacturing negative electrode, and method for manufacturing secondary battery
JP2019087460A (en) Manufacturing method of negative electrode material for lithium ion secondary battery